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Distribution-free Testing for Halfspaces (Almost) Requires PAC
Learning
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Abstract

It is well known that halfspaces over R™ and {0,1}" are PAC-learnable with ©(n) samples.
Recently Blais et al. [4] showed that even the easier task of distribution-free sample-based
testing requires Q(n/logn) samples for halfspaces.

In this work we study the distribution-free testing of halfspaces with queries, for which
we show that the complexity remains to be Q(n) Indeed we prove the following stronger
tradeoff result: any distribution-free testing algorithm for halfspaces over {0,1}" that
receives k samples must make exp(Q(/n/k)) queries on the input function, when k satisfies
n?? <k < O(n/log®n). For halfspaces over R™ we show that any algorithm that makes a finite
number of queries must draw Q(n/logn) many samples.

1 Introduction

The fundamental theorem of Statistical Learning [21] shows that the VC dimension of a class
essentially captures the number of samples needed for its PAC learning. This implies a tight bound
of ©(n) for the PAC learning of halfspaces or LTFs (i.e., f(z) = sgn(w?x — b) for some w € R"
and b € R over either z € R™ or the hypercube {£1}"). However, given the pervasiveness of linear
models in machine learning, it is natural to ask what one can achieve with fewer than ©(n) samples.

An avenue for such investigation is to consider the testing of halfspaces under the distribution-
free model, where an algorithm only needs to solve the easier testing task and can make adaptive
queries in addition to drawing samples. Formally, the goal of a testing algorithm is to determine
whether an unknown function f is an LTF or far from LTFs with respect to an unknown distribution
D (i.e., Pryp[f(x) # g(x)] > € for any LTF g), given query access to f and sampling access to
D. The complexity of an algorithm is measured by the number of samples it draws plus the
number of queries it makes. Inspired by the PAC learning model [23], the distribution-free testing
model was first introduced by Goldreich, Goldwasser and Ron [10] and has been studied extensively
[1, 14, 11, 15, 16, 8].

As observed by [10], any proper PAC learning algorithm can be used for distribution-free
property testing. The question is whether halfspaces allow more efficient testing algorithms than
learning. On the lower bound side, Glasner and Servedio proved that any distribution-free tester for
halfspaces must have complexity Q(n'/®) [11]. This was later improved by Chen and Xie to Q(n'/?)
[7]. On the other hand, recently Blais et al. showed that any sample-based tester must request
Q(n/logn) samples [4], by developing a new notion of “lower VC” dimension to characterize the
sample complexity of testing problems. Before their work, an Q(n) lower bound was obtained by
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Epstein and Silwal for one-sided sample-based testers [9]. In summary, the state-of-the-art on the
testing of halfspaces under the distribution-free model is in sharp contrast with standard testing
model (under uniform distribution over {£1}"™ or Gaussian over R™), where testing is known to be
significantly easier than learning (see discussion after main results).

Our contribution. We come close to resolving the testing versus learning question for halfspaces
by showing that distribution-free testing is (almost) as hard as learning. We remark that all the
lower bounds we prove apply to adaptive algorithms with two-sided errors.

For R", we show that any algorithm that makes a finite number of queries must draw nearly
the same number of samples as learning:

THEOREM 1.1. Suppose ALG is a distribution-free testing algorithm for halfspaces over R™ that
makes a finite number of queries and, given any (f,D), determines with probability at least 2/3
whether f is an LTF or is Q(1)-far from LTFs with respect to D. Then ALG must use 2 (n/logn)
samples.

For {£1}", we show that any algorithm that draws & < n/polylog(n) samples can make up the
difference by only paying a high cost of exp(Q(y/n/k)) queries:

THEOREM 1.2. Suppose ALG is a distribution-free testing algorithm for halfspaces over {£1}" that,
given any (f, D), determines with probability at least 2/3 whether f is an LTF or is Q(1)-far from
LTFs with respect to D. If ALG draws at most k samples for some k : % < k < O(n/log®n), then
it must make at least exp(Q(\/n/k)) queries.!

Our results highlight the difference of power between samples and queries, giving an exponential
tradeoff for the task of testing halfspaces. We believe that it is an interesting direction to understand
whether similar tradeoff phenomenons occur in other distribution-free testing problems.

Our results also lead to a strong separation for testing halfspaces between the standard testing
model and the distribution-free model. For the standard model, Matulef et al. [19] showed that
halfspaces can be tested under the uniform distribution over {£1}" or Gaussian over R™ with only
poly(1/e€) queries. For sample-based testing under the Gaussian distribution over R™, Balcan et al.
2] showed that O(y/n) samples suffice. This was later extended by Harms [13] to show that O(y/n)
samples suffice for any unknown rotationally-invariant distribution D over R™.

In addition to testing halfspaces, we believe that our techniques can be straightforwardly applied
to prove Q(En) lower bounds for the distribution-free testing of the intersection of ¢ halfspaces, which
would again match the complexity of learning up to logarithmic factors. We plan to include a proof
in the full version of the paper.

1.1 Proof Overview We start with a quick review of the lower bound of [4] on sample-based
distribution-free testing of halfspaces. A crucial idea in their lower bound proof is to embed the
following support size distinction problem [24, 25, 26] (SSD for short):

DEFINITION 1.1. (SUPPORT SIZE DISTINCTION PROBLEM) Fiz anyn > 1 and 0 < a < § < 1.
Let p be a hidden distribution supported on [n] such that either | supp(p)| < an or |supp(p)| > fn,
and in both cases p satisfies p(i) > 1/n for all i € supp(p). We use SSD(n,«a, ) to denote the

IWe note that the theorem applies to k < n?9 as well, though the bound is only exponential in S~2(n'005) instead
of Q(4/n/k). We have made no effort to optimize the constant 0.99 in the exponent.
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smallest number of samples needed for an algorithm to distinguish the two cases with probability at
least 2/3.

The theorem below follows from the proof of [26], but only explicitly appears in [4]:

ni/4

THEOREM 1.3. ([26]) For any § = Q< Y log(n)) and o, 1 — B > 4, we have

SSD(n, a, 8) = Q ( no” ) .

logn
For the reduction, they make two observations (see proofs in Appendix A for completeness):

LEMMA 1.1. (FOLKLORE) If v!,...,v*¥ € R™ are affinely independent, then any function f :

{vl, ..., v*} — {£1} is consistent with an LTF.

LEMMA 1.2. Let vl,...,v* be a set of k > 100(n + 1) points and D be a distribution over them such
that every v' has probability Q(1/k). Then a function f : {v',...,v*} — {£1} drawn uniformly at
random is Q(1)-far from LTF's with respect to D with probability 1 — 0, (1) (over f).

The lower bound of [4] for R” proceeds as follows. Assume for a contradiction that there is a
distribution-free sample-based algorithm ALG for testing halfspaces with o(n/logn) samples and
success probability 0.9 2. Then a player can use it to solve SSD(400n, 1/400,1/2) with o(n/logn)
samples as follows.

Let m = 400n and p be the unknown distribution over [m]. The player starts by picking (1)
aset Q ={q*,...,q™} of m points in R™ such that every n-subset of Q is affinely independent and
(2) a random coloring 9 : [m] — {£1} (@ and % can both be given to the ALG). Together with
the unknown p, they define the following instance (f, D) for distribution-free testing of halfspaces:

1. The distribution D over Q satisfies D(q*) = p(i) for each i € [m)].

2. Given that ALG is sample-based, it suffices to describe f over Q). If p has large support, then
f(q") = (i) for all i € [m], which by Lemma 1.2 is far from LTFs with high probability; if p
has small support, then f is set to be an LTF that is consistent with (i) at each ¢* with
i € supp(p). The latter is always possible because we have |supp(p)| < n in this case.

While the player does not know p and thus, knows neither f nor D, she can draw samples from p to
simulate samples from D. Given that ALG succeeds in determining which case it is with probability
at least 0.9, the player solves the SSD problem with probability 0.9—o0, (1) using o(n/logn) samples
(where the loss of 0,,(1) is due to the random choice of v), a contradiction with Theorem 1.3.
Next we describe ideas needed to modify the strategy of [4] to obtain our lower bound for
distribution-free LTF testing with queries for R™. Since our bound will apply to any finite number
of queries, we may assume without loss of generality that ALG is nonadaptive. Let’s use the version
of SSD(400n,1/1600,1/2) with a slightly smaller . The first thing is that we need to make sure
there is no way for ALG to query points in the set () in which we hide the unknown distribution p.
To this end, the player starts by drawing a random vector r € S"~!, where S"~! denotes the
unit (n — 1)-sphere in R™, and uses it to define a random hyperplane h = {z € R" : v’z = 0}. The

ZWhile our lower bounds are for algorithms with error 2/3, it suffices to prove lower bounds against algorithms

with error 0.9 as we can always amplify the success probability.
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player then draws (1) a sequence of m points q',...,q™ independently and uniformly at random
from h N S™"~1 to form the new set Q = {q',...,q™} (note that these m points are distinct with
probability 1) and (2) a coloring @ : Q — {£1} uniformly at random. The hidden distribution
p over [m] defines our distribution D over Q with D(q’) = p(i) for each i € [m]. Before defining
the function f, let’s consider what ALG is able to do after receiving a sequence of k = o(n/logn)
samples X = (x1,...,X;) drawn from D. On one hand, ALG can definitely query points in the
linear span of X so we need to make sure points there do not reveal any useful information. On
the other hand, it is unlikely for ALG to query any point that is on h but is not in the span of X,
given the randomness of r.

These observations inspire the following construction. First, given the coloring 1 : Q — {£1},
we show how to extend it to a function g : R™ — {41} such that g agrees with 1 on Q and for
any subset T’ of Q with |T'| < n/4, g agrees with an LTF sgn(w”z) at every point o € span(T) for
some w depending only on T and 1) over T'. The existence of such an extension follows from linear
algebra arguments which we present in Lemma 3.2. Finally we define f as follows:

1. If p has small support, then we know that there is an LTF sgn(w? z) that is consistent with
g in span(q’ : i € supp(p)) given that |supp(p)| < n/4. Then we set

f(x) = sgn (rTm +4- wTJ:) ,
where we assume for intuition that § is infinitely® small. In this case f is an LTF.

2. If p has large support, then we set f(x) to be g(z) for € h and f(z) = sgn(r’z) for = ¢ h.
Given that ¢ is an extension of 1, f is far from LTFs by Lemma 1.2.

As a result, if (f, D) were given as the input instance to ALG, it would be able to tell which case p
is. On the other hand, even though the player does not know p, she actually knows the value f(x)
for all points x except those that are not in the span of samples X to ALG but are infinitely close
to h. By our discussion earlier it is unlikely for ALG to query these points and thus, the player can
simulates ALG running on f correctly with high probability to solve SSD.

For the hypercube {+1}", the player again samples a hyperplane, draws m points from it as
Q, and uses it to embed the hidden distribution p from the SSD problem. Unlike in R™, however, it
will be considerably more challenging to argue that our random hyperplane is difficult for ALG to
find, especially because the query bound we aim for is superpolynomial. Naively, there are at most
n2n’ hyperplanes over the cube, so if each query gives a bit of information we could only prove a
query lower bound of Q(n?). One approach to limit the information that the algorithm receives is
to take a highly biased hyperplane such that the answer to all of the testing algorithm’s queries
will be negative with high probability. Unfortunately, a stumbling block is that given even a single
sample y, one of the n points within hamming distance 1 of y will likely be positive.

To circumvent this obstacle, our approach to design the distribution of such a hyperplane will
have two components. We start by fixing a so-called “restricting” hyperplane h (the existence of
such a hyperplane is proved via the probabilistic method). The purpose of this hyperplane will be
to select a good subset of points from the hypercube with several favorable properties. In many
ways, this subset will look like a random set of points from {+1}". Afterwards, we select a biased
hyperplane randomly via a carefully picked distribution. For the final LTF f, f(x) is determined
according to the restricting hyperplane h if x is not on it, and is determined according to the biased

3This will be one of the technical hurdles we need to overcome in the proof in Section 3.
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hyperplane if x is on h. We then argue that it is hard for any (adaptive) algorithm to find many
points on h that are also on the positive side of the biased hyperplane.

2 Preliminaries

Notation. We will write A, to denote the standard n-dimensional Gaussian distribution NV (0, I,,)
over R". Given a d-dimensional linear subspace S of R", we will write Ng to denote the standard
d-dimensional Gaussian distribution over S. For a set S, we denote by (*2) the set of all subsets of
S of size k. We also denote a € [b—¢,b+¢c] by a =b=+c.

Distribution-free Testing. We review the model of distribution-free property testing. Let
frg + {x1}™ — {£1} (or f,g : R® — {£1}) denote two Boolean-valued functions over {£1}"
(or R™), and D denote a probability distribution over {£1}"™ (or R™).

We define the distance between f and g with respect to D as

distp(f, ) = Pr [f(2) # 9(2)].
Given a class € of Boolean functions over {+1}" (or R™), we define
distp(f,€) = 91161£ (dlstp(f,g))

as the distance between f and € with respect to D. We also say that f is e-far from € with respect
to D for some € > 0 if distp(f, &) > e. Now we define distribution-free testing algorithms.

DEFINITION 2.1. Let € be a class of Boolean functions over {£1}" (or R™). A distribution-free
testing algorithm ALG for € has access to a pair (f,D), where f is an unknown Boolean function
f{£1}" = {£1} and D is an unknown probability distribution over {£1}", via

1. a black-box oracle that returns the value f(z) when z € {£1}"™ is queried; and

2. a sampling oracle that returns a sample z ~ D drawn independently from D each time.
The algorithm ALG takes as input a distance parameter § > 0 and satisfies for any (f,D):

1. If f € €, then T' accepts with probability at least 2/3; and
2. If f is d-far from € with respect to D, then T rejects with probability at least 2/3.

We say an algorithm is sample-based if it can only draw a sequence of samples (z, f(z)) with
z ~ D and cannot make queries. Note that in the definition above every sample comes with the
point z only; this is just to simplify the presentation because the algorithm can always query them
later. Finally, we may always assume without loss of generality that an algorithm starts by drawing
all samples it needs and then it can make queries only.

3 Warm-Up: Distribution-Free LTF Testing in R"

3.1 Preparation We start with a few simple geometric lemmas:

LEMMA 3.1. Let @ C R™ be a set of vectors such that any k-subset of Q) is linearly independent. If
S, T C Q satisfy |S| < |T'| < k/2, then we have span(S) Nspan(1") = span(SNT).
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Proof. Clearly, span(S N T) C span(S) N span(7). To see the opposite inclusion, let = €
span(S) Nspan(7’). Then there exists coefficients oy and S, such that

Zass:az:Zﬁtt = Zass—ZBtt:O

seS te’l s€S teT

Given that every set of k elements from @ is independent, S U T is independent and thus, we must
have as =0 for all s € S\ T and By = 0 for all t € T'\ S. As a result, we have = € span(SNT).
O

Let @ C R™ be a set of points such that every (n — 1)-subset of @ is linearly independent. The
next lemma shows that we can extend any ¢ : Q — {£1} to gg, over R™ such that gg . agrees
with an LTF in the span of any k-subset of @ with & < n/3.

LEMMA 3.2. Let @ C R™ be a set of points such that every (n — 1)-subset of Q is linearly
independent. Given any ¢ : Q — {£1}, there is a function gg. : R — {£1} such that (i)
gq.v is an extension of ¥: go.(z) =¥ (z) for allx € Q and (ii) for any k-subset {z',... 2%} of Q
with k < n/3, there exists a w € S~ such that gg () = sgn(w’'z) for all x € span({z,...,2*})
and w only depends on x',...,x* and Y(z'), ..., (z").

Proof. We write g for g, for convenience. We only describe how to define g in U SC(,3,) span(S);
we set g(x) = 1 for all other points = € R™. Y

Let S = {s',...,s"} be a k-subset of Q with k <n/3, and let A : span(S) — R" be the linear
transformation such that As® = e; for each i € [k] and let u € R™ be the vector such that u; = (s*)
for each i € [k] and is 0 elsewhere. Next we define gg = sgn(u’ Azr) and take g(x) = gg(z) for all
x € span(S). Setting w to be u? A after normalization (since w cannot be the all-zero vector), we
note that w only depends on S and v over S.

If well-defined, g satisfies properties (i) and (i7). So it remains to show that g is indeed well-
defined. Suppose that x € span(S)Nspan(7’) for two subsets S and 1" of @) both of size at most n/3.
We'll show that gg(z) = gr(x). By Lemma 3.1 we have = € span(SNT). Denote SNT = {v!,...,v*}
and let © = ayv! + ... + apv’. We then have that

9(2) = sgn (Depqai - v(")) = gr(@).
This shows that g is well defined and finishes the proof of the lemma. a

3.2 The Hidden Slab Lemma Let / < n—1 and let Y be an ¢-subset of S”~1. We write Ry to
denote the Gaussian distribution over span(Y)+. Given r € R™ and € > 0, we define the (r, ¢)-slab*
to be

slab(r,€) := {z € R™ : IrTz| < ellzll2}-

The (simple) hidden slab lemma below shows that, when given only an f-subset Y of S"~1, any set
of points that are not too close to span(Y’) has little chance of landing in slab(r, €) when r ~ Ry-.

TLooking ahead, the definition is slightly different from slabs in the lower bound proof for {£1}"; this is because

in the latter all points we query have a fixed 2 norm /n.
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LEMMA 3.3. Let 0 < ¢€,6 <1 and N be a positive integer such that § > nNe. Let'Y be an (-subset
of S"L with ¢ <n—1. Let {z},...,2N} be a set of points in R™ such that ||(z})*||2 > §||2%|2 for
all i € [N], where we use (z*)1 to denote the component of z* orthogonal to span(Y). Then
Pr [3i: 2 eslab = 0,(1).
rwgy[ 1:2" €sla (r,e)] on(1)
Proof. We claim that for every 2!, 2 € slab(r, €) with probability at most 1/(nN). This is because
the probability of z* € slab(r,€) is the same as the probability of drawing an a ~ A(0,1) with
a-||(z)1 2 < €22 as (r, 2%) = (r, (2")1). The claim follows by using the fact that the density of
N(0,1) is at most 1/+/27 point-wise. The lemma follows by a union bound over z¢, i € [N]. O

3.3 Lower Bounds for R” We start to prove the lower bound for R™ (although along the way
we will need one more subtle technical ingredient in Lemma 3.4). Assume for a contradiction that
there is a distribution-free algorithm ALG for testing halfspaces over R™ such that ALG draws only
k = o(n/logn) samples and makes N =: N(n) queries for any N. Given that we don’t care about
how big N is, we can assume without loss of generality that ALG is nonadaptive (to simplify the
presentation): ALG draws k samples, makes a batch of N queries, and then either accepts or rejects.

Given a sequence of k points X = (z!,...,2%), we write ALG(X) to denote the distribution
over N-subsets of R™ it draws to query; we write ALG(X; f) € {0,1} to denote the outcome of ALG
(as a random variable even when X and f are fixed) when it receives X as its samples and makes
its queries on f. ALG(X; f) = 1 means that ALG accepts and ALG(X; f) = 0 means that it rejects.
For any (f, D) such that f is an LTF and any (g, D’) such that g is Q(1)-far from LTF's with respect

to D', we have the following performance guarantee:

1 Pr |ALG(X; f)=1| > 0. Pr |ALG(X;g) =0] > 0.
(3.1) XNrD[ G(X;f)=1]>09 and xfp/[ G(X;9)=0] > 0.9
where we write X = (x!,...,x*) ~ D to denote drawing a sequence of k samples independently

from D. We describe how a player can use ALG to solve SSD(400n,1/1600,1/2) (for convenience
we just write SSD below to denote SSD with these three parameters, with m = 400n).

Before the proof starts, we prove the following lemma showing that given any sequence X of
k points from R™, there is a dx > 0 such that it is unlikely for ALG(X) (recall this is a random
N-subset) to contain a point that is close but not in the span of points in X.

LEMMA 3.4. Let X be a sequence of k points from R™. There is a dx > 0 such that with probability
at least 1 —1/n, every point = € ALG(X) queries is either in span(X) or satisfies |2+ > 6x -||z||2,
where 2+ is its orthogonal component to span(X).

Proof. Let {z',...,2z"} be the random set of points ALG(X) queries. Let the random variable

[P

- i:z;¢span(X) ||Z7«H2 ‘

where the minimum is 0 if z; € span(X) for all i € [N]. Let F' be the CDF of Z. Since F is right
continuous, there must be a dx > 0 such that F(0x) — F(0) < 1/n. This finishes the proof. O

We extend the definition of § to finite sets of points. Given a finite set Q C R", we write g > 0
to denote the minimum of §x over all finitely many sequences X of length at most k from (. With
this, we have everything we need to prove our lower bound.
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Proof. [Proof of Theorem 1.1] Let p be an unknown distribution over [m]| with m = 400n that is
either large (| supp(p)| > 200n) or small (| supp(p)| < n/4), and p(i) > Q(1/n) for all i € supp(p).
The player starts by drawing r ~ AN, a sequence of m points q',...,q™ independently and
uniformly from S"~' N {xr € R" : rTz = 0}, and a coloring p : [m] — {£1} uniformly at random.
The following two conditions hold with probability 1, which we assume in the rest of the proof:

1. Points q*,...,q™ are distinct; we use Q = {q!,...,q™} to denote the size-m set they form.

2. Every (n — 1)-subset of Q is linearly independent. Letting 1 : Q — {£1} be the map defined
as 1(q’) = p(i) for each i € [m], we can use Lemma 3.2 to define gq .

Using r,Q and p together with the unknown distribution p over [m], the player can “implicitly
define” the following pair (f, r,.Q,p: Pp.Q):

1. If | supp(p)| < n/4, then there is a vector w € S"~! such that gq ., satisfies

gq.u(r) = sgn(w'x)

for all z € span(q’ : i € supp(p)) (given that the set has size at most n/4 < n/3). We set
f (z) =sgn (rTa + q . wlx
p1r7Q1p nN :

2. If | supp(p)| > 200n, then we set f,r.q.p(7) = gq.u(x) for all z with r’z = 0, and set

fp,r,Q,p(x) = sgn(rTa:)

for every other point x (with rTz # 0).
3. The distribution D, q has probability p(i) on q* for each i € [m)].

The player then asks ALG to run on (f,r,qQ,p, Pp,q@) €ven though she does not have the pair in hand
because p is hidden to her.

Before moving on, we observe that when p has small support, f,r q,p is an LTF and when p
has large support, using Lemma 1.2 the function is €(1)-far from LTFs with probability 1 — o,(1).
Letting a be the hidden bit that is 1 if p has small support and 0 if p has large support, we have

. _ > 0.9 — '
I‘,Q,p,];(I;Dp’Q [ALG(X’ fpvr,Q,p) CL] > 0.9 on(l)

Recall that we use X ~ D,, @ to denote a sequence of k = o(n/logn) samples drawn independently
from D) q. As a result, if the player can faithfully simulate running ALG on the pair, she would be
able to solve SSD. To this end, the player draws a sequence of k samples J = (j,...,j*) from p
and sends X = (x!,... ,xk) to ALG with x* = @' € Q for each i so that X is distributed correctly.
Hence we have
Pr |ALG(X; fyrq.p) = a] 209 = 0,(1).
r,Q,p,J

Next ALG randomly picks a set of N points to query from the distribution ALG(X). Although
the player does not know exactly f,r q,p, she actually knows its values for most points z € R"
(letting Y be the set of points in X below):
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1. If z € span(Y), then in both cases

fp,r,Q,p(l‘) = gqQup(T) = sgn(me),

T

where w' is a vector that the player can compute by herself using Y and ;

T

2. If z satisfies [rTx| > (6q/nN) - ||z||2, then in both cases the value is sgn(r”z);

3. So the only points x that the player does not know how to answer satisfy both

0 oy
Y d [Tz < 2. < = |z|2.
v ¢ span(Y) and [r7a < 22 fafly < 2 a,
We denote this set by F; y. In this case the player just returns —1 by default.

The player follows the strategy above to finish simulating ALG and returns what ALG returns. The
probability that the player returns the correct bit a is at least

0.9~ 0,(1) = Pr _[ALG(X) overlaps with FY]
r? 7p7
We finish the proof by showing that the last probability is 0,,(1). This contradicts with Theorem 1.3
for SSD because the player used only k = o(n/logn) samples.
We assume for a contradiction that the probability is €(1). Then there is a way to fix X = X
and Y =Y such that

gr ; [ALG(X) overlaps with Fr v | X =X AY = Y] > Q(1).
r7 ’p’

Let £ < k = o(n/logn) be the size of Y. We observe that conditioning on X = X and Y =Y, ris
distributed as Ry. As a result, the probability above is the same as

Pr [ALG(X) overlaps with Fr’y:| > Q(1).

r~Ry
This and Lemma 3.4 imply there is an N-subset {z!,..., 2"V} in the support of ALG(X) such that

1. Every 2! satisfies either z¢ € span(X) = span(Y’) or its orthogonal component (2?)* with
respect to span(Y) satisfies [|(2°)1]|2 > 6y - || 2]|2;

2. The set {z!,..., 2"} satisfies

Pr [{zl, VYN By £0] > Q).
r~Ry

However, it follows from the Hidden Slab Lemma that the probability for some z° to land in the
slab(r,dy /(nN)) is 0,(1), a contradiction. This finishes the lower bound proof for R™. O

4 Testing Hyperplanes over {+1}" with Few Samples

We now prove our lower bound for {+1}". As in the warm up over R", the proof will follow
from finding a large set of points on a hyperplane and embedding an instance of the support size
distinction problem. To find such a hyperplane, we begin by finding a large restricting hyperplane
such that the points on it look roughly random. We then combine this with a biased hyperplane to
get a distribution over hard to find hyperplanes that we can use in our reduction.
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4.1 The Restricting Hyperplane The goal of this section will be to prove the Good Restricting
Hyperplane Lemma. Unfortunately, we will need a few definitions to state this lemma formally. But,
it roughly states that there exists a hyperplane h such that (1) the hyperplane contains many points,
say w(n'%) and (2) every small set of points from the hyperplane, say of size O(n/log(n)), has
various properties we'd expect from a random set of points from {£1}" such as linear independence.
In general, the lemma gives a tradeoff between the number of points on the hyperplane and the
size of the sets in condition (2). Eventually, when we do our reduction, if an algorithm only uses
k samples, we will choose a restricting hyperplane such that every set of O(k) points look random.
Later, we’ll choose a biased hyperplane such that any algorithm algorithm must query |hN{x1}"|¢
points for some constant ¢ > 0 on the restricting hyperplane before it can find a point that is near
the biased hyperplane.

4.1.1 A Distribution over Hyperplanes As one might expect, we prove the existence of large
restricting hyperplane whose points from {£1}" look “random” via the probabilistic method. As
such, we begin by describing our distribution over hyperplanes Hj;, which is parametrized by a
real number M > 1: Choose a direction v ~ N, and random vector u € {£1}" independently. We
then let w; = | Mv; + 1/2] and take our hyperplane to be h = {z : w?'(z — u) = 0}.

For intuition, we remark that small sets of points on h behaves very much like a random

set where each point appears independently with probability m. We now move towards

formalizing this intuition and proving these hyperplanes have many points. We’ll start with a few
concentration bounds.

LEMMA 4.1. Let v ~ N, and w; = | Mv; + 1/2| where M > 1 then
I;’Vr [llwll2 = 3M+/n] = 0,(1).

Proof. Note that we have by chi-square concentration bounds [18]

P > 2 = 1
Pr [Ivll > 2v] = on(1)

The result then follows since |w|| < M||v|| + /n O

LEMMA 4.2. For i.i.d Radamacher random variables €1, ..., €, and any w € R™ we have
Pr W, €;
€1,.-,€n [Z L

(2

Proof. The proof follows by the second moment method. Let X = . w;€;. Then

E[X*) =) wi = ||wll3

> twl\z] <t

We then have by Chebychev’s inequality that

Pr [ E W;€;
€1,..,€n X
i

This finishes the proof of the lemma. O

[[wl[3

=t2
£2]|wl|

> ||w||2t] <

NN
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Together these imply a lower bound on the number of points that appear on our random
hyperplane.
LEMMA 4.3. We have

2n
n
Pr gy 20 =1-0,0)
Proof. Assume that ||wl||s < 3M+/n and [wlu| < ||w||2 log(n), which happens with high probability
by Lemma 4.1 and Lemma 4.2. If we consider sampling w first, then u will be uniformly distributed
over the (1 — 0,(1))2" points in the cube satisfying |[wlz| < ||w|2log(n) < 6M+/nlog(n). It then
follows that there are at most 6M \/ﬁlog(n)% values in {£1}" for u that we could take that lead
to planes h with fewer than 3—;\} points. Thus,

np o 2" 6M+/nlog(n)2-  ~ _
[hn{£1}" < —= Iwll2 < 3MV/n, |whu| < [|w]zlog(n)| < a *_Cn<1§),);¥ =0(n~'7?)

which finishes the proof of the lemma. O

We can also control the probability that multiple vectors appear on the hyperplane. To do so,
we need the following standard estimate

LEMMA 4.4. (ODLYZKO [20]) Let S be an affine subspace of dimension at most k in R™ then
{£1}" N S| < 2k,

For completeness, we include a proof in the appendix.

LEMMA 4.5. Suppose M < 2", h ~ Hys, and v',..,v* € R™ are affinely independent vectors. Then

2
< -
1'1/\]::):[‘]u [U U e h] &

Proof. Let w be the weight vector of h and u be the random point in {£1}" selected to define h.
We first prove the following claim:

CrLAIM 4.1. Let u',...,u* be independent vectors, then

k
lzvr [Vi wlyt = 0} < (\/%M)

Proof. Let U be the matrix whose ith row is (u%)?. Note that by applying row operations to U we
can assume that U = (I|R)P, where I}, is the k x k identity matrix, R € R¥*"~F is a arbitrary
matrix, and P is a permutation matrix corresponding to some permutation o € S,,. It then follows
that

Pr [Uw =0] = Pr[ I;|R)Pw = 0]

k n
= Z Pr [Wa(k—l—l) = Wk+15---sWg(n) = wn} HPI‘ Wo(i) = — Z Ri,jwa(J)

Wk415--,Wn =1 ]:k+1

“(7)
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where the final inequality used the fact that w, ;) takes a value ¢ with probability at most \/% 7

O

To prove the lemma, we now split into two cases depending on whether u is in aff(u?, ..., u*).
Namely,

Pr [Vi wl(u' —u) = 0] = Pr [Vi wl(u® —u) =0 Au € aff(u, ,uk)}

+ vst)lL Vi wh(u'—u)=0Au¢aff(u', ,uk)}

To bound the first term we note

Pr [Vi wl(u' —u) =0Au € aff(u’, ...,uk)] < Pr[Vi wl(u® —ul) = 0] Pr [u € aff (u', ...,uk)}

1 k=1 9k—1
< (7zm)
2n M Al
by the claim and Lemma 4.4.

On the other hand for the second term, we see that

Pr Vi wi(u'—u)=0Au¢aff(u',..,u")] = > in

w,u
ugaff(ul,...,uk)

fv’vr Vi w’(u' —u) =0]

()

by the claim. So it follows that

) 1 Qkfnfl 2
Pr |Vi u'eh| < + < -
h~H s [ ] (V2r M)k (V2rM)k=1 = M*

O
With this, we immediately also get an upper bound on the number of points. Namely,

LEMMA 4.6. Suppose M < 2™, then

Pr ||hn{*1}" < 2y, (1)
h~H s - M "

Proof. By Lemma 4.5, we have that for any x € {£1}"

2
P ehl < —
nor [z eh] <
So we have that
n 2.2m
E[hn{£1}"]] <
Markov’s inequality then gives the desired result. O
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Now the key property that we will need is that unlikely events do not occur among the points
on our random hyperplane. Namely, we make the following definition

DEFINITION 4.1. (RARE PROPERTY) We say that a property P on sets of vectors S C {x1}"

is rare if there exists a ¢ < 1 such that for n sufficiently large and all k < % we have that

Pr({y',...,y"*} satisfies P) < ¢ where y',...,y* are i.i.d are independent Bernoulli vectors.
The key result about our distribution over hyperplanes will be that

LEMMA 4.7. Let P be a rare property, M < 2™, and h ~ H s, then there exists a constant 5 > 0

(independent of dimension) such that with probability 1—o, (1) every subset of size at most 1<€—Z+1)
og

M

in hN{£1}" doesn’t not satisfy P.
To prove the lemma, we will need the following result

LEMMA 4.8. The following property is rare: S is affinely independent and there erists a y €
{£1}™\ S such that SU{y} is affinely dependent.

We’ll prove this in the next section, but assuming it’s true for now we can prove Lemma 4.7

Proof. [Proof of Lemma 4.7] We’ll show that there are no sets of size A = A(n) on h satistying P
for some A to be chosen later. We start by making a new property P’: A set S has property P’ if
it is affinely independent and either has property P or there exists a y € {£1}" such that y ¢ S
and y € aff(S). We claim that it suffices to show that no tuple of size k < A on h has property
P’. Indeed, suppose this is the case and that S C h N {x1}" has property P. If S is affinely
independent, then we have that S satisfies P’. If S is not affinely independent then there exists
S’ C Sand ay e S\ S such that S is affinely independent and S U {y} is affinely dependent.
Since no subset of size k < A has property P’ we have that S’ € h and thus S € h as desired.

Now note that P’ is also a rare event for n sufficiently large, as the probability a set S satisfies
P’ is bounded by the sum of the probability that it satisfies P and the probability that S is affinely
independent and there exists a y € S such that {y} U S is affinely dependent. Since both of these
events are rare we have that there exists a ¢ < 1 such that the probability of satisfying P’ is bounded
by 2¢™ which is at most ¢™ for some ¢’ < 1 and n sufficiently large.

Now in a slight abuse of notation we say that S € P’ if S satisfies P’. Using Lemma 4.5, we
now compute the expected number of sets of size at most A satisfying P’

A A . 9
E Z Z 1S§h < Zc’”Q nm
k=1

k=1 sep’
|S|=k

A 2n+1 k
<2 mn -
<22 ()

, 2n+1 A+1
<2
(%)
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Taking A = LL)J — 1 for g = —% log(c’) then gives us that the expectation is o,(1).

1
log ( X5+

The result then follows by Markov’s inequality. a
We can do something similar for pairwise events. Namely, we will use the following result

LEMMA 4.9. Suppose M < 2"/n? and h ~ Hyy, then with high probability, for every pair (x,y) of
distinct vectors in h N {£1}", we have that |xTy| < O < nlog(Z”/M))

Proof. By the Bernstein bound, if x and y are random iid Bernoulli vectors then Pr[|xTy| > t] <
2¢~t"/4n Tt then follows that there are at most 2 - 47—t /4n pairs with absolute inner product at
least t. We then compute using Lemma 4.5 that h contains at most

4n+167t2/4n

M2

such pairs in expectation. Taking ¢ = 24/nlog <4n]\+/[12”2> and Markov’s inequality then gives the

desired result. 0

4.1.2 Rare Properties and Results from Random Matrix Theory We now define various
rare properties that will be useful in our analysis. We will start by proving Lemma 4.8. It will
quickly follow from a result of Odlyzko.

THEOREM 4.1. (ODLYZKO [20]) Suppose that k < n — 10n/log(n) then if v',...,v¥ are random

vectors from {£1}" the probability that span({v1,...,v*}) contains a vector different from v’ is
at most O(k3(3/4)™).

We note that stronger statements hold. In particular, we can take k = n — C' for some absolute
constant C' [17]; however, we will not need this.

Proof. [Proof of Lemma 4.8] Note that we have that any set of 3 points on the hypercube is affinely
independent. So we assume that k > 3. Randomly choose vectors v!,...,v¥ from {41}" uniformly

and independently at random. Define u® = ( 11)- If {v!,...,v¥} satisfy P then there must exist
v

1) . .
a vector u = (V) in the span of ul,...,u” such that u # u',...,u*. Since we also have that
u # —u',...,—u”, it follows that if p is the probability that {v!,...,v¥} € P then
p=Pr [span{rl, et {1, 1 £ et Rl =1, = 1}

where r!,...r* are random vectors from {—1,1}"*!. It then follows that

p27 % < Prspan{r!,...r*} N {-1,1}""" £ L' . £r¥] < O(K*(3/4)")
So p < O(k(3/4)"2%) which is at most .999" for n sufficiently large and k < n/log(n). O

THEOREM 4.2. (BENNETT ET AL. [3]) There exists absolute constants ¢, A > 0 such that if Y €
{£1}"** is a matriz with random Bernoulli entries and k < An then Pr(o,(Y) < cy/n) < e,
In other words, the following property is rare: the matrix M whose columns correspond to S has

U‘S|(M) < C\/ﬁ.
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Finally, we have

LEMMA 4.10. (TA0 AND VU [22]) Let W be a fized subspace of dimension 1 < d <mn —4 and let
x € {£1}" be a random Bernoulli vector. We then have that E[dist(x, W)?] = n — d. Moreover,

Pr [[ dist(x, W) —vVn—d| > t+ 2] < demt7/16
which implies

COROLLARY 4.1. The following is a rare property: There exists ay € S such that || proj(y, span(S'\

{y})ll2 > v/n/100).

Proof. By a union bound, it suffices to show that if y',...,y* are i.i.d. Bernoulli vectors then
Pr [| proj(y!, span(y?, ...,y*))|| > v/n/100] < c™ for a constant ¢ > 0. But indeed by Lemma 4.10
for any fixed y?, ..., y* the probability that Pr [|| proj(y',span(y?, ...,y*))|| > v/n/100] < ™ when
n is sufficiently large. 0

4.1.3 Inference Sets

DEFINITION 4.2. (INFERENCE SETS) We say a set S = {x',...,x*} is an inference set with respect
to a set T = {y1,...,ye} if for all z* and for all a; satisfying proj(x®,span(9)) = a1y* + ... + apy’

we have that
> a;>1/100
JE[]

LEMMA 4.11. The following is a rare property: S = {x!, ...,:L‘g} has the property that there exists
a setT C S of size |T| < /2 such that S\ T is an inference set with respect to T'.

Proof. The proof follows primarily from the following claim:

Cramm 4.2. Let y',....,y™ € {£1}" and Y be the matriz whose ith column is Y;. Additionally sup-
pose 0, (Y) > Q(\/n) and lety be a random point in {£1}" with a; such that proj(y, {y*, ...,y*}) =
> iyt then

Pr [Z ;> 1/100] < g~ ¥n/m)

7

Proof. Let P : R® — R* be the orthogonal projection onto span{y’,...,y*}. We then note
that Y, ay® = 17(PY)"!Py. Indeed, note that >, a; is a linear function of y, so it suffices
to prove equality on a basis. We then observe 17(PY)" 1Py’ = 17(PY)"'PYe; = 1 and if
r L span{y',...,y*} then wTY (PY)~!Px = 0 as desired.

Now we note that 17(PY)~!Py is a weighted sum of Bernoulli random variables. As
such we will now bound ||17(PY)~!P||3 so that we may use Hoeffding’s inequality. Denote
vl = 1T(PY)~1P. Note that v7Y = 17 and thus that

m =173 = [v" Y] =v"YY Ty

Now observe that for any vector u such that uTY = 0, we have that (u,y’) = 0 for all i and
vy = 1T(PY)~'Pu = 0. Let the eigenvalues of YY 7 be a qy, ..., ¢, with corresponding eigenvalues

1729 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 08/01/22 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A1, ...y Ap, where \; = 0 for m < i < n. Since vTu = 0 for all u such that 7Y = 0 we have that
v = Z;’il Biq;. But now note that since the smallest non-zero singular value of Y is at least c¢\/n

it follows that
VTYYTy = Z NiBE > 0271251'2 = c*nljv|3

It then follows that [|v||3 < O(m/n) and that

Pr E (s ¥}
AL, ,0m N

7

> t] < 2@_t2/2”11||§ < 2€—Q(nt2/m)

as claimed. O

Now let S = {y!,...,y’}, where each y' is independently and uniformly drawn from {#1}" and
¢ < n/log(n). By a union bound and symmetry, we note that

Pr[3T C S: S\ T inference set with respect to T A |T| < £/2]

< 2 gnzg;( Pr [{yk+1, ...,y"} inference set with respect to {y*, ...,yk}}
<0/2

Fixing k < £/2, letting y' = Z?:l oy’ for i > k4 1, and letting Y be the random matrix
whose columns are y', ..., y* we see that

Pr [{y"!, ..., y*} inference set with respect to {y!,...,y*}

IN

[{yk‘H, ...,y"} inference set with respect to {y',...,y*} A or(Y) > cv/n| + ¢}

J4 k
<2 [ Pr|D> o} >1/100|0k(Y) > cv/n| +c}
i=k+1 j=1

< e~

where the first inequality holds for some ¢; < 1 by Theorem 4.2 and the final inequality is a
result of the claim. It then follows that

Pr[3T C S: S\ T inference set with respect to T A |T| < £/2] < 2fe™ ™) < ¢

when n is sufficiently large and where c; < 1 is a suitably large constant. a

4.1.4 Existence of a Good Restricting Hyperplane We now reap the benefits of our work:

LEMMA 4.12. (GOoOD RESTRICTING HYPERPLANE LEMMA) For any n sufficiently large and

QAL <e<0 (%), there exists a hyperplane hy and absolute constant v > 0 such that:

(i) 2;;/2 < |he N {F1}7| < 207/ 62

1) For any k < ¢ and any distinct y*,...,y" € hy N , the matriz with columns y-, ..., as
i) F y k <0 and any distinct y',...,y* € hy N {£1}", th triz with col TRRTL )
smallest singular value c\/n for some absolute constant c.

1730 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 08/01/22 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(iii) For any k < £ and any distinct y*, ..., y* € hy 0 {£1}7, || proj(y, {y*, ..., y*}| < /n/100

(iv) Let k < {, then for any vectors y*,...,y* € hyN{F1}" the largest inference set T C hyN{£1}"
satisfies |T| < k.

(v) For every distinct z,y € hy N {£1}", [2Ty| <O (%)

(vi) Let k < ¢, then for any vectors yt,...,y*, y € hyN{£1}" if proj(y, {y', ..., y*}) = >, a;y’ then
> |ai| < v/nje, where ¢ is the constant from (i7).

Proof. We proceed via the probabilistic method. Let h ~ Hj; where M = 2n=7/+1 for a

sufficiently small constant . We then have that that h satisfies the property (i) with probability

1 —o(1) by Lemmas 4.3 and 4.6. Similarly, using Lemma 4.7 we get that for a small enough

constant absolute constant 3, h satisfies properties (ii), (ii7) and (iv) by Theorem 4.2, Corollary

4.1, and Lemma 4.11 for k£ < 210%(8%' Taking v = /2 gives, that these properties hold for
M

k < ¢. Additionally, we get property (v) holds with the bound O ( nlog(2n /M )) high probability

by Lemma 4.9, which is O(n/+/¢) for our choice of M. Finally, we observe that property (vi) is a
corollary of property (ii). Namely, let Y be the matrix whose ith column is 3* and a the vector
whose ith entry is a;. Then

cevnlalls < [[Yallz = [ proj(y. {y", .. y" Dll2 < lly] = vn

where we used the fact that the smallest singular value of Y is ¢y/n. Thus, [|a|2 < 1/¢ which
implies ||a|; < y/n/c as desired. O

4.2 The Biased Hyperplane For our second hyperplane, we will use a biased Gaussian slab

and intersect it with the good restricting hyperplane from the previous section. Before describing
the distribution, we set up some notation. We will consider a fixed ¢ € [n'gg, @) (@)}, where
the upper bound is such that ¢ is a valid parameter in the good restricting hyperplane lemma and
|he N {£1}"| > nt0%. Throughout this section, we will think of ¢ as being fixed, as such, we will

often write hy as h. We will denote H = hN{£1}" and N = |H|.

Our distribution over biased hyperplanes will in fact be a distribution over biased Gaussian
slabs and is parametrized by €,t and s*.

Choices of ¢ and t. We set € = \/Lﬁ and t = ©(y/nlog N) such that

2
(4.2) ng\[ [x=(t+te)/Vn] = N

With e and t fixed, we define the r-slab of r € R™ as
slab(r) :={a € H:rTa=t+e}
and the size of r € R™ as size(r) = |slab(r)].

Choice of s*. We start with some notation. Let

1 S
75:N1/4 (1—|——)
n
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for each s > 0. We divide [0 : N] into buckets By, Bi,...,By with By = [0,7) and
Bs = [vs—1,7s) for each s > 1, with U = O(nlog N) to cover [0 : N|. We say r € R™ is in bucket s if
size(r) € By. It will be convenient to set s* to be the bin that maximizes (273) ‘Prron;, [size(r) € Bs]
among s > 1, breaking ties arbitrarily. As a short hand, we’ll write B* for By« and v* for ~yg«.

With these values all set, we let (r,'Y) ~ Ry be the distribution where the pair is generated as
follows. First we draw r ~ N;* where we write N;* to denote the distribution of r ~ N, conditioning
on size(r) € B* and then we draw a d-subset Y from the r-slab (of size in B*) uniformly at random.
We mostly work with with R,/3, as such we will simply denote it by R.

We will use R4 in our reduction to the support size distinction problem in a similar manner
to our proof for R™. Before getting to the reduction, however, we will need to prove that points in
|slab(r)| are hard to find.

4.2.1 Properties of the Biased Hyperplane Distribution We now define some more
notation. Given a k-subset Y = {y!,... ,yk} of H, we write Iy to denote the largest inference set
of Yin H (so Iy C H and Iy NY = ()); it follows from the property of the restricting hyperplane
that [Iy| < k for all Y. We use Sy := span(Y, Iy) to denote the linear space spanned by Y and
Iy of dimension at most 2k. We write Wy to denote the set of w € Sy such that w”y’ =t £ € for
every i € [k]. Similarly we use Ry to denote the set of r € R™ such that Ty’ = t & ¢ for every
i € [k] (or equivalently, proj(r, Sy) € Wy ).

We now formalize what it means for it to be hard to find a point near the slab. Formally, we’ll
show

LEMMA 4.13. (HIDDEN SLAB LEMMA) Suppose (r,Y) ~ Rgq for some d < ¢/3 and ALG is a
randomized algorithm that is given Y and makes at most N/8 (adaptive) queries to the LTF
sgn(rTz — t) with points x € H, then ALG(Y) queries a point in {x € H\'Y : |[vTx —t| < ne} with
probability O(N~1/40),

To prove this, we first prove the following lemma to lift probabilities from a Gaussian
distribution to R.

LEMMA 4.14. (GAUSSIAN TRANSFER LEMMA) Let E be any event onr € R" and Y C (15[/13) (we

write E(r,Y’) to denote that E holds on r and Y ) then

P P E',Y)|Y =Y]>2NY0 pr [E. YY) € Ryl| <OV
P B JBEY) Y =X 280 P (B Y)Y € Ryl| < 00N )

Proving the Gaussian Transfer Lemma will be the goal of the remainder of this section.

LEMMA 4.15. For each bucket s > 1 we have

%(Z/S?) ) Pj{[ [siZe(I‘) € Bs} < Z rf,/:\[‘/ [r € Ry Asize(r) € BS} < (ﬁ'}sg) . Pr [size(r) c Bs]«

re~Nn n re~;Nn

Ye(y)s)

For bucket 0, we have

Z P [r € Ry Asize(r) € By < (2;%) - Pr [size(r) € Bo].
ve(M) !

1732 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 08/01/22 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. For the first inequality we have

rf}"/ﬂ [size(r) € B, = Z Pr [size(r) = 7]

I
(]

oA 3" Pr [re Ry Asize(r) =]

r~N,,
Ye(y)s)
1 .
> (2/53) Z Z rfj{/n [r € Ry Asize(r) = ﬂ
1€B: Ye(,;)

1 .
= (Z/‘})) ;, | rNPK/n [r € Ry Asize(r) € B,].
YE(e/3

The other side of the first inequality follows similarly, using ¢ < n and thus,

Vs Vs—1
<2- .
(ﬁ/ 3) - ( t/3 )
The second inequality can also be proved similarly. a

We will also need to control the bucket By since we chose s* > 1.

LEMMA 4.16.
Pr [size(r) € By] = o,(1)

r~J/Nn

Proof. We’ll show that Var[size(r)] < O (ti—\/@) Using our value of ¢, £ > n'%, and E[size(r)] =

2N1/4 the lemma then follows from Chebychev’s inequality.

For a fixed pair z, y consider Pr. ., [y € slab(r)|[rTz = \]. We will upper bound this probability
when A = t +e. Let an = 27y and let y= = y — ax. Now recall that by the good supporting
hyperplane lemma we have that |o| < O(%). So we can assume |a| < .01. We now compute

—aAte
Pr (|7‘Ty—t| < €‘T‘Tx = )\) = /t o ;eizZ/ZHyLHZdZ
t—ax—c V2r|lyt]|

2e 2/2)ly* 1
< ¢ a2y
Varlyt
<2 /et (ran Ot/
2mn(l — a?)

Using e® < 1+ 2|z| when z < 1 and that € = o(n™?), we get
2e

S e —

V2mn(1 — a?)

Since \/11_7 <1+ 2? when |z| < 1/2, we then have

e /27 (1 + 4]alt2 /n) (1 + o(n™2)).

< 2+ o)A+ %) g,

(1 —|—4|a\t2/n).
2mn

1733 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 08/01/22 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

This is an increasing function in |a| using our bound from the Good Hyperplane Lemma we get

_ 2¢(1 +o(n_22)737(11 +0 (%))e_tz/% (1 L0 (nt_j/z» ‘

Since t = w(y/n) and £ = w(1) we have that n™2 < % < nt—\Z/Z‘ So we get that this is at most

Tfj{[n[y € slab(r)] (1 +0 (nt—j/Z)) .

Thus,

Var|size(r)] = Esize(r) — (Esize(r))* < O (—> (Esize(r))* 4 Esize(r) = O (tQ\/N)

nvVil

as claimed. O

We’ll now need one final technical lemma for the proof to relate samples from R and samples
from a Gaussian random slab.

LEMMA 4.17.

(r,g)rNR P [size(r’) € B* |t/ € Ry| < N7/ < O(N~1/20),

Proof. For a /3-subset Y, let G(Y) denote the event that Pry .y, [size(r’) € B* | r' € Ry] <
N~1/10 Now we observe

(r’g)rwn [G(Y)}
= Pr [size(r) =] - }/ Z Pr [r€ Ry AG(Y) | size(r) = 7]
cp- TN (/) o Zrte\ =~
! Ye(rs)
= 3* -+ Pr [size(r)=9]- > Pr [re Ry AG(Y)|size(r) =]
() g ve)
:(72*)' Z Pr*[I‘ERy/\G(Y)]
) ey
2 1
=y - : p € Ry NG(Y) Asi c B*].
(2/3) Pryn, [size(r) € B*] Yez(;’)rN rn [r Y (Y) Asize(r) ]
2/3
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For each ¢/3-subset Y of H we have

Pr [re€ Ry AG(Y) Asize(r) € B*]

r~Ng

= Pr [I‘ € Ry A G(Yﬂ

r~J/Ngp

X ij/ [size(r) € B* |r € Ry AG(Y)]

< 2NH10. Pr [re Ry ANG(Y)]

X ; rfAr/n [size(r) € By |r € Ry AG(Y)]
_9N—1/10 ;* rff{fn [r € Ry AG(Y) Asize(r) € By
< oN—1/10 ; rfj{/ [r € Ry Asize(r) € B].

By Lemma 4.15,

z(;{ | rf/{fn [r € Ry AG(Y) Asize(r) € B*] < 2N /10 ; (Z/S ) ,rfrn [size(r) € B,].

2/3

We then get

10 PR (2/53) - Prpn, [size(r) € By]

Pr [G(Y)} S4ANT (2’/*3) . PrrwNn [size(r) € B*]

(r,Y)~R

0 (n1.1N—1/10> :

using Prry, [size(r) € By] = 0,(1) and U < n'-l. QO
With this, we have everything we need to prove the Gaussian Transfer Lemma

Proof. [Proof of the Gaussian Transfer Lemma] Let G(Y') denote the event that Pry .y, [size(r’) €
B* |1’ € Ry] < N~Y/19 and G(Y)* denote the complement of G(Y). By Lemma 4.17,

Pr [G(Y)] < O(N—1/20y,
(r,Y)rwR[ (Y)] <O( )

Now observe that for a (¢/3)-set Y in G(Y)¢ we have that

PI" AP E /,Y,Y/:Y IGR
pr (B Y) Y/ = y] = sk BT
(r',Y")~R Pr(r’,Y’)NR [Y =Y | rc Ry]
Pr(r’,Y/)N'R [E(I'/, Y) | r' e Ry] Pr(r’,Y’)NR [Y/ =Y | r' e Ry, _E(I'/7 Y)]

Pr(r',Y’)N'R [Y/ =Y | r e RY]

<2 Pr [BE(.,Y)|r € Ry
(r' )Y )~R
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where we used the fact that size(r’) € B*.

_ 2PrrINNn [E(r',Y) Asize(r') € B* |t/ € Ry]
Pryon, [size(r’) € B* | ' € Ry]|

< 2N1/10 Pr [E(r',Y) € B* |t/ € Ry]

So,

P P B Y)Y =Y]>2NY10 pr (Br. Y)Y € R < O(N-1/20
evER (r/,Y};NR[ (', Y') | ] = r'NX/n[ (', Y')|r' € Ry]| < O( )

as desired. O

4.2.2 Biased Hyperplanes Are Hard to Find Let F,y denote the failure set of close points
{r € H\'Y : [rTz — t| < ne}. To prove the hidden slab lemma, we first prove the result for a
random Gaussian slab. To do so, we start with a definition: we’ll call a w € Wy bad with respect
to Y if it satisfies either

1. wPa > 0.2t for some a € H \ (Y U Iy); or
2. wla =t + ne for some a € Iy.

Otherwise w is good. To simplify notation, we say (Y, w) with w € Wy is bad if w is bad with
respect to Y and (Y, w) is good otherwise. We write Ry pad to denote the set of r € Ry such that
proj(r, Sy) is bad and define Ry, gooq similarly.

Intuitively, a w € Ry paq would help the algorithm find a point close to the slab, as either an
element in Iy is already close to the slab or there’s an element a € H \ (Y U Iy) where w”a is
potentially close to 1, which is a good candidate to be a point near the slab. We now show it’s
unlikely for us to get a bad set.

LEMMA 4.18. For any k-subset Y of H, we have

Pr [I‘ € Ry pad | rec Ry:| < N—1/4,

r~N,

Proof. For each z € Iy we use z* to denote the orthogonal component of z with respect to span(Y’).
We consider sampling r as sampling three independent multivariate Gaussians and taking the sum:

1. r; as a Gaussian over span(Y) such that ry’ =t & ¢ for every i € [k];
2. 1y as a Gaussian over span(zt : z € Iy); and
3. r3 as a Gaussian over the orthogonal subspace of Sy.

Note that whether r is bad with respect to Y or not only depends on r; and ro. We consider the
two parts and then take a union bound.

First for each a € H \ (Y U Iy) we can write it as a; + a2 + ag accordingly, and the condition
we care about is r{ a; + rlay < .2t. Letting a; = Zie[k] a;y°, the first term satisfies

ria; =) oi(tte) <ty ai+ed |og| <0.1t+ O(Vne).

1€[k] i€[k] 1€[k]
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The second term rfay is greater than 0.09¢ with probability at most 1/N* using our choice of

t and the promise from the construction of h that ||az|2 < 4/n/100. Given that there are no more
than N such a’s, r is bad because of the first item with probability at most 1/N3.

Next for each z € Iy, we have from the construction of h that ||z*||2 > /n/2 and thus, after
drawing ry, the ry can have r{ 2z +rlz land in a window of length O(ne) with probability at most
O(ne). Given that there are no more than k points in Iy, r is bad because of the second item with
probability at most O(n%e) < N~1/4, n|

With this we can now prove the hidden slab lemma for Gaussian slabs.

LEMMA 4.19. For any (adaptive) randomized algorithm ALG that makes at most @ < N/8 queries
and any ¢/3 setY of H,

Pr [ALG queries a point in Fyy|r € Ry] < O(N~Y/%)

r~J;Nn

Proof. 1t suffices to show that

Pr [ALG queries a point in Fy y|r € Ry good] < N—1/8,

r~Np
Note that r € Ry good is only a condition on w = proj(r, Sy ). We denote the corresponding set of
good w by Wy good. Now let w € Wy, go04 and suppose proj(r, Sy) = w.

Note that we can assume that ALG is deterministic. In this case, observe that ALG with samples
is just a decision tree of depth Q. Let z',..., 29 be the following path of ALG. Set z' to be the
root and repeat () — 1 times:

+1

1. if the current 2% € Iy, go down to 2! according to sgn(w? z? — t);

2. otherwise go down to z‘*t! by pretending the answer to the query of ¢ is —1.

We now have that since w € Wy good,

Pr [ALG queries a point in Fy y|proj(r, Iy ) = w]

re~J/NVn

< ij/ [{xl, oy 29Y N Fry # 0V ALG doesn’t query z', ..., 29| proj(r, Iy ) = w}

< ij/ 3z € {z',...,29}\ (Iy UY) : rTz > t — ne| proj(r, Iy ) = w]

< erﬁn [rT:z:i >t — ne| proj(r, Iy ) = w]
_Q
- N1l/4
Using Q < N'/8 then proves the lemma. 0

Using the Gaussian Transfer lemma, we can lift this to a statement for our distribution R.

COROLLARY 4.2. Let (r,Y) ~ R, for any (adaptive) randomized algorithm ALG that receives Y
and makes at most Q < N/® queries,

Pr [ALG queries a point in Fy.y] < O(N~1/49)
(r,Y)~R
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Proof. By Lemma 4.19 and the Gaussian Transfer Lemma, we have that

Pr Pr [ALG(Y) queries a point in Frry | Y = Y] > QN~Y4)| < O(N~1/20)
(r,Y)~R | (r',Y')~R
Now let E(Y) denote the event that Prq v/ [ALG(Y) queries a point in Fiv vy | Y =Y] <
O(N~'/%0) and E(Y)¢ denote the complementary event. We then have

P ALG(Y i int in Fy
(T’Y)rNR [ALG(Y) queries a point in Fy y|

= %1" o [ALG(Y) queries a point in Fry A E(Y)]

+ ( 5)1" » [ALG(Y) queries a point in Fry A E(Y)€]

< O(N71/40) + O(N71/20)
as desired. d
We can now boost this result to prove the Hidden Slab Lemma.

Proof. [Proof of the Hidden Slab Lemma] Suppose not. Given a set (r,Y) ~ R we run ALG on a
random d-subset Y4 of Y. Note that (r,Y) is distributed according to Rg4. It then follows from
Corollary 4.2 that the first element ALG queries from Fy v, is in Y\ 'Yy with probability Q(N ~1/40),
Letting the random seed of ALG be m we get

YP‘}" [ALG(Y 4, 7) first queries Fpy, from Y \ Y ] = Q(N~1/49)
r,,XYq4,T

There is a fixed random seed 7 that achieves this same bound. Changing perspective, we can
get the same distribution by sampling r ~ Nf choosing a random subset Y, and then random
extending it to a ¢/3-subset Y of slab(r). But now for a fixed (r,Yy) € supp(Rg4) consider

P;(r [ALG(Yy, m) first queries F).y, from Y \ Y4|Y4 = Yy, r = 1]

But now the queries that ALG(Yy, 7) makes are fixed. So let x be the first query in F) y,. Since
¢ < n and size(r) > N'/* we have that with high probability Y \ Yy doesn’t contain . Namely,

I;r [ALG(Yy, 7) first queries F.y, from Y \ Y4|Yy = Yy,r = 7] < O(N~1/%)
a contradiction. O

4.3 Proof of the Main Theorem Like in the case of R™ we will prove the result by showing
how one can solve a support size distinction problem using a distribution-free LTF tester. Before
we describe this reduction, we will need a perturbation lemma for our slabs:

LEMMA 4.20. Let S = {z : |[wTx — b| < €}. Moreover, let V = {v!,..,v*} C {£1}" NS be vectors
such that the matriz M whose ith column is v' has op(M) > c\/n. It then follows that for any
function v : {v',...,vF} — {—1,1} there exists a there exists an LTF f : P — {—1,1} such that
f(@) =v(x) for all z € {v',...,v"} and f(z) =sgn(wTz —b) if |[wTz —b] > 2ey/n.
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Proof. Let P :R™ — R* be the orthogonal projection onto span(V'). Consider (PM)~!P. Let u be
a vector such that u; = 2e1)(v?) and consider the LTF f corresponding to (w? +u” (PM)~'P)z —b.
On the one hand note that

f(v’) = sgn(wTvi -+ uT(PM)_lPMeZ- —b) = sgn(wTvi —-b+ 2€f(1)i)) = f(vz)

Conversely for any = € {£1}" we have that

1 2
? (PM)Pal < o (PM) el = —psllulaloll < e
Thus, our LTF f agrees with sgn(w?z — b) when |wTz — b| > %e\/ﬁ O

4.3.1 Simulation Let ALG be a randomized distribution-free tester with success probability 0.9
that uses at most k € [n°9,0(n/log®(n))] samples. Set £ to be the smallest number such that
k < SSD(400n, ﬁ, 1/2). Towards a contradiction, suppose that ALG makes at most Q < N'/8
(adaptive) queries. We will then show how we can use ALG to determine if an unknown distribution p
over [m] with p(i) = ©Q(1/n) for all i € supp(p) has small support (|supp(p)| < ¢/8) or large support
(| supp(p)| > 200n), which will contradict our choice of ¢.

Let p be an distribution over [m], unknown to the player, that falls into one of the two cases.
For notational convenience, we let a be the unknown bit that is set to a = 1 if p has small support
and a = 0 if p has large support. The player starts by drawing the following four objects: (1)
r ~ N, which defines an r-slab; (2) a bijection ¢ : [400n] — slab(r) drawn uniformly at random;
(3) a map @ : {£1}" — {1} drawn uniformly at random and independently from ¢ and r; (4) a
random string 7 for ALG drawn independently from r, ¢, 1.

Together with the hidden distribution p, they define the following Boolean function f, r ¢ :
{£1}™ — {£1} and distribution D, r 4 over {£1}" as follows (we use f for convenience):

1. The function f is defined as follows when p has large support. For each i € supp(p),

f(@(7)) = Y (¢(i)); for every point x # ¢(i) for any i € supp(p), we set f(x) as follows.
If z ¢ H, set f(x) to be the sign of z with respect to H; if x € H, set f(x) = sgn(r’z — t).

2. The function f is defined as follows when p has small support. If = ¢ H, we set f(x)
according to the sign of x with respect to H; if x € H, we set the values according to the
LTF from Lemma 4.20 e.g. such that f(¢(i)) = ¥ (¢(i)) for all i € supp(p) and f agrees
with sgn(rTx — t) for all x € H with |[rTx — t| > ne.

3. In both cases let D), ¢ be the distribution supported over {¢(1),...,¢(m)}: the
probability of D, r 4 on ¢(i) is set to be the same as that of p on i for each i € [m].

Of course the player has no way to construct f, 4. by herself since she does not know p (she does
not even know whether p has large or small support). Before continuing to describe the simulation,
we record the following lemma about (fpr.¢.p: Pp.r.é.ep):

LEMMA 4.21. If p has small support, then f,r ¢ 15 always a halfspace.
If p has large support, then f,r ¢ s QU(1)-far from halfspaces with respect to Dy .y ¢ with
probability at least 1 — 0, (1) (over the randomness of r,¢ and ).
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Proof. If p has large support than the claim follows from Lemma 1.2. If p has small support then
let the LTF corresponding to h be sgn(w? z — b) and the LTF from Lemma 4.20 be sgn((r')Tz —t').
Then we note that

2 (wlz —b) + = | ("o — t’)) :

maxg(t1yn |(r)Te -t/

Foe () = sgn (

minaze{il}":sz;ﬁb |wT$ - b|
So f is indeed a halfspace in this case. d

After drawing r, ¢ and v, the player calls ALG to work on (fpr.¢.4: Ppr.e) (even though she
does not really know the pair). ALG asks for a sequence of k samples from D, ; 4. For this the
player turns to the sampling oracle of p and asks for a sequence of k samples J = (j!,...,j*) from
p. It then sends the following sequence of k points to ALG:

It is clear that the ¢(J) sent to ALG is distributed the same as a sequence of k samples from Dj, ; 4.
Now by Lemma 4.21 we observe

bepl:JJ |:ALG(¢(J),7T; fordw) = a] > 0.9 —o,(1).

Before continuing the simulation, let’s define Y: Y = {¢(j%) : i € [m]}. We observe that (r,Y)
as in the probability space described above is distributed exactly as R4 for some d < k.

After receiving ¢(J) and 7, ALG will make @ (adaptive) queries. To answer these queries, we
use r, Y and 1 (but not p) to define the following Boolean function gy v 4 : {£1}" — {1}, which
the player has in hand:

1. If = is not in H, set g(x) to be the sign of z with respect to H;
2. If v € H and rTx ¢ [t — ne, t + ne, set g(z) = sgn(rTz — t);
3. If z € Y (note by construction Y C slab(r) so rTx =t & ne), set g(x) = 9(x); and

4. If none above applies (z € H, r’x =t +ne and = ¢ Y), set g(z) = —1. Recall that this is
the set Fpy.

Now by our definition of f, we have that gr v () = fpr.ew(z) for all z ¢ Fry. So the
strategy of the player is just to answer all queries of ALG using gr vy, which she knows, and
outputs the same {0, 1}-answer as ALG when the simulation ends. As a result, we have

Pr layer outputs a
r7¢7¢"]77r [p y p }

> P |ALG((3), i frrpw) =a| = Pr [ALG($(3), 7 gra.p) aueries Fry|.
= rop,J (d)( ) fp, a¢a¢) o I (¢( ) g ,J,'l/)) q Y

We now argue that

LEMMA 4.22.

r,¢>,:E),ZJI,‘J,7r |:ALG(¢(J),7T;gr,Y’¢) queries Fr,y} = 0,(1)
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Proof. Indeed, suppose that ALG could query a point in Fyy with probability €(1). Since J and
1 are independent from r, ¢, 7 it follows that there a fixed set of d distinct samples J = (5!, ..., 5%)
and a fixed v such that

IZ)r [ALG((/ﬁ(J),ﬂ';gryyw) queries Fr’y] =Q(1)

Now we consider a new algorithm ALG’ which given Y, 7, and a random bijection ¢’ from
{5%, ..., 5%} to Y and simulates ALG(¢'(.J), ). If ALG ever tries to query a point in Y, ALG' simply
answers using ¢ rather than actually making the query. Similarly, for queries not in H, ALG’ avoids
the query and simply gives ALG the sign of z with respect to H. Since r,Y,'(J) is distributed
identically to r, Y, ¢(J) this is a faithful simulation of ALG(#(.J), 7; gr,v,s) so long as no point in
F; v is queried. Thus,

Pr [ALG/ Y, m, ¢') queries F; } =Q(1
(£ Y)~R g (Y. 7. ¢) a y] =)

but this contradicts the Hidden Slab Lemma. O

Thus, the player succeeds with probability 0.9 — 0,,(1), a contradiction with how we defined /.
So any such algorithm must make at least N'/8 queries. To finish the proof, note that by Theorem

1.3 we have that SSD(400n, ﬁ, 1/2) =Q (#;(n)) and thus ¢ = O(v/nk). The good hyperplane

lemma then implies that N/8 = exp(Q(y/n/k)).
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A Missing Proofs

Proof. [Proof of Lemma 1.1] It suffices to prove the claim when k& = n + 1. Applying an affine
transformation we can assume that v, = 0 and v; = e; for ¢ < n. Fix an arbitrary function f.
We then let w € R™ with w; = f(v;) and observe f(z) = sgn({w,z) + f(vp+1)/2). O

Proof. [Proof of Lemma 1.2] Fix an LTF g. For any point v;, the probability that g(v;) agrees with
f(v;) is 1/2. So by Chernoff bounds the probability that f and g disagree on fewer than k/4 points
is at most e¥/16. On the other hand, using VC dimension and the Sauer-Shelah Lemma, there are

9kH (%) LTFs. A union bound shows that the probability that the coloring is close to an LTF is

2kH("T+1)—k/(161n(2)) = on(1)

when k& > 100(n + 1). Thus with high probability, every LTF disagrees with f on k/4 points. Since
each point appears with probability Q(1/k) it follows they are Q(1)-far under D. O

Proof. [Proof of Lemma 4.4] For completeness, we include a proof. We first note that we can write
S as {v: Wov = 0} for some W € R~k *7 with rank n—k and § € R"~*. Moreover, we can assume
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without loss of generality that W = (I,,_; | R) for some R € R(»~F)*F a5 applying row operations
and permuting columns does not change the number of points in the affine space. Now for a subset
{i1,...,i¢} =1 C [n—k] we define f; : {1} — {£1}" as the function that flips the i1, i, ..., i¢ bits.
We observe that if z € {£1}" NS then fr(x) satisfies (W fr(x)); # 0; for i € I and (W f1); = 0;
for j & I. So it follows that for I,J C [n— k| and I # J and x,y € {£1}" NS, f1(z) # fs(y). So,
Urcpn—g frI{£1}" N S) € {£1}". Since each f is injective, taking the cardinality of both sides
gives 2" ~k|S| < 2" as desired. O
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