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This work implements a genetic algorithm (GA) to discover organic catalysts for photoredox CO2 reduction that are
both highly active and resistant to degradation. The LUMO energy of the ground state catalyst is chosen as the ac-
tivity descriptor and average Mulliken charge on all ring carbons as the descriptor for resistance to degradation via
carboxylation (both obtained using density functional theory), to construct the fitness function of the GA. We combine
the results of multiple GA runs, each based on different relative weighting of the two descriptors, and rigorously assess
GA performance by calculating electron transfer barriers to CO2 reduction. A large majority of GA predictions exhibit
improved performance relative to experimentally studied o-, m-, and p-terphenyl catalysts. Based on stringent cut-offs
imposed on the average charge, barrier to electron transfer to CO2, and excitation energy, we recommend 25 catalysts
for further experimental investigation of viability towards photoredox CO2 reduction.

I. INTRODUCTION

The primary objective of this work is to establish an au-
tomated discovery protocol for viable molecular organic pho-
toredox catalysts to perform single-electron reduction of CO2.
Green, photoredox routes for CO2 reduction using pheny-
lene oligomers were first developed in the 1990’s.1,2 Grow-
ing emphasis on sustainable chemical transformations in re-
cent years has renewed both general interest in organic pho-
toredox chemistry3,4 and synthesis efforts to reduce CO2 to
make amino acids and hydrocarboxylation products.5,6 Or-
ganic chromophores are very attractive as they can catalyze
thermally challenging reactions via the generation of highly
reactive radical species upon excitation and quenching.

Figure 1 describes the catalytic cycle for CO2 reduction
with phenylene oligomers, including proposed pathways that
lead to catalyst degradation. For this reaction, Matsuoka and
coworkers found that p-terphenyl produced the most formate
among o-, m-, and p- isomers.2 Higher activity of p-terphenyl
is counter-intuitive as the free energy driving force for CO2 re-
duction is more favorable for o-, and m- isomers relative to the
p- isomer. Carboxylation products are observed for o- and m-
isomers, indicating that this reaction is preferred to electron
transfer (ET).2 Furthermore, all isomers exhibit single-digit
turnover numbers. This is believed to be caused by proton
capture and subsequent Birch reduction of the catalysts.7

Based on higher activity of the p-terphenyl isomer ob-
served in this study, our group carried out an analysis of sub-
stituent electrophilicity effects on the kinetics of ET from the
p-terphenyl radical anion to CO2.9 The ET process is adiabatic
and electron-donating groups (indicated by negative Hammett
parameter,10 σp), symmetrically substituted at both p- ends
of p-terphenyl lead to lower ET barriers and consequently
higher rate coefficients than electron-withdrawing groups. We

FIG. 1. Proposed catalytic cycle of single electron reduction of CO2
with oligo(p-phenylene), or OPP.8,9 OPP-3 is terphenyl with n = 1
and R = H. Reproduced with permission from J. Phys. Chem. A. 124,
5359–5368 (2020).9 Copyright 2020 American Chemical Society.

also determined that the lowest unoccupied molecular orbital
(LUMO) of the ground state catalyst is a reliable descriptor for
the reaction free energy of ET. LUMO energies drop steeply
with increasing electron-withdrawing character, mirrored in
the sharp increase in free energy. With increasing electron-
donating character, however, while LUMO energies exhibit
a modest increase with a corresponding decrease in free ener-
gies, both quantities plateau beyond a certain value of σp. Our
prior work therefore demonstrates that free energies cannot be
lowered indefinitely by enhancing electron-donating character
alone.

The experimental and computational studies together
demonstrate that the core challenge facing catalyst design for
CO2 reduction is that it must not only be active but also ex-
hibit high turnover numbers by being resistant to degradation
via carboxylation and Birch reduction. While such a task can
seem daunting given the sheer vastness of chemical space,

mailto:ssharada@usc.edu


2

one can leverage emerging approaches that automate screen-
ing and search to drive materials discovery. For example, ma-
chine learning methods trained on experimental and compu-
tational hydrogen evolution activity data for a database of or-
ganic photoredox catalysts have been utilized to screen mate-
rials libraries and identify new candidates.11,12 Methods that
drive discovery of novel organic molecules by utilizing com-
mon structural or latent features of known molecules are also
being developed. However with some exceptions,13 both evo-
lutionary approaches such as genetic algorithms and gener-
ative models such as variational autoencoders have been re-
stricted to non-catalysis applications such as drug develop-
ment and organic light-emitting diodes.14–16

This study aims to develop a genetic algorithm (GA), con-
structed using insights from prior experimental and computa-
tional studies, to discover novel catalysts for photoredox CO2
reduction. GA is an evolutionary approach that creates new
‘offsprings’ by combining or modifying their ‘parents.’17,18 In
any step of the evolution (generation), the ‘fitness’ of individ-
uals determines whether they constitute the parent pool for the
subsequent generation. GAs have been successfully deployed
across several domains ranging from art education19 to cloud
security20. This work adapts the open-source GA program de-
veloped by the Jensen group, which was originally employed
to discover drug candidates based on lipophilicity, synthetic
accessibility, and ring size characteristics.14

In this work, the fitness function is modified to favor candi-
dates that possess high LUMO energy and more positive aver-
age carbon charge, chosen as descriptors for catalyst activity
towards CO2 reduction and and resistance to degradation via
carboxylation, respectively. The relative weights of the two
descriptors are systematically varied. The three isomers of ter-
phenyl, both with and without electron-donating substituents,
constitute the parent pool. GA outcomes are assessed using
more rigorous calculations of catalyst excited states and ET to
CO2. Most catalysts predicted by the GA show improved per-
formance compared to the terphenyl benchmarks. The GA run
with fitness biased slightly in favor of LUMO energy (60%
weight) yields the largest number of viable candidates relative
to their parent pool. We identify at least 25 catalyst candi-
dates, out of the 103 unique catalysts predicted by the GA,
that are promising starting points for experimental studies of
photoredox CO2 reduction.

II. METHODS

Our goal is to utilize genetic algorithms to identify substi-
tuted oligophenylenes that are both active towards CO2 reduc-
tion and resistant to degradation via carboxylation and Birch
reduction. To rigorously assess the performance of the GA
approach that relies on inexpensive, approximate descriptors,
ET barriers are calculated for all the catalysts predicted by the
GA. The activity and degradation resistance of the new candi-
dates are benchmarked to experimentally studied o-, m-, and
p- terphenyl isomers.2

A. Genetic algorithm

We adapt the string GA developed by Jensen (github.
com/jensengroup/String-GA) for catalyst discovery.14,21

The string GA was employed to identify drug-like molecules
based on a fitness function that favors high lipophilicity and
ease of synthesis and penalizes large ring sizes. The ‘string’
in the name refers to the use of the SMILES (Simplified
Molecular Input Line Entry System)22,23 string representa-
tion of molecules to carry out mutation and crossover oper-
ations. Our adaptation (github.com/andresmrk/Phenyl_
GA) also employs the SMILES representation owing to its
widespread use and ability to represent complex phenyl ring
substitutions,24–26 despite some recent concerns regarding its
robustness.27 The RDKit software package28 is employed to
convert between SMILES representation and Cartesian co-
ordinates. We modify the fitness function and GA proce-
dure from the original implementation to search for catalyt-
ically active and degradation-resistant oligophenylene deriva-
tives for one-electron CO2 reduction.

The initial population for every GA run consists of 10
molecules chosen at random from a pool of 30 (Table S1 of
Supporting Information, SI). The group of 30 molecules in-
cludes the reference unsubstituted p-, m-, and o- terphenyl, as
well as substituted isomers where a single H in an outer phenyl
ring is replaced with one of -CH3, -NH2, or -OH groups,
illustrated in Figure 2. These functional groups are cho-
sen based on our prior finding that electron donating groups
on the terminal p- position of the outer phenyl ring enhance
ET rates relative to unsubstituted p-terphenyl.9 After the ini-
tial population is randomly selected, the GA is allowed to
propagate 10 generations. Every generation is created using
crossover and mutation operations. The crossover operation
‘mates’ two parents to produce an offspring by exchanging
‘genes.’ The multi-point crossover operation is utilized to
create one fragment (or ‘gene’) from every parent. Choos-
ing points on the SMILES string at random for crossover can
result in the creation of unrealistic or erroneous SMILES rep-
resentations. Therefore, we employ constraints that preserve
phenyl rings. In other words, the crossover operator allows
only for the swapping of one or more phenyl groups (sub-
stituted/unsubstituted) between parent molecules. A selected

FIG. 2. Parent pool of terphenyl catalysts composed of substituted
p-, m-, and o-terphenyl with a single substitution at one of three posi-
tions (R1, R2, R3) with one of several electron-donating substituents
or hydrogen (-H, -OH, -NH2, CH3)

github.com/jensengroup/String-GA
github.com/jensengroup/String-GA
github.com/andresmrk/Phenyl_GA
github.com/andresmrk/Phenyl_GA
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gene from a parent molecule has an equal probability of re-
placing a gene in the receiving parent or being randomly ap-
pended to produce the offspring. Ten offspring are created
at the end of every generation. After crossover, the mutation
rate dictates the probability that a mutation will be applied to
a randomly selected carbon atom in the offspring. A mutation
rate of 0.1 is applied and the mutation is selected at random
from a list of 15 substituents (Table S2, SI).

Once a new generation is created, all individuals com-
pete according to a user-defined fitness function. We turn to
prior experimental and computational studies of CO2 reduc-
tion with phenylene catalysts to identify the most appropriate
form of the fitness function. Our prior computational study
on reduction of CO2 by substituted p-terphenyls revealed that
the catalyst’s reduction potential, or free energy of the reac-
tion has the largest impact on ET rates.9 Further, free energy
is more favorable for phenylenes with higher ground state
LUMO energy. Therefore, the LUMO energy of the catalyst,
obtained inexpensively (albeit approximately) from density
functional theory (DFT) calculations, constitutes one compo-
nent of the fitness function.

To assess degradation resistance via Birch reduction, we
turned to work by Zimmerman and coworkers.29,30 They show
that for aromatic systems, the position that is most likely to be
protonated is that with the highest charge density, or the most
anionic carbon. However, as protonation can occur from many
electronic states of the catalyst and the most favorable proton
source is not yet known,31 the choice of carbon charge as a
descriptor for degradation via Birch reduction is unclear. To
the best of our knowledge, studies similar to those by Zim-
merman and coworkers for the likelihood or the position of
attack of carboxylation have not yet been performed. As CO2
is an electrophile, charge density may be the determining fac-
tor for carboxylation along similar lines to Birch reduction.
For the experimentally studied o-, m-, and p-terphenyl isomers
therefore, we calculate transition structures and barriers to car-
boxylation at various ring positions (Figure S1, SI). Described
in Section 3 of the SI, these calculations show that the barriers
at various positions are not directly correlated to the charge on
the respective carbon for either the anionic or neutral ground
state of the catalyst (Figure S2, SI). On the other hand, both
average and minimum carboxylation barriers for isomers are
strongly, linearly correlated to the respective average charge
on the ring carbons, both in the anionic and ground state of
the catalyst (Figure S3, SI). Furthermore, charges on ring car-
bons in the anionic state of the catalyst are directly correlated
(slope ≈ 1) with the corresponding charges in the ground state
(Figure S4, SI), consistent with our prior work that shows that
trends in anion properties closely follow those of the ground
states of phenylenes.9 Therefore, the average carbon charge of
the ground state catalyst is used as an approximate measure of
likelihood of degradation via carboxylation, with more posi-
tive charge signifying higher resistance to degradation.

Lastly, to limit the selection of catalysts to those with op-
tical gaps close to phenylene isomers,32–34 we add a simple
constraint to the fitness function that the HOMO-LUMO en-
ergy gap lies between 200 and 400 nm. Unlike prior GA stud-
ies that inspired this work,14,35 there is no need to impose a

penalty for large ring sizes due to the constraint imposed on
the crossover operation. There are also no constraints nec-
essary on overall system size as very large oligophenylenes
are expected to have lower fitness scores than short-chain
molecules on account of lower LUMO energies. We verify
this by showing that system sizes of the candidates identified
by the GA are not arbitrarily large. There is also no noticeable
correlation between ET parameters and system size (Figure
S5, SI).

Normalized fitness scores are calculated for LUMO energy
(sL(i)) and average carbon charge (sC(i)) of candidate i as fol-
lows:

sL(i) =
(︃

LUMO(i)
∑n LUMO(n)

)︃
; sC(i) =

(︃
C(i)

∑n C(n)

)︃
(1)

where C(i) is the average Mulliken ring carbon charge for can-
didate i. The gap contribution (sG,i) is assigned as 0 or -1 de-
pending on whether it lies within or beyond the 200-400 nm
region, respectively.

sG(i) =

{︄
0 if 200 nm≤ (LUMO-HOMO) ≤ 400 nm
−1 otherwise

(2)
However, DFT typically underestimates HOMO-LUMO
gaps.36 To assess the impact of applying an approximate or-
bital gap constraint using ground-state DFT, we calculate ver-
tical excitation energies for all catalysts predicted by the GA
using time-dependent DFT (TDDFT)37 with the same level of
theory as ET calculations. Excitation energies confirm that
the approximated gap contribution to the fitness function en-
sures all GA predictions possess excitation energies that lie in
nearly the same range as the reference p-, m-, and o-terphenyl
and the parent pool (Tables S3 and S4, SI).

The fitness function, f (i) is given by:

f (i) = ωsL(i)+(1−ω)sC(i)+ sG(i) (3)

The weight, ω , specifies the influence of each descriptor score
(LUMO or average charge) on the overall fitness score, with
zero factoring only the charge, 0.5 assigning equal weighting
to charge and LUMO, and unity factoring only LUMO. As the
optimal value is not known a priori, we vary ω from 0 to 1 in
steps of 0.1 and execute 11 GA runs.

During the GA runs, LUMO energies and charges are cal-
culated in the gas phase using the ab initio quantum chem-
istry software, Q-Chem (version 5.4.2)38 at the B3LYP/def2-
SVP level of theory.39–41 Ten fittest candidates in every gen-
eration are passed to the next generation. From a randomly
chosen initial population, every GA run evolves the catalysts
over 10 generations. At the end of 10 generations, the top 10
fittest structures are selected. ET rates and excitation energies
are calculated for these structures (procedure described be-
low) and contrasted with the phenylene oligomers examined
in prior studies.2 Although corresponding studies of degrada-
tion pathways are also necessary, they entail computationally
intensive calculations of transition structures for carboxyla-
tion (and protonation) across multiple catalysts. This is a topic
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of ongoing and future work in our group. For the purpose of
assessing GA performance, we continue to use average carbon
charge C as a descriptor of susceptibility to degradation.

B. Electron transfer barriers

GA predictions are rigorously analyzed by quantifying cat-
alyst activity towards CO2 reduction. The computational pro-
cedure is very similar to our previous work.9 We use con-
strained density functional theory (CDFT)42–44 to calculate
initial and final states for ET where the negative charge is lo-
calized on the catalyst and substrate fragment, respectively.
The guess reactant (initial state) structures for optimization
are created by placing linear CO2 slightly above and near the
center of every predicted catalyst. Our prior work shows that
upon optimization, CO2 relaxes closer towards the center of
the catalyst for most substituted p-terphenyls even if the guess
structure is created with CO2 off-center. Product (or final)
states are calculated with CDFT using the optimized reactant
geometries as guesses and by switching charges between frag-
ments. In some cases, the CO2 fragment is manually bent to
accelerate convergence to the final state. While it is possi-
ble that there are multiple local minima corresponding any
reactant or product state, our prior work predicts similar ET
parameters across at least some of these local minima. There-
fore, we employ a single representative geometry for each of
the reactant and product states for a given catalyst. The state-
specific model for non-equilibrium solvation is employed to
calculate vertically excited charge transfer states.45–49 We find
that the donor-acceptor pairs are electronically strongly cou-
pled for most predicted catalysts, based on values of the dia-
batic coupling constant calculated with CDFT configurations
interaction (CDFT-CI) (Table S5, SI).50 Therefore, the adia-
batic expression51 for rate coefficients can be employed:

k = νe−
∆G∗
RT (4)

where ν is a weighted average of vibrational frequencies
for modes that contribute to the reaction coordinate (≈ 1013

s−1)51 and R is the molar equivalent of Boltzmann’s constant,
kB. ∆G∗ is the effective barrier to ET obtained from Marcus
theory:52

∆G∗ =
λ

4

(︃
1+

∆G
λ

)︃2

(5)

where λ is the reorganization energy and ∆G is the free energy
change for the ET step. All simulations are carried out using
Q-Chem at the ωB97X-D/def2-TZVP level of theory.53,54 The
conductor-like polarizable continuum model (C-PCM) for im-
plicit solvation55–57 is used for all electronic structure calcula-
tions with dichloromethane (dielectric = 8.93, optical dielec-
tric = 2.02834) as the solvent. Vertical excitation energies of
catalysts are calculated using TDDFT at the same level of the-
ory with non-equilibrium solvation.

III. RESULTS AND DISCUSSION

A. GA predictions

Eleven GA runs generate 103 unique catalysts (with 7 du-
plicates) that vary widely in size and structure in compari-
son to the parent population (Figures S6-S7, SI). The small-
est are biphenyls while the largest contain seven phenyl rings,
composed of various o-, p-, and m- terphenyl sub-structures.
Quaterphenyls (4 phenyl rings) are observed for every LUMO
weight, and terphenyls are observed in all but the case where
ω = 1. The smallest predicted catalyst contains 23 atoms
while the largest contains 82 atoms. Two largest structures
include o-, m-, and p-terphenyl as sub-structures in the ar-
rangement of the seven phenyl rings. The p- sub-structure
is found in only 7 of the 103 catalysts, while o- and m- are
observed in approximately 80 and 65 catalysts respectively,
with some catalysts containing multiple o- or m- terphenyl
sub-structures. Nine substituents are found in the GA cata-
lysts – -OH: 97 catalysts, -NH2: 19, -OCH3: 11, -NHCH3:
11, and -CH3, -SCH3, -NO2, -F, and -N(CH3)2 each occur-
ring in < 10 catalysts. Hydroxyl groups are by far the most
common. Other substituents are only represented in specific
weights; for example, all catalysts for LUMO weight of 50%
(ω = 0.5) include OCH3. Only one other OCH3 is found in a
catalyst predicted in the 20% LUMO weighted (ω = 0.2) GA
run.

Figure 3 demonstrates that the GA discovery procedure suc-
cessfully identifies a diverse range of structures by seeking
to increase both the average carbon charge (C) and LUMO
energy. As is desired, most of the predicted catalysts (green
circles) are located to the left of and higher than the parent
population (black squares). Vertical and horizontal lines rep-
resent the reference unsubstituted o-, m-, and p-terphenyl sys-
tems. p-Terphenyl has the most positive C of the three iso-
mers, in agreement with its lower susceptibility to degrada-
tion via carboxylation in experiments.2 As a result, despite its
lower LUMO energy (higher ET barrier), it is the isomer that
exhibits highest activity towards CO2 reduction via ET. Most
predicted catalysts are above and to the left of p-terphenyl,
suggesting that they may exhibit improved performance rela-
tive to the experimentally studied system. To assess whether
the LUMO energy is indeed a reliable descriptor of catalytic
activity, we carry out more computationally intensive ET cal-
culations, described below.

B. Impact of LUMO weight on catalyst performance

Reaction energy (∆G), reorganization energy (λ ), and the
resulting free energy barrier (∆G∗, Equation 5) are calculated
for all catalysts predicted by the GA. Figure 4 depicts the vari-
ation of these quantities and C with varying LUMO weighting
parameter (ω) in the fitness function. The corresponding data
is presented in (Table S6, SI). Four predicted catalysts for
ω = 0 yield ∆G∗ values higher than 120 kJ/mol and are ex-
cluded from this and all other figures to enhance readability.
High ∆G∗ values are the likely outcome of GA search based
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FIG. 3. GA Predictions – LUMO energies /(a.u.) versus aver-
age carbon charges (C, Mulliken charges) for both the parent pool
(black squares) and the predicted catalysts (green circles) with ver-
tical and horizontal lines representing the LUMO energies and C of
p- (magenta), m- (blue), and o-terphenyl (black). All values are cal-
culated for optimized ground state catalysts at the ωB97X-D/def2-
TZVP level of theory with solvation in dichloromethane.

exclusively on charge and no weight assigned to LUMO ener-
gies. In other words, even though the predicted catalysts are
expected to be resistant to degradation, they exhibit no activity
towards CO2 reduction.

At the other end of the fitness spectrum where only LUMO
is weighted (ω = 1), C values are more negative than those for
most intermediate values of ω . We note however that these
observations are purely qualitative. Quantitative comparisons
are precluded by random processes inherent to the GA, in ad-
dition to the fact that the initial population is distinct for ev-
ery ω . Trends in barriers ∆G∗ closely follow those for ∆G
as reorganization energies lie within a narrow range for most
systems (with only a few exceptions for ω of 0.4, 0.7, 0.8
and 0.9). This indicates that in most cases, ∆G calculations
are sufficient to predict trends in ET rate coefficients for CO2
reduction with these catalysts. In addition, Figure 5 demon-
strates that LUMO energies serve as reliable descriptors for
reaction free energies and therefore ET barriers. Although
the degree of correlation between ∆G∗ and LUMO energy is
slightly lower (R2=0.64) than what is normally desirable, the
additional scatter compared to ∆G versus LUMO energy (R2

= 0.73) likely originates in the incorporation of λ (Equation
5). Nevertheless, pursuing higher LUMO energies via the fit-
ness function yields systems that possess lower ET barriers.
Most predicted catalysts (purple circles) yield lower ET bar-
riers to CO2 reduction relative to both the parent population
(black squares) as well as p-terphenyl.

Figure 6 depicts ∆G∗ vs. C for each weight of LUMO,
with labels that represent the ranking of that catalyst within its
weight pool. The horizontal blue line on each figure reflects
the average barriers of the initial pool fed into that GA run,

while the vertical blue line reflects the average carbon charge
of the initial pool. Overall, around 90 candidates generated
by the GA outperform their respective initial populations. In
all cases including the one in which charge is not taken into
account in the fitness (ω = 1), the GA predicts catalysts with
more positive C. Most catalysts also yield lower ET barri-
ers as well, although weights of less than 50 percent LUMO
(ω < 0.5) often yield higher ∆G∗’s relative to the initial pool.
All the candidates generated in GA runs with ω values of 0.6
and 0.7, where the fitness is slightly more biased in favor of
LUMO energy, possess more positive C and and lower barri-
ers than their respective initial pools. LUMO weights of 0.2
and 0.3 yield many catalysts that exhibit poor activity towards
CO2 reduction and are possibly more susceptible to degra-
dation compared to other GA runs. For these two runs in
particular, the initial pools have higher average barriers and
lower C, which may be partially responsible for the poor out-
comes. As structural diversity of the initial pool also affects
the quality of GA predictions, we analyze counts of isomers,
functional groups, and positions of attachment in initial pools
(Figures S9-S11 and Table S8, SI). For instance, 6 out of 10
parents have a single substituent (-OH) in the parent pool of
ω = 0.3, unlike the remaining pools where the distributions
are less skewed towards a single substituent. Further explo-
ration of the dependence of predicted structural diversity on
parent population is a topic for future work as it will require
multiple GA runs for a given value of ω .

In the next step, we contrast predicted catalysts with those
for which experimental studies are available, specifically o-
, m-, and p-terphenyl. Figure 7 depicts ∆G∗ vs. C for the
initial pool as well as the GA-generated catalysts. Vertical
and horizontal lines are used to represent the barriers and
average carbon charge of p-, m-, and o- terphenyl, which
are labeled accordingly. The overarching objective of this
work is to discover catalysts that yield lower barriers as well
as higher (more positive) average carbon charges than p-
terphenyl, which is known to to be active for CO2 reduction
and is more resistant to degradation than its o- or m- isomers.
Therefore, all points below and to the left of the magenta lines
representing p-terphenyl in Figure 7 constitute improvements
upon known experimental successes. The majority of the pre-
dicted catalysts are therefore viable based on the two criteria
employed in this study.

C. Selection of viable catalysts

We select a subset of GA candidates based on stricter
thresholds. Represented by the green, shaded region in Figure
7, we identify 38 candidates that have both C ≥ −0.10 and
∆G∗ ≤ 90 kJ/mol. Of the 38, 25 catalysts possess vertical ex-
citation energies (calculated using TDDFT) that lie between
the calculated excitation energies of unsubstituted p- and o-
terphenyl (3.56-3.86 eV). Out of the 103 catalysts predicted
by the GA, 47 meet the excitation energy criterion, with scope
for future improvement by replacing the current limits for de-
termining the gap contribution to the fitness function (sg(i))
with those determined using DFT. Constraining the excitation
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FIG. 4. Impact of choice of LUMO weight, ω – Reaction free energy for ET (∆G /(kJ/mol)), reorganization energy (λ /(kJ/mol)), and ET
barrier (∆G∗ /(kJ/mol)) as well as average carbon charge (C). The color gradient within weight groups represents the rank of that catalyst
(yellow: 1 to purple: 10).

FIG. 5. ET barriers (∆G∗) vs LUMO energy – for parent pool (black
squares) and predicted catalysts (purple circles), with vertical and
horizontal lines representing the LUMO energies and C of p- (ma-
genta), m- (blue), and o-terphenyl (black). The black solid line rep-
resents a linear fit to the data.

energy to this region helps us ensure that excitations of the
predicted catalysts are achievable with similar experimental
set-ups, and the candidates possess similar optical properties
to known active catalysts.

Viable catalysts identified based on our prescribed cut-off
values of ET barriers, C, and excitation energies are shown in
Figure 8. Figure S12 of the SI groups subsets of these cat-
alysts by similarity in their phenylene backbone to illustrate
structural features common across viable catalysts. The 26
structures in Figure 8 represent 25 unique catalysts spanning
several LUMO weights. The repeated structure is o-terphenyl
that is doubly substituted with -OH on the p-terminal posi-
tions of the phenyl rings and emerges as a viable candidate in
GA runs with 60% and 80% LUMO weighting. The GA with
60% weighting of LUMO energy contributes the largest pool
of catalysts to the best 25 catalysts with 9 of its 10 structures
fulfilling all criteria. GA runs with 70% and 80% weights
introduce electron-donating NH2 groups and also contribute
significantly to the final set of viable catalysts. GA runs with
LUMO weights higher than 80% do not yield viable candi-
dates. GA runs with weights lower than 50% yield a handful
of viable catalysts that are structurally similar to those gener-
ated with 60% weighting. Our recommended weight for fu-
ture discovery studies with this GA framework is therefore
60% in favor of LUMO energy.
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FIG. 6. Impact of ω and initial population – ET barrier (∆G∗) vs. average carbon charge (C), with labels representing catalyst rank in its
respective GA run. Blue horizontal and vertical lines represent the average ET barrier and average carbon charge for the parent population that
was randomly selected for that GA run.
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FIG. 7. Identifying candidates for experiment – ET barrier vs average
carbon charge for GA predictions and parent catalysts. Vertical and
horizontal lines represent the barrier and average Mulliken charge of
p- (magenta), m- (blue), and o-terphenyl (black).

The catalysts vary in length from terphenyl to
oligophenylenes with 7 phenyl rings. Our largest pre-
dicted catalyst is shown in the middle right of the ‘LUMO:
70%’ box in Figure 8. This catalyst contains every reference
isomer sub-structure as well as multiple NH2 and OH
substitutions, and has the second-lowest barrier in this set
of 25 catalysts. In the same way that o- sub-structures are
the most common in the set of 103 predicted catalysts, o-
sub-structures are found in 23 of the 25 catalyst structures.
The o-terphenyl sub-structure substituted with at least one
-OH yields three unique catalysts found with 3 different
LUMO weights ranging from 10% to 80%.

Quaterphenyls represent the highest fraction of the best 25
catalysts and are found across the span of LUMO weights.
Almost every structural isomer of quaterphenyl is represented
in these 25 catalysts and most are found at least twice, with
the sole exception of the p-terphenyl substructure. As quater-
phenyls with p-sub-structures yield ET barriers higher than
90 kJ/mol, they do not meet our viability requirements. The
quaterphenyls consisting of p-substituted OH-groups illus-
trated in Figure 8 are expected to be easier to synthesize as it
often more straightforward to target the same position on sev-
eral phenyl groups than it is target different positions of attack
on neighboring phenyl groups, lowering the barrier to synthe-
sis and testing of catalyst performance with experiments. As
selective synthesis of specific structural isomers can be chal-
lenging, the fact that GA predicts simple structural isomers
with comparable performance may ease synthesis efforts. An
excellent instance of this is the set of viable candidates ob-
tained with 60% LUMO weight, which are diverse (range of
chain lengths) yet consist of similar features (substructures,
substituents) to facilitate synthesis and testing. Although 70%
LUMO weighting also contributes significantly to the pool
of ideal catalysts, the candidates are larger and more com-
plex. In addition to difficulties with synthesis, these candi-

dates may also be less soluble as is observed in the case of
longer oligo(p-phenylenes) in experiments.2

Overall, our GA protocol enables the discovery of several
novel catalyst candidates for photoredox CO2 reduction by
using simple DFT-based descriptors for activity (LUMO en-
ergy), degradation resistance (Mulliken charge), and excita-
tion energy (HOMO-LUMO gap). Going forward, one way to
enhance the GA’s ability to predict synthetically viable can-
didates is to include a synthetic accessibility score in the fit-
ness function similar to prior GA studies.14 Other possibili-
ties include the use of emerging machine learning approaches
that predict the synthetic complexity (number of steps, costs
of reactants, and so on) of organic molecules.58–60 Explicitly
considering ease of synthesis will accelerate the selection of
viable catalysts. To identify truly sustainable pathways for
CO2 utilization, it is also important to incorporate parame-
ters which reflect the environmental costs of catalyst synthesis
routes as well as downstream processes to recycle or dispose
of the proposed catalysts. Recent studies assessing the green-
ness of various chemical reactions have identified parameters
such as greenhouse gas emissions, environmental/human tox-
icity, and atom efficiency, that must be considered while de-
signing catalytic reaction pathways.61–63

One of the driving hypotheses in this study that is yet to
be rigorously tested is the appropriateness of C obtained from
Mulliken analysis as a descriptor for degradation resistance.
In addition to examining substituent effects on carboxylation
barriers, our group aims to examine pathways for proton trans-
fer and Birch reduction both from the anion radical state of the
catalyst as well as the excited state when complexed with the
sacrificial electron donor. As our mechanistic and physical un-
derstanding of these catalysts improve, we can develop more
robust discovery frameworks for viable photoredox catalysts
based on the descriptors that emerge from such studies.

IV. CONCLUSIONS

We present a genetic algorithm for discovery of catalysts for
photoredox CO2 reduction that are both active and resistant
to degradation via carboxylation. The fitness function favors
candidates with higher LUMO energies and more positive av-
erage carbon charges, which represent descriptors for activity
and degradation resistance, respectively. By varying relative
weights on each descriptor in the fitness function, we find that
biasing the function slightly in favor of LUMO energy (60%)
yields the maximum number of candidates that satisfy our via-
bility criteria. The GA successfully predicts several new struc-
tures, a majority of which promise substantial performance
enhancements over previously studied o-, m-, and p-terphenyl
isomers. By imposing more restrictive requirements on ac-
tivity, degradation resistance, and excitation energy, we rec-
ommend 25 catalysts out of 103 GA predictions as potential
first candidates for experimental studies of photoredox CO2
reduction. Going forward, we aim to enhance GA robustness
by both testing the reliability of average charge as descriptor
for degradation resistance as well as predicting catalysts that
are synthetically viable and sustainable by identifying appro-
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FIG. 8. Catalysts predicted by the GA with ∆G∗ ≤ 90 kJ/mol, C ≥ -0.10, and excitation energy between p- and o-terphenyl (3.56-3.86 eV),
grouped by LUMO weight.

priate additional parameters for the fitness function.

V. SUPPLEMENTARY MATERIAL

The supplementary material consists of SMILES notations
of parent and mutation candidates for the GA and examina-
tion of choice of descriptor for degradation using barriers to
carboxylation. The material also summarizes key properties
of candidates predicted by the GA – geometries, diabatic cou-
pling constants, TDDFT excitation energies, and ET rate coef-
ficients. Cartesian coordinates of all optimized structures are
provided.
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