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Superfluid vortex multipoles and soliton stripes on a torus
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We study the existence, stability, and dynamics of vortex dipole and quadrupole configurations in the nonlinear
Schrodinger (NLS) equation on the surface of a torus. For this purpose we use, in addition to the full two-
dimensional NLS equation on the torus, a recently derived [N.-E. Guenther et al., Phys. Rev. A 101, 053606
(2020)] reduced point-vortex particle model which is shown to be in excellent agreement with the full NLS
equation evolution. Horizontal, vertical, and diagonal stationary vortex dipoles are identified and followed, using
parameter continuation, along the torus aspect ratio and the chemical potential of the solution. Windows of
stability for these solutions are identified. We also investigate stationary vortex quadrupole configurations. After
eliminating similar solutions induced by invariances and symmetries, we find a total of 16 distinct configurations
ranging from horizontally and vertically aligned quadrupoles to rectangular and rhomboidal quadrupoles to
trapezoidal and irregular quadrupoles. The stability for the least unstable and, potentially, stable quadrupole
solutions is monitored at both the NLS equation and the reduced model levels. Two quadrupole configurations
are found to be stable on small windows of the torus aspect ratio and a handful of quadrupoles are found to be
very weakly unstable for relatively large parameter windows. Finally, we briefly study the dark-soliton stripes

and their connection, through a series of bifurcation cascades, with steady-state vortex configurations.
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I. INTRODUCTION

The study of atomic Bose-Einstein condensates (BECs)
offers a pristine setting to explore the interplay of nonlinear
dynamical phenomena and quantum mechanical effects [1-4].
A major thrust of associated experimental and theoretical
efforts has consisted of the exploration of coherent struc-
tures supported by the interplay of effective nonlinearity
and dispersion in such systems, both at the mean-field
level but also beyond [5]. More specifically, relevant studies
and a wide range of experiments have focused on bright
solitons [6-8] in attractively interacting condensates, dark
solitons in self-repulsive species [9-16], gap solitons [17], and
multicomponent structures [18]. While the above have been
prototypically one-dimensional states, higher-dimensional
structures such as vortices [19,20] and vortex rings [21,22]
have also attracted significant attention in their own
right.

Naturally, this activity has been mostly focused in the
prototypical settings of parabolic (but also often periodic)
traps in one and higher dimensions, which have been the
typical settings of experiments so far [1-3]. However, re-
cent years have seen a surge of activity as concerns the
exploration of BECs in two-dimensional (2D) surfaces. In
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the past year alone, multiple papers explored the dynamics
of vortices and vortex-antivortex pairs in spherical surface,
shell-shaped systems [23-25], following up on earlier related
work not only on spherical surfaces [26], but also on cylin-
drical surfaces, planar annuli and sectors, and cones [27,28].
The topic of the dynamics of vortices on curved surfaces
is one that bears considerable history [29] motivated by a
variety of settings in fluid [30] and superfluid [31] physics. In
terrestrial BEC settings, the realization of such experiments
suffers from aspects such as the gravitational sag. However,
the recent activity in the newly launched Cold Atomic Labo-
ratory aboard the International Space Station seems to hold
considerable promise in this direction [32-35] and indeed
is specifically aiming to implement a hollow bubble geome-
try [36,37]. This in turn paves the way for the broader study of
pattern dynamics (including topologically charged states such
as vortices) in nontrivial geometry- and topology-featuring
setups [23,24,27,28]. It should also be noted that this is in
addition to the remarkable recent developments towards con-
fining and manipulating atoms via adiabatic potentials, which
in turn can also lead to a diverse variety of traps for ultracold
atoms (see, e.g., Ref. [38] for a relevant review). It is relevant
in this connection to mention that the first experiments in
such bubble traps have already been reported [39]. Using a
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combination of confinement techniques, such as the ones
discussed above (notice in that connection that these were
pioneered more than 20 years ago [40] before being brought
to bear in this context), and painting optical potentials, as
pioneered in the work of Ref. [41] and recently realized in
microgravity settings in Ref. [34], we believe that the toroidal
confinements considered herein may be within reach in the
not too remote future.

In the present work, our platform of choice will be the
surface a torus, i.e., the simplest compact and multiply con-
nected surface. This is motivated by the above developments,
the torus’s nontrivial topological structure, the proposal by ex-
perimental groups of the realization of an optical lattice on its
surface [42], and the recent formulation of the effective vortex
particle dynamics on its surface [43]. More concretely, we
extend our earlier considerations in the realm of bright solitary
waves [44] to the self-repulsive condensate setting and the pri-
marily vortical (but also dark-soliton stripe) set of structures
that can arise therein while also respecting the periodicity of
the torus in both of its angular directions. The fundamental
work of Ref. [43] has set the stage by providing a description
at the level of ordinary differential equations (ODEs) for the
vortex particles yet has still left many questions unanswered.
For instance, this description holds only for large chemical
potentials such that {R, r} > &, where & = 1/,/2 is the cor-
responding healing length (in dimensionless units; see below
for a discussion of the relevant adimensionalization). Thus, it
is relevant to explore the nature of the existence, stability, and
dynamics of multivortex structures as a function of the chem-
ical potential u (which is also a proxy for the atom number),
but also as a function of the torus geometric parameters such
as the ratio of the minor to the major axis. Furthermore, while
the ODEs were derived, the potential equilibria of those and
the associated stability and phase portraits were not explored
even for the most prototypical case of a vortex pair. Indeed,
there are further significant multivortex configurations that are
relevant to consider such as the vortex quadrupoles. Addi-
tionally, as we will see below, the vortex patterns also bear
connections (through their bifurcations) to states involving
dark-solitonic stripes that are of interest in their own right.
Finally, it is also particularly meaningful to compare the ODE
results with direct partial differential equation (PDE) simula-
tions to explore the validity and also potential limitations of
the approach.

More concretely, our work is organized as follows. In
Sec. IT we introduce the original, full, spatiotemporal model
on the torus and briefly review (for completeness) the main
aspects of its reduction to an effective point-vortex model,
as obtained in Ref. [43]. Section III presents the bulk of
our results by studying the existence of vortex- and stripe-
bearing solutions, their stability, and dynamics. In particular,
in Sec. II A we exhaustively analyze the existence, stability,
and dynamics for vortex dipole configurations. We find a total
of four different stationary dipole solutions, two of which are
fully stable. We also extend these solutions by adding extra
phase windings along the toroidal and poloidal directions.
Section IIIB is devoted to the study of quadrupole configu-
rations where we identify a total of 16 distinct ones. A couple
of these quadrupoles are found to be stable within small pa-
rameter windows, while a handful of quadrupoles are found

to be very weakly unstable for relatively large parameter win-
dows. In Sec. III C we briefly study the existence and stability
of dark-soliton configurations and connect some of them,
via bifurcation cascades, with steady-state vortex patterns.
Finally, a summary and conclusions of our work, together
with some possible avenues for future research, are given in
Sec. IV.

II. MODEL AND THEORETICAL SETUP

A. Spatiotemporal model

As a motivation for the spatiotemporal model for a
complex field on a torus, let us consider the lowest-order
mean-field approximation for a dilute BEC at sufficiently low
temperatures where the full 3D dynamics is well described by
the Gross-Pitaevskii equation (GPE) [1-4]

hz
ihy, = —ﬁvzvf + VoW + gl 1> (1

Here ¥ (x, y, z, t) is the macroscopic wave function and g =
4 h*a,/M is the nonlinear interaction parameter depending
on the s-wave scattering length a, and the atom mass M.
The external potential Vex(x, y, z) holds the BEC and deter-
mines its overall shape. Specifically, considering an external
trapping that confines the atoms on the surface of a torus as
described in Ref. [42], the BEC wave function will be con-
fined to a thin shell on this surface (see, for instance, Ref. [23]
for a BEC confined on the surface of a sphere). Thus, similar
to what is customarily done for flat pancake-shaped quasi-2D
BECs [3], it is possible to average along the thin transverse
direction by assuming that the chemical potential is much
smaller than the energy of the first excited state along this
transverse direction. Under this condition, the BEC remains
in its ground state along the thin direction. This effective
separation of variables results in a 2D GPE with a rescaled
nonlinear interaction parameter [3] which, after appropriate
rescaling of time, space, and wave function, would yield an
effective 2D nonlinear Schrodinger (NLS) equation model for
the BEC wave function.

Let us then consider NLS equation solutions that exist on
the surface of a torus centered at the origin. The torus has
a major (toroidal) radius R and a minor (poloidal) radius
r such that R > r. The torus coordinates in 3D space are
parametrized by

X = [R 4+ rcos(@)] cos(¢),
Y = [R + rcos(0)] sin(¢),
Z = rsin(6). ()

It is useful to define the angular coordinates on the torus
as follows: The toroidal angle is denoted by ¢ € [0, 2]
and poloidal angle 6 € [0, 2rr]. In particular, we choose our
toroidal axis such that & = 0 corresponds to the outermost
ring of the torus while & = 7 corresponds to the innermost
ring (see Fig. 1). Hence, solutions along these rings will be
dubbed below as outer and inner, respectively. On the surface
of this torus, in the absence of any external potentials, the
2D NLS wave function ¢ = ¥ (¢, 0, t) is described by the
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FIG. 1. Torus with major radius R and a minor radius » and the
corresponding toroidal ¢ and poloidal 8 angles.

adimensionalized spatiotemporal model
iy = —3A¢ — oy Py, (3)

where 0 = +1 and —1 correspond to the focusing (attractive)
and defocusing (repulsive) cases, respectively, and lengths are
measured in units of 7i//Mgng, with ny the BEC density
away from vortex cores. In the present study we exclusively
examine the defocusing case that admits dark structures (i.e.,
structures on top of a finite background) such as dark-soliton
stripes and vortices; hence, in our computations, hereafter
o = —1. Central to the description of the NLS wave function
on a torus is of course the corresponding Laplace-Beltrami
operator that takes the form (see, e.g., Ref. [45])

1 92 sin @ 3 N 1 92
129602 r(R+rcosf)dd (R4 rcosf)? dg?
“

In what follows, we define the torus aspect ratio « = r/R.

B. Steady states and stability

In Sec. IIT we will construct and study several steady-state
solutions for the above NLS equation on the torus. These
steady states (standing waves) are found by separating space
and time variables according to ¥ (¢, 0,t) = (@, 0)e i,
where p is often referred to as the chemical potential and
corresponds to the temporal frequency of the solution (as well
as to the density of its background). Thus, the steady-state
NLS equation for ¢y(¢, 6), parametrized by u, reads

—3Apo — o lpol’ o — pgo = 0. (5)

After suitably identifying steady states (for numerical details,
see below), it is relevant to study their dynamical stability
properties by extracting the corresponding stability spectra.
Therefore, we follow perturbed solutions starting by a steady
state g as per Eq. (5) and perturbing it with an infinitesimal
perturbation according to

¥ = {go + elae™ + b e, (6)

where a = a(¢,0) and b = b(¢, 0) correspond to the spa-
tial eigenmodes with eigenvalue A. Then the so-called
Bogoliubov—de Gennes (BdG) stability spectrum is obtained

by solving the linearized equation (i.e., to order &')

M, M, ||a _ _Aa 7
e e A

where M = A + pu + 20|¢o|* and M, = o ¢3. By construc-
tion, the spectrum obtained from Eq. (6) will respect the
Hamiltonian symmetry such that if A is an eigenvalue, so
are —A, A*, and —A*, where the asterisk stands for complex
conjugation. Therefore, any eigenvalue such that Re(1) > 0
will correspond to an instability: an exponential instability if
Im(x) = 0 and an oscillatory instability if Im(A) # 0. In the
latter case, the exponential growth is also accompanied by an
oscillatory dynamics of the solution.

In the present work we focus primarily on stationary solu-
tions composed of multivortex configurations. Similar to the
focusing case of Ref. [44], there will be special vortex loca-
tions on the torus corresponding to stationary configurations.
It is important to mention that, due to the periodic nature
of the domain, only configurations with zero total charge
are allowed. Therefore, only configurations with the same
number of positively and negatively charge vortices are pos-
sible within the toroidal geometry. Therefore, we will focus
on the lowest-order ones that correspond to vortex dipoles
and quadrupoles. As indicated also in the Introduction, even
for the former there are many important features to explore
including their stationary configurations and associated stabil-
ity. The periodicity of the domain also allows for the existence
of dark-soliton-stripe configurations provided they appear in
pairs to allow for the individual 7 phase jumps of each dark
soliton to accumulate to a whole 27t phase jump. Nonetheless,
as we will see in Sec. III C, configurations with an odd num-
ber of dark-soliton stripes are also possible by adding extra
phase windings (perpendicular to the stripes) to respect the
periodicity. Finally, it is also relevant to note that the Lapla-
cian operator in Eq. (4) is translationally invariant along the
toroidal ¢ direction. Thus, steady-state solutions will generate
an entire family of possible ¢ translates, unless the steady
state is already homogeneous in the ¢ direction such as all
horizontal (toroidal) dark-soliton-stripe configurations.

C. Reduced point-vortex particle model

In tandem with the procurement of steady states and their
characterization (stability), we will study the corresponding
elements in the dynamically reduced model where the vortices
are considered as point particles, as per the fundamental work
of Ref. [43]. Note that, in comparison to the latter, we are
using here adimensional variables which correspond to the
models in these works with 7 = M = 1, where M is the mass
of the particles forming the atomic BEC. The model is cast
as a set of ODEs on the vortex positions. This point-vortex
model assumes that the vortices possess a quantized vortic-
ity, that they have no internal (density) structure, and that
the only effects come from vortex-vortex phase interactions
and, importantly, the curvature effects from the toroidal sub-
strate where they are embedded. Such point-vortex models
have been shown to be accurate in the (sufficiently) large-u
limit [3,19]. Indeed, what we will conclude here as well is
that when the width of the vortex cores, given by the healing
length & = 1/4/2u, is sufficiently small compared to the torus
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circumferences 2mr and 27 R, the reduced model gives an
accurate static (steady states), stability, and dynamical repre-
sentation of the full NLS equation model on a torus. In fact,
as we will see in Sec. III, even for relatively small values of «
around 0.15 with R = 12, corresponding to a small circumfer-
ence of the torus of r = 0.15 x 12 < 2, the effective ODE for
w = 1, corresponding to a healing length of & = 1/4/2 ~ 0.7,
still gives an accurate (qualitative and quantitative) description
of the original full NLS equation model.

In the large-u limit, one only considers the phase of the
vortices and how the superposition of the phases from all
other vortices advects the position of each vortex through the
identification of the local fluid velocity as the gradient of the
wave function’s phase at that point. The key toward setting up
the point-vortex model on the torus lies in taking into consid-
eration two crucial effects that are absent in the standard NLS
equation model on a flat and infinite domain, namely, (i) the
effects of the periodic boundary conditions and (ii) the effects
of the torus’s curvature. The periodic boundary conditions are
accounted for by placing “ghost” (or mirror) vortices outside
the domain accounting for the effects that a particular vortex
has on itself through the boundaries as well as the effects
of the other vortices through the boundaries. This cumulative
process results in an infinite sum for these contributions that
can be represented in the form of Weierstrass functions or
in terms of Jacobi-0 functions (see Ref. [46] and references
therein). On the other hand, the effect of curvature from the
torus can be more conveniently captured by expressing the
system in isothermal coordinates. Following Ref. [43], one
defines the isothermal coordinates (u, v) related to the toroidal

(¢, 0) ones through [47]
R+r v
R_— tan (;)}, (8)

where ¢ = +/R? — r2. Then it is possible to show that these
new (u,v) coordinates, with squared line element ds? =
A%(du? + dv?), are indeed isothermal (i.e., local ones in
which the metric is conformal to the Euclidean) where the
local scale factor satisfies

¢ =-, 0=2tan_1|:

A=—0° 9)
R —rcos(v/r)
Note that the scale factor only depends on the poloidal loca-
tion, namely, A = A(v), since the system is translationally
invariant along the toroidal direction. The isothermal co-
ordinates (u, v) are then defined on the periodic rectangle
[—me, el X [—mr, wr].

Taking the periodic and curvature effects and defining
the complex coordinate w = u + iv, the work of Ref. [43]
gives the explicit form for the wave function’s phase &
associated with a set of vortex dipoles composed of a to-
tal zero charge configuration of vortices with charges ¢, at
(isothermal) positions w,, namely, ®(w) = Im[F(w)], where
Fw) =", ¢.F(w, w,), with

w ; w,l’ )] _ Re(w,,)w’ (10)

F(w,w,)=1In [191( e

where ¥ (w, p) is the first Jacobi-0 function evaluated at w
with nome p = ¢/ (0 < p < 1). The first Jacobi-0 func-

tion may be written as the infinite sum

1 (w, p) =2p'/* Z (=1 p" " Vgin[2n + Dw].  (11)
n=0

Note that this implementation of ¢, requires, for typical nu-
merical values used in this paper, less than a dozen terms for
this infinite sum to converge to machine (double) precision.
From this overall phase imparted by all the vortex dipoles,
one can explicitly write equations of motion for the individual
vortices through the fluid velocity that in turn is equivalent to
the gradient of the phase. Thus, the nth vortex will experience
a velocity V,, given by the gradient of the phase imprinted
by the other vortices. Expressing the velocity in complex co-
ordinates V,, = u, + iv, yields &, = Im(%2,)/A(v,) and v, =
Re(2,)/A(v,), where

_ o A (V) gty
Q, = Aoy |:mZ¢anf(wm W) + 1 2 Avy) :|a

2mre

(12)
where

fw, wy) = 3, F(w, wy). (13)

Note that the sum excludes self-interacting terms (i.e., m # n).
The three contributions in Eq. (12) correspond, respectively,
to (i) the classical vortex-vortex logarithmic-potential interac-
tions, (ii) the effects of curvature of the torus on each vortex,
and (iii) the correction to the velocity to satisfy periodicity
along the torus, which imposes the quantization of flow along
the torus. By construction, the function f(w, w,) is periodic
in both the imaginary (vertical) and real (horizontal) direc-
tions. The vertical periodicity is captured from the explicit
periodicity of the Jacobi-6 function itself, while the horizontal
periodicity is achieved by judiciously adding a linear term in
the horizontal direction [see the last term in Eq. (10)], which
ensures continuity of the velocity in the periodic domain [43].
In the next section, the point-vortex model, cast through the
explicit velocity formulation of Eq. (12), is validated against
numerical results from the full NLS equation (3). This point-
vortex model will also be instrumental in finding stationary
dipole and quadrupole solutions.

III. NUMERICAL RESULTS

In order to find branches of solutions as the system pa-
rameters are varied it is usually sufficient to find a single
element of the branch and then apply numerical continua-
tion to extend each branch over these parameters and study
their existence and stability as the system parameters (mostly
the chemical potential © and the torus aspect ratio o) are
varied. Thus, let us now leverage the results from the preced-
ing section to find particular stationary vortex configurations
(dipoles and quadrupoles) for the reduced ODE model (12)
and from there construct approximate steady states for the
full NLS equation (3) that can be used with a fixed-point
iteration scheme (cf. Newton’s method) to find numerically
exact steady states. Once a particular steady state of (even)
N vortices with charges g, and locations (u,, v,) is identified
in the reduced ODE model, we construct an approximate
initial wave-function seed ¢y by “superimposing” individual
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vortexlike guesses as

N
po(u, v) = /e T[AW = up. v —v,),  (14)

n=1

containing the following ingredients. (i) The background level
is fixed so that, away from vortices, the density |<,oo|2 tends to
wu. (ii) The global phase ®(u, v) is prescribed by the ODE
model as per ®(w) = Im[)_, g,F (w, w,)], with F defined in
Eq. (10). (iii) Each vortex (absolute value) profile is approxi-
mated by

A(u, v) = tanh(/uvu? + v?), (15)

centered at each of the vortex locations (u,, v,). In a similar
vein, one can also construct approximate dark-soliton-stripe
solutions as

N
oo, v) = /i [ | B, va), (16)
n=1

where B(u,, v,) = A(u — u,, 0) for dark stripes aligned along
the poloidal direction and B(uy,, v,) = A(0, v — v,) for dark
stripes aligned along the toroidal direction. After a particular
initial seed is constructed in the isothermal coordinates, it is
converted to toroidal coordinates (¢, 0) as per the transfor-
mation (8) or to Cartesian coordinates (x,y) = (R¢, rf) on
the surface of the torus. Note that, as per Eq. (2), (X,Y, Z)
describes the Cartesian coordinates for a point on the torus
in 3D space while (x,y) describes the Cartesian 2D coor-
dinates on the surface of the torus. Steady states are then
found using Newton’s method by discretizing space using
second-order central finite differences (FDs) and separating
real and imaginary parts. We use a 2D grid of Ny x Ny mesh
points to discretize the wave function giving rise to a Newton
matrix of size 2NyNy x 2NyNy. In our numerics below we
typically use Ny = Ny = 490. Similarly, for the numerical
stability results, we use the same FD discretization in space
to cast the eigenvalue-eigenfunction problem (7) as a stan-
dard eigenvalue-eigenvector problem for the resulting stability
matrix of size 2N£N92 X 2N£N92. Finally, for the numerical
integration of the full NLS equation (3), we use again the
same FD discretization in space and a standard fourth-order
Runge-Kutta method in time.

A. Vortex dipoles
1. Steady states

Through the reduced ODE model, one can browse the en-
tire phase space of solutions for vortex dipoles given by a +1
vortex at location (¢, 6;) and a —1 vortex at (¢,, 6,). Since
the system is translationally invariant in the toroidal direc-
tion, the original phase space (¢, 6, ¢», 6>) can be reduced,
without loss of generality, to (¢, 61, —¢, 6;) by centering
the solution about the toroidal axis with ¢ = (¢ + ¢,)/2.
A numerically exhaustive search for steady states in the
three-dimensional reduced space (@, 01,6), using a standard
fixed-point iteration method (nonlinear least squares with a
Levenberg-Marquardt algorithm), is then straightforward and
yields four different types of stationary dipoles.

FIG. 2. Steady-state solutions continued from the vertical dipole-
in configuration. The modulus squared (top) and the phase (bottom)
of the solutions are plotted on the surface of the torus. The different
solutions correspond to the values of u indicated in the panels and
R =12 while o = 0.4 for the top group of panels and o = 0.7 for
the bottom group of panels.

(i) Vertical dipole-in configuration. This solution corre-
sponds to a vertically (poloidally) aligned dipole with ¢; = ¢»
and 6; = —6,. We dub this solution to be “in” as the value
of |61] = |0,| is closer to & = 7, the inner part of the torus,
than to the outer part with & = 0. Figure 2 depicts several
steady-state solutions continued from the vertical dipole for
R = 12, a couple of values of «, and different values of u.

(ii) Horizontal dipole-in configuration. This solution cor-
responds to a horizontally (toroidally) aligned dipole with
0) = 6, = m, i.e., on the inside of the torus (see Fig. 3).

(iii) Horizontal dipole-out configuration. This solution cor-
responds to a horizontally (toroidally) aligned dipole with
0, = 6, = 0, i.e., on the outside of the torus (see Fig. 4).

(iv) Diagonal dipole configuration. This solution corre-
sponds to a diagonal dipole with (¢,, ;) = — (¢, 8;) owing

Il
bt
3

pn=0.3 i
« -_ -—

olelelsl

H—ﬂ'
©n=0.25 n=0.5 =1 n=3
- = Y

FIG. 3. Steady-state solutions continued from the horizontal
dipole-in configuration. The layout and parameters are the same as
in Fig. 2.
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FIG. 4. Steady-state solutions continued from the horizontal
dipole-out configuration. The layout and parameters are the same as
in Fig. 2.

to a nontrivial balance of all the vortex velocity components
(see Fig. 5). This is arguably the least intuitively expected
among the different solutions.

At an intuitive level, one can argue that the main phe-
nomenology involves a combination of different factors. On
the one hand, a well-known fact stemming from their nonlin-
ear phase-induced interaction is that two vortices in Euclidean
space will travel parallel to each other (in a direction per-
pendicular to their line of sight). The curvature arising from
the toroidal geometry leads to that feature being modified.
However, it is interesting to note that, along the torus equators
(0 =0 and 6 = ), the horizontal (out and in) dipoles will
interact with each other by exerting mutual velocities that are
purely poloidal and that, on the other hand, vertical dipoles
that are symmetric with respect to 8 = 0 will only experience
mutual interactions with purely toroidal velocities. On the
other hand, the topology of the torus and its periodic boundary

n=0.25 n=0.5 =1 nw=3
o
A | — -— ==
0
: W
-
n=0.25 pn=0.5 n=1
m
a | — - .
0

3

®OO6!

FIG. 5. Steady-state solutions continued from the diagonal
dipole configuration. The layout and parameters are the same as in
Fig. 2.
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FIG. 6. Velocity fields for (a) the vertical dipole-in configuration,
(b) the horizontal dipole-out configuration, and (c) the diagonal
dipole configuration for o = 0.5. The different contributions to the
velocity are as follows: red arrows, classical vortex-vortex interac-
tions; purple arrows, effects of curvature on each vortex; and blue
arrows, quantum correction to ensure periodicity on the torus. The
black dots depict the locations of the vortices that balance all the
velocity contributions and give rise to steady-state configurations.
Note that we do not present the plot of the horizontal dipole-in
configuration as its velocity field is qualitatively the same as for the
horizontal dipole-out configuration but just shifted in the poloidal
direction to 6 = 7. Also depicted in (c) is a close-up of the (scaled)
velocity fields close to the steady-state configuration showing a
perfect balance of the three velocity contributions giving rise to a
nontrivial diagonal dipole steady-state configuration.

conditions come into play and effectively create an equal and
opposite velocity at these suitably selected distances, creating
the potential for the steady states that we consider herein.
More specifically, Fig. 6 depicts the different contributions to
the velocities of vortex dipoles that support steady-state con-
figurations. For instance, it is straightforward to conclude that
any initial condition corresponding to a symmetric (¢; = up
and v; = —v;,) vertical dipole will always remain a symmetric
vertical dipole with a constant separation (this is in tune with
the translational invariance along the toroidal direction). Also,
a horizontal dipole will always remain a horizontal dipole as
the toroidal contributions to each vortex are equal.
Furthermore, as depicted in Fig. 6, there is a specific lo-
cation (depending on the parameters of the system) for the
vertical dipole that leads to a perfect balance of all the ve-
locity contributions giving rise to a steady-state configuration.
Figure 6(a) shows the velocity contributions to the vortices
where the curvature effects (purple arrows) always point to the
right while the vortex-vortex interactions (red arrows) point
to the right if the vortices are closer to the inside of the torus
and point to the left if they are closer to the outside of the
torus. As a result, it is possible to find a steady-state verti-
cal configuration that balances these two effects (see black
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dots). On the other hand, horizontal dipoles do not exhibit
contributions to velocity coming from curvature effects when
exactly placed in the outside (9 = 0) or outside (§ = ) of the
torus. However, as can be seen in Fig. 6(b), in addition to the
vortex-vortex interactions (see red arrows), horizontal dipoles
do experience a toroidal contribution to the velocity due to the
quantum term in the equations of motion (see blue arrows).
As for the vertical dipole, the direction of the vortex-vortex
interactions can change sign depending on whether the two
vortices get closer on one side or the other of the torus while
the velocity due to the quantum term always points upward.
As aresult, it is also possible to find a steady-state horizontal
configuration that balances these two effects (see black dots).
The phenomenology is exactly the same for the horizontal
dipole-in and dipole-out configurations with curvature contri-
butions being absent for both. Finally, as Fig. 6(c) shows, there
is a nontrivial solution where the three contributions to the
velocity are nonzero and yet they perfectly balance each other,
giving rise to a diagonal dipole steady-state configuration.

Returning to the vertical steady-state dipole, this solution
exists as there is no poloidal contribution to the vortex veloci-
ties and the toroidal contribution from curvature balances the
vortex-vortex contribution (also toroidal). In fact, the velocity
balancing argument suggests that, for each value of «, there
seems to be a single vertical dipole distance that leads to
a steady state. The figure also suggests that the steady-state
vertical dipole is always unstable as, e.g., perturbations along
the poloidal direction will naturally result in (i) a constant
toroidal velocity of the dipole if the vortex perturbations are
equal and opposite in the poloidal direction and, for generic
perturbations, (ii) a toroidal velocity imbalance will start de-
viating from the stationary state. This instability of the vertical
dipole-in configuration will be revisited, for both PDE and
ODE models, in Sec. III A 3.

On the other hand, as depicted in Fig. 7, it is possible
to reduce the phase space for horizontal dipoles to two di-
mensions since, as mentioned above, a horizontal dipole will
stay horizontal for all times. The figure suggests that there
exist two horizontal dipoles as we described above: one at
0 = 0 (horizontal dipole-out configuration, denoted by black
dots in the figure) and one at & = w (horizontal dipole-in
configuration, denoted by black pluses). Furthermore, the fig-
ure suggests that the horizontal dipole-out configuration is
(neutrally) stable as a center within the relevant phase por-
trait, while the horizontal dipole-in configuration is unstable
(i.e., a saddle point). A full explanation of the results for the
phase space of vertical dipoles is given below in Sec. III A 4.
Furthermore, for all steady-state dipole configurations, their
stability will be covered, for both PDE and ODE models, in
Sec. IIT A 3.

2. Quantized flow currents: Phase windings

By following the construction of steady-state vertical
dipoles as per Fig. 6, it is apparent that there is no vertical
dipole that could be dubbed “out.” This fact can be rational-
ized by noting that the velocity contribution from curvature
close to & = 0 (i.e., on the outer part of the torus) is very weak
and cannot counter the (stronger) velocity contribution from
the vortex-vortex interaction. Nonetheless, let us note that it

u/(2mc) u/(2mc) u/(2mc)

Q

v/(27b)

0/(2m)

FIG. 7. Planar phase space for symmetric horizontal dipole con-
figurations. The top and middle rows depict isothermal and toroidal
coordinates, respectively, and the different columns correspond to the
indicated values for «. The bottom row depicts the front (left) and
back (right) views of the & = 0.7 case projected on the surface of
the torus. The different orbits are generated from initial conditions
corresponding to symmetric perturbations from the (neutrally) stable
horizontal dipole-out configuration (black dots). The separatrices
(thick curves) correspond to the stable and unstable manifolds of the
horizontal dipole-in configuration (black pluses). The separatrices
divide the phase space in areas containing oscillating orbits and
rotating (wrapping poloidally) orbits. For « = 0.7 we also depict the
trajectories from full PDE simulations for 4 = 1 corresponding to
an oscillating orbit (thick purple line) and a rotating one (thick green
line) starting at the initial positions depicted by the corresponding
white dots that are located at the outer (¢ = 0) and inner (0 = )
parts of the torus, respectively.

is possible, in the NLS equation model, to add extra phase
windings along the toroidal and poloidal directions provided
one respects the periodicity of the domain. In fact, any NLS
configuration ¥ (¢, 0) can always be multiplied by a phase
term with W, bearing an extra 2w winding in the toroidal
direction and W, an extra 27 winding in the poloidal direc-
tion without violating the periodicity of the domain. These
extra phase windings physically correspond to adding rota-
tions along the toroidal and poloidal directions with quantized
speeds. Thus, inspired by the vertical and horizontal dipoles
described above, one can take each of these solutions and
multiply them by a phase term as

Y(g,0) — Y@, 0)e™ e, (17)

where the windings W, and W, are integers. In a sense these
structures bear two sets of topological charges, with one
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FIG. 8. Stationary vertical dipole solutions with increasing hori-
zontal windings W, (and W, = 0) fora = 0.7, p =1, and R = 12.
The left and right columns depict the density and phase of the
solutions in Cartesian coordinates, respectively. The location of the
vortices corresponding to the ODE model is overlaid on the density
plot using blue squares. The top row corresponds to the standard
vertical dipole-in configuration without extra winding (W, = 0) and
each successive row corresponds to a stationary vertical dipole solu-
tion with increasing horizontal winding number W,, with the vortices
getting closer to compensate for the additional speed in the opposite
direction provided by the winding.

stemming from the charge of the vortex constituents, while
the second arises through the potential windings along the
toroidal or poloidal (or both) directions around the torus.
These phase windings ultimately correspond to including ad-
ditional quantized flow currents along these directions.

It is important to note that the configurations described
above, obtained from the additional phase windings described
in Eq. (17), will not directly yield steady-state solutions of the
NLS equation. However, they serve as a motivation to search
for such winding-bearing steady states. Using this idea, we
took the vertical dipole-in and horizontal dipole-out steady-
state configurations and progressively applied, respectively,
horizontal and vertical windings in tandem with the fixed
point iteration scheme (Newton) to obtain families of dipoles
with higher windings. We showcase examples of higher-
winding vertical and horizontal dipoles in Figs. 8 and 9,
respectively. It is interesting to note that the vertical dipole
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> 0 o]
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20 0 20
T
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=
3

3

3

200 20
X

FIG. 9. Same as Fig. 8 but for stationary horizontal dipoles for
a =0.7, u = 1,and R = 12 with vertical windings W, (and W, = 0).

steady state with W, > 1 gives rise to vertical dipoles that
could be dubbed out as, in order to balance the extra vertical
winding the vortices have to get close to each other around
0 =0.

It is possible to leverage the reduced equations of motion
to include the effects of vertical and horizontal windings [43].
This relies on assuming that both toroidal and poloidal con-
tributions to the phase windings in isothermal coordinates are
accounted for by linear phase gradients. Under this assump-
tion, we incorporate linear phase windings that gain 2z W,
and 27t W,, along the horizontal and vertical directions, respec-
tively. These windings are captured by adding corresponding
linear terms in €2, of Eq. (12) as follows:

! ['W" %] (18)

Q"_)Q"+A(vn) lc "
The corresponding fixed points obtained from this extended
reduced model with vertical and horizontal windings are de-
picted by the blue squares in the different panels of Figs. 8
and 9, respectively. As evidenced from these figures, this
extended reduced ODE accurately predicts the stationary
locations of vortex dipole configurations including vertical
and horizontal windings. Furthermore, as we will see in the
next section, this extended reduced ODE will also accurately
describe the stability properties of these stationary dipole con-
figurations.

3. Stability

Equipped with the steady-state dipole solutions described
in the previous sections, let us now study their stability
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FIG. 10. Convergence of the stability spectrum for dipole con-
figurations as the chemical potential p is increased for @ = 0.4 and
R = 12. The columns correspond, from left to right, to the vertical
dipole-in, horizontal dipole-in, horizontal dipole-out, and diagonal
dipole configurations. The top row depicts the real part of the lin-
earization eigenvalues X, where the large (light blue) dots correspond
to the full BAG spectra computation of the PDE while the black
solid line depicts the corresponding results from the reduced ODE
model. Note that A, > 0 is associated with an unstable solution. The
middle and bottom rows depict the imaginary part of the linearization
eigenvalues A; (normalized by ,/it) where again the large (orange)
dots correspond to the PDE while the black solid line corresponds to
the ODE. The middle row is a zoomed-in version of the bottom row.

properties at the full NLS equation and reduced ODE levels.
Figure 10 depicts the stability spectra for the four dipole solu-
tions in both the full NLS equation model (large colored dots)
and the reduced ODE model (black curves) as w is varied.
We note that the stability eigenvalues A = A, + iA; determine
the stability of the corresponding solutions as follows: (i)
A, = 0 corresponds to a (neutrally) stable solution, (ii) A, 7% 0
and X; = 0 correspond to an exponential instability, and (iii)
A # 0 and X; # 0 correspond to an oscillatory instability. As
Fig. 10 indicates, for the parameters used (namely, « = 0.4
and R = 12), the vertical and horizontal dipole-out configu-
rations are stable, while the horizontal and diagonal dipole-in
configurations are unstable. Importantly, the figure also ev-
idences the striking match of the reduced ODE model and
the PDE findings, with the former very accurately capturing
the eigenvalues associated with the motion of the vortices.
Recall that the reduced ODE model is predicated on the
condition of the vortices representing a point particle. This
is certainly true in the large-p limit where the size of the
vortex cores (tantamount to the healing length proportional
to 1/4/2) tends to zero. However, even for relatively small
values of u, the particle model prediction for the eigenvalues

remains remarkably accurate. Indeed, even moderate values
of u 2 3 converge such that the relative errors for A, and A;
are always less than 1%. However, it is important to mention
that configurations bearing vortices that are closer than a
few times their width will not be accurately captured by the
reduced ODE. In fact, extreme cases could lead to the annihi-
lation of oppositely charged vortices in the full NLS equation,
while such a scenario does not arise in the reduced ODE
model that considers the vortices as point particles (with zero
width).

Let us now study the bifurcation scenarios when the as-
pect ratio o of the torus is varied. This nontrivial effect
changes in a nonlinear fashion the relative size of the vortex-
vortex contributions and the curvature effects and thus one
could expect interesting bifurcations. Figures 11 and 12 de-
pict the stability eigenvalues (alongside typical solutions) for
the constant background state and the four possible dipole
configurations (with W, = W, = 0, namely, without any extra
windings) for © =1 and u =5, respectively. The spectrum
for the constant background is supplied in the figures so
that one is able to identify the eigenvalues that come from
the actual vortices and those that stem from the background
where they are embedded. Naturally, the ODE model is
only able to capture the former set of eigenvalues originat-
ing exclusively from the relative motion of the vortices. As
before, we note that the reduced ODE model reproduces
remarkably well the relevant eigenvalues. In particular, for
@ =5 the match between the NLS equation and reduced
ODE spectrum is striking, although it should be noted that
the relevant match is fairly reasonable even for © = 1. In
fact, the reduced ODE is able to perfectly capture (quali-
tatively and quantitatively) the bifurcation suffered by the
diagonal dipole where it is rendered stable for o = 0.71
(for 1+ =5). For the other solutions, as it was shown in
Fig. 10, the spectra for different torus aspect ratios o of
Figs. 11 and 12 tend to indicate that the vertical dipole-in
and horizontal dipole-out configurations are stable while the
horizontal dipole-in and diagonal dipole configurations are
unstable. In each case, the effective particle equations bear
a vanishing eigenvalue associated with the neutrality of the
relevant solutions against shifts along the toroidal direction
¢. It is thus only the remaining pair of eigenvalues and the
pertinent “internal mode” of the dipole dynamical motion that
is responsible for the stability (in the case of the vertical
dipole-in and horizontal dipole-out configurations) and for the
instability (for the remaining horizontal dipole-in and diago-
nal cases).

To complement the stability results, we include in Fig. 13
the stability spectra of the vertical dipole solution alongside
their corresponding dipoles with a winding W, = 1. As the
figure suggests, adding a winding completely changes the
stability picture by destabilizing the vertical dipole solution.
This is in line with the general expectation that higher winding
wave patterns are less likely to be dynamically robust than
lower winding ones. Furthermore, we again obtain remarkable
agreement of the stability spectrum results between the full
NLS equation and, in this case, the extended reduced ODE
model (18) including vertical and horizontal windings. Fur-
ther studies on solutions bearing windings, including mixed
combinations of vertical and horizontal windings, at the NLS
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FIG. 11. Stability for dipole configurations as « is varied for u© = 1 and R = 12. The columns correspond, from left to right, to the
constant, vertical dipole-in, horizontal dipole-in, horizontal dipole-out, and diagonal dipole configurations. The top two rows depict the density
and phase of the steady-state PDE solution for @ = 0.5 in Cartesian coordinates, respectively. The location of the vortices corresponding to the
ODE model are overlaid on the density plot using blue squares. The third row depicts the real part of the linearization eigenvalues A, where
the large (light blue) dots correspond to the full BAG spectra computation of the PDE while the black solid line depicts the corresponding
results from the ODE model. The bottom two rows depict the imaginary part of the stability eigenvalues A; where again the large (orange) dots
correspond to the PDE while the black solid line corresponds to the ODE. The fourth row of panels is a zoomed-in version of the bottom row.

equation and ODE levels are outside the scope of the present depicts the dynamics for horizontal dipoles from the reduced
work and are thus left for future explorations. ODE model. Interestingly, the stable and unstable manifolds
of the unstable (saddle) horizontal dipole-in configuration
coincide in a homoclinic orbit and define a separatrix be-
tween oscillating (librating) solutions around the horizontal

In this section we present some results pertaining the dy-  dipole-out and rotating solutions that wrap along the poloidal
namics of vortex dipole configurations. For instance, Fig. 7 direction. In the case of o = 0.7 we also include two NLS

4. Dynamics
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FIG. 12. Same as Fig. 11 but for © = 5. Notice the better match between the PDE and ODE results as the latter is obtained for the
point-vortex model in the large-u limit.
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FIG. 13. Stability spectra vs « for the stationary vertical dipoles
without any winding (W, = 0, left panels) and with one horizontal
winding (W, = 1, right panels) for R = 12 and u = 5 (see top two
rows of Fig. 8). The layout and parameters are the same as in Fig. 12.
Note that the addition of a horizontal winding destabilizes the vertical
dipole.

orbits obtained from initial positions as indicated in the
figure and a phase profile given, as before, by ®(w) =
Im[}", g.F (w, w,)]. The NLS orbits were extracted by doing
a local fit of the extrema of the vorticity, defined as the curl
of the velocity, with the latter defined as is standard in NLS
settings [3], i.e.,

_LYTVY — Yyt
2 ly|? '

The purple and green NLS orbits correspond to typical os-
cillating and rotating orbits, respectively. Aligned with the
stability results, the reduced ODE model accurately captures
the nonlinear evolution for these orbits. This again supports
the conclusion that the reduced ODE is an accurate (qualita-
tively and quantitatively) depiction, not only for the statics and
stability (as seen earlier), but also for the dynamics of vortex
orbits in the torus.

In Fig. 14 we depict the dynamics ensuing from the
destabilization of unstable dipole configurations. Specifically,
Figs. 14(a) and 14(b) depict one period for an oscillating
and a rotating orbit, respectively. As discussed before, the
horizontal dipole-in steady state corresponds to a saddle (cf.
phase spaces of Fig. 7) whose separatrices separate regions
with oscillating and rotating orbits. The oscillating orbit was
obtained by slightly and symmetrically perturbing the vor-
tices in the poloidal direction. Similarly, the rotating orbit
was obtained by slightly and symmetrically perturbing in the
toroidal direction. Figure 14(c) depicts a typical destabiliza-
tion of the diagonal dipole. In this case, as the symmetry
is already broken from the steady state, the destabilization

V= (19)

(a) w (b)

FIG. 14. Dynamics ensuing from the destabilization of unstable
dipole configurations: one period of (a) oscillating and (b) rotating
dipole-in orbits close to the separatrix. The oscillating and rotating
orbits were obtained by slightly shifting the vortices in the poloidal
and toroidal directions, respectively. (c) Destabilization of the diag-
onal dipole. All cases correspond to 4 =5, R =12, and o = 0.2.
The colored surface depicts the initial density and the overlaid curves
correspond to the trajectory traces from the negative (red) and pos-
itive (blue) vortices. [See Figs. 14(a)-14(c) in the Supplemental
Material [48] for movies depicting the evolution of the density and
phase, respectively.]

dynamics follows windings along both toroidal and poloidal
directions. Since the diagonal dipole has an angle that is close
to horizontal (toroidal), the dipole has a relatively fast poloidal
speed and a relatively slow toroidal drift. The ensuing orbit
will be generically a quasiperiodic orbit (unless the windings
along the toroidal and poloidal directions are commensurate
with each other).

B. Vortex quadrupoles
1. Steady states

While there exist only four steady-state vortex dipoles, as
the number of vortices is increased, a larger assortment of pos-
sibilities arises. Motivated by the remarkable agreement of the
reduced ODE model with the original NLS equation model,
we have proceeded to leverage its use to identify possible
quadrupole solutions in the full NLS equation model. Even
when using the reduced ODE model, an exhaustive (ordered)
search for quadrupoles (and higher-order tuples), as it was
performed for the vortex dipoles in Sec. III A, is a challenging
task. This is because of the commonly referred to curse of
dimensionality. While for the vortex dipole, after eliminating
the toroidal translational invariance, the reduced ODE model
is left with three degrees of freedom, for the vortex quadrupole
one has (after eliminating the translational invariance) seven
degrees of freedom. Therefore, an exhaustive search over the
whole phase space is computationally prohibitive. Thus, we
revert to randomly sampling initial conditions over this seven-
dimensional space (for all other parameters fixed, namely,
R and o) and using a standard fixed-point iteration (nonlin-
ear least squares with a Levenberg-Marquardt algorithm) to
converge to the closest steady-state solution. Using several
million initial conditions, we were able to detect 16 distinct
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FIG. 15. Quadrupole solutions from the ODE model for R = 12
and « = 0.5. These solutions are ordered from least unstable to
most unstable (see Fig. 16 for the corresponding spectra). Positive
(negative) vortices are depicted with the blue (red) crosses (circles).
Vortex locations are plotted in scaled isothermal coordinates.

quadrupole configurations as depicted in Fig. 15 for R = 12
and o = 0.5. By distinct we mean here that we have elimi-
nated all the equivalent solutions (not only through toroidal
translations but also) through symmetries associated with re-
flections across 6 = 0, symmetries associated with reversing
the vortex charges, and permutations of the vortex labels. We
have therefore obtained a rich palette of quadrupole solutions
as depicted in Fig. 15. It is worth mentioning that these solu-
tions have been ordered Ql, ...,Q16 from the least unstable
to the most unstable one (for the parameters at hand, namely,
R =12 and o = 0.5). They include horizontally (Q1) and
vertically aligned quadrupoles (Q9), rectangular quadrupoles
(Q2, Q3, Q6, Q12, and Q16), rhomboidal quadrupoles (QS,
Q10, Q11, and Q15), trapezoidal quadrupoles (QS, Q13, and
Q14), and, somewhat surprisingly, irregular quadrupoles (Q4
and Q7).

2. Stability

Let us now comment on the stability for the obtained
quadrupole solutions. We start by analyzing the stability ob-
tained from the reduced ODE model. Figure 16 depicts the
ODE spectra associated with the 16 distinct quadrupoles de-
picted in Fig. 15. As mentioned above, the solutions have
been ordered from least unstable to most unstable by using
the maximal real part for all eigenvalues max(A,). It is im-
portant to stress that the eigenvalues, and thus the ordering
of the quadrupole solutions as we have posited it, change
as the parameters of the system are varied. Therefore, it is
relevant to look at the associated spectra as the parameters
are varied. Particularly revealing for some of these solutions
is the continuation of spectra as the torus aspect ratio « is
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FIG. 16. Stability spectra (X,, ;) corresponding to the
quadrupole solutions of Fig. 15 obtained from the reduced ODE
model. Note that each row of panels has a different scaling for
the real part of the eigenvalue as indicated. The configurations are
ordered from least unstable to most unstable. In particular, the first
three quadrupoles present a very weak instability of O(1073) for
these values of the parameters (R = 12 and a = 0.5).

varied. For compactness, we only show these full ODE spec-
tra for the first three quadrupole configurations in Fig. 17.
These configurations, as shown in Fig. 16, have a very weak
instability [max(A,) < 0.01] for « = 0.5 (and R = 12) and
thus are potential candidates to be completely stable as the
parameters are varied. As Fig. 17 shows, for R = 12, Q2 is
always unstable; however, this instability is rather weak as it
merely reaches max(X,) >~ 0.0017 around o =~ 0.73. On the
other hand, not only are Q1 and Q3 weakly unstable for most
values of «, but, importantly, they can be rendered stable
on respective windows of the parameter «. Specifically, as
the figure shows, for R = 12, the Q1 solution is stable for
0.84 <« < 1 and the Q2 solution is stable for the narrow
interval 0.656 < o < 0.664 [see the inset in Fig. 17(c) for
Q3]. In addition to the stability windows for Q1 and Q3, it
is also worth mentioning that the reduced model predicts that
a few quadrupole solutions have relatively weak instabilities.
For instance, as it can be seen in Fig. 16, the quadrupoles Q1
and Q2 have a max(A,) ~ 1073, while Q3 has a max(A,) =~
6 x 1073 and Q4 has a max(A,) >~ 9 x 1073, all for &« = 0.5
and R = 12. Therefore, for the parameter combinations that
we explored, although we only found Q1 and Q3 to possess
stability windows, the rather weak instabilities presented by
about half of the quadrupole configurations [max(A,) < 0.02]
suggest that they have the potential to be long-lived solutions
in the original NLS equation (cf. the dynamics for QI in
Sec. III B 3) and the corresponding physical experiments.

We now turn to the study of the stability of the quadrupole
configurations from the full NLS equation model and compare
the latter with the results from the reduced ODE model. In
particular, Fig. 18 shows the stability results from both the
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FIG. 17. Stability spectra as « is varied in the reduced ODE
model for the (a) first (Q1), (b) second (Q2), and (c) third (Q3)
quadrupole solutions (see Fig. 15) for R = 12. Blue (dark) and or-
ange (light) curves correspond to the real (A,) and imaginary (A;)
parts of the eigenvalue. The top left insets depict the configurations
for « = 0.5. The Q1 and Q3 quadrupole solutions were the only
ones found to have stability intervals as o was varied. These stability
intervals are depicted by the thick black lines. The bottom inset for
Q3 corresponds to a close-up around the stability interval.

reduced ODE and the full NLS equation models for the Ql1,
Q2, and Q3 configurations as « is varied for R = 12 and u =
1. It is remarkable that, even with this moderately small value
of u (u = 1), the reduced ODE model is capable of recovering
the main stability eigenvalues of the full NLS equation for
most parameter values. For instance, the complicated bifur-
cation scenario displayed by Q3 is perfectly captured by the
ODE model (including the bifurcation leading to the narrow
stability window around @ =~ 0.66). In general, we expect that
the ODE model is able to properly capture the instabilities
corresponding to the destabilization of the vortex positions.
Howeyver, it is conceivable that there exist instabilities for full
NLS equation solutions that are not captured by the reduced
ODE model as the corresponding eigendirections might not be
part of the space spanned by the latter. Surprisingly, however,
as it can be observed from the spectrum of Q2 in Fig. 18,
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FIG. 18. Comparing full model (PDE) and reduced model (ODE)
spectra for quadrupoles Q1 (left), Q2 (middle), and Q3 (right) as « is
varied for R = 12 and p = 1. The layout and parameters are similar
to those of Fig. 11.

the NLS configurations seems to stabilize for ¢ < 0.48, while
the reduced ODE model predicts that the solution is (weakly)
unstable for all values of «. This tends to suggest that the
actual spatial extent of the vortices, and their mutual in-
teraction through the curvature of the background, may be
responsible for this stabilization since the point-vortex model,
relevant for the u — oo limit, does not display this stabiliza-
tion effect.

Finally, in Fig. 19 we depict the convergence of the stability
spectra for the Q1 and Q3 dipoles as u is increased for R = 12
and @ = 0.4 and 0.7. As it was the case for the vortex dipoles,
the convergence between the original NLS equation model
and the reduced ODE model as u increases is extremely good.
In fact, even for moderate values of p & 2 the discrepancy
between the maximum real parts of the eigenvalues for the full
NLS equation model and the ODE model is less than 4% in
all the examined cases. Furthermore, the qualitative stability
conclusions do not appear to change over p for the cases and
intervals considered.

3. Dynamics

Let us now follow the destabilization dynamics for
quadrupole configurations. Figure 20 depicts the dynamics
ensuing for the first three quadrupole steady-state configu-
rations (Q1, Q2, and Q3). In particular, Fig. 20(a) depicts
the destabilization of the Q2 dipole. The corresponding orbit
follows the unstable manifold of this unstable saddle fixed
point and seems to return along the stable manifold suggest-
ing, as it was the case for the horizontal dipoles (cf. Fig. 7),
the existence of a homoclinic orbit. Figure 20(b) depicts a
typical destabilization for the Q3 dipole. Finally, Figs. 20(c)
and 20(d) depict the dynamics ensuing from perturbing the
QI quadrupole. It is important to stress that the values of o
[ = 0.5 Fig. 20(c) and & = 0.7 for Fig. 20(d)] are below the
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FIG. 19. Convergence of the stability spectra for the Q1 and Q3
quadrupole configurations as the chemical potential u is increased
for R = 12 and « = 0.4 and 0.7 as indicated. The layout is the same
as in Fig. 10.

stability window that starts around 0.84 < «. Therefore, for
these values of the parameters, the Q1 quadrupole is unstable.
However, when following the perturbed dynamics for times
of the order of several thousands [see Fig. 20(c)] the vortices

(a) (b)

FIG. 20. Dynamics ensuing from the destabilization of unstable
quadrupole configurations for R = 12 and u = 1. (a) Destabilization
of the Q2 quadrupole for « = 0.7 giving rise to approximately (about
half of) a periodic orbit. (b) Destabilization of the Q3 quadrupole
for « = 0.4. (c) Weakly unstable periodic orbit for a perturbed Q1
quadrupole for & = 0.5 for 0 < ¢t < 4000. (d) Weakly stable peri-
odic orbit for a perturbed Q1 quadrupole for « = 0.7 eventually
destabilizes for longer times 0 < ¢ < 28 000. The colored surface
depicts the initial density and the overlaid curves correspond to the
trajectory traces from the negative (red) and positive (blue) vortices.
[See Figs. 20(a)-20(d) in the Supplemental Material [48] for movies
depicting the evolution of the density and phase, respectively.]

FIG. 21. Dark solitons and windings. (a) Two dark solitons al-
ways respect the periodicity of the domain. (b) A single dark soliton
without extra phase winding does not satisty the periodic boundary
conditions. (c) In contrast, the addition of an appropriate phase wind-
ing allows for the single dark soliton to be periodic on the domain.
Blue solid curves depict the real part of the solution while red dashed
curves depict the imaginary parts.

seem to trace a neutrally stable periodic (center) orbit. The
reason for this apparent stability stems from the fact that the
QI quadrupole is unstable but that its instability eigenvalue is
rather weak [max(},) ~ 0.001; see Fig. 17(a)]. The instability
for the Q1 quadrupole is indeed manifested for longer times as
shown in Fig. 20(d), where the vortices slowly begin to spiral
out for # > 10000 and finally engage in an apparent irregular
dance for ¢ > 15 000.

Although in the case of the dipole the motions we have
encountered seem to be prototypically quasiperiodic, in the
case of quadrupole configurations, there are six degrees of
freedom and despite the presence of a conserved energy, there
is potential for complex (chaotic) behavior. Studies along
these lines are outside the scope of the present paper and are
left for future work.

C. Dark-soliton stripes

Finally, let us briefly examine some of the properties of
dark-soliton-stripe configurations and their connection with
some of the vortex configurations of the previous sections. For
instance, as Fig. 3 suggests, as u is decreased, the horizontal
dipole-in configuration seems to degenerate, as the vortices
eventually merge, into a single horizontal (toroidal) stripe. It
is important to first understand the nature of this single stripe.
As is the case for vortices, in order to satisfy the periodicity
of the domain, dark-soliton stripes should appear in pairs as
each one will contribute to a 7w phase jump for a total of a
27 phase jump conducive to a periodic domain. For instance,
in Fig. 21(a) we depict the two-soliton solution along the
toroidal domain that is naturally periodic. However, a single
dark soliton [see Fig. 21(b)] is not periodic on the domain.
Nonetheless, it is possible to seed a single dark soliton if one
adds a winding to add (or counter) the 7= phase jump of a
single stripe. In fact, if one takes a single dark soliton along
the toroidal direction (or, similarly, in the poloidal direction)
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FIG. 22. Bifurcation between the horizontal-in single dark-
soliton stripe and the horizontal dipole-in configuration. The top
panel depicts the power for both solutions as a function of u for
o = 0.7 and R = 12. The second panel depicts the power difference
between the two solutions. The last two row of panels depict the
density (top subpanels) and phase (bottom subpanels) of the solutions
in Cartesian coordinates at the points indicated in the first panel,
namely, u = 0.15 for point A, u = 0.25 for points B and D, and
= 0.5 for points C and E.

and imprints the phase —27 /27 R on it, the result is a pe-
riodic function [see Fig. 21(c)]. Therefore, it is in principle
possible to construct single horizontal stripe configurations
that are consonant with the periodicity by adding a vertical
winding W, = n + 1/2 (with n integer). Likewise, single ver-
tical stripes are possible when adding a half-integer horizontal
winding W, =n+ 1/2. In fact, it is possible to construct
any number of odd stripes by adding half-integer windings.
On the other hand, similarly to our discussion for vortices,
from the perspective of the torus periodicity, it is possible for
our system to feature even numbers of parallel dark stripes
(without external winding) whose total phase change adds up
to a multiple of 2.

In Fig. 22 we depict more details of the bifurcation between
the horizontal-in single stripe and the corresponding dipole
solutions. In particular, we follow the effective power of the
solutions by computing

2
. / (1 — 1¥12)dS. 20)
0

where the surface element on the torus is dS = |¢ x 0|d0d¢.
Here circumflexes denote the unit vectors in the differ-
ent (toroidal and poloidal) directions. Thus, | x 6] =R+
rcos(f). This effective power measures the volume of the
hole that is depleted of density due to the presence of the
dark-soliton stripes. The associated quantity is physically
meaningful as the atom number associated with the density
depletion in BECs. As the top two panels of Fig. 22 evi-
dence, the horizontal dipole-in configuration bifurcates from
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FIG. 23. Bifurcation spectra for the horizontal-in single stripe
for « = 0.7 (left) and the vertical double stripe for « = 0.4 (right).
Sample instability eigenfunctions are shown in Fig. 24.

the horizontal-in single stripe at u ~ 0.17. The bottom two
rows of panels in Fig. 22 depict sample solutions before and
after the bifurcation. The phase panels indicate that the stripe
has indeed an extra vertical winding of W, = —1/2 and that
the vortices of the dipole merge as p decreases towards the
bifurcation at u ~ 0.17.

In a similar fashion, as the horizontal dipole-in configu-
ration bifurcates from the single horizontal-in stripe, multiple
other bifurcations are present involving single and double (and
triple, etc.), in and out, vertical and horizontal dark stripes and
vortex configurations. In fact, we have observed (not shown
here) mixed bifurcations where, as w increases, a double hor-
izontal stripe, containing an in and an out stripe, first features
a bifurcation towards a mixed state containing a vortex out
configuration and a stripe which, subsequently, after a further
increase in u, displays a bifurcation for the horizontal-in
stripe leading to a multivortex state. An in-depth analysis of
the possible bifurcations involving the above configurations,
albeit interesting, falls outside the scope of the present work.
Nonetheless, we present here a collection of examples that
showcase some of the most basic bifurcations and ensuing
dynamics involving dark-soliton stripes.

Figure 23 depicts the bifurcation spectra for the horizontal-
in single stripe (left) and the vertical double stripe (right). The
spectra for both stripe configurations display a series (cas-
cade) of bifurcations as p departs from zero. Each bifurcation
is associated with the creation of an offspring configuration
where each stripe is replaced by vortices. The higher the
bifurcation is in the cascade, the more vortices are produced.
This cascading bifurcation is akin to the bifurcation of dark-
soliton stripes and rings in parabolically trapped BECs as
reported, e.g., in Ref. [49]. In Fig. 24 we portray elements of
these bifurcations by perturbing the stripe steady states by the
eigenfunction corresponding to the most unstable eigenvalue
as shown in Fig. 24. The figure depicts the stripe steady
states (left), their corresponding most unstable eigenfunction
(middle), and the steady state perturbed by the eigenfunc-
tion (right). In these cases we normalized the eigenfunction
such that its maximum density (norm) coincided with the
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FIG. 24. Effects of the most unstable eigenfunctions for stripe
configurations for R = 12. The left panels depict the steady-state
configuration and the middle panels their corresponding (real part of
the) most unstable eigenfunction. The right panels depict the stripe
configuration after a (large) perturbation with the most unstable
eigenfunction. All states are plotted in Cartesian coordinates. The
first and second rows show the horizontal-in single stripe for ¢ = 0.7
and u = 0.25 and 0.5, respectively, and the third and fourth rows the
vertical double stripe for « = 0.4 and u = 0.1 and 0.3, respectively.
The corresponding evolution dynamics (for a much smaller pertur-
bation strength) are depicted in Fig. 25.

chemical potential  of the steady state and we added it
using a large perturbation prefactor equal to 2. This was done
for presentation purposes to exaggerate the visual effects of
the perturbation (for the actual dynamical runs presented in
Fig. 25 we used a small prefactor for the relevant perturbation
of 1073). As Fig. 24 shows, the different eigenfunctions bend
the stripes into snaking modes with a higher number of rele-
vant undulations as u increases and the higher bifurcations in
the cascade are reached. Specifically, the first two rows in the
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figure present the first two unstable modes of the horizontal-in
single stripe, each giving rise to an aligned quadrupole and
hexapole, respectively, after the system is left to evolve as
depicted in the first two rows of Fig. 25. On the other hand,
the third and fourth rows in Fig. 24 depict the first two excited
modes of the double vertical stripe which in this case give
rise to a Q2-like quadrupole (see + = 250) and an octupole
(see t = 120), respectively. The corresponding destabilization
dynamics are shown in the third and fourth rows of Fig. 25.
Note that the destabilization along the second mode of the
vertical double stripe (fourth row of panels) initially generates
a vortex octupole (+ = 120). However, as time progresses, the
outer two vortex pairs on each side of the torus merge and
produce two “lumps” that travel, in opposite directions, along
the toroidal direction until they are eventually destroyed and
contribute to background radiation. These lumps correspond
to solitonic structures dubbed Jones-Roberts solitons [50],
which have been observed in recent BEC experiments [51].
These are quite interesting to explore in their own right in
the realm of traveling solutions in the torus setting. While our
exploration herein has been restricted (due to their extensive
wealth, as we have tried to argue) to stationary states, it does
not escape us that such traveling waveforms, including ones
involving vorticity, are of particular interest in their own right
for future studies.

IV. CONCLUSION AND OUTLOOK

In this work we have attempted to give a systematic and
extensive (although by no means exhaustive) study of the ex-
istence, stability, and dynamics of dark and vortical structures
in the nonlinear Schrédinger equation on the surface of a torus
as the torus aspect ratio « and the chemical potential u of
the solutions are varied. We chiefly study vortex dipoles and
quadrupoles but also touch upon dark-soliton stripes and their
connections to the former (through bifurcation cascades). To
obtain an understanding of the statics, stability, and dynamics
of vortex configurations of the full NLS equation model, we
have leveraged the key insights offered by a remarkably suc-
cessful (as we illustrated) reduced particle model, introduced
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FIG. 25. Evolution dynamics of unstable stripe configurations for R = 12. All initial conditions are taken as the stationary stripe configu-
ration perturbed by 1073 times the most instable eigenfunction. The first and second rows show the horizontal-in single stripe for o = 0.7 and
= 0.25 and 0.5, respectively, and the third and fourth rows the vertical double stripe for « = 0.4 and = 0.1 and 0.3, respectively. [See
Figs. 15(a)-15(d) in the Supplemental Material [48] for movies depicting the evolution of the density and phase, respectively.]
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in Ref. [43], based upon assuming vortices without internal
structure (i.e., point vortices) that incorporates both vortex-
vortex interactions and the effects of space curvature on the
surface of the torus. We have also considered numerically
the waveforms including vertical or horizontal phase wind-
ings. We showed that this (fundamental within this setting)
reduced particle model is extremely accurate at predicting the
statics, stability, and dynamics of dipole configurations even
for moderate values of the chemical potential. We have also
discussed the potential limitations of the model in regimes
of low chemical potential or, in some cases, small enough
aspect ratios. The balance between vortex-vortex interactions
and the curvature effects gives rise to four different types of
dipole solutions: (i) the vertical dipole-in configuration, (ii)
the horizontal dipole-in configuration (vortices close to the
inside part of the torus), (iii) the horizontal dipole-out config-
uration (vortices close to the outside part of the torus), and (iv)
the diagonal dipole configuration. The vertical dipole-in and
horizontal dipole-out configurations are (neutrally) stable for
a wide range of parameters, while the horizontal dipole-out
configuration and diagonal dipoles are chiefly unstable. The
source of the relevant (stability or) instability via an eigendi-
rection associated with the relative motion of the vortices has
been identified and the related unstable dynamics also eluci-
dated. Nonetheless, for thick tori (large torus aspect ratio) it is
possible to stabilize the diagonal vortex dipole for sufficiently
large chemical potentials.

We also explored vortex quadrupole configurations. We
found 16 different quadrupoles ranging from horizontally and
vertically aligned quadrupoles to rectangular and rhomboidal
quadrupoles to trapezoidal quadrupoles and even to some
irregular quadrupoles. All these solutions were continued and
monitored for stability as the torus aspect ratio is varied within
the reduced ODE model. Out of these 16 quadrupoles we
found two that exhibited windows of stability, upon variations
of the aspect ratio. We also found a handful of stationary
quadrupole solutions with very weak instabilities, indicating
that it may be possible to observe them as long-lived solutions
at the full NLS equation level. Relevant stability consid-
erations were also presented at the PDE level and indeed,
surprisingly, it was found that some configurations, such as
the rectangular Q2, could be more robust at the latter level
and indeed genuinely stable for sizable parametric intervals
therein. Finally, we briefly touched upon dark-soliton-stripe
configurations. These stripes can be single or double (or triple,
etc.), horizontal or vertical, and centered about the inner or
outer side of the torus. Particularly interesting are the bifurca-
tions of vortex configurations from these stripes as  increases
from the low-density limit in a series of bifurcating cascades
corresponding to an increasing number of vortices, reminis-
cent of ones emerging for stripe as well as ring configurations
in regular two-dimensional parabolically confined BECs.

A natural extension of this work would be to study vortex
configurations with a higher number of vortices. It would be
indeed interesting to see if configurations for a higher number
of vortices can be rendered stable for the right parameter
windows in a manner akin to what we detected for a couple
of the quadrupole configurations (Q1 and Q3). It is likely
that configurations with a higher number of vortices will be
difficult to stabilize. Indeed, we encountered some such con-
figurations transiently in our dynamics (e.g., stemming from
unstable stripes). It would also be interesting to understand in
more detail how some full NLS equation solutions seem to be
more stable than their effective ODE model counterparts (cf.
Q2 quadrupole). On the other hand, it would also be relevant
to study in more detail the bifurcation cascades between the
different stripes—single or double (or triple, etc.), in or out,
vertical or horizontal—and stationary vortex configurations.
This is an intricate endeavor as these cascades are very much
dependent on the aspect ratio of the torus («). For instance,
a very thin torus (¢ — 0) will preferentially promote the
merger of vortices along the poloidal direction. However,
when the two torus radii are similar (¢ — 1) both mergers
along toroidal and poloidal directions will nontrivially com-
pete. Finally, further leveraging of the reduced ODE model
could be employed to study the existence and stability of
periodic vortex orbits in a manner akin to vortex choreogra-
phy in the plane [52]. Indeed, an example of such periodic
solutions, returning to themselves upon running around the
torus, are traveling solutions, such as the lump ones sponta-
neously encountered herein. Given their potential connection
to so-called Kadomtsev-Petviashvili lumps [53], this is an
interesting direction in its own right. Indeed, given the success
of the particle model herein, exploring additional directions
such as the potential ordered and chaotic orbits [54] at the
low-dimensional dynamical system level could also hold some
appeal. Finally, we hope that this fruitful comparison of the
ODE and PDE dynamics at the level of the torus will spring-
board further related comparative studies in the context of
other nontrivial geometric settings, including spherical, cylin-
drical, and conical shells, among others.
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