Optimizing 3D U-Net-based Brain Tumor Segmentation with
Integer-arithmetic Deep Learning Accelerators

WEIJIA WANG and BILL LIN, University of California, San Diego

While gliomas have become the most common cancerous brain tumors, manual diagnoses from 3D MRIs are
time-consuming and possibly inconsistent when conducted by different radiotherapists, which leads to the
pressing demand for automatic segmentation of brain tumors. State-of-the-art approaches employ FCNs to au-
tomatically segment the MRI scans. In particular, 3D U-Net has achieved notable performance and motivated
a series of subsequent works. However, their significant size and heavy computation have impeded their ac-
tual deployment. Although there exists a body of literature on the compression of CNNs using low-precision
representations, they either focus on storage reduction without computational improvement or cause severe
performance degradation. In this article, we propose a CNN training algorithm that approximates weights and
activations using non-negative integers along with trained affine mapping functions. Moreover, our approach
allows the dot-product operations to be performed in an integer-arithmetic manner and defers the floating-
point decoding and encoding phases until the end of layers. Experimental results on BraTS 2018 show that
our trained affine mapping approach achieves near full-precision dice accuracy with 8-bit weights and acti-
vations. In addition, we achieve a dice accuracy within 0.005 and 0.01 of the full-precision counterparts when
using 4-bit and 2-bit precisions, respectively.
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1 INTRODUCTION

In the past few years, brain tumors have become one of the most deadly cancers in the world,
especially for relatively young patients. Brain tumors can generally be divided into two types:
(1) primary brain tumors that originate in the brain, and (2) secondary brain tumors metastasized
from other organs. In particular, gliomas are the most common malignant tumors that account
for about 75% of all the brain cancers. Based on the growth potential and aggressiveness of the
tumor, gliomas are categorized into four grades: Grades I and I are often referred to as low-grade
gliomas (LGG), while grades Il and IV are referred to as high-grade gliomas (HGG).
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Currently, Magnetic Resonance Imaging (MRI) modalities are the most commonly utilized
technique for the brain tumor diagnosis. Various MRI modalities highlight different tissue proper-
ties, and brain tumors can be further categorized and segmented into multiple sub-regions. How-
ever, radiation therapists manually labeling the scans is burdensome, inefficient, and requires high
technical expertise. In this context, there has been an emerging need for automatic brain tumor seg-
mentation, and deep learning techniques are introduced due to their recent considerable success
in image processing applications.

Multimodal Brain Tumor Segmentation Challenge 2018 (BraTS 2018) is a public benchmark that
provides a set of 3D MRI scans with ground truths labeled by human experts, and the task is to
develop machine learning algorithms to produce the segmentation labels of different glioma sub-
regions. In particular, the training dataset of the challenge comprises 210 HGG and 75 LGG MRI
cases. Each case consists of four MRI modalities of shape 240 x 240 X 155, including (1) native (T1),
(2) post-contrast T1-weighted (T1Gd), (3) T2-weighted (T2), and (4) T2 Fluid Attenuated Inver-
sion Recovery (FLAIR) volumes. The ground truth segmentation is also 240 x 240 X 155 volumet-
ric images, which are manually delineated by one to four raters according to the same annotation
protocol. Three labels are provided along with an additional background label, i.e., (1) the necrotic
and non-enhancing tumor core (NCR & NET, label 1), (2) the peritumoral edema (ED, label 2),
(3) and the GD-enhancing tumor (ET, label 4). Furthermore, the challenge participants are expected
to segment the images into three sub-regions: (1) the ET region, (2) the tumor core (TC), which is
the combination of NCR, NET, and ET, and (3) the whole tumor (WT), which includes all the three
tumor labels. In addition, the benchmark provides 66 unlabeled validation cases and 161 unlabeled
testing cases, based on which the participating algorithms are evaluated and the final ranking is
computed. The number of LGG and HGG subjects are not specified in the validation and testing
datasets.

While a number of convolutional neural networks (CNNs) and fully convolutional net-
works (FCNs) have been proposed with the growing demand and interest in automatic brain
tumor segmentation, a major bottleneck of this application is the volumetric multi-channel modal-
ity images that take up significant memory and computational power, which can be expensive
even for the latest and most powerful GPUs. For example, a whole multi-modal MRI image of
the BraTS 2018 challenge [15] cannot fit into one single GPU and it needs to be cut into patches
during training and inference. Furthermore, lighter platforms, e.g., medical devices, generally have
more limited on-device memory and computational power. However, massively parallel deep learn-
ing accelerators have been developed to exploit low-bit-width arithmetic. For instance, NVIDIA
has provided a NVIDIA Deep Learning Accelerator (NVDLA) framework [19] to address the
computational demands of inference, which allows using multiple data types across its various
functional units to save area and computational power, including as little as binary integers. Deep
neural networks that are available to operate in a low-precision manner can be deployed using
deep learning accelerators to improve the chip design by allowing more cores on the chip with
limited area. Therefore, the model optimization and acceleration play a critical role for practical
deployment.

Basically, storage cost can be reduced by using low-precision parameters, whereas cheap com-
putational cost can be achieved by performing low-bit-width arithmetic, which takes advantages
from both low-precision weights and activations. However, the performance of a full-precision
network can be vulnerable when converting the model into fewer bits. In general, a model gets
prohibitively ruined by inferring with directly “truncated” low-bit-width arithmetic. In this work,
we propose a quantization technique along with a training strategy that supports the volumetric
segmentation with the dot-product operations in an integer-arithmetic manner. The floating-point
decoding and encoding phases are deferred until the end of layers.
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The rest of this article is organized as follows: Section 2 introduces some neural network ar-
chitectures for image segmentation and some others’ works to compress and accelerate deep neu-
ral networks. Section 3 describes the formulation and training algorithm of our quantization ap-
proach, as well as a procedure to perform integer-arithmetic operations for post-training inference.
Section 4 evaluates our approach in comparison with the full-precision model. Section 5 concludes
the article.

2 RELATED WORK
2.1 Automatic Volumetric Segmentation

State-of-the-art works employ fully convolutional networks (FCNs) [14] for automatic brain
tumor segmentation. Different from other common convolution neural networks that use a fully
connected layer at the end, FCNs also employ a convolutional layer as the last layer to produce a
pixel-wise prediction. In particular, a fundamental FCN architecture, namely, U-Net [23], consists
of a contracting encoder (a.k.a. analysis path) and a successive expanding decoder (a.k.a. synthe-
sis path). The encoding part analyzes the input image and interprets it as a feature map, which
is then fed into the decoder. Moreover, high-resolution activations in the analysis path are con-
catenated with up-sampled outputs in the synthesis path through shortcut connections to achieve
better localization performance. Due to the symmetric fully convolutional architecture, the decod-
ing part constructs a label map with the same size of the input image, each of whose channels
corresponds to a segmentation label. Within a channel, every pixel indicates the probability of the
corresponding label being positive.

Though U-Nets have achieved an accuracy close to human performance in segmenting 2D
images, when it is applied to volumetric medical images, 3D images have to be processed as
multiple 2D slices and hence it fails to capture the relationship of adjacent slices. Therefore, some
later works further propose volumetric extensions of the U-Net to produce smoother volumetric
segmentation.

In particular, the authors of U-Net also propose their feasible solution to the volumetric seg-
mentation problem, namely, 3D U-Net [29], by replacing the 2D convolutions in U-Net their 3D
counterparts. An overview of the 3D U-Net is illustrated in Figure 1. As can be seen in Figure 1,
like U-Net, 3D U-Net comprises the left analysis path and the right synthesis path. In particular,
each stage of the encoder consists of two 3D convolutional layers with a kernel size of 3 X 3 X 3
and a 3D max pooling layer to down-sample the feature map. On the other side, there are also two
3 X 3 X 3 convolutions at each stage, and the up-sampling is performed with an up-convolutional
layer (while some later works replace it with a nearest-neighbor up-sampling layer). The last layer
of the network performs a 1 X 1 X 1 convolution that resizes the number of output channels to
match the number of labels. However, while a couple of 2D images easily fit into a single GPU,
whole 3D images can be too big for the GPU memory, especially for training the network, since
large memory footprint has to be stored for back-propagation. As one of the main bottlenecks of
3D U-Net, the whole volume sometimes has to be divided into several patches and fed sequentially
into the network.

3D U-Net has been serving as a prototype for automatic volumetric segmentation and many
later approaches are developed based on the 3D U-Net architecture and modules.

For example, Reference [26] proposes multi-level deep supervision based on the 3D U-Net ar-
chitecture, in which the three stages in the synthesis path are referred to as three different levels:
lower layers, middle layers, and upper layers. Besides connecting to the next level, the lower and
middle levels (note the upper level is the final stage) are also followed by up-convolutional blocks
that upscale their reconstructions to match the input resolution. Therefore, each of the three levels
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Fig. 1. The 3D U-Net architecture. Activations are shown as blue cuboids, whereas layers and other opera-
tions are displayed as arrows. The numbers above cuboids denote the channels of activations.

separately produces a segmentation output with the same resolution. It is discussed that the back-
propagation performance is improved by calculating losses for the three different outputs, due to
the fact that direct supervision on the hidden layers is more effective for the gradient computation.

V-Net [16], which is another volumetric derivation of U-Nets, replaces the pooling layers of
the contracting path with 3D convolutions. It is discussed in their paper that convolutions can
be applied to reduce the activation resolution by appropriately selecting kernel size and stride,
i.e., a kernel size of 2 X 2 X 2 and a stride of 2 halve the resolution of activations. The volumetric
convolutional layers increase the receptive field and save the memory footprint during training,
since they do not need to record the switches that associate the output and input of pooling layers
for back-propagation. In addition, each stage (in both the encoder and the decoder) is a residual
block in which the input is, after processed by the ReLU non-linearity, added directly to the output
of the last convolutional layer. Compared with the non-residual U-Net architecture, the residual
modules in V-Net help the network to better converge and achieve higher performance. The very
last convolutional layer is similar to that of 3D U-Net, which has a kernel size of 1 X 1 X 1 and it
produces a probabilistic segmentation map by applying a voxel-wise softmax function to its output.

In addition, Attention U-Net proposes to highlight the more relevant activations with soft atten-
tion modules. To be specific, the authors argue that activations in the synthesis path are relatively
imprecise, since they are constructed by the up-sampling. Standard U-Nets address the issue with
the shortcut paths connecting the analysis path and synthesis path, which, nonetheless, brings
heavy redundancy and distracts the network. Therefore, Attention U-Net introduces additive soft
attention implemented at the shortcut connections on a per-voxel basis, which reduces the com-
putational cost and improve the segmentation performance. Their experiments show that as the
number of training epochs increases, Attention U-Net learns to focus more on the foreground
areas, and they achieve a clear improvement in dice score compared with the standard 3D U-Net.

According to Reference [9], it is commonly believed that more specialized architectures are re-
quired for different segmentation tasks and there have been huge amounts of works designed for
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few or even a single dataset in recent years, which results in troubles for researchers to identify
and select the architecture that fits the best in their scenarios. Moreover, those kinds of models
generally suffer from overfitting and a lack of adaptation. In this context, Reference [9] proposes
nnU-Net with adaptive architectures. In particular, three basic U-Net architectures are included in
nnU-Net: 2D-U-Net, 3D-U-Net, and 3D-UNet Cascade, which consists of two 3D-UNet cascaded in
sequence to address the memory constraints for large images. All the three architectures are ini-
tialized with a specific patch size, batch size, and number of feature maps, which are automatically
adjusted according to the median plane size of the training data. A five-fold cross-validation is
utilized to choose an architecture (or ensemble) and its topology with the best performance as the
final model. Experimental evaluations show that nnU-Net achieves state-of-the-art performance
on several distinct datasets and even outperforms the specialized models for some tasks.

While there have been proposed many works on variant specialized architectures for different
segmentation applications, they are in generally usually based on the standard 3D U-Net.
Therefore, in this article, we adopt the basic 3D U-Net as our segmentation model with some
small modifications to better fit with our problem and approach, which will be explained in the
evaluation section.

2.2 Network Compression and Acceleration

As discussed in the previous section, the enormous size and computational cost are currently bottle-
necks for these models to be practically deployed. Many methods have been proposed to overcome
the efficiency challenge, including quantization [1, 4, 6, 7, 10, 11, 22, 25, 27, 28], pruning, [7], and
other encoding approaches [6, 7]. In particular, these works roughly fall into two categories.

The first type of works focuses on the on-device storage optimization but gain no computational
efficiency improvement to support real-time applications. Although network parameters are com-
pressed into tiny models, they need to be converted back into full-precision values and the com-
putation is carried out using floating-point representation. For example, Reference [7] proposes
to “prune” network synapses by forcing some of the weights to zero. In addition, the non-zero
weights are clustered into groups and encode the entries using Huffman coding to further reduce
the storage per weight. The model can be decoded back into full precision with the code book, and
they achieve significant compression rate with negligible accuracy loss. The same authors also
propose in Reference [28] to quantize weights into ternary values (2-bit weights), which causes
very little accuracy degradation by training the quantization centroids. Reference [22] considers
the brain segmentation problem and derives their “3DQ” approach based on Reference [28], which
also quantizes the full-precision weights into 2 bits. They further incorporate an additional factor
to scale the quantization centroids and achieve near full-precision accuracy on two medical imag-
ing 3D segmentation datasets. However, the downside of such technologies is that they do not
bring any computational benefits and may even possibly worsen the speed due to the additional
decoding phase.

Alternatively, some works directly train the parameters to be integers. In addition to the stor-
age overhead reduction, such approaches also effectively reduce the number of floating-point op-
eration for inferences and improve the computational efficiency. For instance, it is proposed in
References [1, 25] to operate the neural networks, including training and inferences, with 8-bit-
integer weights and activations, where the quantization centroids of Reference [25] is uniformly
distributed between —1 and 1, while those of Reference [1] are derived from the maximum ab-
solute values of the weights and activations. Further, DoReFa-Net [27] allows the weights and
activations to be quantized into arbitrary bits. They decide the quantization centroids such that
the value range of weights is limited to [—1, 1] while activations are bounded within [0, 1]. These
works directly approximate the full-precision model with low-bit-width values so they are able
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to run with integer arithmetic. However, some approaches use the low-precision integer to index
the quantization centroids. In Reference [10], weights and activations are encoded as non-negative
integers on a per-layer basis and can be decoded into full-precision approximations with a pair of
shifting and scaling operations. The shifting and scaling factors are directly derived from the full-
precision model during the training phase such that all real-valued points fall within the range
between the smallest and the greatest quantization centroids, i.e., the clustering is simply per-
formed by taking the full-precision range with a uniformly partition on it. Moreover, they propose
a “batch-normalization folding” technique that absorbs the parameters of batch normalization into
the previous convolutional or fully connected layer to reduce the computational complexity.
However, clear accuracy drops are present in the above approaches. The reasons include:

o In Reference [10], an exponential moving average with the smoothing parameter being close
to 1is used to derive the factors for activations. Since the intermediate activations differ from
sample to sample, this makes the factors highly depend on the latest batch and relatively
volatile.

e Since the weights and activations of a well-trained model mostly follow the Gaussian and
half-wave Gaussian distributions [3], respectively, a significant amount of points are con-
centrating around the mean value and 0. Therefore, for both weights and activations, it
is unnecessary and sub-optimal for References [1, 10] to span a range covering all sam-
ples, especially when using a large mini-batch size or there exist extreme outliers. However,
References [25, 27] force the weights between —1 and 1, which as well reduces the perfor-
mance compared with networks with no such constraints.

e The centroids of weight approximations are not trained in these approaches, but directly
computed from the full-precision distributions such that the same ranges are spanned by the
quantization centers with the full-precision weights and activations, which makes the accu-
racy of the full-precision model form an upper bound of the quantized performance. How-
ever, due to the definite error introduced by representing continuous ranges using discrete
centroids, the drop on performance is inevitable.

The motivation of this work is to improve the previous approaches and address the issues
discussed above. In comparison with the first type of works, our approach grants an efficiency
improvement on volumetric segmentation with the integer-arithmetic dot-product operations.
Moreover, we allow using arbitrary bits for the quantization and aim to reduce the performance
degradation by directly training the quantization factors together with other network parameters
to minimize the segmentation loss rather than deriving them from the full-precision model, which
grants the low-precision model a potential to even outperform the full-precision network.

3 TRAINED AFFINE MAPPING APPROACH
3.1 Learning the Mapping of Weights

In our approach, each full-precision synaptic weight w; is encoded as an m-bit integer g; € G,
where G = {0, 1,...,2™ — 1} is an affine space. Through a 1D affine mapping, an integer represen-
tation can be converted to the following full-precision approximation:

wi = Sw(9i — 2), (1)
where the linear transformation and the translation are conducted by the scaling factor S,, and the

translation factor Z,! respectively, which are both floating-point numbers. Due to the properties of

1We define S,, and Z on a per-layer basis, namely, different pairs of factors are used for different layers. Note that this
can be easily extended to a per-kernel basis to achieve better performance with acceptable additional storage overhead and
negligible extra computational cost.
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Fig. 2. The weight distribution of a hidden layer of the pre-trained full-precision model where each band
has a width of one standard deviation. The weights generally follow a Gaussian distribution and the values
less than one and two standard deviations away from the mean account for 63.8% and 97.2% of the set,
respectively.

affine mapping, the uniform codes in G are mapped to a uniform distribution over the full-precision
space, implying our affine mapping approach is essentially a uniform quantizer. However, different
from g; that is non-negative integers, the full-precision centroids span a range over both positive
and negative numbers with the utilization of translation operation. Moreover, by appropriately
adjusting the translation factor Z, our approach allows an asymmetric partition over the range of
positive and negative values. For example, using m = 2 bits, S,, = 0.5and Z = 1,¢; = 0,1,2,3
correspond to the real-valued approximations w; = —0.5,0, 0.5, 1, respectively. This provides us a
substantial flexibility in determining and tuning the centroids of our quantizer.

Our training algorithm starts from a pre-trained model, where the full-precision weights practi-
cally follow a Gaussian distribution. Figure 2 illustrates the weight distribution of a hidden layer in
the synthesis path of the pre-trained model, in which p and o stand for the mean and standard devi-
ation of the distribution, respectively. Empirically, we find that the weight approximation space ini-
tialized across the interval of [y — 20, y + 207 leads to a faster convergence and a higher accuracy,
compared with the initialization over [y — o, u + o]. This is potentially due to the fact that only
around 68% (64% in Figure 2) points of a Gaussian distribution fall into the range of [ — o,y + o ].
While the rest 32% (36% in Figure 2) have relatively large magnitudes and are hence too critical to
be clipped. However, more than 95% of the points are within the range of [y — 20, + 20| with
the rest points tending to be outliers. Thus, clipping the weights beyond [y — 20, i + 20 does not
impact the network a lot. In particular, denote the range by [rmin, "max]- We define rmin and rmay as
follows:

Fmin = Hyiy — 2077, @)

Tmax = Hyy + 207y, (3)
where p1y;, and oy;, are the per-layer mean and standard deviation of the full-precision weights w.
Then, S,, and Z are initialized as follows:

'max — "min
Sw=——"", 4
1 (4)
T'min
Z =- . 5
5 )

During training, unlike the weight quantization approach in Reference [10] that simply derives
their quantization parameters such that the smallest and the greatest centroids equal to the
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minimal and maximal real-valued weights, the key idea of our approach is re-training the latent
full-precision weights to compensate the error introduced by the low-bit-width representation,
while the scaling factor S,, and the translation factor Z are concurrently trained against the
classification loss independently from other parameters.

During feed-forward pass, each latent full-precision weight w; is quantized into the low bit-
depth code g; according to:

g; = clip (round (% + Z) ,0,2™ — 1) , (6)
where
ChP (x7 Xmin» xmax) = max (xmim min(x, xmax)) . (7)

Then, we use the full-precision approximation expressed in Equation (1) to conduct the inference
and calculate the loss L.

In back-propagation phase, the latent full-precision weights are injected back in preparation for
the update. We use the gradient w.r.t. the weight approximation w; to update the full-precision
weight w;:

oL oL
aw " 0w ©
Wi Wi

Additionally, the scaling factor S,, and the translation factor Z are updated concurrently. Based

on chain rule [2], the gradient w.r.t. S,, can be computed from Equation (1) as follows:

oL OL Ow; oL
a5 - i TME_Z(%_Z)GW{ ©)
Similarly, we calculate the gradient w.r.t. Z as follows:
0L OL dw; oL
_— = —_— = = _— 1
0z & ow; 0Z Sw Z ow; (10)

Then, the latent full-precision weights w;, the scaling factor S,, and the translation factor Z are
updated together directly towards the classification loss. As a result, in the next iteration, the
full-precision weights w; and the affine factors have changed, hence the assignment g; and the
approximations w; also have a probability to be different from the previous iteration, which in turn
will apply an influence on the gradient w.r.t. S,, and Z in the next back-propagation stage. Generally
speaking, our training procedure works essentially in a close manner of relaxation algorithms
[13, 18], which repeatedly update both the centroids and the the assignments, while in our problem,
the points w; are moving as well.

3.2 Linear Mapping of Activations

In the previous section, we discussed how full-precision weights can be approximated using m-bit
non-negative integers along with an affine mapping operation. Nevertheless, practical implemen-
tations also limit the activation precision due to the efficiency challenges. In addition to the weight
quantization, we also propose to reduce the activation bit-width based on the half-wave Gauss-
ian quantization (HWGQ) approach proposed in Reference [3].

It is discussed in Reference [3] that batch normalization [8] and ReLU [5] are widely employed in
state-of-the-art CNNs. In particular, the outputs of a convolutional layer are normalized by batch
normalization into a Gaussian distribution with zero mean and unit variance. Moreover, ReLU is
a non-linearity that simply drops the negative samples as follows:

¢(x) = max(0, x), (11)
and it further trims activations into a half-wave Gaussian distribution.
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Based on this observation, given a full-precision activation x;, we would like to encode it with a
p-bit unsigned integer h; € {0, 1,...,2P — 1}, which corresponds to the floating-point approxima-
tion x;. Further, since the real-valued activations x; are half-wave Gaussian distributed with zero
mean and unit variance, an optimal quantizer Q(x;) = x; can be computed by sampling from a
standard distribution and applying an iterative relaxation algorithm until convergence. In partic-
ular, since the lower bound is explicitly defined at 0, which is also the crest of the distribution, we
drop the translation term and approximate activations with the following linear mapping function:

xi = Q(%;) = Sahi, (12)
where S, is a linear scaling factor of floating-point value, and the assignment variable h; can be
derived from x; as follows:

%
h; = clip (round (S—l) ,0,2P — 1) . (13)

a
For the scaling factor S, recall that batch normalization generally produces response activations
that are Gaussianly distributed with zero mean and unit variance across all layers. Therefore, given
the quantization precision p, there is no need to define or train different factors for different layers,
and a same linear quantizer can be used across the network. In particular, an optimal quantizer

defined on a distribution can be expressed in the sense of quadratic error minimization:

arg min f 0(x)(0(x) - x)%dx. (14)

Although Lloyd’s algorithm [13] can be generally applied to solve the clustering problems, it
breaks the linear constraints on centroids. Therefore, we propose a variation of Lloyd’s algorithm
to overcome this issue. During the step for center update, instead of computing the new centroids
by simply taking an average for each cluster, all points are first normalized on a per-cluster basis
such that they are on the magnitude of one scaling factor, and then the mean value is derived from
all normalized samples as the updated factor S,. In other words, we update S, as follows:

Xi
Ziforhi:ﬁo N

S, (15)

Ziforhi¢01

A brief description of our clustering algorithm is summarized in Algorithm 1.

ALGORITHM 1: The computation of activation scaling factor S,

Data: p, X = (%) sampled from a standard half-wave Gaussian distribution
Initialize So, H = {h;}
while H not converged do
step 1: update centroids {0, S, ..., (2% — 1)S,}
step 2: update H according to Equation (13)
step 3: update S, according to Equation (15)
end
Return: S,

In feed-forward pass, the real-valued activations x; are quantized into the floating-point ap-
proximations X;. However, another problem is introduced by the quantization of activations, that
during back-propagation phase, the stair-like rounding operation in Equation (13) makes the func-
tion completely non-differentiable and breaks the gradient chain. To address this issue, rather than
propagating gradient back from the approximations x; to the full-precision outputs x;, we explicitly
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Fig. 3. The gradient of approximations w.r.t. the real-valued activations based on the gradient clipping
approach.

define that the real-valued activations directly inherit the derivatives from their approximations
and skip computing the derivatives of the non-differentiable rounding operations.

Moreover, it is discussed in Reference [3] that, since the activations with extremely large values
are bounded to the greatest centroid by quantization, it causes a problem of gradient mismatch
[12] by deriving derivatives from the quantized results. Therefore, we adopt the gradient clipping
scheme proposed in Reference [21] and discard the derivatives of the real-valued activations that
are beyond the range of our quantization centroids. To be specific, the gradient w.r.t. the activations
before quantization is computed as follows:

oL oL on, (16)
0x i 0x i ox i
where g—’;: is illustrated in Figure 3.

3.3 Optimizing 3D U-Net-based Brain Tumor Segmentation
As discussed above, our proposed approach encodes weights and activations with m-bit and p-bit
unsigned integers, respectively. However, it can be seen in Equations (1) and (12) that the approx-
imations after decoding are still carried out in a floating-point format, which do not effectively
reduce the computational power. In this section, we study that after training, how inference can
be operated in a more efficient manner. Specifically, the inference of a neuron followed by batch
normalization and ReLU can be straightforwardly implemented as follows:

1. Activation decoding: x; = S, h;;

2. Weight decoding: w; = S,,(9; — Z);

3. Dot-product: § = Y; w;X; + b;

izati .5 = Y=p .
4. Batch normalization & ReLU: z = max(O,N m),
5. Activation encoding: Aoy = clip(round(é), 0,27 —1);

where b is the bias of convolutional layers.
By combining steps 1, 2, and 3, the intermediate output i can be simplified as follows:

=S4 Zgihl— - swsazz hi +b. (17)
i i

As defined in the previous sections, g; and h; are non-negative integers of m and p bits, respectively.
Therefore, the dot-product operations can be essentially performed using integer-only arithmetic

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 25. Pub. date: March 2022.



Optimizing 3D U-Net based Brain Tumor Segmentation 25:11

with the floating-point multiplications deferred after that. Furthermore, parameters in steps 4, 5,
and Equation (17) become constants once the training is complete, hence can be absorbed into a
single 2D affine function along with the rounding and clipping non-linearity:

hout = clip (round (Av; + Buy + C),0,27 — 1), (18)

where

v = Zgihi, (19)
i

v = Z hi, (20)

A v (21)

Volte
b S o)
Vo? +e
C= b;,u
S.Vo? +¢€
In conclusion, A, B, and C can be pre-computed and the inference procedure reduces into two
steps:

(23)

1. Compute v; and v, according to Equations (19) and (20) in the integer domain;
2. Compute hyy, according to Equation (18) in the floating-point domain.

Note that the floating-point operations in step 2 are conducted on a per-neuron basis, which
is not in domination of the computational complexity. In this way, our trained affine mapping
approach efficiently produces an improvement in terms of both storage and computational cost.

Moreover, some network architectures employ shortcut connections that concatenate the out-
puts of two layers. For example, in regards of 3D U-Net, the output at each stage of the encoder
is directly concatenated with the input of the decoder at the same stage. However, since the same
activation scaling factor S, is adopted throughout all layers, a full-precision activation z shall be
encoded to the same unsigned integer h,,; regardless of which layer it belongs to. Therefore, stack-
ing the intermediate activation z in step 4 is essentially equivalent to stacking the encoded value
hout in step 5, which leads to no additional operations besides independently computing hoy for
the two layers according to Equation (18).

4 EVALUATION
4.1 Experimental Setup

We evaluate our approach on the BraTS 2018 challenge discussed in Section 1. In particular, while
the ground truth segmentation of the official BraTS 2018 validation dataset is not publicly available,
to perform hyper-parameter tuning and provide clear comparison between the prediction and
ground truth, in spite of the official validation dataset, we use 10% of the training dataset as our
validation dataset in our experiments and train the models with the rest 90% samples.” The N4ITK
bias correction [24] approach is applied to all the MRI images to reduce the bias caused by using
different scanners. We then clip the greatest as well as the smallest 2% voxels in each channel
(modality) to remove outliers. Last, images are normalized to zero mean and unit variance on a
per-channel basis while the non-brain regions are set to 0.

ZNote that our experiments aim to illustrate the difference in performance between the full-precision and our quantized
models. The full-precision model serves as a baseline and its absolute performance is not critical.
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We employ the minorly modified 3D U-Net [29] in our experiments. In particular, we set the
number of input channels to 4 to match the 4 modalities of the MRI scans. Moreover, we follow
the approach of the first-place winner of BraTS 2018 [17], where the output of the network has
three channels corresponding to the three tumor sub-region labels, i.e., the whole tumor (WT),
the tumor core (TC), and the enhancing tumor (ET), and they are then connected to a sig-
moid activation function that produces the predicted probabilities of each label. As described in
Reference [29], batch-normalization is introduced before each ReLU non-linearity, which is also
adopted in our implementation so the architecture is compatible with our activation quantization
scheme, as discussed in Section 3.2. The up-convolutional layers in the original architecture are
replaced with up-sampling layers. (Note that while we choose to use up-sampling layers, it as
well fits with our approach if applying batch-normalization and ReLU after each up-convolutional
layer.) We use the multi-class dice loss function based on the dice loss proposed in Reference [16].
According to Reference [16], denote by p; and g; the voxels at the same location in the prediction
and ground truth for a class, respectively, the single-class dice loss is defined as follows:

_22ipigi
ZiP? + 2 qlz_
Given the dice loss of three tumor sub-regions Ly, Ltc, and Lgr, our loss function is simply the

summation of these three scores as follows:

Leass = (24)

L = Lwt + Ltc + LgT. (25)

In other words, the three tumor sub-regions are assigned with identical weights.

We randomly sample patches of size 96 X 96 X 96 with a batch size of 2 to train the networks.
All the low-precision models start from the pre-trained full-precision model and we re-train them
using our quantization algorithm. We adopt an Adam optimizer to update the scaling and transla-
tion factors S and Z, with the learning rate initialized to be 1e-6. (While the gradient w.r.t. these
factors is accumulated by every weight and the amount of weights in a 3D convolutional layer
can be significant, it empirically works better with relatively small learning rates.) The other pa-
rameters (weights and biases, etc.) are tuned by another Adam optimizer with a learning rate of
le-4 and a weight decay of 1e-5. We divide the learning rates of both optimizer by 10 every 1,000
batches and the models are trained for 4,000 batches.

The validation images are padded with 0 and partitioned into multiple 96 X 96 X 96 patches.
We feed the network to produce predictions of the same shape and reconstruct the label map.
Different from the training procedure where we use probabilistic output to compute the dice loss, in
evaluation, we binarize the output (before the sigmoid) with a threshold of 0 and use the binarized
reconstruction to compare with ground truth and compute dice scores.

4.2 Segmentation Results

Besides our trained affine mapping (TAM) approach, we also evaluate the full-precision (FP)
model along with three low-precision CNN training and inference techniques as our baselines:
3DQ [22], DoReFa-Net [27], and the naive Fixed-Point Number (FPN) representation [20]. The
first two techniques are previously discussed in Section 2, and FPN is the simplest quantization
approach, which allows the valid bits to represent any continuous power-of-2 fractional values.
For example, the 2-bit FPN 1.1, which consists of an integer bit and a fractional bit, encodes the
decimal value 1 x 2° + 1 x 271 = 1.5. In our FPN experiments, the weights are quantized using an
additional bit as the sign bit, and we allow the represented bits (as long as they are continuous)
to be away from the radix point while skipping the other more significant digits, e.g., using three
unsigned bits 101 as in 0.0101 to encode 1 X 272 + 0 X 27% + 1 x 27* = 0.3125. In particular, all
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Table 1. Validation Results (Mean Dice Scores) on the BraTS 2018 Dataset

| Whits A bits ||

WT

TC

ET

FP 0.888 (0.0006) 0.801 (0.0073) 0.762 (0.0029)
8 8 0.744 (0.0456) 0.361 (0.1542) 0.144 (0.1786)
FPN 4 4 0.666 (0.0921)  0.189 (0.1313)  0.074 (0.1039)
2 2 0 (0) 0 (0) 0 (0)
3DQ 2 float || 0.885 (0.0026) 0.792(0.0014) 0.747 (0.0029)
8 8 0.874 (0.0036)  0.796 (0.0047) 0.754 (0.0047)
DoReFa | 4 4 0.873 (0.0017)  0.789 (0.0018)  0.750 (0.0022)
2 2 0.874 (0.0024)  0.787 (0.0032) 0.750 (0.0038)
8 8 0.887 (0.0019)  0.801 (0.0020) 0.767 (0.0021)
Ours 4 4 0.889 (0.0028)  0.797 (0.0016) 0.761 (0.0006)
2 2 0.884 (0.0014)  0.793 (0.0014) 0.760 (0.0006)

25:13

W bits and A bits represent the number of bits used to encode weights and activations. WT,
TC, and ET stand for the whole tumor, the tumor core, and the enhancing tumor, respectively.
Experiments are repeated three times and we report the average results for validation, while
standard deviations are shown in parentheses.

low-precision approaches except for FPN are re-trained from a pre-trained full-precision model,
which is also used to derive the quantized weights for FPN so the represented bits minimize the
mean squared error. In addition, since the activations are dependant on the input, it does not make
sense for FPN to dynamically compute the best scales, thus, we simply truncate the activations
with all bits being fractional bits. All models are trained on a NVIDIA RTX 2080 Ti GPU, and we
compute the dice coefficients for the three tumor sub-regions. All experiments are repeated three
times, and the average results are summarized in Table 1.

Among all low-precision techniques, FPN achives the worst performance. Even when using 8-bit
weights and activations, the average dice for WT drastically drops from 0.888 to 0.744, while the
TC and ET dice scores fall below 0.4 and 0.2, respectively. The performance further becomes worse
with 4-bit weights and activations, and the model totally does not produce any useful information
with 2-bit precision, which gets the dice coefficients of 0 for all the three sub-regions. The reason
is that the error caused by such post-training compression approaches is not compensated, so the
error accumulates throughout layers and critically hurts the model.

However, our trained affine mapping approach with 8-bit weights and activations achieves 0.887,
0.801, and 0.767 average dice for WT, TC, and ET, respectively, which are close to (or even bet-
ter than) the full-precision model, while there is a dice loss of about 0.01 present in the 8-bit
DoReFa-Net results. Moreover, TAM achieves negligibly small loss with 4-bit weights and activa-
tions (within 0.005 of the full-precision model), and about 0.01 degradation when using 2-bit pre-
cision, whereas DoReFa-Net shows a clearer performance drop in such cases. 3DQ achieves fairly
good WT score, but it performs poorly for the TC and ET sub-regions. We also note that 3DQ uses
floating-point activations and it is a compression approach that does not accelerate the inference,
which is not as beneficial other baselines. The validation results, i.e., our approach outperforms
other baselines and achieves a performance close to the full-precision model, verify that our factor-
training scheme effectively tunes the centroids and reduces the loss introduced by the quantization.

In addition, we reconstruct the different parts of tumors (NCR & NET, ED, and ET) from our
predicted labels to qualitatively illustrate our results. An axially sliced example from our valida-
tion set with the FLAIR modality as background is presented in Figure 4. As can be observed in
the ground truth annotation, the red area (NCR & NET) has relatively more irregular shape, which
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Original scan Ground truth Full precision

1 E2 K

8-bit precision 4-bit precision 2-bit precision

Fig. 4. An example of the predictions of the full-precision and our quantized models along with the ground
truth annotations overlaid over the FLAIR MRI scan. The necrotic and non-enhancing tumor core (NCR &
NET) are shown in red; the peritumoral edema (ED) is shown in green; and the GD-enhancing tumor (ET) is
shown in blue. The prediction label WT is the combination of all the three colored areas, and TC is the union
of red and blue.

makes it the most difficult part to accurately predict, while the green (ED) and blue (ET) regions
also have some dotted details around their boundaries, i.e., some blue dots in the green area and
green dots outside the main tumor. However, while all models perform badly in predicting the
red region, the full-precision model additionally tries to capture the dotted feature of the ground
truth, potentially due to the over-fitting problem, though regularization is already applied during
training. However, it is almost impossible to perfectly predict these small dots and hence this ac-
tually increases the error of the full-precision model. Nevertheless, our quantized models produce
relatively smoother annotations without these small dots. This might explain the reason why our
quantized models sometimes outperform the full-precision model.

5 CONCLUSION

In this article, we consider the problem of optimizing the 3D U-Net with low-precision parameters
and integer-arithmetic inference for efficient volumetric segmentation. In particular, we propose
a trained affine mapping approach that encodes weights and activations as non-negative integers
of dedicated bit-widths and recovers the floating-point approximations with affine mapping
functions. The key idea of our work is that the scaling and translation factors for weights can be
trained together with other parameters, whereas activations are generally normalized by batch
normalization and rectified linear units (ReLU), hence can be accurately approximated using
the same function across all layers, which is pre-computed based on the standard half-wave
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Gaussian distribution. In addition, with weights and activations encoded as low-precision integers,
we propose to defer the floating-point computation of the affine mapping functions and combine
it with the quantization procedure of the next layer. This technique simplifies the inference into
two steps, in which the dot-product operations are carried out using unsigned-integer arithmetic
and the floating-point multiplications are reduced onto a per-neuron basis. Evaluation results
on the BraTS 2018 challenge show that the models quantized by our trained affine mapping
algorithm using 2-bit weights and activations achieve a mean dice score within 0.01 relative to
the full-precision model. Furthermore, our quantization achieves negligibly small degradation
with 4-bit and 8-bit precisions.
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