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ARTICLE INFO ABSTRACT

MSC: We investigate the well-posedness theory of the 2-D fractional nonlinear Schrodinger equation (NLSE) with
35B30 a mixed degree of derivatives. Motivated by models in optics and photonics where the light propagation is
35Q40 governed by non-quadratic, fractional, and anisotropic dispersion profile, this paper presents first results in
35Q55 this direction. Dispersive estimates are developed in the context of anisotropic Sobolev spaces defined by
;;g’? inhomogeneous symbols. The main model is shown to exhibit scattering for small data in the scaling-critical
space. Furthermore the continuity of solution with respect to the dispersion parameter is shown on a compact
Keyw?rds: time interval.
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1. Introduction

This paper is concerned with the well-posedness and regularity
properties of the mixed fractional nonlinear Schrédinger equation
(mNLSE)

idu = (D" + D})u+ plul” " u, u(x, y,0) = uy(x, ), (x,y,1) € RZxR, (1.1)

where D| = (—axx)%, D, = (—Byy)% and u = =1, p > 1, aj,ay €
0.2]\ {1}, &) > ap.

Interest in this model comes from the field of optics and
photonics,’> where the fractional operator accounts for engineering
spatial diffraction in an optical cavity («, < 2),2 while the second order
operator models chromatic dispersion of optical pulses (¢; = 2). An-
other interesting configuration is that of an array of resonators globally
coupled,® for which optical pulses in each resonator are modeled by the
one-dimensional Schrédinger equation. In this case, (1.1) represents the
continuum approximation of such system.

The well-posedness theory of the fractional NLSE (where a; =
a,) has been investigated by several authors. Our approach is based
on that of Refs. 4, 5 where the contraction mapping argument is
developed based on the Strichartz estimates corresponding to e i-a?,
For another approach based on Bourgain’s method of restricted norm,
see Ref. 6. When a = 1, the non-dispersive solutions and their blow-up
criteria have been studied in Ref. 7.

The presence of mixed derivatives in Eq. (1.1) necessitates a non-
trivial modification to the standard fixed point argument in solving
NLSE, if one wishes to obtain the well-posedness theory at the scaling-
critical regularity. One major component of this paper is the analysis
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of the non-smooth Littlewood—-Paley decomposition based on a dyadic
family of non-smooth symbols. Furthermore this functional framework
gives rise to the use of anisotropic Sobolev spaces.

When a; = a, = 2, Eq. (1.1) reduces to the classical NLSE whose
various properties are summarized in Refs. 8, 9. It is well known
that the NLSE is ubiquitous in the field of nonlinear waves. It arises
as the governing equation of wave-packets in deep water waves, or
the electric field envelope of an intense light filament propagating in
the atmosphere or it models pulse propagation in an optical fiber. In
condensed matter physics this equation known as the Gross-Pitaevskii
equation (GPE), describes the dynamics of Bose-Einstein condensates
(BEC). The underlying competing effects embedded in the equation are
linear dispersive (diffractive) properties of the media, best described
in the Fourier space as a frequency, wave-number quadratic relation
@ = |k|* or as the Laplacian operator in real-space, and nonlinear
effects which in the optics application represents intensity dependent
index of refraction and in the BEC comes from a postulate that many-
body effects can be compressed into a nonlinear on-site interaction.
Alternatively, the discrete NLSE, where in a 1-dimensional array, the
second derivative term is replaced by the well-known center difference
scheme % - (u,, O = 2u,() + u,, J(r)) has equally important
applications. In the field of photonics for example, this discrete operator
describes nearest neighbor interactions of optical pulses propagating in
waveguide arrays. An important assumption of linear operators such as
the Laplacian, is that the medium is considered to be homogeneous. In
the discrete case, the physics equivalent assumption is that interactions
are only between nearest neighbors (local). In this work we will depart
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from this assumption of homogeneity and the quadratic dispersion
profile.

Beyond the classical interpretation of the Laplacian in many phys-
ical systems, from the stochastic process perspective (see Ref. 10), the
Laplacian is the infinitesimal generator of the Wiener process, which
constitutes a special case of the more general Lévy process character-
ized by the Lév¥ index a € (0, 2], which in turn, generates the fractional
Laplacian (—4)7 = F~!|¢|"F. The fractional NLSE was considered by
Laskin (see Refs. 11, 12) in an attempt to extend the Feynmann path
integral over the Brownian-like to the Lévy-like paths. Whereas Laskin
considered a € (1,2] for the sake of physical applications (for instance,
see the discussion on the energy spectrum of a hydrogen like atom
in Ref. 12), our analysis contains a; = a, € (0,2] \ {1}.

This paper is summarized as follows. In Section 2, the main results
are stated. In Sections 3 and 4, various linear and nonlinear estimates
are developed with which the well-posedness proofs are obtained in
Section 5. In Section 5, global well-posedness for data with finite energy
is also discussed. In Section 6, the regularity of solutions with respect
to dispersive parameters (a;) is discussed. Some technical results are
contained in Appendix.

2. Main results

The model Eq. (1.1) is a Hamiltonian PDE with two notable con-
served quantities:

Mass : M[u(t)]:f lu(x, y,0)|>dxdy

Energy : E[u(r)]:f]%(m?u(x,y,f)\

2 ay 2
+ \Dzz u(x, y, )| ) 2.1

H +1
+ w(x, y, " dxdy.
o1yl y
If u is a classical solution, then so is
“A sx oy i
= Tyl = —
wy(x,y,1) ;=4 »r M(A’ lﬂ T ) (2.2)

for every 1 > 0; when a; # «,, the two space variables x, y do not obey
the same scaling law. This motivates us to consider the class of data in
an anisotropic Sobolev space. Define

2 ER 2 N
1N argeey = NCL+ €] +|"|g)2f”L§n’ I/ g2y = NICIE] +|n|")2f||L§”

where &, 7 are the dual variables to x, y, respectively, and Ff = f is
the Fourier transform of f. It is assumed that all function spaces are
defined on R? unless specified otherwise. By construction, observe that

il s = 2% Nl s

2az A A We show

— 2 — — 1
where « = o and s, = s/(aj, @) = 3 2w T
that Eq. (1.1) is well-posed in H} for s > s,, ie., in the scaling
subcritical and critical regularities. Since Eq. (1.1) admits the time-
reversal symmetry u(x, y, 1) — u(—x. —y, —1), our analysis is restricted to

[0,T].

Theorem 2.1. Suppose s € (s.. |p| — 1] for p > 3 not an odd integer and
s € (., ) for p = 3 an odd integer. Then, Eq. (1.1) is locally well-posed
in Hj.

Theorem 2.2. Let p > 3. Further assume s, < |p| — 1 if p is not an odd
integer. Then, Eq. (1.1) is locally well-posed in H*. Furthermore there exists
& = 8(p, @y, ay) > 0 such that whenever ||| s < 8, there exists a unique
u, € H* such that ’

lim (lu() = UOu, || e = 0. (2.3)
t—400 =N Hy

On [0, T], the solution map, if it exists, is not only continuous in the
variations in data but also in dispersive parameters. We consider the
convergence of solutions as a! — a;, i = 1,2 where a] € (0,2]\ {1} and

!

2a . P
a = a_'2 However this result cannot be extended to T = oo, which is

1
discussed in Section 6.
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Theorem 2.3. Let p > 3, T € (0,0), and % +% <s < |p|-LIf
W, u” € C([0,T]; HY) satisfy

i0u* = (D]" + DY) + plu” |~ u®, u(0) = uy, € I

a al —1 ) 24
iou” = (D" + D + pulu® [ u u () = uy € HE

Hs
where u o, —> Uy, @S (a), a}) = (ay, a3) and

sup < cfla®||

)ilay 7a; H\cxzfa; |<R

[o0]

|1 -1 . <
LY Lo (|0.TxR2) LI Lo ([0.T1xR2)

(a} .

(2.5)

for some ¢ > 0 and R = R(a;,a,) > 0, then u® = u® in C([0,T]; H}) as
(], @) = (a),a).

3. Function spaces and Strichartz estimates

This section presents various linear estimates to solve Eq. (1.1) with
data in low-regularity function spaces that are compatible with the
anisotropic scaling Eq. (2.2). All implicit constants may depend on
ap,ay. Let fl; =1 — % i = 1,2 throughout this paper.

Definition 3.1. Let s € R, p € [l,]. Define the inhomogenegus and
homogeneous derivative operators by (V,)* = F~1(1 + &2+ |4|*)Z F and
[V 5 =F &+ |q|“)? F, respectively. Define

WPRY) = {f €' 1 (V,)'[ € L"), WP(RY)
={feS /P VI feLl)
where || flly e = 1V Sl oo 1 1o 1= NIV ll o

As usual, we denote W* = I +. By the Plancherel Theorem, it
is evident that I}, for s > 0, defines a Hilbert space under (f,g) =
I FEEE M +E + n|*y dédn; for s > 0, r € [1, c0], W, (R?) is also
complete (see Lemma 3.4). When s < 0, r € (1, 00), W, (R?) coincides
with the dual of VVa’”’ (R?). Moreover, note the inclusion: if s > 0, then
H* & H! < H%S, and the inclusion reverses for s < 0 where W7
denotes the classical Sobolev space corresponding to a = 2.

A set-up of the anisotropic localization of the Fourier space is as
follows. Let y € C*((-2,2);[0, 1]) be an even function where y = 1 for
& € [-1.1]. Let (&) := w(&)—w(2¢); note that supp(¢p) C l—l—%]uléll-

Define
VE2 4 n)®
o =o( VI N e
N e
(i) _ i Z
oy Em =5 ). N €2,
for i = 1,2 where (&), &,) = (£, ). Define the corresponding operators
Py =F 'y, Poy i=F' Y T Py = 3 Py,
N'<N Yonan
(3.2)
where Pg) ng)v.’ Pii,)\,_ are defined similarly. By definition of ¢, we have

the resolution of identity

Y InEm=LVEM #O.0: Y DY G.6) =1,V #0.

Ne2t N,e2%

Remark 3.1. The classical definition of (smooth) Littlewood-Paley
function d)(—”NH’)

adapted to { /&2 + n* ~ N }; however in our case (Eq. (3.1)), the support
of ¢y is a deformed circle since a # 2. Furthermore our definition of
¢ leads to a dyadic family of non-smooth frequency localizations with
« as a parameter. Unless specified otherwise, we use N, N; to denote
dyadic integers.

implies that its support is a circular annulus
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Since ¢, is not smooth, P, is a convolution operator with a kernel
that is not rapidly decaying. This marks a deviation from the classical
case and thus various mapping properties of Py require an inspection
when a € (0,2], which we assume in this section.

Lemma 3.1 (Bernstein’s Inequality). For all 1 < p < g < oo,

a+3H2-1
1Py fllpa SN «7r O |Pyflle

1) p(2) 1 2
12w PP fl0 S (N N7 1Py P P

(3.3)

Remark 3.2 (Bernstein’s Inequality). The argument proceeds as in « = 2.
See Ref. 8. Note that supp(¢py) € R, C R* where R, is a rectangle of
2

width ~ N and length ~ N . Similarly for the second inequality, the
intersection of the supports (of ¢y, q[)(,{,)) has a volume at most N| N,
regardless of N. '

As in the classical case, the non-smooth Littlewood-Paley projec-
tions are a family of uniformly bounded operators.

Lemma 3.2. For p € [1, co], there exists C(x) > 0 independent of p, N, N;
for i = 1,2 such that

(i)
1Py uell g HPN{'J“”L!’ < Cllulf ge-

Proof. To prove the first estimate, it suffices to show

sup llyllpr < co.
Ne2i4

and use the Young’s inequality on Pyu = ¢y * u; the second estimate
admits a simpler proof since the symbol of PJ(\'[) is smooth in &, 5. Since

. 2. 2
By, y) = N'Tad (Nx, Nuy),

it suffices to show @ := ¢, € L'(R?). Since ¢, € L'(R?) is smooth in &
with a compact support supp(¢,) C R? that stays away from the origin,

sup (1+ |x[N@Ce, | S 1yl + 105y 11,1 S 1

x,yeR

For the decay in y, first assume o« > 1. Observing that d,¢, is uniformly
Holder continuous of order a — 1, we have
sup |y]*|@(x, ¥)| <, 1,
x,yeR
and altogether,
1
[P, 9| Spg ——F—— VkEN, (3.9
T+ [x[" + |y/"

from which follows
® a-1

@l = / [ |P(x, y)|dydx N;m/ (I+]x)™ @ dx <0, (35)
0

and by taking k € N sufficiently big depending on «, it follows that
@ e LY (R?).
For a < 1, € > (), we claim
1
[P Spqe —F———- VkeN. (3.6)
ka.c 1+ ‘xlk + |y‘l+a7(
Note that d,¢y(En) = %Il sgn(m LOED oD e L' By the
+

fractional Leibniz rule, we have the pointwise estimate (in &)

1050,

’ 2+ |n|®
S 105l sgntm )l o | w"ﬁ
+In n

_ P (VE + ™)
[ sgnon gl e 105 < S,
' Va1

(3.7)

+ Illn

=I+11,
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2 2
where y = y(n) is the characteristic function on [-2«,2«] and p,,p, €
(1, ) are to be determined.
The second term is estimable by the Sobolev embedding To ensure
| - |a711(.) € L2(R), let P € (1, I n.') Let p € (W,P,)n (1, = ;1)
2

so that W3(I) & W P5(R) and MW)
£. Then, Ve
P Ve M“ LGNS
s W w au(mo W
where C > () is independent of ¢ since 4 7% ~ 1 and PR = 0,(D).

To estimate I, we use the integral definition of the fractional
Laplacian:!

e wle (R,) uniformly in

Iy 1y < € < oo,

g IO RFIOF
(=2 f(x)=c44
O Jra x - yl'”"
Let f(n) = |n|* 'sgn(n) y(n) and ¢ = 2?21 - Since f is odd, so is D5~ f, and
hence assume 7 > 0 without loss of generality. Then,

DS [ = / Jon - Jen) {f") dn,
—c |n—=m

ﬂl a—1 a—1

¢ x () — €Nt () + oy
= ﬁ“”“ + [ T dm = A+ B,
0 ln—ml 0 In+mnl
We show by direct computation the estimate:
e if n €, 3cl
1D )] Sae 4 1n— ™™ if g € (Fe.0) U (. 20) (3.8)
p(+a—e) if n € (2c, ).

If so, take p; = 1+ so that
D5~ (nl* sgn@ll - < eo,

and

d)’(VrSz + In| )
Ve + Inl”

¢’(\/§2+\n )
VEL+ nl
<H¢'(\/52+m )

Since the term B obeys estimates similar to those of A, we work with A.
By the Fundamental Theorem of Calculus, if #,%, € (a,b) where a > 0,
then

”L""(Rz) < 00.

a—1

R -l

Let 5 € (0, %c]. Then,

,7/2 a—1 _ cr 1 n/2 ﬂ?_l
dm| < / ———dn St
|A ‘t’,’ i |l+a € 0 ril+a76
For 5 € (0, g),
2 pe-l | 2
mom dm' 5»1”’2/ _dm__ — <
ni2 In—n |!+ee nf2 1n—ml

- -1
¢ nﬂ _n c a—1

/ JJ:a Ed"l S’/ ! l+affdnl S n71+€_
2 |n—ml 2 |n—ml

Similarly for n € [%, %c],

$n? /C o St
a2 ="

AP
df2 -E
2P|

c na l_"it 1
I+a—e Jl

nf2 |n—m|

! The numerical value of ¢;, = is not used explicitly in our

analysis.
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Letn e (ic,c). Then,

2 a—1

,”'2 a—1 _ ar 1 n/2 '71 :
dm’S/ ———dn ST ]
'L 7 — n |I+a € 0 nl+a75 ¢

2n—c na 1 _"a 1 2n—c a1
1 U —(a—
/ l+a—€dn]| ‘S/‘ |+a_5dnl sc ‘ﬂ_cl =
w2 ln—mnl nf2 Im—mnl

e < @n—o? e
/ ﬁdmIS/ —=dn ~c1+|'1—f|l ta=e),
- |0 =] 2

2n—ec I" —m |
Let 5 € (c,2¢). Then,
IAl - |/ l+a € I|+ ﬁ
In n\ /2 |n—ml

¢ d
s/ L 'f e e A EUUE T
0 cl+a—e /2 |’?—’? ||+C¢*E

n

c a—1
1
dm

Finally let € (2¢, o0). Since |7 —n,| >

1Al S rf“*“’/ ny g S g0,
0

and thus Eq. (3.8) has been shown. Arguing as Eq. (3.5), ® € L'(R%)
for a € (0,1).
For a = 1, it follows that

1
|@(x, 0| Spe ——F——=- Yk EN (3.9
L [x + [y
by arguing via the fractional Leibniz rule as Eq. (3.7). In particular,
the estimation of I in Eq. (3.7) admits a simpler proof since ||*~! =1

contains no singularity at the origin. []

Remark 3.3. In Eq. (3.7), the expression Dg‘f(\n\“".s'gn(r;),y) can be
expressed in a closed form using the generalized hypergeometric func-
tions. However our presentation based on direct estimation provides a
more flexible approach.

The action of anisotropic derivatives on our dyadic decomposition
behaves like multipliers.
Lemma 3.3. Let s € R, r € [1,o0]. Then,
IV al* Pyull e = Nl Pyall o 107 P ull o= NP ull .
where the implicit constants are independent of r, M, N.

An application of the contraction mapping argument depends on the
completeness of W, which is a consequence of the boundedness of the
anisotropic Bessel potential on Lebesgue spaces, similar to the classical
case. The proofs of Lemmas 3.3 and 3.4 are in Appendix.

Lemma 3.4. For any s >0, r € [1,0], « € (0,2],

KVl <IN g

Consequently, W, is complete.

(3.10)

Linear dispersive behavior of Eq. (1.1) is reflected in both fixed-time
dispersive estimates and time-averaged Strichartz estimates to which
the rest of this section is devoted.

Definition 3.2. Define the pair (g, r) € (2, 0] X [2, o0) to be admissible if

il L ForseR, ICRand a =22, let
q r 2 a)
1 1 1 1
—A(3-1) k(-1
[1F s = ||D| - Dz - f”L‘*' WL
q.r
) _ 7(l+:—_|)7a1) -5 12
17z, = L NPwIVl e e

for smooth f with compact support. Define the Strichartz space
S;r([ ), S; ,(I) as the closure of functions under the norms above,
respectively.
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Proposition 3.1 (Fixed Time Estimate). For 0 € |0, 1],

—50 —p,0 _
10, D, uwsll > NIl 2
L1-0 L1+0

Proof of Proposition 3.1. Due to scaling, it suffices to prove the
estimate at 1 = 1. Use the complex mterpolatlon method on the analytic
family of linear operators T, = D_ 1"D_ ZZU(l) in the strip {z € C :
R(z) € [0, 1]} to obtain the desired estlmate Letpu e R.Forz=iu, T, is
bounded on L? by the Plancherel Theorem. For z = 14y, T, : L' - L*®
is bounded by Lemma A.1. []

Averaging the estimate of Proposition 3.1 over time, the Strichartz
estimates are obtained by the standard 7T* argument.

Proposition 3.2 (Strichartz Estimate). Let (g, r), (g, F) be admissible. Then,

”Dl—ﬁ](5'—%)D_ﬂﬁ(]E_%)U(I)f"LQU(RXW) s ||f||L-z
||/U(ffT)F(T)dT||L‘*L' = “Dﬂ " )Dg‘“ ;_:)F”LQ,U’-
(3.11)
||/ U(!—T)F(r)dTHLqU 3 ||"Dﬁ|(l )Dﬂzu o F”L"’U" @.12)

Proof. We use the TT* methodon T : L2 — L?L"(RxR?) where Tf :=
B g

D, 2D, P UW/S. Let 0 € [0,1) such that (g,r) = (“,l - . Given

a spacetime function F, our task reduces to showing ||[TT*F|| L <

”F”L" o . By the triangle inequality, Proposition 3.1, and the Hardy—
Littlewood—Soboley inequality,

77"l = |

/ ;"D Ut - 1)F(r)dr

q
L Lr

— 0 —p,0
< H/\\Dlﬂl DUt~ 0)F(2)|| de .
L

<[/ - ereurenypas
i

This shows Eq. (3.11). By the standard argument by the Christ-Kiselev
Lemma,'? Eq. (3.12) follows. []

SNFly -
T

Remark 3.4. For # = 1, we have (g.r) = (2,00), which constitutes
the endpoint case in the application of the Hardy-Littlewood-Sobolev
inequality. The classical Strichartz estimate fails for this (¢,#) in d = 2;
see Ref. 14. It is of interest to investigate whether the analogue of the
negative result for the classical Schrédinger evolution extends to our
case.

Corollary 3.1. For se R, a = 2%, and admissible (g, r),
1
WO Sss, s WO N5, SN Mg
t t
| [ ve-oF@aslsy, . 1 [ Ue-oF@dsls,m £ 1P
0 i 0 H el
(3.13)
Proof. From Proposition 3.2, replace f, F by (V) f.(V,)*F to obtain
the estimates in Ss (D). Further replacing f, F by (V) Py /., {V}*PyF

and summing over N € 2%, the estimates in S‘;r(l ) are obtained, which
we show in detail for the readers’ convenience. It is shown that

2 [
sup // o—itlE® +\n|“2)+i(x§+m)qb( VE + Inl )dfd,,
x,y N

(3.14)
_ 1+ g
_suplllmal @y |I‘ JN 2 :

2 Showing the hypotheses of Stein’s Interpolation Theorem has to be dealt
with some care due to the pole of the symbol of DI"G‘ZD;’]"Z at the origin, but
all operations are justified due to g < I.
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Indeed by scaling, it suffices to show Eq. (3.14) for N = 1. Let

P& = [ Img(VEE T an
=/ e—ff"""1+"w¢(vr§2+\nl”)dvr,

where ¢ = 4£. By the support condition of ¢, ¥ = 0 for |&] > 2.
The Van der Corput Lemmal® ¥4 6 P-334 jg applied to estimate the
integral in Eq. (3.14). More precisely, the phase function of interest
is £ —|£|™ + % Noting that |d§( |E|*r + *§)| >1loné&e|[—ec],

sup 1] S 75/ [0:F (&, y,0)|dE

i [ [ e f VD,
VE +nl*

A similar argument applies to the u-integral in Eq. (3.15). By the
support condition of ¢, we have &2+ |5|* ~ 1, and by direct computation,

J ¢'(VE + Inl*)

VE +nl*
uniformly in &. Another application of the Van der Corput Lemma on
the n-integral then yields the claim.

By the Young’s inequality, the frequency-localized dispersive esti-
mate

(3.15)

NI—

—1
< nl*

1T Py fll e S 117N =" Py £l

holds. Define U(1) = Py, U(N”Tz “™1)P_ . Then,

ITOT* @SNl S It =21 1 s 10Oz S 7N 2

By applying Ref. 16, Theorem 1.2 to Eq. (3.16), we obtain the
frequency-localized Strichartz estimates corresponding to U(t). Chang-
—ay)

(3.16)

a
. . —(+2L .
ing variablest — N =~ " ', we obtain

—a)(3—1)
IPNUDS N apr S ' B “PNf”r_l
(3.17)
—ay )(1—
I f PyU(t—2)F(n)dzll oy, S N ' IIPNFHLQ'L»,
21
Observing that Yne N 3 ey HPNf” ~

||\Vﬂ|“+ e f ||2 by the Plancherel Theorem, the refined es-

timates in S‘;_T(I ) follow by squaring Eq. (3.17) and summing in
Ne2Z [

4. Nonlinear estimates

This section is devoted to the estimates needed to control the
nonlinearity to close the contraction mapping argument. The goal is
to obtain a solution u € CrH} = C,H([0,T] x R2) that satisfies the
integral representation of Eq. (1.1), which motivates the construction
of

X* =L HynS; (), X = S‘;Z(I)nﬁgvr(l). (4.1)

tel
In the scaling-subcritical regime, the || -
the Sobolev embedding.

ll,7-1, . norm is controlled by
el

: ayl_Ly_g4d 2L
Lemma 4.1. For 2 < r < g < oo, s > (1+ 215 - ) —a(3 -, and

= i
=25
—f1( ﬂ?( -
lullza S 1D, G- *D : 'unw;-r. (4.2)
Proof. We first show
1 1 1 1 1 1 1
—Fi5—7) _—Hh(3-7) “Ai5—7)  —h(5-1) )
llulle WD, 2 "D, "% “wllpr+|D, 2 7D, ullysr =2 X.
(4.3)
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By the triangle inequality followed by Lemma 3.1,

1_1
(1) p(2) i (1) p(2)
lulle < 3, Py PYPYull, S 3, (NiN) "2 [Py PPl

N.N|.Ny N.N|.N;
By Lemmas 3.2 and 3.3,
||PNP‘”P(2’uuU
= |pe Dﬂz( )PNPS:P;&;D;FI(%7%)D:}2(%7%)u|\U (4.4)
5NJ 1377 Nﬁz( )X,
and similarly,
B(i-1)

1) p2 IS
Py Py Pl = NN TN

1 1 1
x ”PNP(I)P(Z)D ﬂ|(2 ’)Dzﬁl(z r)‘vrzlsu”L’ (4.5)
hG-5  pG-h
SNTN,? ’NZ X,

Combining the two inequalities above, we obtain

11 gk BG-1 -
Py PO P24, 5 (N NN ’Nz min(1, N7")X.
N Ny TN L 14Y2 1
Summing in N, N,,
1 1.1 S PO N B
> W Nv)?’EN G Nﬂz( D NG,

2
N$N,N,SNa

Summing in N,

a1 1 11
I+—)=—-)— 5= N _
E N( “2)(2 Pl ’}mm(l,N <1,

by (1+ % )(% - l)—oz, (El - %) > 0 by direct computation and the condition
on s. Thzis shows Eq. (4.3).

By Lemrna 3.4, I D_

—h ( —ﬂa( )
1D, raTr D |y To show that the inhomogeneous deriva-

tive controls the homogeneous derivative, it suffices to prove

KVaY Vel e S 1SN ges (4.6)

for any s > 0 and r € [1, ]. Since (V,)~*|V,|® is the identity operator
for s = 0, assume s > 0. Arguing as Ref. 17, V.3 Lemma 2, there exists
U, a finite complex Borel measure on R?, such that (V, )|V, |*f =
u, = [, and this shows the desired boundedness. []

11 11
Ps=D  ~h(3-1)
PRI ), <

Remark 4.1. If one formally substitutes a; = a, = 2, then one recovers
the classical Sobolev embedding W*" < L9. Moreover if s > - 4+ —

it can be shown as in the proof of Lemma 4.1 that the contmuous
embedding H < L*® holds and that I} is an algebra.

Since the estimate we will need corresponds to ¢ = oo, we state it
as a corollary.

11 2
—C!](E—;), and a = a »

s L
Corollary 4.1. For 2 <r < o0, 5 > 5+ %

1 1 11
-1 _—mi-b
lullpo SHID, 2 D72 T allysr (4.7)

Moreover, if s > s. and p > 3, then there exists r € ( o0) such

Sose, p 3
@ 2p-D)

that s > = +— —al(— - ;).

Proof. By direct computation, s > —; + L
if )

- al(% - %) holds if and only

s—5, >a|(%—— —)

The conclusion follows from a straightforward computation. []
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Remark 4.2. The Littlewood-Paley decomposition can be viewed as
a vector-valued operator T/ = (Py[f)ye,z defined on S, the class
of Schwartz functions. For ¢ = 2 and r € (1,), T L'(R?) —
L7(R?;1>(2%)) is bounded, a consequence of T being a Calderén—
Zygmund operator (CZO). However for « # 2, T is not a CZO. To see
this, consider the integral representation

Tf(x,y):f/K(x,y;X’,y’)f(x',y’)dx'n’y’, K(x,y;x", )

=(yx—x"y =V Dyes.

for f € S. If T defines a CZO, then K obeys a decay estimate of the
form

2 2.
1K Gy 2,z S (x =217+ 1y =y )7
In particular, for x =x" =y =0 and y € R,

(Y 1dn OO < 2,

Ne2k

and therefore |<f)N((}, »| = N'FE \&,(O,Nﬁy)\ < |72, or equivalently,
v -2

1,00, s N7y, for every N € 2%. By taking N — 0+
for @ € (0,2), we obtain z,ﬁj((), y) = 0 for all y € R\ {0}, and thus

qﬁl((), 0) = ff d(VEE + |p|*)dEdn = 0 by continuity, a contradiction. A
similar argument holds for « € (2, ) by taking N — co.

In the scaling-critical regime, the || - norm is controlled by

i

Ly L=
the Besov-refined Strichartz norms. The restriction p > 3 in
Theorem 2.2 is due to the loss of derivatives in the Strichartz estimates
in Corollary 3.1. In fact, the restriction p > 3 seems unavoidable even
in the sub-critical regime since the only Strichartz estimates on the
inhomogeneous term without any derivative loss occurs when (4,7) =
(c0,2). The proof of the following lemma is adapted from that of Ref. 4,
Lemma 3.5.

Lemma 4.2. For p > 3, let (g, r) be admissible and 2 < q < p — 1. Then,

!
1
LiEf Le

—1—
flu Sl Ml %0

arD S0

In applying the Strichartz estimates on the nonlinear term, we need
mixed-derivative analogues of some well-known nonlinear estimates on
the power nonlinearity. Modifying the proofs of Ref. 8, Lemma A.8,
Proposition A.9, we have

Lemma 4.3. For k € I, let F € C} "(C:C) and F(0) = 0 where C is
identified with R>. For any s € [0,k], if u € IT: N L*, then
IF@ll s Skafiupeo Nellprs-
If F(u) = \u|”’luforp > 1, then for any s € [0, | p|] for p not an odd integer
or s € [0, 00) for p an odd integer,

-1
IF@N s S5 pa Ntllpoo el gys- (4.8)

If F(u) = [ea| P! for p > 2, then for any s € [0, |p| — 1] for p not an odd
integer or s € [0, o0) for p an odd integer,

—2

IF @ 115 Sspar Nl llullgys- (4.9)
The proof of Lemma 4.3 is shown in Appendix. Since Lemma 4.4

can be proved similarly, we omit its proof.

Lemma 4.4. For s > 0,

17 ellis Ssa 1/ Nazllglio + 11 Lol g -
fordl f,g € Hn L.

As such, the analogue of the Leibniz rule in Sobolev spaces holds
in anisotropic Sobolev spaces as well. In relation to the Kato-Ponce
inequality, it is of independent interest whether the Leibniz rule holds
in the L”-based anisotropic Sobolev spaces when p # 2.
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5. Well-posedness

This section is devoted to the proofs of Theorems 2.1 and 2.2.
Moreover global well-posedness for s, < “7' is discussed.

Lemma 5.1 (Persistence of Regularity). For 0 < s; < s, and R > 0,
Bp ={u : |lullys» < R} is complete under || - || ys; -

Proof. See Ref. 4, Lemma 3.2 and Ref. 9, Theorem 1.2.5. By Lemma 3.4,
W, is complete for s > 0. Moreover, it is reflexive for r € (1,00). []

Proof of Theorem 2.1. Let I = [0,T] for T > 0 to be determined.
For s € R that satisfies the hypothesis of Theorem 2.1, there exists an
admissible (g, r) such that ¢ > max(p—1,2) where r is as in Corollary 4.1.
We wish to show that

t

Tu=U(bu —f,u/ Ut — ) u(eH)" " utat' (5.1)
0

defines a contraction on X*. From Eq. (3.11), the linear estimate follows
immediately:

||U(f)“0\|q';, " “U(f)“n”S‘j‘,u) 2 el s -

For the nonlinear estimate, use Eq. (3.12) and Lemma 4.3 to obtain

i
—1 -
I [ v O e e 1l
0 = (5.2)

—1
Sl s, .
el

By the Holder’s inequality in 1 and Corollary 4.1, the RHS of Eq. (5.2)
is estimated above by

0+ p—1
ST |ull”;

() p-1 0 P
Nl gz, g € TNl el sy S T el
re -

T Lee
Hence by taking T > 0 sufficiently small such that T‘)+||u0||‘;;;l < 1, we
have I' : 2 — Q where @ = {ue X* : ||u||ys <2||lugll s }- Showing that
I defines a contraction on £ follows estimates similar to the ones we
have done previously. It should be noted that the contraction is proved
on £2 equipped with the || - || yo norm, which is complete by Lemma 5.1.

-1 -1
I7a = Follyo S M= 1o ol 2
S NQuP + jo)P Du—o
Sl + oDl olll sy

—1 —1
(e N R P
el el

0+ p—1 p—1

ST ) + 10l e = ollge 12
0 -1 —1

ST (lulles + ol Mlu = ollxo.

By taking T < 1 depending on ||ug|l;7;, I is a contraction in (&2, ||-|| xo),
and therefore there exists a unique fixed point in £.
To show that the solution map is continuous, let uy,u,, € H? for

5

n € N with u, T’;> uy and let u,u, be the solutions corresponding
to uy, ug ,, Tespectively. Since the time of existence depends on the H:-
norm of data, there exists T > 0 such that u,u, € X* for sufficiently
large n. Then by Corollary 3.1 and the triangle inequality,

-1 -1
Nl =ty l[xes 5 Mty = st ll gy + Wael ™™ a0 = ety |7y [ 1 -
By the Mean Value Theorem and Lemma 4.4,
—1 —1 —1 —1
a7 0= a7 L gz S Nl a7 Ol
t T
-2

—2
IR g

a2l

Nell = 113
+ Motz )l =yl
1
0+ Pl p—1 P2
ST (Ml + el +

—2
o 5 s+ g ) ) =
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Hence,
llu =ty s < Cyllag = g ol g + CoT Ml = | s,

where C, depends on |luy|l ;. By shrinking T > 0 if necessary, we
obtain

[l =yl xs < Cllug — g pll s

and the claim follows. []

Remark 5.1. Note that in the proof, it is assumed that s € (s,, |p]],
for p not an odd integer, to obtain a unique solution in X* whereas
the assumption strengthens to s € (s, |p] — 1] to prove the continuous
dependence on initial data.

Proof of Theorem 2.2. By the contraction mapping theorem, the
existence of a unique solution is obtained in X°¢ where (¢.r) is as
Lemma 4.2. To provide the main ideas of the proof, let I" be as Eq. (5.1).
By a priori estimates

Il % Naolge + ol o Il
”r“”_g‘f(]) ~ HUU)“()HS S + ”“”q 7((‘,)” ”pif “
T > 0 is chosen such that ||U(t)u(,\|5n(,) ¢ where ¢ ~ ||u(,|\ ¢ and

€ =€(p,q,a;,a,) > 0. Then, it can be shown that I defines a contractlon
on

= lwe X flullge gy S ol e Nl gpery S € (5.3)

where the implicit constants depend on p, g and the constants from the
Strichartz estimates, which depend on «a|, a,. The rest of the argument
is standard, and thus we omit it.

To show small data scattering, observe that there exists § =
8(p.g.ap,ay) > 0 such that whenever ”“DHH < 6, it follows that
”(J(r)u()‘l‘s"L (I0,T]) HUU)!"()HSTL (R) Hu()HH < e Taking T to be
arbl[rar]ly large u extends globa.lly in tlme Argumg as Ref. 4, Theorem
1.3, it can be shown that lim,_,,  U(-tu(f) =: u,(a) is convergent in
H,‘:‘ from which Eq. (2.3) follows. []

In the rest of this section, it is shown that the finite energy solution
can be extended globally in time under some hypotheses. Let a = zaﬂ
o
In Eq. (2.1), the derivative terms are controlled if u, € H,* . The second
term, or the nonlinear energy, can be controlled by the Gagliardo-

Nirenberg inequality for mlxed derlvanves By Eq. (5.4), the nonlinear
a a4l
ﬁ’ or equivalently if 5, < & >

energy is finite for u, € H,, ifp<

Lemma 5.2 (Gagliardo—Nirenberg Inequality). Let s > 0, 1 < p < g < o
and 0 < 0 < 1 satisfy s0 = (1 + 5)({7 - %). Then,

0 1-0
ull;qo < ull® ull; .t (5.4
Ml s N,

Remark 5.2. The defocusing nonlinearity (x4 = 1) 1mmedlate1y ylelds
global existence by the conservation of mass and |[||V,|2 u(®|;2 <

v Elugl.

In the focusing case (4 = —1), however, the global existence of
solution is not expected for every data, as it is the case for the classical
NLS. For instance, the focusing cubic NLS on R? is L’-critical and it
is known (see Ref. 18) that this equation is globally well-posed for
uy € H' with |luy|| 2 < ||§]l ;2 where ¢ € S is the ground state solution
to the (appropriately scaled) PDE

Ay +y’ =y (5.5)

We use the Gagliardo-Nirenberg inequality for mixed derivatives to
a

bootstrap the local theory to the global theory in H,2 .
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Corollary 5.1. Consider the focusing Eq. (1.1) and let p,ax = zaﬂ

If(l’—l)(—
If(p— 1)(— —) =2, then there exists C = C(p,a;. @) > 0
o

such that whenever |uyll;2 < C, the HE
(p— 1)~ + =) > 2, there exists E| =
1 2

satisfy

—) < 2, then the solution exists globally in time for
any uy € H

-solution exists for all t. If
E|(p.aj,ay) > 0and e = e(p, a, ay)

a
E,, the H,?

such that whenever ||u;|| -solution

"

a

<eand 0 < E[uy] £

exists for all 1.

Proof. By the mass and energy conservation,

@y
Vel ull

2
2= 2E[ugy] + II“”U’“

o (5.6)
( ;‘i‘g) 5
”“']”LZ ),

where C > 0 is by Lemma 5.2 and § > 0. If (p — 1)('Il
1

< C(Elug] + |||va\"71uu "
+ al?) < 2, then
IHVal%lu(r)ll P is bounded in time, and therefore the loca_l theory for
any u, € H,> can be iterated with uniform time steps. If (p — 1)([%1 +

al) = 2 and |luy||,2 is sufficiently small depending on p,a,.a,, then

[1V, |71u(r)|| 12 is bounded in time, and hence the global existence of
solution. Lastly assume (p — l)(— —) > 2. Observe that Eq. (5.6) is in

the form
X < C(Elugl + X llug%,), (5.7)
where x = x(1) = |||V, |a7lu(t)||2 and y > 1,6 > 0. Let f(x,y) =

C(y+xr ||u0||’5 ). By direct computation, f, as a function of x, coincides
tangentially With the 1dent1ty at

(030 = (€T T, T 7€ 7T = Dl 7).
1

T o-ner 2 o
Let € = (Cy) 71" and suppose |lugll2. 1|V, 2 4yll;2 < €. The
smallness assumption of u;, implies

a2 2

x(0) = 11741 % w12, < € < xq.
and moreover

Yo =€y 'y = Dxg > (Cp) 'y = De? =2 E((p.a).

Hence the derivative ||\Va|71u(r)||Lz is bounded in 1. []
6. Regularity in the dispersion parameter

This section is devoted to the proofs of Theorem 2.3 and
Proposition 6.1.

Proof of Theorem 2.3. Denote U, (1) = e "I&"+1") and similarly
for Uy (t). Let o = o(&, 15, @) = (1 + & + |n|“)%. Since U, (1), U, (1) are
isometries on H; and by the algebra property of I (see Remark 4.1),
Lemma 4.4, and the Mean Value Theorem, we have

-1, —
el =107 0l 15 S pisa Uailes + N0l = 0l s (6.1)

It thus follows from the standard semi-group theory that Eq. (2.4) is
locally well-posed in IT;.
Let € > 0 and consider the difference equation:

1
W (t) — u® (1) = U, (Dt g — Uy (Dt qr — ipt L ( U,(t — r’)(|u“(r’)|”"u"(r’))

— U= O @ ) ar
The linear contribution can be estimated above within e for |a; — a{ | +
|a, — a}| sufficiently small. By the triangle inequality,
([T (Dt = Ugr (Dt o0 “H; <|[(Uy() = Uy (t))“ll.a”H,‘:
+ 1 Uqr (Dttg 0 = tig )|l
= U (1) = Upr it g Nl g + Nt ¢ — thg 0 15+
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Note that
(U, (1) = U g gl g5 < Tllew€, Moty 2k + 2ody N 2k

where w(é,n) = ||&" - |§|"'I + )\n\‘@ - |n|"; and K C R? is taken
sufficiently big depending on e and u,.
The nonlinear contribution is estimated above by

] Wt = 1) = Uyt = DA u (WYl g’
0

1
— —1
# [ M = O g
(1]
=I1+1I.

Observing that \u“(t’)\"flu"(r’) € C([0,T]; H}) by the algebra property
of I}, it Uy (1) f()= U, () f (1), as (a:,a;) — (@), ay), in I} uniformly in
[0,T] for every f € C([0,T]; H}), then I < €T for |a; - a’ll + |ay — “:’g|
sufficiently small depending on T and f = |u*|”'u®. To show this
hypothesis, we have

I(Wa ) = U (D F DI,
o 2 o o 2 2
< 2//(|€—Ir\f|“l _ ol |+ le—nm\ 2 _ it 2| )02|f(1)| dedy

= 4//((1 — cos 1] — [¢") + (1 = cosu(ln|” = [|")) )?| I ddn.
It suffices to show

lim //(1—cosr(|§|“1—\§|"i))62\ﬁ?)\2d§dq=: lim I77 =0,

7
@) —a) a)—a

uniformly in ¢+ € [0,T]. For n € N, define &, = En(a; ) to be the first
positive & such that

1— cosT(JE[™ — &) = L.
n

Define S, = [-£,.£,]° x R, C R%. Then,

”f”L;’,"EmTIH; .,
111:]/ +// < —'+2[f 2170 dédn.
S¢ Sy n Sy

Fix N € N such that the first term above with n = N is bounded
above by e. To show that the second term is also bounded above by

e uniformly in ¢ € [0,T], define Fy(n) = ‘JSN az\f/(?)lzd‘g'dn. Since
IR0 Fyl < | o7 = Fl- A+ 7Ghdzan
Sn

<2f sz lFU) = £z
Y eln.T]
and limg

o' —a, Fr 1) = 0 pointwise by the Dominated Convergence
Theorem, the claim follows by the Arzela—Ascoli Theorem.
As for the term 7, the argument leading to Eq. (6.1) yields

—1 rop=1 —1 fop—1 I
L T o B PP L e T o [t P2
By the Hélder’s inequality,

t

/
up) [ WO = Ol
« Jo

< gl ex (Ca — Dllu”! )
S il exo( Cato = DI, o

a’ -1
s+ 1

—1
IT < (il
'e10.T] 'ej0.1]

1
x / () - @l gt
0

for all a}, a; with |a; — a]| + |a, — )| sufficiently small where the last
inequality follows from applying the Gronwall’s inequality to Eq. (2.5)
with C(a) > 0 from Lemma 4.3.

Therefore for every ¢ > 0, there exists 5 > 0 that depends on
€, 5, pay, y, T, 1y, such that whenever |a) — o] |[+|a, — af| < 8, it follows
that

1
, . ,
@) = u @)l s S €1+ T) + [lug o177, / (@) = u ()| s it
@« Jo

and the desired claim follows from the Gronwall’s inequality. []
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While energy estimates in Sobolev algebras on a compact time
interval is sufficient to keep u*(1) — u¥' () small for |, — a)| + |ay — af
small, this method based on the Gronwall’s inequality fails to capture
the oscillatory nature of dispersive phenomena, and thus it is unlikely
that the approach in Theorem 2.3 would extend to T = o uniformly in
time.

In the following discussion, let a; = 2 for simplicity, and so « =
2'1;"'2 = a,. We utilize Theorem 2.2 to illustrate the pivotal role played by
phase decoherence in the long-time dynamics of Eq. (1.1) for different
dispersive parameters. More precisely, there exists a non-trivial datum
¢ such that u® [¢]1(2) does not converge to u*[¢](r) uniformly in 7 € [0, c0)
as o' — « where the notations u®, u® are as Eq. (2.4). Fora=2, p=3,
note that the smallness condition (formally) given by Theorem 2.2 is
in L2, which is consistent with Ref. 18, Theorem A.

Proposition 6.1. Assume the hypotheses of Theorem 2.2. Then there exist
R = R(a) > 0and ¢ € S\ {0} such that whenever o’ € (0,2]\ {1} satisfies
la" —a|] <R, u” [¢p] exists globally in time and scatters to free solutions in
L?. Furthermore,

. ’
lim lu® = u* || oo ;2 myp2y > 0. (6.2)
a’'—a T

Proof. For «¢ € (0,2) \ {1}, the implicit constants obtained in
Lemmas 3.1-3.3, 4.3 and A.1 and Corollary 3.1, call them C(a), are
locally stable in « in the sense that there exists R = R(a) > 0 sufficiently
small such that if |« — «'| < R, then C(«') € [%,ZC(@]; this R > 0
cannot be taken arbitrarily large, since certain estimates (for example,
see Eqgs. (A.3) and (A.4)) blow up as «’ tends to zero or one. For « = 2,
the same conclusion holds observing that lim, ,, C(a’) < co and that
the aforementioned lemmas with @ = 2 hold. The local stability of
implicit constants implies that if « € (0,2] \ {1}, then there exists
8, > 0 such that whenever sup, .|, ./ |<z \|¢||H_,f(,,:) < &,, solutions to
Eq. (1.1), with the dispersion parameter (a;. az)a: (2, a') and the datum
¢, exist globally in time and scatter to free solutions in H;,‘(",), and
therefore, in L. Let 0 < |a —a'| < R and denote u,(a),u,(a’) € L? by
the corresponding asymptotic states. Then,

lla® (@) = Uy O (@)l 2. 14 (1) = U (Dt (@)l 2 ——= 0,

where [lug(a)||;2 = |lug(@)]l2 = |I¢]l;2 by the mass conservation. By
the triangle inequality,

@) = u D)l 12 > (U0, (@) = Uy (D (@) 12
= (e (1) = U, (Du (@)l 12
+ 16 (1) = Uy (g (@) 2)-
From the identity
U (D y (@) = Uy Du (a5, = 2018117, — 2Re(U, (D (@), Uy (Duy (o)),
Eq. (6.2) follows if
lim (U, (01 (@), Uy (D1, (@) = lim ff e )i @) - e, (@
=0,
which in turn follows from
lim I(7) := lim / emittnt=Ini) F(mdn =0,
for all f € C*(R) by density. Let ¢(n) = |n|* - |n|“'. Since
&' (m) = sgn(m)alnl™" =’ |n|” ™). ¢" () = ala= 7|2 ~a' (' = DIn|* 2,
6.3)

1
the critical points are 0,+5, where 5, := (%’)E’; note that ¢"(0) is
undefined whereas ¢"(5,) # 0 for every a’ # a. From Eq. (6.3), there
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exists v = v(a, a’) € (0, "'—2‘) such that SUP,ci0.v] |¢"(n)| = 1. Define smooth
bump functions taking values in [0, 1] as follows:

1 .pef0,2]
y(n) =
0 .5 €(v,),
1 . € [v.2n,]

wy(m) =40 A €10, 3)U (4, )
L=y () .n€l35.v]

By the Van der Corput Lemma,*

ol —

Sa,a’ ‘Ir

| / e~y () f ()dn

0

By the method of stationary phase,

_1
Sa,a’ ‘tl .

4n,
[ ey () f(n)dn

Lastly by the method of non-stationary phase,

|/ DL~y () =y () F(m)dn| Syar s 11175, for all k € N.

0

This shows ™ e*”d’('flf(n)dnl—» 0 and the integral on (—co0,0] can be
shown similarly by the change of variable # = —. []

Remark 6.1. In Eq. (1.1), certain regimes of dispersive parameters are
of interest. Our study contains a; = a, as a special case. Since the non-
dispersive solutions (¢; = a; = 1) do not exhibit small-data scattering
(see Ref. 7) whereas dispersive solutions for a; = a, # 1 do (see Ref. 4),
it is of interest to ask the same question when a; = 1, a, # 1. It is also of
interest whether the ODE limit (a,a,) — (0,0) reveals any interesting
features of Eq. (1.1) for small «;. Lastly we remark that although the
implicit constants of the Strichartz estimates possibly blow up as a; — 0
or 1 (for example, see Egs. (A.3) and (A.4)), the measure of non-locality
(or the loss of derivatives) measured by g, =1 — % is smooth in a;.

7. Conclusions

To establish the local well-posedness theory of mNLSE, the func-
tional framework that respects the spatially-anisotropic scaling symme-
try was developed. In doing so, the standard Littlewood-Paley theory
based on smooth projections was extended to non-smooth projections.
It is of interest to study the long-time and blow-up dynamics of mNLSE
corresponding to large data. It is also of interest how our work ties back
to applications to nonlinear optics and photonics.
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3 Though ¢ is not smooth at the origin, the lemma holds for our particular
phase function.
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Appendix

Proof of Lemma 3.3. Define a smooth bump function ¢ € [0,1]
that is identically one on supp(¢;) and compactly supported in the §-
neighborhood of supp(¢,) for small § > 0 so that supp({) C B(0,¢)° for
some ¢ > 0. Define ¢y (&, 7) = % #) and denote f = Pyu. Since
J =¢nf, wehave f = N'T2f(Nx,Nzy) = f. Hence by the Young’s
inequality and chain rule,
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Since (&2 + |n|“)% ¢ has a compact support on which it is smooth in £ and
sufficiently regular in 5, |V, |°¢ obeys an estimate of the form Egs. (3.4)
and (3.6), and thus |[|V,[*C||,1 <, 1. Conversely,

~s
1Pyullie = NV IV " Pyull e 5 NIV Pyullye

Similarly, define ¢ to be a smooth bump function identically one
on (|&] € [%,2]} C IR and supported in {|&] € [i,4]|. Let £y, (&1.6) =
¢ (%). By arguing as above, we obtain the second estimate. []
Proof of Lemma 3.4. The claim is trivial for s = 0, and so assume
s > 0. From the definition of Gamma function,

s s «® . 5
A= F(“—}“/ e,
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for A> 0. For A= 1+& + 5|7,
5 ® s = @
A+& 4T =)™ [ i ar,
0

Since it is known that the inverse Fourier transform of ¢=!1" gfor O<a<
2 is non-negative, we conclude G,(x,y) := F~'[(14+&>4+|7]|%) 2 1(x, ») > 0,
and therefore

Gl = // G,(x.y)dxdy = G,(0.0) = 1,

and the desired estimate follows from the Young’s inequality.
To show completeness, the claim is immediate for r = 2 by the
Plancherel Theorem. For r # 2, if { fal2, is a sequence such that

Ir
[l /o= fullyrsr ——— 0, then there exists F € L" such that (V,)* /,——
a n.m—oo n—oo

F. Since (V,)*F € L" € S’ by Eq. (3.10), the Cauchy sequence
converges to (V) F in W;". [J

It is known in Ref. 19, Proposition 1 that the frequency-localized
analogue of Lemma A.1 holds for ¢; = a,. When a = 2, the Strichartz
estimates (Proposition 3.2 and Corollary 3.1) follows immediately since
the embedding BY, < L’ is bounded for r > 2. When « < 2,
however, it remains to show that such Besov refinement remains true.
Instead we directly show the analogue of Ref. 19, Propositionl by the
standard oscillatory phase argument where the integral is on the entire
Fourier domain. More generally, it is of independent interest whether
the dispersive estimates in Ref. 19 could be extended to non-radial
dispersion relations.

Lemma A.1. Let u € R. There exists C = C(a,,a,) > 0 such that

=P (I+ip) —=Pa(1+iu) —
D7 DY ) 1] oy < I sy a1

Proof. Without loss of generality, we prove the estimate at r = 1. By
showing

e
//e HIE11+n1%2 PHCE+90) | | =1 O+ g =P g € 190 (RD),

the proof is immediate by the Young’s inequality. The integrand is a
product, and therefore it suffices to show

K(y) := / e In* iy | =AU+ 4y € L2 (R),

fore € (0,2]\ {1} and f=1- g Since K is an even function, let y > 0.
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Casel: @ > I.

Suppose y < 1. Since f# < 1, the integral on [—R, R] is bounded
uniformly for all y € R by the triangle inequality where R > 0 is some
constant to be determined. Integrating by parts,

o o —p1+ip)
/ e—iqa+iyr,-n—ﬂ(l+iu)dn — _f Eff,iﬂﬁ»iynan( - n l )dn
R R i(—an™! +y)

+o(

There exists R > 0 sufficiently big such that whenever » > R,

(A.2)

o)
| —aRe! +y| /-

| —an™ +y| > aln|*" = |y] > 71",

and therefore the boundary term is estimated above by Rl =
R™2 = O(1). As for the integral term, note that

—p(1+ip)
()| 2
_ﬂncrfl +y
and therefore the LHS of Eq. (A.2) is bounded in y. Similarly the integral
for K(y) on (—oo, —R) can be shown to be uniformly bounded for |y| < 1

under the change of variable  — —g.

Now suppose y > | and let @, (n) :=
[ ¥®m A0 4y Note that

P lan) yhta=2

—(a+p) _ ,=(1+3)

sn =1

[ —an*!+y|

| —an==t + y*

—% + 1 so that K(y) =

a—1 _ a=2
() = _alnl y-fgn(n) 1 @) = - ala ly)\n\ _
Define
y L L L

5()=(E)“‘1y E =2 w 1§, & =2a-1&,. (A.3)
By direct computation, one can verify

1 1
D (&) =0, D) (&) = —aaT(@— Dy =1. (A.4)

In particular, &, is a non-degenerate critical point. We now estimate
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where { € C®(R) is a smooth bump localized around &, defined by
{(n) = w(*=22) where a smooth bump function 0 <y < 1 is given by
50

1 1
, 1 g el-1+27771,251 — 1]
w(n')= _a .
0 .9/ <—-142 a1 ory >2a1 —1.

1=
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By inspection, K(y) = I + I1 + I11 + I'V. Note that { depends on y
whereas y depends only on a. Changing variables and applying the
method of stationary phase as Ref. 15, Proposition 3, p.334, * we obtain

I= / P |y Py (120 ;f“ )dn
0

- 1+
=5()/el@y(émm”|‘fu+§0’1'\ Py Y

N 1 1 3
= Ce Py ()& | () T2y +0,077)

as y — oo for some C > 0. By Egs. (A.3) and (A.4), the dominant term

is of order . This shows I = O(1). To show I = O(1), we use the

Van der Corput Lemma.'>> 4 6, p-334 Gince tb; > % and is monotonic on

# In the support of y, @, is smooth, and therefore the method of stationary
phase can be applied.
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[%,é,] with £(&;) = 1, we have

Sl
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Hence, 17 = O(1) and 11 = O(1) can be shown similarly.

Finally, IV can be shown to be O(1) in a similar way. An extra care
is needed due to the singularity of |#|™#'**) and the non-smoothness
of @, at the origin. This can be done by splitting the integral in regions
(—oo,—1JU[-1,T]U[I, %‘)U[Zﬁz, o). More precisely, one applies the Van
der Corput Lemma on the first, third, and the fourth region, and the
triangle inequality on [—1,1] using f < 1.

CaseI: O<a < 1.

As before, the integral on # € [—¢, €] is uniformly bounded in y € R
where ¢ > 0 is a constant to be determined. For the integral on (—co, —¢],
change variables # — —# to obtain

b oo —p(1+
/ e—inﬂ_fyr;"—ﬂ(l-#fu)dn — _/ E_mﬂ_,ma"( . n fl+ip) )dn
€ € '(—m?""' - ,V)

+o(

, (A.5)
€
a1 )

Since | —an® ' —y| = an®! for all # > 0, one can reason as in the case

a > 1 to show that the integral on (-0, —¢] is bounded in y € R. It
remains to show that the integral on 5 € [e, ) is bou.nded in y.

First assume y < 1. For 5 € D = (e, (“y)a I)U(( )all 00), it
follows from the triangle inequality that | — mf“" -y 2 5’7” I and
therefore the integral on D is bounded in y < 1 by the integration by
parts argument as in Eq. (A 5).

1
Onn € D = (( ))r- (“))a 1), the mtegral is estimated by the
method of stationary phase. For &, := (;)a—l , define ¢(n) = w(Z 5")
where a smooth bump 0 <y <1 is given by
1 1
1oy elDe 1L, (D)= - 1]
w(n') l >
0 ,p <2« —]01'11'2(%)"*1—1
Then,

/ e~ +')’?1n—ﬂ(l+'ﬂ)dn=/ efi‘D,i(ﬂ)n—ﬂ(l-HH)g(n)dn
D, D

+ / e MR (L — ¢ ())dn
D,

= A+B,
where
A= i D) 1= —% + %
By changing variables / = Z fﬂ,
(%)ﬁ—l - ’ .
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as A — oo, Or equ1valently, as y — 0+. On the other hand observe that

ifn € D \l( ya-t 15(,,( )a-1&)], then an™' —y| = n”‘ I, Integrate by
parts to obtam
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For y > 1, it suffices to show HHO |K(y)] < oo. Since a < 1, the

critical point & — 0 as y — oo. Hence it suffices to show that the

integral for K(y) on € [1,00) is uniformly bounded in y > 1. Since
a

d,,(—”T +1) = —irf’*l + 1 is monotonic and is bounded below by % for

1
n > 27« 1§, it follows from the Van der Corput Lemma that

o o
|/ e~ +1Wnﬂ(l+!u)dn| < y—l / n—(ﬂ+|)dn < y—l_ 0
1 1

Proof of Lemma 4.3. If F is of the form Eq. (4.8) or Eq. (4.9), then
Fe C{‘D:“ for k = |p] or k = |p] — 1, respectively; moreover, if p is an
odd integer, then F is a multilinear combination of « and u, and hence
smooth.

For s = 0, the proof follows from the Hélder’s inequality since F is
locally Lipshitz and F(0) = 0. Therefore assume s > (. By the Plancherel
Theorem,

IF@Ily; = 1Py F@ll 2 + (Y, N*I[Py F@)2,)'72.
Nzl

(A.6)

The low frequency component reduces to s = ) case since

1Py F@l 2 S NFWI 2 < ull 2

Let N > 1. Since ||ull e, | Pyitll = = O(1) and F is locally Lipschitz,
we have a pointwise estimate

[Fw) = F(Pyw)] S 1P yul,
and taking Py both sides, followed by taking the L? norm,
1Py Fll ;2 S 1Py F(Poyt)ll 2 + [ Popull 2

Using the Cauchy-Schwarz inequality on the second term,

D ONEPullz = Y, Y NPyl

N>1 Nzl N'>N

2s 2
Y Y NEIPyull,
N'>1 1<N<N'

2 (NI Pyrull;, 5
N'=1

WA

2
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Now we wish to show that the first term is summable to a term
controlled by ||ul| H- First, assume s = k. Then,
Vol F@ll 2 = 16 + 1nl ) F @l 2 = IE + 1l 2 F Gl 2

< MEFF@ 2 + il 2 F @l 2

S 105 F@ll 2 + 1D F@l 2

S l0ull 2 + Null s S llall -
By Lemma 3.3 and the triangle inequality,
Py PPyl 2 S NTHNIV, PPyl 2

< NH0EFP_y 2 + D2 F(P_yul ).

Let Q; = P, and Qy = Py if N > I. Then by reasoning as Ref. 8,
Proposition A.9, we obtain

05 PPyl 2 5 Y, (NDEINQ yrull 2.
I<N'<N

For the fractional derivative,
gk gk
1Dy F(Peyilip2 S ID2EF(Poywlllp2 S I Peyull 2,

< 2 lovull s s Y (N IOyl

1<N'<N 1<N'<N
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and therefore combining the x and y derivatives,

IPy F(Poywll 2 SN Y (NIQyull,2
1<N'<N

1/2
(X N0, )
I<N'<N
By taking ¢ > 0 sufficiently small depending on s. k, and by Eq. (3.1)
and the Cauchy-Schwarz inequality,

1/2
(X Ve FPayll,) " £ llallyy-
Nzl

For F(u) = |u|’"'u or |u|P~", it can be verified that the implicit constant
is of the form Cll“ll’;: or C||u||‘;3 where C = C(s,p.a) > 0. [

Proof of Lemma 5.2. Since Eq. (5.4) is invariant under u(x,y) ~
,uu(f,lz—ﬁa) for u, A > 0, we assume without loss of generality that
”””Wj*” = ||lu||;» = 1. By the triangle inequality and Lemma 3.1,

lulle < )

a+3)i-1) 50
IPyullps S X N2 5T Pyull e = Y Nl Pyl .
Ne2Z N N

Since [[Pyullpe S llullpe = 1 and [|Pyullpe =
N7 lullyysr = N7 by Lemmas 3.2 and 3.3,

NPy ValPullpe S

~

lullze £ 3 N*min(1, N7 < o0, [
NeZ
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