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Abstract

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic in over 200 countries and
territories. Analysis of X-ray imaging data can play a critical role in timely and accurate screening and fighting against
COVID-19.
OBJECTIVES: Supervised deep learning dominates COVID-19 pathology data analytics. However, it requires a
substantial amount of annotated X-ray images to train models, which is often not applicable to data analysis for emerging
events.
METHODS: The proposed model with two paths is built based on Residual Neural Network for COVID-19 image
classification to reduce labeling efforts, where the two paths refer to a supervised path and an unsupervised path,
respectively.
RESULTS: Experimental results demonstrate that the proposed model can achieve promising performance even when
trained on very few labeled training image.
CONCLUSION: The proposed model can reduces the efforts of building deep learning models significantly for COVID-
19 image classification.
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1. Introduction

Coronavirus disease 2019 (COVID-19) outbreak has led to
the heavy losses of the world’s economy and life. To reduce
the spread of COVID-19 and the death rate, it is essential to
detect the disease at the early stage with effective and timely
screening/testing and place COVID-19 infected patients in
quarantine immediately [1, 2]. Artificial intelligence (AI),
an emerging technology for medical imaging processing,
has actively contributed to the fight against COVID-19 [3].
Compared to the traditional imaging workflow that heavily
relies on human interpretation, AI enables more safe, accurate
and efficient imaging solutions.

Recent AI-empowered applications in COVID-19 detec-
tion include the dedicated imaging platform, the lung and

∗Corresponding author. Email: xidong@pvamu.edu

infection region segmentation, as well as the clinical assess-
ment and diagnosis [4–6]. Moreover, commercial products
integrate AI to combat COVID-19 and demonstrate the capa-
bility of the AI technology [4]. All of these examples show the
tremendous enthusiasm cast by the public for AI-empowered
progress in the medical imaging field, especially during the
ongoing COVID-19 pandemic.

Regarding the COVD-19 research based on AI, COVID-
19 image classification has become more and more attractive,
which is to separate COVID-19 patients from non-COVID-
19 subjects using the features extracted from medical images.
Specially, supervised deep learning such as convolutional
neural networks (CNN) has been very popular in this
research area. For example, Wang et al. proposed a 2D
CNN supervised model to analyze delineated region patches
to accomplish classification between COVID-19 and typical
viral pneumonia [7]. Similarly, Xu et al. utilized candidate
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Figure 1. Framework of the proposed semi-supervised learning. Input x is the medical image. Labels such as y are
available only for the labeled inputs. Shared ResNet will evaluate the input to obtain the low-level representations as
inputs to supervised ResNet and unsupervised ResNet, where these three ResNets are built with residual blocks
and N , M, and K are numbers of residual blocks for these three ResNets. Then zsup and zunsup are outputs from the
supervised ResNet and the unsupervised ResNet, respectively. Moreover, zsup and y will be applied to calculate a
weighted cross entropy loss lWCEL whereas zsup and zunsup are used to calculate a mean squared error loss lMSEL,
where w the weight to different classes of samples. We jointly optimize the combined losses, where λ is the weight
for unsupervised loss. ⊕ is the short-cut connection in the residue operation.

infection regions to complete COVID-19 classification via
supervised ResNet-18 [8].

In addition, as a powerful deep learning model for medical
image analysis, UNet [9] was employed for COVID-19 image
classification and segmentation. For example, Zheng et al.
employed UNet to obtain lung segmentation and predicted
the probability of COVID-19 with 3D CNN on segmentation
features [6]. Jin et al. proposed a UNet++ based segmentation
model for locating lesions and built a ResNet-50 based
classification model for COVID-19 diagnosis [10]. Chen et
al. implemented COVID-19 classification with the patterns

of segmented lesions extracted by supervised UNet++ [11,
12]. Moreover, they employed a 2D Deeplab model for
the lung segmentation and a 2D ResNet-152 model for
lung-mask slice based identification of positive COVID-
19 cases [13]. Although supervised deep learning presents
impressive performance on COVID-19 image classification, it
requires a large amount of annotated medical images to train
models, which is not practical with respect to limited data
resources related to COVID-19, due to huge costs of labeling
medical images, and labeling noise [14].
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To cope with the lack of labels for medical images to
complete COVID-19 image classification, we build a two-
path semi-supervised deep learning model that is able to
learn on both labeled and unlabeled medical images, based on
residual neural networks (ResNet) [15]. ResNet is an artificial
neural network developed by mimicking pyramidal cells in
the cerebral cortex. It introduces a so-called “identity shortcut
connection" that skips one or more layers since stacking
layers should not degrade the network performance. With
ResNet, we implement a two-path semi-supervised learning
model that is composed of three components, namely, shared
ResNet, supervised ResNet, and unsupervised ResNet.

Framework of the proposed model is shown in Fig. 1. The
right path is composed of a shared ResNet and a supervised
ResNet while the left path consists of the shared ResNet and
an unsupervised ResNet. All data (labeled and unlabeled data)
will be evaluated to calculate the unsupervised loss that is
the mean squared error loss (MSEL), while only labeled data
will be used to calculate the supervised loss that is the cross
entropy loss (CEL). Specifically, we design a weighted cross
entropy loss (WCEL) that assigns more weight to the COVID-
19 class for addressing the data imbalance. Reducing MSEL
is to enhance the image representation while decreasing
WCEL is to enhance classification performance. We validate
the proposed model on a large-scale of X-ray image dataset
COVIDx and experimental results demonstrate the proposed
model can accomplish COVID-19 image classification with
promising performance even when trained on the extremely
limited amount of labeled X-ray images.

The contributions in this study are below.

• We propose a semi-supervised deep learning model
with ResNet through jointly training a supervised
ResNet and an unsupervised ResNet. We observed
that the proposed model can learn on both unlabeled
images and labeled images jointly for COVID-19
image classification with high performance.

• The proposed model is validated on a large-
scale COVID-19 image dataset. Experimental results
indicate that the proposed model is able to effectively
recognize COVID-19 images by learning on very
few labeled medical images, for example, less than
10% samples in the training data, which meets the
requirement of few available labeled data from the
medical domain for real applications [14], especially
for the cases at the early stage of such global pandemic.

2. Proposed Methodology
We propose a semi-supervised ResNet to address the
challenge of lacking of labeled data for COVID-19 image
classification, where the detailed framework is shown in
Fig. 1. The shared ResNet will generate a new representation
z below of input x.

z = fpooling (fResblockN · · · fResblock1(x
′)) . (1)

where
x′ = fconv(x) . (2)

fResblock(x
′) = x + fconv(fconv(x

′)) . (3)

fcov(·) is the convolutional operation. fResblock(·) is the
residual operation [15] and fResblockN · · · fResblock1(·) refers to
N sequencing residual operations. fpooling (·) is the pooling
operation. The shared ResNet introduced to the proposed
model is inspired by deep multi-task learning [16, 17],
since different tasks share a low-level feature representation
extracted from the input x. In addition, the reason for learning
low-level feature representations instead of directly using
x is that the original representation may not have enough
expressive power for multiple tasks [18]. With the training
data in all tasks, a more powerful representation can be
learned for all tasks and this representation will improve
performance. As shown in Fig. 1, we have two “tasks"
in our proposed model, namely, a supervised task and an
unsupervised task, which is similar to the framework of deep
multi-task learning. Therefore, the shared ResNet is necessary
to feed the low-level representations to these two tasks.

The output z from the shared ResNet is evaluated by two
ResNets, namely, a supervised ResNet and an unsupervised
ResNet. For the supervised ResNet, it is to learn the deep
features of labeled samples. The output zsup of the supervised
ResNet is given by

zsup = f suppooling (f
sup
ResblockM

· · · f supResblock1
(z′)) . (4)

where
z′ = f supconv(z) . (5)

f
sup
Resblock(z

′) = z′ + f supconv(f
sup
conv(z′)) . (6)

We employ the same operations including the pooling
operation f

sup
pooling (·), the convolutional operation f

sup
conv(·),

and M sequencing residual operations f supResblock(·). Moreover,
we build the unsupervised ResNet to generate another
representation of all inputs including labeled data and
unlabeled data. This representation zunsup is given by

zunsup = f unsuppooling (f
unsup
ResblockK

· · · f unsupResblock1
(z′′)) . (7)

where
z′′ = f unsupconv (z) . (8)

f
unsup
Resblock(z

′′) = z′′ + f unsupconv (f unsupconv (z′′)) . (9)

Similarly, we employ the pooling operation f unsuppooling (·), the

convolutional operation f unsupconv (·), and K sequencing residual
operation f unsupResblock(·) to build the unsupervised ResNet. Then,
we utilize those two vectors zsup and zunsup to calculate
the weighted cross entropy loss (WCEL) and mean squared
error loss (MSEL) for supervised and unsupervised paths,
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respectively. They are given by

lWCEL = −
∑

w × y × logφ(zsup) . (10)

lMSEL = ||zsup − zunsup ||2 . (11)

where y is the ground truth of the input and w is
corresponding weight. φ(·) is the softmax activation function.
lWCEL is the weighted cross entropy loss to account for the
loss of labeled inputs. To enhance classification performance
for the minority class (COVID-19 class), we assign more
weight to COVID-19 class, where during the learning
procedure the classifier will pay more attentions to the
COVID-19 class so as to reduce the learning bias that is
caused by data imbalance.
lMSEL is to measure the differences between zsup and

zunsup. Since training ResNets with dropout regularization
and gradient-based optimization is a stochastic process, the
two ResNets will have different link weights after training.
In other words, there will be differences between the two
prediction vectors zsup and zunsup that are from these
two ResNets (the supervised ResNet and the unsupervised
ResNet). These differences can be treated as an error in the
classification and thus minimizing this loss is a goal in the
proposed model, which is inspired by Π model [19].

Based on these two losses, the total loss is defined by

Loss = lWCEL + λ × lMSEL . (12)

where λ is the weight for lMSEL. Training the proposed
model is to optimize Loss on the training data. At the
beginning of training, the total loss and the learning gradients
are dominated by the supervised loss component, i.e., the
labeled data only. At later stage of training, unlabeled data
will contribute more than labeled data. These processes
are controlled by fine-tuning λ [19]. The detailed steps
for learning of the proposed model is shown in Algorithm
1. fθshared (·) is to learn the low-level features from the
medical images. Parameters of the shared ResNet θshared
include weights learned for the operations, namely, pooling
operation fpooling (·), convolutional operation fconv(·), and
residual operation fResblock(·).

After extracting low-level feature representations from
the inputs, we use fθsup (·) and fθunsup (·) to obtain higher
level representations zsup and zunsup, where zsup is used
to complete COVID-19 classification. In addition, zsup and
zunsup are employed to enhance the image representations.
Parameters of the supervised ResNet θsup include weights
learned for the operations, namely, pooling operation
f
sup
pooling (·), convolutional operation f

sup
conv(·), and residual

operation f supResblock(·) while those of the unsupervised ResNet
θunsup consist of weights learned for the operations,
namely, pooling operation f unsuppooling (·), convolutional operation

f
unsup
conv (·), and residual operation f

unsup
Resblock(·). Specially, in

the training procedure, we overcome the data imbalance by
assigning more weight wi to the minority class (COVID-19

Algorithm 1 Learning of Semi-supervised ResNet (SSRes-
Net)

Require: training sample xi , the set of training samples S,
label yi for xi (i ∈ S)

1: for t in [1, num epochs] do
2: for each minibatch B do
3: zi∈B ← fθshared (xi∈B) . shared representation
4: z

sup
i∈B ← fθsup (zi∈B) . supervised representation

5: z
unsup
i∈B ← fθunsup (zi∈B) . unsupervised represen-

tation
6: lWCEL

i∈B ← − 1
|B|

∑
i∈B∩S logφ(z

sup
i )[yiwi] . super-

vised loss component
7: lMSELi∈B ← 1

C|B|
∑
i∈B ||z

sup
i − zunsupi ||2 . unsuper-

vised loss component
8: Loss← lWCEL

i∈B + λ × lMSELi∈B . total loss
9: update θshared , θsup, θunsup using optimizer ,

e.g., ADAM
return θshared , θsup, θunsup

class) of samples. Finally, we employ ADAM optimizer to
jointly optimize the total loss.

3. Experiment

3.1. Dataset
We employ a large-scale of chest X-ray dataset COVIDx [20]
to validate the proposed model. It is comprised of 18,543
chest radiography images across 13,725 cases. Examples
of chest X-ray images belonging to normal, pneumonia,
and COVID-19 classes from COVIDx dataset are shown
in Figure 2. When we examine these examples, we can
differentiate these images in terms of features shown within
areas marked by the blue circle since we can observe some
lighter areas indicating COVID-19 infected regions in the
blue circle.

Additionally, when examining the class distribution
between training and testing data, we noticed that class
distribution of the training set is significantly different from
that of testing set. Hence we rebuild the data by splitting the
dataset into training and testing datasets that share similar
class distributions, where 70% and 30% of data are used
for training and testing datasets, respectively. The detailed
information of the rebuilt dataset is shown in Table 1 for
sample distribution.

Table 1. Sample distribution in different classes for
training and testing datasets

Dataset Normal Pneumonia COVID-19 Total
Training 6,195 6,708 75 12,978
Testing 2,656 2,876 33 5,565
Total 8,851 9,584 108 18,543
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(a) normal (b) pneumonia (c) COVID-19

Figure 2. Examples of chest radiography images belonging to normal, pneumonia, and COVID-19 classes are
shown in (a), (b) and (c), respectively. Yellow circle locates infected regions of pneumonia for subfigure (b) while in
subfigure (c) the red rectangle shape of region in the blue circle shows the potential infected areas of COVID-19.

We can observe that the sample distribution is extremely
unbalanced regarding the number of samples of COVID-19
class. This poses a great challenge for obtaining a classifier
with high performance.We overcome this challenge by the
weighted cross entropy loss in the proposed model that is to
assign more weight to the minority class (COVID-19 class)
during the training, where the details are presented in section
two.

3.2. Experimental settings

In this experiment, our proposed model performed COVID-
19 classification. The key hyper parameters for training the
proposed model are: Minibatch size: 256, Number of epoch:
50, Optimizer: Adam optimizer, and Initial Learning rate: 0.1.
They are determined by trial and error. Moreover, the details
of the model architecture is illustrated in Table 2, where
the residual block is the standard one [15]. Specifically, the
output of the proposed model contains two parts: image class
φ(zsup) and a new representation zunsup. We employ COVID-
Net1 [20] as a baseline supervised model to present the state-
of-the-art performance of COVID-19 image classification
for comparison. Furthermore, we compared the proposed
model with SRC-MT [21] that is the state-of-the-art of semi-
supervised learning since it outperformed Π model [19]
and mean teacher model [22] in the area of medical image
classification.

3.3. Evaluation metric

We applied different evaluation metrics to evaluate the
performance of our proposed model. Since our task is
a multi-class classification problem, we use accuracy,
macro-average Precision (MacroP), macro-average Recall
(MacroR), and macro-average Fscore (MacroF) [23–25].

1https://github.com/lindawangg/COVID-Net

Table 2. The proposed network architecture.

Name Description
Input Medical Images
Shared ResNet one convolutional layer, 2 residual block,

batch normalization, one pooling layer
Supervised ResNet one convolutional layer, 2 residual block,

batch normalization, one pooling layer
Unsupervised ResNet one convolutional layer, 2 residual block,

batch normalization, one pooling layer
Output image class φ(zsup) and

a new representation zunsup

Accuracy is calculated by dividing the number of medical
images identified correctly over the total number of testing
medical images.

Accuracy =
Ncorrect
Ntotal

. (13)

Macro-average [26] is to calculate the metrics such as
Precision, Recall and F-scores independently for each image
class and then utilize the average of these metrics. It is to
evaluate the whole performance of classifying image classes.

MacroF =
1
C

C∑
c=1

Fscorec. (14)

MacroP =
1
C

C∑
c=1

P recisionc. (15)

MacroR =
1
C

C∑
Recallc. (16)

v

c=1
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where C denotes the total number of image classes and
Fscorec, P recisionc, Recallc are Fscore, P recision, Recall
values in the cth image class which are defined by

Fscore =
2 × P recision × Recall
P recision + Recall

. (17)

where P recision defines the capability of a model to
represent only correct image classes and Recall computes the
aptness to refer all corresponding correct image classes:

P recision =
T P

T P + FP
. (18)

Recall =
T P

T P + FN
. (19)

whereas T P (True Positive) counts total number of medical
images matched the annotated images. FP (False Positive)
measures the number of recognized classes does not match
the annotated images. FN (False Negative) counts the number
of medical images that does not match the predicted medical
images. The ideal case of learning from imbalanced datasets
such as COVIDx is to improve the recall without hurting
the precision. However, recall and precision goals are often
conflicting, since when increasing the true positive (TP) for
the minority class (True), the number of false positives (FP)
can also be increased; this will reduce the precision [27]. In
addition, we employ confusion matrix to check the detailed
performance for each class, especially on COVID-19 class.

3.4. Experimental results
We evaluated the proposed model performance in four
steps. The first step is to examine the performance of
supervised learning baselines, which is to prove if ResNet
is a reasonable supervised model for COVID-19 image
classification. A competitive baseline performance is useful
to compare the proposed semi-supervised model in order to
present the effectiveness of the proposed model. Furthermore,
we will check whether fewer labeled data will lead to lower
performance. The second step is to comparing the proposed
model with state-of-the-art semi-supervised learning. The
third step is to examine whether the hyper-parameter
setting will affect the performance of the proposed model
significantly. Finally, we will discuss why the proposed model
cannot classify certain COVID-19 cases.

Supervised learning for COVID-19 classification.
Table 3 presents the comparison of supervised baselines built
with ResNet. We observed that ResNet (100%) outperformed
COVID-Net (100%) when comparing accuracy, macro-
average precision, and macro-average Fscore. It means that
ResNet is a competitive supervised baseline for COVID-
19 image classification. Additionally, for learning on fewer
labeled data, we only focus on the cases of 5%, 7%, and
9% labeled data since the labeled data will be very scarce
in medical domain [14] during the early stage of a global
pandemic such as COVID-19 outbreak. We observed that the

classification accuracy can be improved by increasing the
labeled data to train ResNet. Meanwhile, the performance
such as accuracy and MacroF is reduced significantly
when comparing with ResNet (100%), which demonstrates
that more labeled data is imperative for building high-
performance supervised models. Moreover, we observed that
weighted ResNet cannot improve the performance since we
might assign inappropriate weight to different classes.

On the other side, we compare their confusion matrix to
examine the performance details in Fig. 3. It indicates that
ResNet (100%) can be a promising supervised baseline model
when compared to COVID-Net in terms of the accuracies
on the normal and pneumonia classes. For the COVID-19
class, ResNet is lower than COVID-Net since COVID-Net
employed transfer learning to enhance performance.

To check the performance for each class when learning
on fewer labeled data, we present the detailed performance
with confusion matrix shown in Fig. 4. When we use low
ratios of labeled training data to train models, ResNet cannot
recognize COVID-19 images effectively, which is due to
insufficient COVID-19 labeled samples. In the training sets of
these cases, only a few of images are for the COVID-19 class.
For example, in the case of ResNet (5%), we only have three
images for COVID-19 class in the training data, which means
that most of training images are for the classes of Normal and
Pneumonia. Learning on this data will lead to classification
bias. Weighted ResNet was not sufficient to enhance the
performance, which means that even more weight assigned
to COVID-19 class is not enough to overcome the lack
of labeled samples to learn distinct features to differentiate
COVID-19 patients from Non-COVID-19 patients on X-ray
images with supervised learning.

Comparing the proposed model with state-of-the-art
semi-supervised learning. In this section, we will
examine if the proposed model is able to effectively identify
COVID-19 samples by training on very limited amount
of annotated images. Table 4 presents the comparison
of classification performance between SRC-MT and the
proposed model (SSResNet). Overall accuracies of SRC-MT
are better than those of the proposed model. However, when
only 5% labeled samples were used for training, MacroF
of our proposed model is higher than that of SRC-MT,
which indicates that the proposed model is more effective in
detecting COVID-19 samples can detect COVID-19 samples
with higher performance. It means that compared to SRC-MT,
the unsupervised path could enhance the data representation
for improving COVID-19 classification more effectively.

In addition, we examine detailed performance of each class
with confusion metrics shown in Fig. 5. We observed that the
accuracy of recognizing COVID-19 by the proposed model
is higher than that of SRC-MT, which means SSResNets can
learn more effective features from unlabeled data to recognize
COVID-19 samples. Furthermore, with the increased ratios
of labeled data, the accuracies of recognizing COVID-19
is enhanced significantly. It means that the unsupervised
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Table 3. Comparison on supervised baseline performance. ResNet is trained on different ratios (%) of labeled X-ray
images. Weighted ResNet is built by assigning more weight to COVID-19 class during training for overcoming the
challenge of data imbalance.

DL Accuracy (%) MacroP (%) MacroR (%) MacroF (%)
COVID-Net (100%) 93.98 72.70 96.05 77.33
ResNet (100%) 94.68 90.52 78.87 83.04
ResNet (5%) 87.59 58.23 58.50 58.30
ResNet (7%) 89.27 59.51 59.91 59.68
ResNet (9%) 90.10 60.05 60.44 60.24
Weighted ResNet (5%) 86.45 57.63 57.95 57.78
Weighted ResNet (7%) 88.70 59.15 59.54 59.31
Weighted ResNet (9%) 89.36 66.16 60.46 60.78

(a) COVID-Net (100%) (b) ResNet (100%)

Figure 3. Comparison of confusion matrix generated by COVID-Net (100%) and ResNet (100%).

Table 4. Comparing performance between SRC-MT and Our model (Semi-supervised ResNet (SSResNet)).

Semi-supervised Model Accuracy (%) MacroP (%) MacroR (%) MacroF (%)
SRC-MT (5%) 90.67 61.08 60.75 60.59
SRC-MT (7%) 89.82 89.92 74.13 78.95
SRC-MT (9%) 92.79 93.61 79.15 84.15
Our model Accuracy (%) MacroP (%) MacroR (%) MacroF (%)
SSResNet (5%) 84.95 61.18 66.76 62.41
SSResNet (7%) 84.21 63.67 67.85 62.83
SSResNet (9%) 81.79 59.34 70.99 59.19

path can enhance the representations of images to improve
the classification. In other words, unlabeled data contributed
to increasing the COVID-19 classification performance
significantly by enhancing the image representations with the
unsupervised path of the SSResNet.

Hyper-parameter setting. In addition to examining the
performance comparison between the proposed models and
baselines, we have to figure out whether the proposed model
is sensitive to the hyper-parameters. There are various hyper-
parameters involved in the learning procedure of the proposed
model. Here, we choose class weight to check since different
weights would lead to different performance of recognizing

COVID-19 samples. Table 5 shows the comparison results
for different weights of three classes. We observe that
different weights will result in significant differences of the
performance when examining the values of accuracy. On the
other hand, compared to accuracy and MacroP, MacroR and
MacroF are less sensitive to the weight of COVID-19 class.
Generally, we have to delicately select the weight for COVID-
19 class to obtain the optimal performance.

Error Analysis. Fig. 6 presents three COVID-19 samples
that are classified into Normal, COVID-19, and Pneumonia
classes, respectively. X-ray images of COVID-19 patients
shows various features for different stages of COVID-19
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(a) ResNet (5%) (b) ResNet (7%) (c) ResNet (9%)

(d) Weighted ResNet (5%) (e) Weighted ResNet (7%) (f) Weighted ResNet (9%)

Figure 4. Comparison of confusion matrix generated by different ResNets training on different ratios of labeled data.
Weighted ResNet is built by assigning more weight to COVID-19 class during training for overcome the challenge of
data imbalance.

(a) SRC-MT (5%) (b) SRC-MT (7%) (c) SRC-MT (9%)

0.39 0.55

(d) SSResNet (5%) (e) SSResNet (7%) (f) SSResNet (9%)

Figure 5. Comparison of confusion matrix generated with SRC-MT and SSResNets trained on different ratios of
labeled data.
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Table 5. Comparing performance with different class weights. c1, c2, and c3 are the weights of Normal class,
Pneumonia class, and COVID-19 class, respectively.

5% Labeled Data
Class Weight Accuracy MacroP MacroR MacroF

c1 = 1, c2 = 1, c3 = 2 84.95 61.18 66.76 62.41
c1 = 1, c2 = 1, c3 = 5 78.82 58.18 67.38 56.79
c1 = 1, c2 = 1, c3 = 10 66.78 57.24 66.70 50.77

7% Labeled Data
Class Weight Accuracy MacroP MacroR MacroF

c1 = 1, c2 = 1, c3 = 2 85.90 65.75 64.62 64.84
c1 = 1, c2 = 1, c3 = 5 84.21 63.67 67.85 62.83
c1 = 1, c2 = 1, c3 = 10 79.31 58.57 67.71 59.39

9% Labeled Data
Class Weight Accuracy MacroP MacroR MacroF

c1 = 1, c2 =1, c3 = 2 87.28 70.32 62.93 64.65
c1 = 1, c2 = 1, c3 = 5 84.69 60.91 66.79 61.86
c1 = 1, c2 = 1, c3 = 10 81.79 59.34 70.99 59.19

(a) Normal (b) COVID-19 (c) Pneumonia

Figure 6. COVID-19 samples classified into Normal, COVID-19, and Pneumonia classes, are shown in (a), (b), and
(c) respectively. The blue circles locate the infected regions of COVID-19.

patients2. At the early stage of COVID-19 patients, X-ray
images cannot present significant features (Fig. 6 (a)) that
can be used to differentiate COVID-19 and Non COVID-
19 patients, which leads to the incorrect classification result
for the sample. It is consistent with the expectation that X-
ray images are not ideal evidences to support diagnosis of
COVID-19 for the patients at the early stage.

However, with development of COVID-19, X-ray images
are able to present obvious features such as multifocal
lung airspace opacities, nodules and consolidation (Fig. 6
(b)), which contributes to the correct classification result.
Unfortunately, if the patients are at the late stage of COVID-
19, X-ray images presents lobar diffused consolidation (See
Fig. 6 (c)) that is similar to features of pneumonia. These

2https://www.uclahealth.orgradiologycovid-19-chest-x-ray-guideline

features will be confusing to the proposed model and lead
to the incorrect result for the sample shown in Fig. 6 (c). In
summary, in terms of samples shown in Fig. 6, the proposed
model will be effective for the patients who are in the
development of COVID-19 rather than those at the early stage
or late stage of such disease.

4. Related Work
Deep learning technique has shown its power on classification
of COVID-19. Ghoshal et al. [28] proposed a Bayesian
convolutional neural network to estimate the diagnosis
uncertainty in COVID-19 prediction, where the dataset
includes 70 lung X-ray images of patients with COVID-19
from an online COVID-19 dataset [29], and non-COVID-
19 images from Kaggle’s Chest X-Ray data (Pneumonia).
Narin et al. [30] is to detect COVID-19 infection from X-
ray images through comparing three different deep learning
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models, namely, ResNet50, InceptionV3, and Inception-
ResNetV2. The evaluation results show that the ResNet50
model outperformed other two models. Zhang et al. [31] also
utilized ResNet to complete COVID-19 classification on X-
ray images and estimated an anomaly score to optimize the
COVID-19 score for the classification. In addition, Wang
et al. [20] propose COVID-Net to detect COVID-19 cases
using X-ray images. In general, most current studies use
X-ray images to differentiate between COVID-19 and other
pneumonia and healthy subjects.

In addition to COVID-19 image classification, it is
imperative to figure out the regions of infection of COVID-
19 since it will provide detailed information on COVID-9 for
diagnosis. Semantic segmentation is able to help us recognize
the regions and corresponding patterns to assess and quantify
COVID-19, where the regions of interest (ROIs) contains
those of lung, lobes, bronchopulmonary segments, and
infected regions or lesions, in the chest X-ray or CT images.
Moreover, segmented regions could be further used to extract
handcrafted or self-learned features for diagnosis and other
applications. Deep learning has promoted the development
of semantic segmentation of images significantly [9, 32]. To
segment ROIs in CT, the segmentation networks for COVID-
19 include classic U-Net [5, 6, 33], UNet++ [12], and VB-
Net [34]. The segmentation methods related to COVID-19
can be classified into two groups: 1) the lung-region-oriented
methods and 2) the lung-lesion-oriented methods. The first
group aims at separating lung regions, i.e., whole lung and
lung lobes, from other (background) regions in CT or X-
ray images [10, 35]. For example, Jin et al. [10] is to detect
the whole lung region with UNet++. The second group is to
detect lesions (or metal and motion artifacts) in the lung from
lung regions [36, 37]. The experimental results indicate that
the segmentation of X-ray images is even more challenging
because of the ribs projected onto soft tissues in 2D. Although
supervised deep learning outperforms other models on these
two tasks, it requires substantial amount of labeled data to
train the model, which is not practical in real applications.

Semi-supervised deep learning has attracted lots of
attention since it has the strong ability to generalize the
model performance through learning on labeled data and
unlabeled data [19, 38–40]. Generally, it is to train the deep
neural networks by jointly optimizing the standard supervised
classification loss on labeled samples and an unsupervised
loss on unlabelled data [19, 38]. The rationale of these
semi-supervised learning models is to enrich the supervision
signals by exploiting the knowledge learned on unlabeled
data [41], or regularize the network by enforcing smooth and
consistent classification boundaries [40]. Regarding COVID-
19 research such as COVID-19 image classification and
image segmentation, semi-supervised learning is employed
to resolve the lacking of labeled data [42–47]. However, for
COVID-19 image classification, these studies [42–44] have
not comprehensively examined the model performance on a
large-scale of X-ray image dataset such as COVIDx [20] by
comparing with the state-of-the-art, especially for the case

of very few labeled data such as less than 10% labeled data.
This paper proposed a semi-supervised deep learning model
for COVID-19 image classification and checked the model
performance systematically on the COVIDx [20] dataset.

5. Conclusion and Future Work

In this paper, a novel framework of semi-supervised deep
learning is proposed for COVID-19 image classification on
chest X-ray images. Supervised learning based COVID-
19 classification on X-ray datasets could provide useful
information to medical staff for facilitating a diagnosis
of COVID-19 in an effective and efficient manner.
Unfortunately, it relies on the availability of large amount
of labeled medical images, which are not available in
practice in the early outbreak of such global pandemic.
Hence, we propose a semi-supervised learning model based
on ResNet that can utilize unlabeled images to enhance
classification performance. There are two paths in the
model for reducing supervised cross entropy loss and
unsupervised mean squared error loss, respectively. Then
training is performed by jointly optimizing these two losses,
which allows the proposed scheme to take advantage of
the information from both labeled and unlabeled images.
Experimental results demonstrate that the proposed model
could recognize COVID-19 lung pathology effectively by
learning on very limited labeled images and substantial
unlabeled images. For the future work, we plan to extend
the proposed model for other tasks such as COVID-19 image
segmentation.
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