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More Exact Results on Chiral Gauge Theories: the Case of the Symmetric Tensor
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We study dynanics of SU(N —4) gauge theories with fermions in rank-2 symmetric tensor and N
anti-fundamental representations, by perturbing supersymmetric theories with anomaly-mediated
supersymmetry breaking. We find the SU(N) x U(1) global symmetry is dynamically broken to
SO(N) for N > 17, a different result from conjectures in the literature. For N < 17, theories flow

to infrared fixed points.

INTRODUCTION

Understanding the dynamics of strongly coupled chi-
ral gauge theories remains a difficult challenge, as we are
lacking effective tools to study them. Even progress on
lattice simulations has been slow, since they are ham-
pered by the notorious doubling problem. So far the
best we can do is to resort to educated guesses, based on
some general guiding principles. The most well-known
such framework is “tumbling” [1, 2], where one tries to
find the most attractive channel (MAC) among the var-
ious fermions, and postulate condensates that will suc-
cessively break the gauge symmetry till one arrives at a
non-chiral QCD-like theory. Tumbling has indeed been
used to propose a plausible vacuum structure for the sim-
plest chiral gauge theories: SU(N) with a Weyl fermion
in the antisymmetric (or in the symmetric) representa-
tion of the gauge group, as well as anti-fundamentals to
cancel the gauge anomalies. For both examples the pro-
posal contains a symmetry breaking pattern that satisfies
non-trivial 't Hooft anomaly matching conditions, hence
appears to be passing some very non-trivial checks. Re-
cently, these proposals have undergone further scrutiny
in [3, 4], by applying new discrete anomaly matching con-
ditions [5] involving the center symmetry Z,, of the gauge
group, in the spirit of [6-8]. We do not elaborate more
on these generalized consistency conditions, since they
seem to automatically hold for our proposal of the IR
dynamics, due to its continuous connection to the super-
symmetric theory.

The study of the supersymmetric (SUSY) versions of
these theories opens up a new method for finding candi-
date vacua for chiral gauge theories. SUSY - thanks in
most part due to holomorphy - allows for a much greater
control of the IR dynamics, and together with anomaly
matching often enables us to fully pin down the vacuum
structure of the theory. The obvious challenge then is to
be able to deduce results for the non-SUSY theory by per-
turbing the SUSY results in a controlled manner. While
several attempts along these lines were initiated in the
90’s [9-11], recently a UV-insensitive method for perturb-
ing SUSY dualities based on anomaly mediation [12, 13]

has been proposed in [14]. Applying the AMSB method
to chiral gauge theories (wherever exact results for the su-
persymmetric limit is known) will always produce a can-
didate vacuum structure that will automatically satisfy
all consistency conditions, since it will be continuously
connected to the vacuum of the SUSY theory without the
AMSB perturbations, yielding a well-defined procedure
for generating a candidate vacuum solution to the non-
SUSY chiral gauge theories. Of course this does not au-
tomatically imply that we have found the correct ground
state of the theory, since one can not rule out the possi-
bility of a phase transition as the SUSY breaking mass
terms are raised above the strong coupling scale. Nev-
ertheless we find it significant that at least a plausible
conjecture can be formulated this way, which eventually
will be compared to the results from the lattice simula-
tions. It may even be the case that holomorphy prohibits
a phase transition [15].

Recently we have used this method to examine the sim-
plest chiral gauge theories based on SU(N) with a rank-2
antisymmetric representation for N > 5 and have iden-
tified the vacuum structure of the resulting non-SUSY
chiral theory [15]. We have found that the global sym-
metry breaking pattern is in fact different than initially
conjectured based on tumbling: for odd N we found that
the global SU(N — 4) x U(1) symmetry is broken to
Sp(N —5) x U(1), while for the even case to Sp(N —4).
While this symmetry breaking pattern did not agree with
the original predictions from tumbling, we have explained
that assuming additional condensates in the second most
attractive channel will fully resolve the discrepancy.

In this paper we extend our previous work to examine
the other examples of non-SUSY chiral gauge theories
for which a simple prediction for the vacuum structure
based on tumbling exists: the case of SU(N — 4) with
a fermion S in the rank-2 symmetric representation and
N anti-fundamentals F' to cancel the gauge anomalies.
There exist two proposals for the symmetry breaking pat-
tern of this model. The tumbling prediction for this case
would be a MAC leading to a condensate of the symmet-
ric and N — 4 anti-fundamentals, leading to color-flavor
locking with an unbroken SU(N — 4) x SU(4) x U(1)



global symmetry. The anomalies are matched by a com-
posite fermion SF;F; antisymmetric in the i,;j flavor
indices. Another interesting option is that the entire
group confines without breaking any of the global sym-
metries via condensates, since the same fermion compos-
ite actually matches the 't Hooft anomalies of the entire
SU(N) x U(1) global symmetry.

Similar to the case of the anti-symmetric tensor, we
will show that the AMSB method results in a prediction
different from either of these two scenarios. The details
of the analysis for the symmetric case turn out to be quite
different from that of the antisymmetric, since here we
have to make use of the Seiberg dual found by Pouliot
and Strassler [16] in terms of a magnetic Spin(8) group.
We find that for NV > 17 the remaining global symmetry
is only SO(N —4), and no massless composite fermion is
needed in the absence of 't Hooft anomalies. On the other
hand for N < 17 the theory flows to a conformal fixed
point in the IR. At the fixed point the supersymmetry
breaking terms all vanish, and one is left with a genuine
superconformal theory.

The paper is organized as follows. We first briefly re-
view the anomaly mediation of supersymmetry breaking
(AMSB), and the SUSY limit of the SU(N —4) gauge the-
ories with a symmetric tensor and N anti-fundamentals.
Then we combine them to find consistent vacua of the
non-SUSY theories that can be extrapolated to decouple
supersymmetry. We show that we can understand the
symmetry breaking pattern a la tumbling, even though
we need to rely on fermion bilinear condensates that are
not in the MAC. The case of infrared fixed points are
discussed in the end.

ANOMALY MEDIATION

In scenarios with anomaly-mediated supersymmetry
breaking (AMSB), supersymmetry is broken in a se-
questered sector, and is mediated to the visible sector
via the superconformal anomaly. The magnitude of the
breaking is given by a single number m, which enters both
at tree and at loop level. The tree-level contribution to
the scalar potential is derived from the superpotential,

ow
i
In addition, there is loop-level supersymmetry breaking,

which generates in tri-linear couplings, scalar masses, and
gaugino masses [17],

Liree =M <¢Z~ - 3W> + c.c. (1)
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Here, ; = pugh In Z;(p), & = pgi;vi, and B(g°) = pghg®.

SU(N — 4) WITH S AND (N)

First we present a summary of the duality explored
in [16], which will be the basis of our explorations. We
consider a supersymmetric SU(N —4) gauge theory with
a rank-2 symmetric tensor S and antifundamentals F;
(i =1,---,N). For N < 16, it has an interacting IR
fixed point, while for N > 17, it is in a free magnetic
phase. The theory has a global SU(N) x U(1) x U(1)r
symmetry, under which the charges of the matter fields
are shown in Table I.

The SU(N — 4) theory (henceforth the ‘electric’ the-
ory) has a magnetic dual, which is a non-chiral Spin(8)
gauge theory (the double cover of SO(8)) with N vec-
tors ¢', a spinor p and the Spin(8) singlets M;; = SF;F;
and U = detS. The magnetic theory has a tree-level
superpotential:

~ 1 y 1
Wtrcc = P} Mqu qj + N—5 Upp7 (5)
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where the scales p; 5 are related to the electric (magnetic)

strong scales A (A) by

2N, N—-5

(APNTH2RMTN = N o (6)

The 't Hooft anomaly matching conditions are satisfied
and imply that the fields M and U have regular Kéahler
potential at the origin. For later convenience, we switch
to canonically normalized fields M and U and introduce
the Yukawa couplings ya.v,

Wiree = ynm Maq + yu Upp. (7)

The duality between the SU(N — 4) and Spin(8) also
maps the composite operators of the theory: SFE;F; <
M;; and det S <+ U. There are also gauge invariant bary-
onic operators on both the electric and the magnetic side,
but they do not play a role in the dynamics below and

so we do not discuss them further in this paper.

ADDING AMSB

Perturbing the duality via the AMSB mechanism will
result on the electric side in positive scalar masses as
well as gaugino masses, leaving in the IR the non-
supersymmetric chiral gauge theory of interest. We will
then have to identify the effect of the AMSB on the mag-
netic Spin(8) theory and find the global minimum of its
supersymmetry breaking potential. We first focus on the
case N > 17, in which the theory is in the free magnetic
phase. A naive local minimum is obtained by directly
adding the AMSB to the tree level potential (7). In this



SU(N —4)|SUN)| U(1) UDr
S J 1 -2N |
F, O O 2N —4 | s
M;; = SF;F; 1 1 | 2N-38 Nt
U = detS 1 1 2NA-N)| w5

TABLE I: Particle content of the electric SU(N — 4) theory.
We omit the baryons B, B, since they are not dynamical and
don’t play a role in our analysis.

Spin(8)|SU(N)| U(1) |U1)gr||SO(N)
¢ | 8 O 4-N | i85
P 85 1 | NN-4)| i3 1
M;; [ 2N -8 Nl—f_l 1411
U 1 [2N4-N)| 55 1

TABLE II: Particle content of the magnetic Spin(8) theory.
We omit the baryons b, b, since they are not dynamical don’t
play a role in our analysis. Note that we use the same name
for M;j, U as in the electric theory, due to their indentical
representations.

case the tree-level AMSB contribution from (1) vanishes,
and so the supersymmetry breaking is generated by the
loop level A-terms (2) and soft masses (3,4), leading to a
local minimum at

A2\t
Vzﬂﬁﬂ)m, ®)

where A is some O(1) combination the gauge and super-
potential couplings g, yar, and yy. While this is indeed
a local minimum of the potential, we will now show, this
is not the global minimum of the theory.

To find the global minimum, we first consider the mag-
netic theory on the moduli space by turning on (M) of
rank N, as well as (U). As we shall see, the global mini-
mum end up being at small values of these VEVs, justify-
ing our weakly coupled analysis in the (initially) IR free
magnetic theory. Once g;,p are integrated out, the mag-
netic theory becomes asymptotically free again: indeed
the IR theory is a pure Spin(8) SYM, with a scale

< detM U
18 _
Ap = AN-17 (9)

It develops a gaugino condensate with a dynamically gen-
erated superpotential [18][27]

- N\ 1/6
ik~ .k [ detM
mmafm%“dﬁ<?U> . (10)

where k = 0,...,5 denoting six different vacua, originat-
ing from taking the sixth root in the gaugino condensate.
Taking this dynamical superpotential into account, and

using (1), we find the tree-level AMSB contribution

N —17
6

The loop-level AMSB terms (2,3,4) are negligible with
respect to this tree-level contribution. The scalar po-
tential from the superpotential (10) and the tree-level
AMSB contribution (11) has a supersymmetry breaking
minimum at
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Indeed, for N > 17 this minimum is deeper than the one
in (8). We will come back to the marginal case N = 17
shortly. On the complex plane of z = (detM U), six
branches are connected through branch cuts from one
Riemann sheet to another. The minimum of the potential
finds itself on the sheet where mWgyy in Eq. (11) can be
real and negative. We recall that the magnetic theory is
IR free for N > 17 and in this case the VEVs are both
much smaller than the Landau pole and much larger than
the scale A, of the gaugino condensate. For this reason
the minimum eq. (12) is at weak coupling.

At the minimum the global SU(N) x U(1) symme-
try is broken to SO(N), (the U(1)g is explicitly broken
by the AMSB) and all fermions become massive. There
are $N(N + 1) Nambu-Goldstone bosons correspond-
ing to the breaking, and none of them are eaten since
the Spin(8) gauge symmetry remains unbroken. Since
SO(N) is anomaly free, there are no non-trivial 't Hooft
anomaly matching conditions. In the IR theory, the M;;
and U all play the role of Goldstone superfields, each
one containing exactly one of the £N(N + 1) Nambu-
Goldstone boson for the SU(N)xU(1)/SO(N) breaking,
except for one combination of U and TrM which is the
direction of the potential and is not a NGB.

Note that the VEV M;; has the full rank NV in the mag-
netic theory, while in the electric theory their maximal
rank is N —4. This is completely consistent with the dual-
ity: in the supersymmetric limit, the rank condition is en-
forced on M;; dynamically [19], because the superpoten-
tial Eq. (10) requires M ~'detM U = detM = 0. There-
fore, along F-flat directions corresponding to potential
SUSY preserving minima rank Mij < N. Directions with
maximal rank satisfying detM U # 0 (as we assumed in
deriving Eq. (10)) necessarily correspond to SUSY break-
ing vacua. In our case AMSB indeed stabilizes the mini-
mum (12) along the direction where (M;;) has maximal
rank, and away from the classically expected rank con-
dition. This situation is similar to the way the full-rank
meson field is found in the ISS model when N, < Ny in

Liree =M Wayn + c.c. (11)

l

v

Q



the electric theory [20], with the mass perturbation sta-
bilizing the minimum away from the classical rank con-
dition.

The marginal case N = 17 is a little subtle. In this case
the one-loop beta function of the magnetic gauge cou-
pling vanishes, though the two-loop beta function does
not and is IR free. Consequently, the theory is still in
the free magnetic phase. While in this case the minima
(12) and (8) have the same dependence on m, the mini-
mum (8) is much shallower, since it depends on the slow
2-loop running of the gauge coupling, and quasi-IR-fixed
point behavior of the Yukawa couplings that tracks the
gauge coupling. Then (12) remains the global minimum
for N = 17. We also verified that the two-loop mass-
squared for M and U is smaller than the square of the
one-loop A-term, and the origin is unstable. Therefore
we find M ~ U ~ 12‘;2771 # 0, and the symmetry break-
ing pattern is the same as the rest of N > 17 cases.

So far the results obtained are exact. As in previous
analyses with the AMSB [14, 15], we now take the limit
m — oo to extrapolate to the non-supersymmetric the-
ory. Though there might be a phase transition on the
way, our analysis yields a plausible conjecture for the IR
behavior of non-supersymmetric SU(N — 4) with a sym-
metric S and N anti-fundamentals. As a continuous limit
of a self consistent supersymmetric analysis, our method
is guaranteed to fulfill all 't Hooft matching conditions,
including generalized ones [3, 4, 6-8]. Note also that in
a complete AMSB model our SUSY breaking spurion m
(the F-component of the compensator) would originate
from the constant term in the superpotential leading to a
relation m = M%Wo, where Wy is the superpotential in

the SUSY breaking sector. If there is a phase transition
while increasing the amount of SUSY breaking it would
happen for |m| = |A|, corresponding to the condition
|AMA,|? ~ |[Wy|?. Since both A and W, are chiral su-
perfields (or products thereof), any relation among them
defining the phase boundaries should be given by a holo-
morphic expression. Consequently, the phase boundary
should be even dimensional: either isolated points or the
entire complex plane. Since the latter is implausible it
would have to be isolated points. However those can not
corresponds to the relation |[AMZ,|? ~ |[Wy|? which would
imply the phase boundary to be a circle on the complex
Wy plane. This suggests that such a phase boundary
should not exist. It would be interesting to see if this
argument can be made more rigorous.

TUMBLING INTERPRETATION

Here we would like to interpret our SUSY+AMSB
analysis of SU(N — 4) with a symmetric S and N F
in the heuristic tumbling approach [1, 2]. The unbro-
ken global SO(N) symmetry in the IR hints at a sym-
metric F{if'j} condensate which breaks the gauge group

Trrep | O B [N HH B:D

2 n n— n— n n2— n24n—
Cp |mil|D=2) | (1=D)nt2) | 202 =) | 24 n1)
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2n

Irrep ITT1]

Cs 2(7L+471(n— 1)

TABLE III: Quadratic Casimirs for SU(n). The Casimirs are
the same for irreps and their conjugates. For the last one,
there are n — 1 boxes vertically for the first column.

Constituents | Channel | C2(channel) — Ca(1) — C2(2)
S, F D _ (n—1)(n+2)
s, S HH _ 2(n+2)
FF d -
S, s HT -4
F, F [ n=d
.5 o )
7 n2—9n>—9n
S, F 9 2n9 +85
U

TABLE IV: SU(n) Channels, ordered by most to least attrac-
tive. Note that in our case n = N — 4.

SU(N —4) — SO(N — 4) and the global symmetry
SU(N) — SO(N). However, a symmetric condensate
is not an attractive channel for the SU(N — 4) gauge
symmetry. The solution to this conundrum is the simul-
taneous condensation of two channels. The first is

HH : SabScd - SadScb X 5ab5cd - 6ad50b . (13)

This condensate is attractive in SU(N —4). It breaks the
U(1) global symmetry, and higgses the gauge symmetry
down to SO(N —4). Under the reduced gauge symmetry,
the theory is now vector-like and confines. The symmet-
ric F{i,Fj} is now a color singlet. It is attractive, and
condenses as

S FOF? o 6,5 14
(] J

breaking the global SU(N) symmetry down to
SO(N). The candidate Nambu-Goldstone bosons for the
SU(N)/SO(N) coset are Fy; Fjy, while the Goldstones

for the two broken U(1)s can be taken to be (Fia)2 and
Sgb. By examining tables IV-VI, we see that the con-
densates described above are attractive, but they are
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TABLE V: Quadratic Casimirs for SO(n).

Constituents | Channel | C2(channel) — C2(1) — C2(2)
S, 8 1 —2n
S, S H —n—2
S, F a —n
S, S [ -n
F, F 1 1-n
S, S HH -2
F,F H -1
S, F HH -1
S, S q1 0
F, F J 1

, F EEE 2
S, 11 4

TABLE VI: SO(n) Channels, ordered by most to least attrac-
tive. Note that in our case n = N — 4.

certainly not the most attractive channel (MAC). Our
suggestion for the IR dynamics of the theory is then dif-
ferent from the one suggested by tumbling, or the other
proposed phase with fully unbroken global symmetries
and no condensates.

NON ABELIAN COULOMB PHASE

For N < 16, the theory has an IR fixed point [16], in
which both the electric and magnetic descriptions of the
theory are equally useful. In the supersymmetric limit
the anomalous dimensions ~; are scale independent and
so 4; = 0 and the AMSB soft masses vanish at the IR
fixed point. More specifically v; = 3R; —2 where R; is the
R-charge. However, in the presence of non-anomalous
U(1) symmetries, the definition of the R-symmetry is
ambiguous. The combination that appears in the super-
conformal algebra is fixed by a-maximalization [21], and

the resultant a is the Euler trace anomaly coefficient that
always decreases with the renormalization-group flow [22]
analogous to the Zamolodchikov’s c-theorem [23]. The
Euler trace anomaly coefficient a is defined by [24]

3
32 (
where the trace sums over all fermions in the theory.
Obviously the definition is common between the electric
and magnetic theories as long as the 't Hooft anomaly
matching conditions are satisfied. Using the U(1) charge
Q@ in Table I, we maximize a using the combination
R' = R+ tQ, and find the (local) maximum at

9N?Z — 24N + 39 — (N + 1)v/7T3N2 — 362N + 433
6(N —4)(N —1)(N +1) '

a 3TrR® — TrR) , (15)

t =

(16)

t is very small, ¢ &~ 0.0245 for N = 6 and even smaller for
larger N. We can see that t = 0 for N = 17, implying
that the dimension of M and U become 1 at that point,
signaling the beginning of the free magnetic phase, where
M and U are indeed free fields. With the anomalous
dimensions ; = 3R, — 2, the anomaly-free condition for
U (1), guarantees that the NSVZ beta function vanishes
[24, 25].

Supersymmetry breaking quickly vanishes as the the-
ory approaches the IR fixed point. For example, we can
work out the gaugino mass by expanding the beta func-
tion to the first order around the coupling g, at the fixed
point,

2
Blg*) = Bi(¢* —g2) +O(9*—9¢2)", (17
and so in the vicinity of the IR fixed point (5, > 0),

B
) =g + [9°(W) — g2 <5,) : (18)

for energy scales p > p/ > A, where A, is the energy scale
of the IR fixed point. Eq. (4) then gives the gaugino mass

’ 20, 2 B
m,\(u):*m% 9-(W') — gs . (5/)
g+ () — ) (&)
B 2] ()
o e [ ) IR

where in the last step we assumed p < p’ and neglected
the power-suppressed second term in the denominator.
The gaugino mass as expected is power-law suppressed,
and tends quickly to zero as we approach the IR.

CONCLUSIONS

We have identified the IR phase of the non-SUSY chi-
ral SU(N — 4) gauge theory with a fermion in the sym-
metric representation, as well as N anti-fundamentals,



obtained via perturbing the relevant SUSY duality with
the AMSB. For N > 17 the theory is confining with the
SU(N) global symmetry broken to SO(NN) and no mass-
less composite fermions are needed to match anomalies.
For N < 17 the theory flows to a (super-)conformal fixed
point, providing another interesting example of a non-
SUSY theory flowing to a SUSY fixed point in the IR.

While the results are obtained in the limit of small
SUSY breaking m < A, they do provide a plausible
candidate vacuum structure for these theories even when
m > A, satisfying all possible consistency conditions by
construction. The resulting vacuum structure obtained
with this method differs significantly from either of the
two conjectured phases of the non-SUSY theory, and can
be given an interesting interpretation in the tumbling
framework via two condensates, neither of which would
correspond to the MAC (and one of them becomes at-
tractive only in the presence of the first condensate).
Whether this is indeed the correct phase of the non-SUSY
theory, or if a phase transition occurs at m ~ A will have
to be eventually verified by dedicated lattice simulations.
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