
Autonomous Robots manuscript No.
(will be inserted by the editor)

A Penalized Batch-Bayesian Approach to Informative Path Planning for
Decentralized Swarm Robotic Search

Payam Ghassemi · Mark Balazon · Souma Chowdhury

Received: date / Accepted: date

Abstract Swarm-robotic approaches to search and target
localization, where target sources emit a spatially varying
signal, promise unparalleled time efficiency and robustness.
With most existing swarm search methods, it remains chal-
lenging to simultaneously preserve search efficiency and
mathematical insight along with scalability and compu-
tational tractability. Our recently developed decentralized
method, Bayes-Swarm-O, a model-based approach founded
on batch Bayesian Optimization, has been shown to outper-
form state-of-the-art swarm heuristics in terms of search ef-
ficiency. However, this original Bayes-Swarm-O method did
not account for the interactions between robots’ decisions
(aka samples in a batch) and was found to be sensitive to
the prescribed balance between exploration and exploration.
These limitations are alleviated in this paper, leading to sig-
nificantly improved search efficiency and convergence, by
respectively using a new marginalization penalization ap-
proach to embodied batch sampling and a dynamic adapta-
tion of the exploration/exploitation balance during mission.
In addition, this paper presents a systematic set of exper-
iments executed through a new Pybullet-based distributed
swarm search simulator, that analyzes the impact of increas-
ing swarm size, partial peer observation, and choice of op-
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timizer, on Bayes-Swarm-P. The advanced Bayes-Swarm-
P method is also found to be clearly superior in terms of
search efficiency and robustness when compared to three
standard swarm search methods (namely Glowworm search,
Levy walk, and exhaustive search) over simulated multi-
modal signal distributions and a skier/avalanche search and
rescue problem.

Keywords Avalanche Search and Rescue · Decentralized ·
Bayesian Optimization · Informative Path Planning ·
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1 Introduction

In time-sensitive search applications pertaining to localizing
a signal source or target, a team of robots can broaden the
scope of operational capabilities through distributed remote
sensing, scalability, fault-tolerance, and parallelism in terms
of task execution and information gathering [1,2]. This po-
tential has led to the emergence of swarm-robotic search
as an important sub-domain of cooperative robotics. In this
context, we consider swarm systems comprising mobile
robots (e.g., unmanned aerial, ground, or marine-surface ve-
hicles) that are relatively autonomous in operation and re-
quire no centralized control; with the term “swarm-robotic”
preferred here over “multi-robotic” to highlight the scala-
bility of the proposed search method. Specifically, we are
interested in a class of search problems where the goal is to
time-efficiently find the source that emits a spatially varying
signal.

The societal importance of this class of search prob-
lems is evidenced in well-known national and multi-national
projects such as the European SHERPA project (focused
on avalanche search and rescue operations based on radio-
frequency beacons) [2,3], and the ImPACT Tough Robotics
Challenge (ImPACT-TRC) in Japan (focused on finding dis-
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aster victims based on acoustic localization) [4]. Motivat-
ing high-impact uses of swarm-robotic search include find-
ing source of gas leakage [5], finding location of mag-
netic field/radio source [6,7], target search [8], finding dis-
aster victims [4,9,10], and finding skiers trapped under
an avalanche [11,3]. For such applications, decentralized
swarm-robotic systems require an informative path plan-
ning method that is computationally amenable to online im-
plementation [12], robust across mission scenarios without
needing tedious heuristics [13], explainable [14], and al-
low scalability of the swarm system to enhance search ef-
ficiency [1].

With the goal of providing the above-stated capabili-
ties, the planning process for each swarm-robot can be bro-
ken down into two main sub-tasks: a) building/updating
the spatial model of the signal environment; and b) de-
ciding the next waypoint to move to. For this purpose,
we recently introduced a novel informative path planning
method called Bayes-Swarm-O [10], which is based on the
batch Bayesian Optimization (BO) formalism. In this decen-
tralized Bayes-Swarm-O algorithm, robots exploit Gaussian
Processes (GP) to model the signal distribution over space
and independently solve a 2D optimization over a special
acquisition function to decide the next waypoints. To ac-
count for the embodiment of the search process and com-
munication constraints (unlike in standard BO), the Bayes-
Swarm-O method seeks to balance exploration/exploitation
over robots’ paths instead of over points, and allows asyn-
chronous decision-making. In this paper, we build on our
original Bayes-Swarm-O work [10], by incorporating for-
mulations to preserve convergence properties of batch BO,
mitigating the interaction between robots’ waypoints for in-
creased search efficiency, analyzing the impact of algorith-
mic choices within Bayes-Swarm-P, and testing its applica-
bility on a simulated avalanche search & rescue problem.
The remainder of this section briefly surveys the literature
on swarm search algorithms, and summarizes the contribu-
tions of this paper.

1.1 Multi- and Swarm-Robotic Search

Different approaches have been proposed in the literature to
perform search or signal-source localization using a team of
mobile robots; these approaches can be classified into two
main paradigms: 1) multi-robot search methods [1]; and 2)
nature-inspired swarm intelligence (SI) methods [15]. The
first class of methods includes concepts such as hierarchi-
cally cooperative control [16], model-driven strategies (e.g.,
decentralized partially observable Markov decision process
(dec-POMDP) [17], partial differential equation aided mod-
eling [18]), Bayesian filter with mutual information [19],
and strategies based on local cues [20]. While these methods
preserve the mathematical explainability of the search (in-

formative path planning) decisions, they generally require
a reasonably representative prior source model; the latter
may not be available, or significantly deviate from the ob-
served signal distribution characteristics, in practical mis-
sion scenarios. Secondly, scaling these methods from the
multi-robotic level (<10 agents) to the swarm-robotic level
(100 or more agents) becomes prohibitive in terms of online
computational tractability [1].

The second class of approaches, based on nature-
inspired SI principles, is dedicated to guiding the search be-
havior for larger teams [21,15], with their favorable scalabil-
ity with swarm size attributed to the low computational com-
plexity of each decision step at the individual robot level. SI-
based heuristics have been used to design algorithms both
for search in non-embodied n-D space (e.g., particle swarm
optimization), and for search over 2D/3D physical environ-
ments [22,23] involving both single source [12,24,25] and
multiple source localization [26]. Among these methods,
the few that address the problem of localizing the strongest
signal-source in the presence of other weaker sources (or
deal with multi-modal spatial distributions) resort to lim-
iting assumptions such as distributed starting points [26].
Most of the SI methods also require problem specific heuris-
tics, which limits wider or out-of-the-box deployability of
the swarm system. Lastly, with swarm intelligence based
methods, the process of inferring the task space (or build-
ing a belief model of the signal environment) and selecting
a task within it (waypoint planning) are not separable; and as
a result the emergent behavior raises dependability (due to
the use of heuristics) and mathematical explainability con-
cerns [27]).

1.2 Bayesian Approaches to Collective Search

An alternative concept, partly related to model-based multi-
robot search approaches, is to simultaneously learn the
model of the signal distribution over space and use it to
plan informative paths. The former imparts mathematical
expainability of the search decisions. Bayesian Optimiza-
tion or BO is adept at serving in this role [28]. Specifically,
batch Bayesian inference is the natural choice here, which
suits the parallel search characteristics of the swarm system.
In such a simultaneous batch sampling process, the algo-
rithm needs to maximize its utility function by considering
the effect of unseen samples on each other, often termed as
“interaction among samples” in a batch [29]. This is needed
in order to minimize the optimality gap of the batch sam-
pling approach in comparison to the ideal sequential policy
of determining the same number of samples (as in a batch)
and obtaining their observations. In the context of swarm-
robotic search, we take the mathematical perspective that
the samples in a batch refer to the waypoint decisions of
the robots in the swarm. We then propose a swarm robotic
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search approach that is based on the batch Bayesian Opti-
mization (batch-BO) algorithm. Here, each robot’s waypoint
decision maximizes an utility function that seeks to balance
exploration and exploitation based on the latest Gaussian
Process model of the signal environment (constructed using
the collected signal observations), and mitigate interactions
with the decisions of peer robots. Since the waypoint deci-
sions of the robot, and the planned path thereof, embodies
the locations at which the search environment will be sam-
pled, “interactions between robots decisions” and “interac-
tion between samples” are directly related. Strictly speak-
ing, “interactions between robots decisions” must account
for both “interactions between samples” and conflicts be-
tween (i.e., similarity or closeness of) the waypoints that dif-
ferent robots decide to visit. Our proposed approach here is
unique in the sense that by accounting for “interaction be-
tween samples”, it is able to adaptively account for decision
conflicts as well, meaning, how close can be robots’ way-
point decisions is made adaptive to the estimated variation
in the signal strength, with larger variation in signal (sharper
gradients) allowing greater closeness and vice versa. Note
that, in this paper the term “interaction” is used mainly in
the above-stated context, and does not refer to the aspect of
communication among robots.

Implementing this concept of capturing the interactions
and mitigating them when jointly selecting the next loca-
tions to sample (by different robots) can be done in the most
optimum manner if the decisions-making process is syn-
chronized across the swarm, i.e., where all robots take de-
cisions at the same fixed time-intervals. However, such an
implementation would cause undue delays as robots’ travel
times between waypoints vary (making some robots wait
while others are still moving), as well as increase the depen-
dency on perfect communication. Thus, to study the swarm’s
distributed search performance under with low dependency
on communication [30,31] (which tends to be imperfect in
practice [32]), an asynchronous implementation is preferred
and used for the case studies in this paper. However, the pro-
posed search algorithm can be implemented in both a syn-
chronized and an asynchronized manner. Notable examples
of methods that use a modeling/planning concept in an asyn-
chronous manner include the work by Sujit and Ghose [33]
on negotiation schemes for cooperative search, and our own
recent work on using batch-BO for collective search [10].
However, these existing methods do not consider the inter-
actions between robots’ paths or waypoints, leading to sub-
optimal decisions.

In a batch-BO setting, the interactions between way-
points can be computed using predictive distributions of the
underlying Gaussian process, and marginalizing this pre-
dictive distribution over all previous batch samples [34].
However, the ensuing optimization-marginalization loop be-
comes intractable for large batches or for real-time plan-

ning, since the cost of evaluating the function and its deriva-
tive scales poorly with increasing batch size [35]. To ad-
dress this issue in non-embodied search, various approxi-
mations (of the batch creation process) have been suggested
[36,29,37,38]. Some of these approximate techniques use a
marginalization-penalization approach that decomposes the
process into a sequence of inexpensive individual optimiza-
tions to identify the samples in a batch, prior to evaluat-
ing any of them. The interaction among the sequentially-
planned samples is minimized by multiplying the acqui-
sition function with a penalty factor. Therein lies an yet-
untapped opportunity for exploring if an analogical approx-
imation technique can be useful in an embodied (collective)
search process.

1.3 Contributions of this Paper

The primary contribution of this paper is 1) to fundamen-
tally extend our prior work on batch BO-based swarm
search (Bayes-Swarm-O) [10], by formulating and using a
marginalization-penalization technique [29,39] to enhance
its convergence and search efficiency. To the best of our
knowledge, we present here the first exploration of the vi-
ability and benefits of interaction-aware approximated (thus
computationally efficient) batch creation in an embodied
collective search process. In light of this primary contribu-
tion, this extended swarm search method is called Bayes-
Swarm-Penalized or Bayes-Swarm-P. Additional contribu-
tions 1 of this paper can be summarized as follows: 2) We
present an automated dynamic variation (instead of prescrip-
tion) of the Bayes-Swarm-P hyper-parameter that balances
exploration/exploitation, thus seeking to enhance search
adaptability; 3) We provide statistical analyses of the per-
formance and scalability of Bayes-Swarm-P under different
solver choices (that act upon the special acquisition function
for optimum waypoint planning) and communication con-
straints; 4) We develop and test a new event-based medium-
fidelity environment using Pybullet [41] to simulate asyn-
chronous decentralized swarm search planning, with signif-
icant potential to serve as a first-of-its-kind benchmarking
environment for swarm or multi-robotic search 2. This sim-
ulator provides both standard nonlinear test functions repre-
senting multi-modal signal environments and the avalanche
search & rescue environment, over which the performance

1 Note that portion of this paper has been presented in the 2019 IEEE
International Symposium on Multi-Robot and Multi-Agent Systems,
and published in the subsequent proceedings [40]. Contributions 3-4
laid out here represent newer developments and numerical experiments
beyond those covered in the conference version of this work.

2 To aid the replication of results, benchmarking and further adop-
tion of the proposed method, the implementations of Bayes-Swarm-
O and Bayes-Swarm-P and the comparative methods, and the PyBul-
let simulation have been made available at the following repository:
https://github.com/adamslab-ub/Bayes-Swarm-P.

https://github.com/adamslab-ub/Bayes-Swarm-P
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of Bayes-Swarm-P is evaluated, and compared with that
of the original Bayes-Swarm-O method, a well-known SI
method (Glowworm Swarm [42]), a Levy Walk search [43],
and an exhaustive search baseline.

The remaining portion of the paper is organized as
follows: Mathematical background of embodied collective
search with batch BO and our proposed advancements to
Bayes-Swarm-P are described in Section 2. Sections 3 and
4 then respectively describe the numerical experiments and
results, which investigate the comparative performance of
Bayes-Swarm-P over different case studies (with test func-
tions) and analyze its characteristics w.r.t. scalability, impact
of the penalty factor, and impact of partial observance and
solver choice. Description of the avalanche problem, and re-
sults of applying Bayes-Swarm-P on it are presented in Sec-
tion 5. Then, in Section 6, we briefly discuss how the pre-
sented method can be transitioned to more realistic environ-
ments and physical demonstration in the future, and chal-
lenges expected thereof. The paper ends with concluding re-
marks. A summary background of GP modeling and various
problem and solver settings are provided as Appendix at the
end of the paper, for ease of reference.

2 The Bayes-Swarm-P Method

2.1 Bayes-Swarm-P: Overview

To develop and implement Bayes-Swarm-P, in this pa-
per we make the following assumptions: i) All robots are
equipped with precise localization. ii) Movement occurs in
an obstacle-free 2D or 3D environment. iii) Each robot ex-
ecutes the Bayes-Swarm-P algorithm after reaching a way-
point, to update its knowledge and identify the next way-
point; the timing of which could differ among robots, thus
leading to an asynchronous implementation. It should be
noted that Bayes-swarm works in both synchronous and
asynchronous modes, and because of some of the practi-
cal advantages of the asynchronous mode of swarm opera-
tion [30,31], we simulate Bayes-Swarm under asynchronous
operation in this paper for all case studies. Figure 1 illus-
trates the sequence of processes and associated flow of in-
formation, encapsulating the behavior of each swarm robot.
The pseudocode of our proposed Bayes-Swarm-P algorithm
is given in Alg. 1. The primary steps within Bayes-Swarm-
P (blocks in Fig. 1) include updating the GP model of the
signal environment through recently recorded own and peer
observations, using this GP model to construct a special ac-
quisition function which is then used to perform the optimal
waypoint planning, and broadcasting the waypoint decision
and the recently collected own data.

Before we describe these computational and information
parts of Bayes-Swarm-P in the following subsections, let us
define the key parameters used in Bayes-Swarm-P:

– m: number of robots in the swarm
– Dkr

r = [Xkr
r ,ykr

r ]: the observation locations (Xkr
r ) and

signal measurements (ykr
r ) of robot-r over its path con-

necting waypoints (kr − 1) and kr, termed as “recent
observations”;

– D1:kr
r : the cumulative information of robot-r up to its

arrival at the kr-th waypoint, including all self-recorded
and peer-reported observations; thus we get D1:kr

r =⋃m
r=1

⋃kr

i=1 Di
r;

– x̂kr
p : the next planned waypoint of robot-p, known to

robot-r at the time when it’s at its kr-th waypoint;
– X̂kr

−r =
⋃m

p=1∧p ̸=r x̂
kr
p : the reported next waypoints of

robot-r’s peers by that time.

2.2 Acquisition Function

Each robot-r takes an action, i.e., plans and travels-to the
next waypoint (xkr+1

r ), that maximizes an acquisition func-
tion. Given the swarm’s objective is to collectively explore a
search area to find the strongest signal source among multi-
ple sources in a robust optimal manner, the acquisition func-
tion must balance exploration and exploitation, analogical
to the goals in BO, but with specific changes to account for

Algorithm 1 Bayes-Swarm-P Algorithm
Input: xkr

r , Xkr
r : current location and recent observations of robot-r;

X̂kr

−r: planned waypoints of peers.
Output: xkr+1

r : the next waypoint of robot-r.
1: procedure TAKEDECISION(r, kr,m,∆θ)
2: if kr = 0 then
3: xkr+1

r ← TAKEFIRSTDECISION(r, kr,x
kr
r ,m,∆θ)

4: else
5: if Size of D1:kr

r > Nmax then
6: Down-sample D1:kr

r to Nmax observations
7: α← Update the exploitation weight using Alg. 2
8: GPr ← Update Gaussian Model using xkr

r and X̂kr

−r

9: x̄∗
r ← Solve optimization problem (GPr), Eq.(5)

10: xkr+1
r ← Solve optimization problem (GPr), Eq.(1)

11: if ∥xkr+1
r − xkr

r ∥ < V/fHz then
12: if ∥x̄∗

r − xkr
r ∥ < 0.9ϵ then ▷ ϵ: Detection range

13: α← 0 ▷ Purely explorative search
14: xkr+1

r ← Solve optimization problem, Eq.(1)
15: else
16: r1 ← U(0, 1)
17: r2 ← U(0.1, 0.9)
18: xkr+1

r ← xkr
r + r2V T [cos(2r1π), sin(2r1π)]

19: kr ← kr + 1
20: return xkr

r , kr
21: procedure TAKEFIRSTDECISION(r,m,∆θ, V, T )
22: l← V T
23: if ∆θ = 360 then ▷ ∆θ: Initial feasible dir. range
24: θ ← r∆θ/m ▷ m: Number of robots
25: else
26: θ ← r∆θ/(m+ 1)

27: x1
r ← [l cos θ, l sin θ]

28: return x1
r ,
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Fig. 1 Flowchart of processes executed by each swarm robot running Bayes-Swarm-P: Here, computing processes are depicted by rectangular
blocks, and data artifacts are depicted by curved-sided blocks; solid and dashed arrows respectively depict information flow between (and thus the
sequence of) computing process, and the flow of recorded/received data and decisions.

the embodiment of the search process. To this end, the ac-
quisition function must first consider balancing the follow-
ing: i) explorative behavior – that reduces uncertainty in the
swarm’s knowledge of the signal environment; and ii) ex-
ploitative behavior – greedy behavior that gets the swarm
robots closer to the expected signal source based on the cur-
rent (albeit evolving) knowledge of the signal environment.
In addition, due to the parallel nature of the search, the ac-
quisition function must also mitigate interactions between
the expected samples to be collected by the different robots
as a result of their waypoint decisions. The proposed acqui-
sition function thus contains an explorative and a scaled ex-
ploitative term, with their aggregate multiplied by a local
penalizing factor, as given below:

xkr+1
r = argmax

x∈X
(α ·Ωr + (1− α)Σr) Γr (1)

s.t.

0 ≤ l = ∥x− xkr
r ∥ ≤ V T (2)

This acquisition function includes three key terms, which
are defined as follows: 1) source seeking term, Ωr =

Ωr(x,D1:kr ): leads robot-r towards the location of the
maximum signal strength expectation (promotes exploita-
tion); 2) knowledge-uncertainty reducing term, Σr =

Σr(x,D1:kr , X̂kr
−r): minimizes the knowledge uncertainty

of robot-r w.r.t. the signal’s spatial distribution (promotes
exploration); and 3) local penalty factor, Γr(x, X̄

kr
−r): al-

lows the mitigation of the interactions among the samples
planned to be collected by robot-r and its peers; smaller
value depicts larger penalty, since the objective function is
defined in maximization terms. Sections 2.3-2.5 provide fur-
ther description of how these terms are formulated differ-

ently from the standard acquisition functions used in BO, to
account for the unique characteristics of embodied search.

Note that the key advancements here over the acquisi-
tion function in our original Bayes-Swarm-O algorithm [10],
include the local penalty factor and an adaptive weighting
to balance the contributions of exploration and exploitation.
Comparison of this advanced Bayes-Swarm-P algorithm to
the original Bayes-Swarm-O algorithm in our numerical ex-
periments demonstrate the favorable impact of these key ad-
vancements to the acquisition function of Bayes-Swarm.

In Eq. (2), xkr
r represents the current location (waypoint)

of robot-r at its kr-th decision-step. Here, Eq. (2) constrains
the length of robot-r’s planned path (l) based on a set time-
horizon (T ) for reaching the next waypoint, and the nomi-
nal velocity (V ) of robots. Through numerical trials it was
found that for the case studies in this paper a time-horizon
setting that allows a maximum separation between consecu-
tive waypoints equal to roughly half the arena length worked
well. However, the actual setting could also be treated as a
user-defined parameter that is regulated to suit the problem
at hand. In this regard note that, too high a value for time
horizon could make the asynchronous parallel search less
efficient (e.g., when new measurement knowledge becomes
available from peers but remains unused for a robot trav-
eling overly long distance before it can act on it); on the
other hand, too low a value leads to wastage of computing
resources by triggering waypoint planning instances too fre-
quently. As a best practice, the time horizon should be set at
a value between four times the inverse of the measurement
frequency and half the arena length.

The coefficient α ∈ [0, 1] in Eq. (1) is the exploitation
weight, i.e., α = 1 leads to purely exploitative search be-
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havior. Here, we design α to be adaptive in a way such
that the swarm behavior is strongly explorative at the start
and becomes more exploitative over waypoint iterations,
i.e., as the mission progresses. This is achieved by setting
α = 1/

(
1 + exp(−10( t

Tmax
− 1

3 ))
)
, where t is the time

elapsed at that point in the mission and Tmax is a user-
prescribed maximum allowed mission time. This formula
for examples varies α from ≈0.5 to ≈0.97 when the elapsed
time is between 33% and 70% of the maximum allowed mis-
sion time. Through numerical experiments we also identified
the need for further adjustments to varying α. Examples in-
clude setting α to low values to recover from an anticipated
local minimum, and promoting greedy choices if a robot
taking decision is notably closer (than a peer robot) to an
expected source location reported and chosen as waypoint
by that peer robot. The overall adaptive strategy to set the
exploitation weight α is summarized in Algorithm 2.

Algorithm 2 Adaptive Exploitation Weight Strategy
Inputs: x̄∗: Expected source location of robot-r; X̂kr

−r: planned way-
points of peers; Pweaker: Expected weaker source locations; lrobot: Size
of robot (here set at 0.1m).
1: procedure UPDATEEXPLOITATION-

WEIGHT(X̂kr

−r,Pweaker, lrobot)
2: dweaker ← minx∈Pweaker ∥x− x̄∗∥2
3: if dweaker < 2lrobot then
4: α← 0.1
5: else
6: dbest ← minx∈X̂kr

−r
∥x− x̄∗∥2

7: if dbest ≥ 2lrobot then
8: α← 0.8
9: else

10: α← 1/
(
1 + exp(−10( t

Tmax
− 1

3
))
)

11: return α

2.3 Source Seeking (Exploitative) Term

Each robot models the signal’s spatial distribution using a
GP with squared exponential kernel (further description of
this GP modeling is given in Appendix A). The GP model
is updated based on the robot’s own recent observations and
those communicated by its peers, thereby leading to the fol-
lowing mean function:

µr(x) = µ(x,X,y) (3)

Here X and y are respectively the observation locations and
their corresponding signal measurements given in D1:kr

r .
Due to motion constraints, Eq. (2), a robot may not be able
to reach the location, x̄∗, with the maximum expected signal
strength (estimated using their GP model), within the time
horizon. Therefore, the exploitative term (Ωr) in Eq. (1) is
re-defined to represent nearness to x̄∗, i.e., closer the better,

and saturating at a maximum value of 1, as given by:

Ωr(x,D) =
1

1 + (x− x̄∗)T (x− x̄∗)
(4)

where

x̄∗
r = argmax

x̄
µr(x̄) (5)

2.4 Knowledge-Uncertainty Reducing (Explorative) Term

Unlike in optimization, in robotic search, sampling is per-
formed over the path of each agent. This concept is known
as informative path planning, where robots decide their path
such that useful information is collected. The explorative
term in Eq. (1) (Σr) is designed to model the reduction in
uncertainty in the robots’ knowledge, thus facilitating infor-
mative path planning. To this end, the path of the robot is
written in a parametric form as given below:

s(u) = ux+ (1− u)xkr
r ; u ∈ [0, 1] (6)

where xkr
r is the current location of robot-r. While in this

paper we consider obstacle-free search arenas, the above for-
mulation can be readily extended to consider more complex
paths in the presence of apriori-known obstacles.

In computing the self-reducible uncertainty in the poste-
rior of robot-r, we account for the locations of both the past
observations made by the robot and its peers, and the future
observations to be made by robot-r’s peers over the paths
to their planned (immediate next) waypoints (X̄kr

−r) – both
of these only consider what’s currently known to robot-r via
communication from its peers. The explorative term can thus
be expressed as:

Σr(x,D1:kr , X̄kr
−r) =

∫
s(x)

σr(s(u))du (7)

where σr(x) = σ(x,Xe
r) and Xe

r = X ∪ X̄kr
−r. For further

details on computing the mean (Eq. (4)) and the variance
(Eq. (7)) of the GP, refer to Appendix A.

2.5 Local Penalizing Factor

For a batch-BO implementation, it is necessary to account
for (and mitigate) the interaction between the batch of fu-
ture samples, to preserve convergence [29]. Additionally,
in swarm-robotic search, mitigating this interaction allows
explicitly reducing the overlap in the planned knowledge
gain by robots in the swarm – thereby promoting a more
efficient search process. Modeling the interaction explic-
itly via predictive distribution, namely the optimization-
marginalization approach, carries a significant computa-
tional overhead of O(n3) [29]. Simultaneous optimization
of future candidate samples in the batch [35] also demands
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a strictly synchronized-distributed (or centralized) deploy-
ment of the swarm robots decision-making process, which
as discussed earlier could be inefficient in an embodied
search setting. An asynchronous distributed deployment is
instead preferred here.

In the literature, there exist computationally tractable
approximations to model the interactions. Specifically,
we adopt the marginalization-penalization approach by
González et al. [29]. They have shown that if the source
signal is Lipschitz continuous, one can define a penalisation-
based policy to collect a batch of points multiple steps ahead
without having their (function) observations, such that the
policy replicates results close to a sequential policy. Such a
policy was observed to perform well in terms of the conver-
gence to the optimum and rate of information gain [29].

In our adaptation of the penalization approach, we de-
sign a penalty factor, Γr(x, X̂

p
−i) (smaller value depicts

greater penalty), that enables local exclusion zones based
on the Lipschitz properties of the signal’s spatial function
(f(x)). The multiplicative penalty factor (in Eq. (1)) thus
tends to smoothly reduce the acquisition function in the
neighborhood of the existing batch samples, i.e., the known
planned waypoints of robot-r’s peers (X̂kr

−r), with the sig-
nal observations at those points being not yet reported. To
compute the penalty factor w.r.t. a given peer of robot-r, we
define a ball Br with radius ρ around that peer’s planned
waypoints, as given by:

Br(x, x̂
kp
p ) = {x ∈ X : ∥x̂kp

p − x∥ ≤ ρ}; x̂kp
p ∈ X̂kr

−r (8)

The local penalty associated with a point x is then defined
as the probability that x does not belong to the ball Br, i.e.,:

γ(x, x̂kp
p ) = 1− P (x ∈ Br(x, x̂

kp
p )) (9)

We assume that the distribution of the ball radius ρ

is Gaussian with mean (M − µr(x̂
kp
p ))/L and variance

σ2
r(x̂

kp
p )/L2. Here, M = maxx f(x) is the maximum

strength of the source signal and L is a valid Lipschitz con-
stant (∥f(x1) − f(x2)∥ ≤ L∥x1 − x2∥). Both M and L

can be in general set based on the knowledge of the appli-
cation, and for batch-BO, Gonzalez et al. [29] showed that
approximate values work quite well. The term M is defined
as: M = maxx f(x), which can be reasonably assumed in
many practical search applications based on the knowledge
of the maximum possible source signal strength and/or the
signal sensor’s saturation level. Practically speaking, under-
estimation of “M” is quite unlikely, and in the event of over-
estimation of M , we will experience a larger ball radii and
hence over-penalization of interactions, likely slowing down
the search progress to some extent. The Lipschitz constant
L can be estimated as follows: L = maxx ∥∇f(x)∥. Var-
ious numerical techniques [44,45] have been proposed in
the literature to estimate the Lipschitz constant“L” based on

(function) signal measurements. If the estimation of “L” is
difficult or time-inefficient, it can be set to a large number.
If the value is much larger than the (latent) actual value of
L, then the local penalizing factor will tend to 1, and the
behavior of Bayes-Swarm-P will tend to that of the Bayes-
Swarm-O method. More detailed mathematical proof on the
calculation of L and empirical results on estimating of L are
provided in [29]. Here, we use a fixed value of L, since es-
timating L insitu would have added to the online computing
burden with little impact on performance compared to the
fixed value (which we checked on few trial runs) especially
for larger swarm sizes.

Note that in most practical applications, the probability
(P (x ∈ Br)) will likely be very small w.r.t. peers that are
far away from robot-r, and can thus be set to zero by us-
ing a tolerance threshold. With the respective assumed and
estimated values of M and L, we can derive the following
expression for the local penalty factor:

γ(x, x̂kp
p ) = 1− P (∥x̂kp

p − x∥ ≤ ρ)

= P (N (0, 1) ≤ L∥x− x̂
kp
p ∥ −M + µr(x̂

kp
p )

σr(x̂
kp
p )

)

=
1

2
erfc

−L∥x− x̂
kp
p ∥ −M + µr(x̂

kp
p )√

2σ2
r(x̂

kp
p )


(10)

Here, erfc(.) is the complementary error function, which is
a differentiable function with an output bounded between 0
and 2. The effective penalty factor for the acquisition func-
tion of robot-r (accounting for interactions with all peers)
is then determined from the net probability that the corre-
sponding candidate waypoint x does not belong to the ball
of any peers of robot-r, as given by:

Γr(x, X̂
kr
−r) =

m∏
p=1∧p ̸=r

γ(x, x̂kp
p ) (11)

2.6 Information Sharing and Downsampling

While in swarm-robotic systems, a reliable inter-robot com-
munication is desirable for sharing information, real-world
applications present imperfect communication capabilities
in terms of range, uptime and/or latency. To investigate the
the performance of Bayes-Swarm-P under some degree of
communication realism, here we consider the range limita-
tion [46]. Specifically, we set the communication range at 2
m and 20 m for Case 1 and Case 2, respectively, with the
cases being described in Section 3.2. This specification is
akin to the simple disk model of wireless communication.
In addition, considering the bandwidth limitations of ad-hoc



8 Payam Ghassemi et al.

(a) Case 1: small arena, non-convex bi-
modal signal distribution

(b) Case 2: large arena, multi-modal signal
distribution

(c) Case 3: very large arena, multi-modal sig-
nal distribution

Fig. 2 Three environment cases with different signal distributions.

wireless communication [47], we design our information
sharing policy such that, along with asynchronous planning
with fixed-time repetition, robots share only a compact set of
observations. Table 9 provides a quick overview of the type
and frequency of the information shared by each robot with
all its peers across the swarm. Algorithm 3 lists two proce-
dures that each robot uses to share or receive information.
The term X̂kr

−rp is a 4-element array representing the current
path of the pth peer of robot-r, where the first two elements
contain its current location coordinates, and the last two el-
ements show the coordinates of the next (decided) waypoint
that the pth peer robot is moving towards.

Updating the GP models presents a cubic time complex-
ity (O(n3)) with respect to the size (n) of the data set. In
order to keep the Bayes-Swarm-P algorithm computational
tractable with increasing swarm size and mission duration,
we need to downsample the collective data set of the swarm.
Here we use a simple approach of sample rate compression
by an integer factor d [48]. This approach reduces the data
set by keeping the first sample and then every d-th sample
after the first, where d = ⌈size(D1:kr )/Nmax⌉, where Nmax

is the active set size.

Algorithm 3 Information Packaging & Communication

1: procedure RECEIVEINFORMATION(r, p,xkp
p ,Dkp

p )
2: D1:kr

r ← D1:kr
r

⋃
Dkp

p

3: X̂kr

−rp(1 : 2)← X̂kr

−rp(3 : 4)

4: X̂kr

−rp(3 : 4)← x
kp
p

5: return D1:kr
r , X̂kr

−rp

6: procedure SENDINFORMATION(r, xkr
r ,Dkr

r )
7: if kr = 0 then
8: Broadcast xkr

r ▷ 4 bytes
9: else

10: Broadcast {xkr
r ; Dkr

r } ▷ 4 + 6T bytes

3 Numerical Experiments & Case Studies

3.1 Distributed Virtual Implementation

In order to evaluate the Bayes-Swarm-P algorithm, we de-
velop a discrete event-based swarm search simulation us-
ing Python 3 and PyBullet, and deployed this environment
in a 4 core workstation (Intel® Xeon E5-1620 3.50 GHz,
4 cores processor). Each robot performs its behavior, as
shown in Fig. 1, in parallel with respect to the rest of the
swarm; i.e., updating its own knowledge model after each
waypoint and deciding its next waypoint based on its own
information and that received from its peers till that point.
The robots share information with each other via a net-
work class that assumed a limited range communication be-
tween robots. In addition, the developed simulator provides
a graphical mode to show the mission based on PyBullet
(a python based physics simulator) and supports both aerial
and ground robots. The observation frequency (fHz) is set
at 1 Hz. In order to maintain the computational cost of GP
refitting tractable, the active set size (Nmax) is set at 1,000.

3.2 Case Studies

To investigate the performance of the Bayes-Swarm-
P method and perform comparative analysis, we design a
set of numerical experiments and based on three distinct
synthetic signal environments (Case 1, Case 2, and Case
3), which are discussed later. In addition, we demonstrate
the effectiveness of the Bayes-Swarm-P method for poten-
tial real-world applications by applying it to a simulated
avalanche search & rescue problem. This problem is de-
scribed in Section 5.

Environments & Simulation Criteria: The two signal
environments are shown in Fig. 2, and mathematically de-
scribed in Appendix C. These cases respectively provide a
bimodal spatial distribution over a small arena, and a com-
plex multimodal spatial distribution over a larger arena. In
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order to evaluate and compare the results of the experiments
in terms of a measure that is insensitive to the robots’ speed
and the arena size, we define a relative completion time (τ )
metric. The relative completion time represents the search
completion time (tachieved) relative to the idealized comple-
tion time (tidealized), as given by:

τ = (tachieved − tidealized) /tidealized (12)

Here, tidealized represents the time that a swarm robot would
hypothetically take to directly traverse the straight-line path
connecting the starting point and the signal source location.

For simulation termination purposes, two criteria are
used. The first criterion terminates the search if any robot
arrives within ϵ-vicinity of the signal source location. The
second criterion terminates the simulated mission, if a max-
imum allowed search time (Tmax) is reached.

Experiments: In total, we conduct six experiments. In
Experiment 1, we benchmark various candidate optimizers
to solve Eqs. (1)–(2) and Eq. (5) in Bayes-Swarm-P. In Ex-
periment 2, we conduct a comparative analysis of Bayes-
Swarm-P’s performance w.r.t. three other methods. In Ex-
periment 3, we perform a scalability analysis to investigate
the performance of Bayes-Swarm-P across multiple swarm
sizes. In addition, we provide a time profiling for further in-
sights on the computational complexity of Bayes-Swarm-P.
In Experiment 4, we analyze the impact of the penalty term
on search performance and computational cost. In Experi-
ment 5, we analyze how partial information from peers im-
pacts the performance of Bayes-Swarm-P. Finally, in Exper-
iment 6, we study how the measurement noise and exploita-
tion level of affect the performance of Bayes-Swarm-P. De-
tailed settings used for Bayes-Swarm-P, and the comparative
algorithms are tabulated under Appendix D.

3.3 Demonstrating Bayes-Swarm-P: Case 1

Before delving deeper into the results of the five experi-
ments (Section 4), here we provide an insightful illustration
of how the proposed method works. Specifically, we show
snapshots of the location of a team of 5 robots, as well as
their traversed and planned paths, at different time points
(Fig. 3) in the Case 1 environment (Fig. 2(a)). Alongside,
we present how the knowledge (i.e., the GP-estimated ex-
pected value) of the signal’s spatial distribution (µr) for a
given robot-r differ from the actual signal distribution, and
how this difference evolves over the mission. From Fig. 3(a),
we can see that early on the accuracy of the robots’ (belief)
knowledge of the signal environment is limited (e.g., robot-
1’s µr(x) at time t = 10−) leading to an expectation of the
source location that is far away from the actual source. This
is expected since at this point robot-1 has access to only 11
self observations. By t = 20 s, as seen from Fig. 3(c), robot-
4 is able to construct a (GP-based) knowledge model of the

signal environment that is fairly close to the actual signal
distribution. Finally, by t = 28 s, majority of the robots get
very close to the dominant signal source, with robot-4 get-
ting within the set threshold (of 5 cm) that marks “target
reached” (Figs. 3(d)).

Note that in our asynchronous implementation, commu-
nication occurs in a sequence among robots, and only at
waypoints (and different robots might reach their k-th way-
point at a different time). This approach introduces non-
homogeneity in the models of the environment across the
swarm at any given time point. An example of this non-
homogeneity is seen from the differences in the belief model
of robot 1 (Fig. 3(a)) and robot 4 (Fig. 3(b)) around the 10s
timepoint. In the future this issue could be addressed, while
retaining the asynchronous benefits, by designing the com-
munication schedule to be independent of the planning pro-
cess, or by using a mixture of local GP models.

4 Results and Discussion

4.1 Experiment 1: Selection of Optimizers for
Bayes-Swarm-P

In our proposed method, we have two optimization prob-
lems, i.e., Eqs. (1)–(2) and Eq. (5), that need to be solved
in a nested manner. To choose a suitable optimization solver
for each problem, we evaluate the performance of candidate
solvers in terms of computing time (speed) and the qual-
ity of solutions, by running them over a set of scenarios. In
this study, we consider a team of 5 robots in the Case 1 and
Case 2 environments. In addition, to capture how each opti-
mization solver performs as the belief or knowledge model
(µr(.)) evolves, we report the performance of the solver at
two different decision-making instances over the same mis-
sion. In order to have a fair comparison, all conditions or
instances of the problem should remain the same across the
solvers being compared. Hence, we randomly chose two
specific (decision-making) instances across which we will
study the performance of the solvers. These instances repre-
sent the second waypoint-planning decision of robot-1 and
the second waypoint-planning decision of robot-5. We run
each solver using their suggested default settings.

The optimization problem to find the expected source
location (Eq. (5)) is a maximization problem with a non-
linear objective function and side constraints (based on the
given boundaries of the search domain). For this prob-
lem, we consider three optimization methods that are suit-
able for this type of optimization problems and has pub-
licly available Python implementations, namely: (1) L-
BFGS-B [49]: a Limited memory quasi-Newton method
of Broyden, Fletcher, Goldfarb, and Shanno with Bound-
Constraints (SciPy’s implementation [50]); (2) TNC [51]:
a truncated Newton method (SciPy’s implementation); and
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(a) µ1(x) at t = 10−s (n = 11
samples)

(b) µ4(x) at t = 10+s (n = 41
samples)

(c) µ4(x) at t = 20s (n = 136
samples)

(d) µ4(x) at t = 28s (n = 220
samples)

Fig. 3 Experiment 1, Case 1: knowledge state and robot path snapshots. These figures show robot paths. The squares show robots’ waypoints.
Straight solid lines depict travelled paths. Straight dashed lines depict planned paths. Each robot has been assigned a unique color to distinguish
its trajectory, which is respectively red, orange, brown, blue, and green for robots 1-5. The black dots show the observations (samples) that have
been used by the robot to build its own belief model. Gray solid contours represent the actual signal distribution and dashed contours represent the
current signal distribution model of the stated robot. The green star shows the source location.

Table 1 Performance of optimizers in Bayes-Swarm-P for solving the
inner problem given by Eq. (5) for a 5-robot scenario on Case 1 and
Case 2.

# Env. Method Performance
tOPT [sec] x∗ f∗

1 Case 1
L-BFGS-B 0.004 [2.4, 0.89] 1.07

TNC 0.029 [2.4, 0.89] 1.07
PSO 0.286 [2.4, 0.89] 1.07

2 Case 1
L-BFGS-B 0.004 [2.4, 1.5] 1.21

TNC 0.024 [2.4, 1.5] 1.21
PSO 0.198 [2.4, 1.5] 1.21

3 Case 2
L-BFGS-B 0.014 [6.3, 19.39] 0.53

TNC 0.075 [6.3, 19.39] 0.53
PSO 0.467 [6.3, 19.39] 0.53

4 Case 2
L-BFGS-B 0.006 [6.41, 18.85] 0.53

TNC 0.036 [6.41, 18.85] 0.53
PSO 0.362 [6.41, 18.85] 0.53

tOPT: time taken to solve the optimization problem at the given
instance.

(3) PSO [52]: the gradient-free Particle Swarm Optimization
method (the pyswarm library [53]). Note that, a randomized
initial guess (or population if it’s PSO) is used with each
solver when solving Eq. (5), which was found to fare better
than simply using the current point of the concerned robot
as the initial guess for that optimization. Hence, the results
are stochastic (across multiple runs of Bayes-Swarm-P) even
with the solver choices 1 and 2. Table 1 shows that while all
three methods find the same optimum point, L-BFGS-B is
up to 7 and 71 times faster than TNC and PSO, respectively.
Based on these results, we selected the L-BFGS-B method
as the default optimizer for the inner optimization problem
(Eq. (5)) of Bayes-Swarm-P.

The outer optimization problem, Eqs. (1)–(2), involves a
nonlinear objective function to be maximized, an inequal-
ity constraint and side constraints. For this type of prob-
lem, we compare and contrast the following four optimiza-
tion solvers: (1) COBYLA [54]: a direct search method; (2)

SLSQP [55]: a sequential square programming method; (3)
Trust-Cons [56]: a trust-region interior point method; and
(4) PSO: same one as described earlier. For the first three
methods, we use the implementations that are provided in
the SciPy library. As can be seen from Table 2, PSO and
COBYLA are the top choices in terms of finding the opti-
mal waypoint with the highest acquisition function value,
which is likely due to the multimodal nature of the acquisi-
tion function in this case. The COBYLA method is however
up to 170 times faster than the PSO method.

In summary, for solving the inner and outer optimiza-
tions in Bayes-Swarm-P, PSO performs the best in terms of
finding the optimum, while lagging significantly behind the
COBYLA + L-BFGS-B choice in terms of computational
efficiency. Both of these choices are thus applied in the re-
maining experiments.

Table 2 Performance of optimizers in Bayes-Swarm-P for solving the
outer problem given by Eq. (1)–(2) on Case 1 and 2.

Inst. Env. Method Performance
tOPT [sec] x∗ f∗

1 Case 1

COBYLA 0.054 [1.88, 0.66] 0.61
SLSQP 0.064 [1.89, 0.64] 0.61

Trust-Constr 0.807 [1.87, 0.62] 0.59
PSO 6.652 [1.88, 0.66] 0.61

2 Case 1

COBYLA 0.045 [1.23, 1.21] 0.33
SLSQP 0.070 [1.26, 1.00] 0.31

Trust-Constr 0.694 [0.43, 0.94] 0.15
PSO 5.355 [1.23, 1.19] 0.33

3 Case 2

COBYLA 0.062 [6.18, 19.02] 0.70
SLSQP 0.039 [3.45, 10.61] 0.01

Trust-Constr 0.419 [6.18, 19.02] 0.70
PSO 10.539 [6.17, 19.02] 0.70

4 Case 2

COBYLA 0.091 [6.47, 8.84] 0.00
SLSQP 0.006 [0.55, 16.89] 0.00

Trust-Constr 0.703 [0.07, 9.47] 0.00
PSO 10.613 [-9.45, 16.78] 0.01
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(a) Bayes-Swarm-P with COBYLA and L-BFGS-B for solving
Eq. (1) and Eq. (5), respectively.
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(b) Bayes-Swarm-P with PSO for solving both Eq. (1) and Eq. (5).

Fig. 4 Scalability analysis of Bayes-Swarm-P: Variation in performance metrics (completion time (τ ) and computing time) with swarm sizes
changing from 5 to 50 for Case 2. The computing times are in terms of the median of computing time per waypoint planning of the robot that
reached the target. The line and colored region in both figures represent the mean and 95% confidence interval, respectively.

4.2 Experiment 2: Comparative Analysis of
Bayes-Swarm-P

Table 3 summarizes the comparison of Bayes-Swarm-P to
three other methods in terms of completion time (τ ). The
three other methods include: 1) Glowworm Swarm Search:
a state-of-the-art search method based on swarm intelli-
gence [26,42], which has been successfully used for robotic
search applications [42,57,58]; We use an implementation
of the Glowworm algorithm available at [42]; 2) Levy Walk
Search: the Levy walk search method [59,43] is a bio-
inspired search strategy that has been used for the localiza-
tion of sources, such as chemical plume; and 3) Exhaustive
Search: a baseline exhaustive search method [60], which di-

Table 3 Comparative analysis of Bayes-Swarm-P on Case 1 and Case
2 with a swarm of 5 and 10 robots, respectively. The PSO solver option
is used for Bayes-Swarm-P.

Case Algorithm Completion Time (τ )

1

Bayes-Swarm-P 0.34± 0.02
Glowworm Swarm Search 1.92± 0.75
Levy Walk Search ∗10.44± 9.39
Exhaustive Search †11.16± 0.00

2

Bayes-Swarm-P 0.39± 0.00
Glowworm Swarm Search 1.47± 0.18
Levy Walk Search ∗9.16± 11.90
Exhaustive Search †42.14± 0.00

The maximum allowed search time, the idealized time, the robot
velocity, and the Lipschitz constant are set for both cases as follows:
Case 1: Tmax = 100s, Tidealized = 22.36s, T = 10s, V = 0.1m/s,
M = 1.2, L = 2, ϵ = 0.05m; Case 2: Tmax = 1, 000s,
Tidealized = 28.3s, V = 1m/s, T = 20s, M = 1.2, L = 100,
ϵ = 0.2m. ∗ Levy walk search fails to find the target in several
sample runs, and the results here represent that of 5 best runs among
roughly a total of 9-13 runs. † Exhaustive search is conducted in
parallel by 10 robots (3 separately in the 1st and 3rd quarters, and 2
separately in the other 2 quarters of the arena).

vides the search area into equal partitions, and sends a robot
to each partition to perform a simple sweeping pattern on
the area. It should be noted that the Glowworm algorithm
assumes the robots to be initially distributed in the search
arena. To address this requirement and have a fair compar-
ison, we run the Glowworm algorithm after executing the
takeFirstDecision procedure in Algorithm 1. In this
experiment, Bayes-Swarm-P is run 55 times and other com-
parative methods are run 5 times on each environment case
with the same number of robots (i.e., 5 and 10 robots for
Case 1, and Case 2, respectively), and the performance is
reported in Table 3 in terms of (mean ± std-dev of) comple-
tion time.

It can be seen from Table 3 that Bayes-Swarm-P outper-
forms Levy walk and exhaustive search by almost two or-
ders of magnitude better search efficiency (i.e., smaller com-
pletion time) in both cases. Bayes-Swarm-P also provides
roughly five and four times better search efficiency com-
pared to the Glowworm swarm search method on Case 1 and
2, respectively. For the Glowworm method, we set the obser-
vation frequency at 100. Hence, the Glowworm method uses
100 times more samples than our Bayes-Swarm-P method.
It should be noted that the Bayes-Swarm-P method can oper-
ate with lower observation frequency and longer time hori-
zon, since it builds a knowledge model that helps the robots
to extrapolate. In contrast, the Glowworm swarm and Levy
walk search methods need to operate on shorter decision
time horizon, and thus require higher observation frequency.

4.3 Experiment 3: Scalability Analysis of Bayes-Swarm-P

We run Bayes-Swarm-P simulations on Case 2 with swarm
sizes varying from 5 to 50. Both optimization solver choices
that we converged upon in Section 4.1 are considered here,
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(a) Case 2 with 5 robots: time profiling of
Bayes-Swarm-P for its most expensive decision-
step.
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(b) Case 2 with 30 robots: time profiling of Bayes-Swarm-P for
its most expensive decision-step.
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(c) Case 2 with 5 robots: computational cost and sample size of the
GP model updating plotted versus the progressive (simulated) physi-
cal time.
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(d) Case 2 with 30 robots: computational cost and sample size of the
GP model updating plotted versus the progressive (simulated) physical
time.

Fig. 5 Scalability analysis and time profiling of Bayes-Swarm-P for the first robot that reaches the source on Case 2 with 5-robot and 30-robot
swarms. The COBYLA/L-BFGS-B optimizer is used for Bayes-Swarm-P.

namely: Choice 1: COBYLA for Eq. (1)–(2) and L-BFGS-
B for Eq. (5), which gives the best performance in terms of
computational efficiency; and Choice 2: PSO for both opti-
mizations, which achieves the best performance in terms of
finding or getting close to the optimum, and might be prefer-
able for smaller swarm sizes and/or when sufficient onboard
computing power is available. Figure 4 illustrates the results
of this study in terms of the relative completion time (τ )
and computing time for both choices – namely, results of
Choice 1 and Choice 2 are shown in Fig. 4(a) and Fig. 4(b),
respectively. Both metrics for Choice 1 and Choice 2 are re-
spectively estimated over and 55 runs for each swarm-size
scenario. Here, the computing time is measured in terms of
the median “computing time per planning instance” across
all waypoint decisions, estimated for the robot that reaches
the signal source. It can be seen that the variance in the com-
puting time for Bayes-Swarm-P with PSO is much larger
than that of Bayes-Swarm-P with “COBYLA”-“L-BFGS-
B”. This observation is expected since due the stochastic na-
ture of PSO, it is known to require largely varying number of
iterations to converge to the same relative change (tolerance)

criteria across different runs [61], leading to large variation
in the cost for solving the optimizations in Eqs. 1-2 and 5.

The number of robots that is required to perform an effi-
cient search for a given fixed environment depends on mul-
tiple factors, such as: 1) the size of the environment, 2) the
complexity of the source signal, and 3) robots’ capabilities
(speed, sensing range, communication range, etc.). The scal-
ability analysis for Case 2 (Fig. 4) can be used to find the
minimum swarm size. As shown in Fig. 4, the mission com-
pletion time quickly reduces as the swarm sizes increases to
20 robots, and then saturates due to a diminishing marginal
utility (given the fixed size of the search space). Perfor-
mance of Bayes-Swarm-P is observed to be slightly better
with the choice 2 optimizer (PSO), in terms of mean and
variance of the completion time across 5 runs. As the swarm
size grows, the rate of collective sample measurements in-
creases, which is expected to cause a cubic increase in the
cost of updating the GP-based belief model by each robot
for any given t-th waypoint planning instance. It is however
interesting to notice (from Fig. 4) that with both optimiza-
tion choices, the computing time increases linearly with in-
crease in swarm size (albeit the linear-rate being higher with
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PSO, which is expected). This observation can be partly at-
tributed to the reduction in the number of waypoint plan-
ning instances caused by the decrease in completion time
(and mission length thereof) as the swarm size grows. Con-
sidering that the computing cost of each waypoint planning
depends on multiple process, including updating the GP and
two optimizations (Eqs. (1) and (5)), dedicated time profil-
ing is needed to get further insights into the real-time per-
formance of Bayes-Swarm-P, as discussed next.
Time Profiling of Bayes-Swarm-P: Figures 5(a) and 5(b)
show the time profiling for the last waypoint planning in-
stance of the robot that is found to be the first to find the
signal source for Case 2, respectively in the 5 robot and 30
robot swarm scenarios. For both scenarios, the belief (GP)
updating process is the dominant contributor to the comput-
ing time (71%− 87%), while solving the inner optimization
(Eq. (5)) has the lowest computing cost (1.3–2.4%, roughly
8-84 milliseconds). These results show that the main bottle-
neck for scaling up the Bayes-Swarm-P method is the GP
model updating. Figures 5(c) and 5(d) show how the com-
puting time and associated sample size in updating the belief
(GP) model for the first-to-find-the-source robot vary over
the Case 2 mission, respectively with 5-robot and 30-robot
swarms. Note that, in Case 2 with 30 robots (Fig. 5(d)), the
available sample size of the robot at its last decision-making
instance is 3,350, but a downsampled set of 1,000 observa-
tions are used to train the GP model.
Swarm-scale Case Study: As we observed above, Case 2
can be effectively searched using a team of 20 robots given
the associated arena size and signal distribution complex-
ity. Hence, we conduct an additional study to demonstrate
the benefits of using a larger swarm of robots, and Bayes-
Swarm-P’s effectiveness in handling such large swarms. For
this purpose, Case 3 is introduced and a team of 48 and 100
robots are used to perform the search. Case 3 is shown in
Fig. 2(c) and defined in Appendix C. In this case study, to
take advantage of initial exploration, we use four starting
points that lie at the four respective corners of the arena.
The results are summarized in Table 4. It can be seen that a
swarm with 100 robots is more effective in term of the com-
pletion time, compared to the 48-robot swarm – the 100-
robot swarm finds the target on average 5% faster than the
48-robot swarm (with a p-value ≤ 0.05).

Table 4 Swarm-Scale Study: Bayes-Swarm-P for Case 3. For running
Bayes-Swarm-P, the following settings have been used for Case 3:
Tmax = 1000s, T = 100s, V = 1m/s, M = 1.2, L = 480, and
ϵ = 0.2m. The COBYLA/L-BFGS-B optimizer has been used. The
completion time (τ ) is reported in mean±std-dev.

Swarm Size Completion Time (τ )

48 5.18± 0.10
100 4.93± 0.11

4.4 Experiment 4: Analysing the Benefits of the Penalty
Term in Bayes-Swarm-P

Table 5 summarizes the completion-time performance (τ )
of the Bayes-Swarm-P method with and without the penalty
term (Γr in Eq. (1)). To generate the most optimal re-
sults, the PSO solver is used and each case is run for 10
times. With the new penalty term (i.e., with Bayes-Swarm-
P) the location of the global source is found 1.2 and 1.8
times faster, respectively in Case 1 and 2, than that without
the penalty term (i.e., with original Bayes-Swarm-O). The
penalty term in Bayes-Swarm-P is observed to also result
in reduced variance, thus greater robustness, in performance
across multiple runs, as seen from the results in Table 5.
This is attributed to the ability of the penalty factor to mit-
igate interactions, and in that process limit the local search
space in which the next waypoint of a given robot can be
planned in an informed manner. While demonstrating the
benefits of using penalization, these observations also point
to the potential of the penalty term to be particularly help-
ful with more complex signal distributions (e.g., Case 2 vs.
Case 1).

Table 5 Performance with the penalty term (Bayes-Swarm-P) vs.
without the penalty term (Bayes-Swarm-O), in 5-robot and 10-robot
swarms, applied on Case 1 and 2. The completion time (τ ) is reported
in mean±std-dev, over 5 runs. The PSO solver has been used to get
most optimal results.

Case Algorithm Completion Time (τ )

1 Bayes-Swarm-P 0.34± 0.02
Bayes-Swarm-O 0.35± 0.06

2 Bayes-Swarm-P 0.39± 0.00
Bayes-Swarm-O 0.75± 0.42

For further analysis of the beneficial influence of the
penalty term, for a representative run, we record the conver-
gence history of Bayes-Swarm-O; specifically we measure
the best value of the signal (across the swarm) and the dis-
tance to the target source over mission time spent. Note that
the initial iteration of waypoint planning (where Eq. (1) is
not used) is the same in both versions of the algorithm. Fig-
ure 6 show the results of this study on Case 2 with a 10-robot
swarm. As it can be seen from Fig. 6, Bayes-Swarm-P and
Bayes-Swarm-O initially observed locations with the same
level of signal values. But after t = 20, Bayes-Swarm-P out-
performed Bayes-Swarm-O by finding locations with larger
signal values, and eventually finding the source 42% sooner.
These characteristics are further corroborated by the obser-
vations (from Fig. 6) of how Bayes-Swarm-P leads to con-
vergence of at least one swarm robot on the target source by
∼31.7s, while the robots driven by Bayes-Swarm-O experi-
ence oscillations before finally reaching the target at ∼55s.
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Fig. 6 Experiment 4, Case 2: Convergence history in terms of both
largest measured signal and the minimum distance to the target over
the time mission.

4.5 Experiment 5: Analysis of Impact of Partial (Peer)
Observation on Bayes-Swarm-P

Here we analyze how Bayes-Swarm-P is impacted by an
imperfect communication network, which leads to partial
observability of peers’ signal measurements. This study is
done for Case 1 and 2 with 5 and 10 robots, respectively. We
assume the following communication ranges for each case:
(i) Case 1: 0.1 m, 0.5 m, and 1 m; (ii) Case 2: 5 m, 10 m, and
20 m. Each scenario (case and the communication range) is
run 55 times and the results are compared in Table 6, in-
cluding the baseline case with perfect communication (i.e.,
w/o range limitation). As seen from the table, range-limited
communication has different impact on the swarm search ef-
ficiency in Case 1 and Case 2. In Case 1, the swarm search
efficiency increases when the communication range is lim-
ited. This is likely due to the simplicity of the signal distri-
bution in Case 1, which can be successfully searched with
high exploitation (i.e., a greedy search, with less collabo-
ration and exploration). On the other hand, the swarm in
Case 2 takes progressively more time to find the location
of the source signal (i.e., registers larger completion time),
when the communication range is increasingly constrained.
This performance loss in Case 2 demonstrates the impor-
tance of communication between robots when dealing with
more complex signal distributions. While an approach for
making probabilistic estimations on the waypoint decisions
of out-of-range peers could be explored in future to address
this performance loss under partial (peer) observation, this is
expected to present computational challenges as the swarm
size increases.

4.6 Experiment 6: Analysis of Impact of Noise on
Bayes-Swarm-P

In this section, we evaluate how the measurement noise
impacts the performance of Bayes-Swarm-P. Since higher
noise-to-signal ratio is expected to make exploitative behav-
ior less reliable, we also study how the effect of the ex-
ploitation weight α is dependent on the noise levels. For

Table 6 Impact of partial peer observation on Bayes-Swarm-P perfor-
mance, for the following scenarios: Case 1 with 5 robots and Case 2
with 10 robots. The completion time (τ ) is reported in mean±std-dev,
over 55 runs. The COBYLA/L-BFGS-B optimizer has been used.

Case Communication Completion Time (τ )

1

No Limitation 0.44± 0.10
Limited Range (1 m) 0.05± 0.01
Limited Range (0.5 m) 0.05± 0.01
Limited Range (0.1 m) 0.05± 0.01

2

No Limitation 0.89± 0.45
Limited Range (20 m) 0.96± 0.70
Limited Range (10 m) 1.26± 0.49
Limited Range (5 m) 1.34± 0.78

this purpose, we run Bayes-Swarm-P simulations on Case
1 and Case 2 with 5 and 10 robots, respectively. For each
case, we run Bayes-Swarm-P with four levels of noise (i.e.,
σ = {0, ∥A∥

50 , ∥A∥
20 , ∥A∥

10 }) where A is the measured signal
magnitude; and two levels of exploitation weighting (Tmax =

{100, 1000}) are also considered. For the measurement
noise, we assume a white Gaussian noise (N (0, σ2)). In or-
der to achieve different levels of exploitation, we change
the Tmax in computing of α, where larger value of Tmax de-
creases exploitation tendency. The results are summarized
in Table 7.

It can be seen from Table 7 that increasing the level of
noise decreases the search efficiency in terms of the com-
pletion time, for both Case 1 and Case 2. The most signifi-
cant reduction in performance, namely 2 times longer com-
pletion time, occurs when the noise changes from ∥A∥/50
to ∥A∥/20. When we compare the performance of Bayes-
Swarm-P in the noise-free condition with the large noise
condition (∥A∥/10), there is a statistically highly significant
evidence (p-value < 0.001) to support the detrimental im-
pact of signal noise on search efficiency. Interestingly, de-
creasing exploitative behavior (by increasing Tmax) led to a
slight increase in completion time under all noise levels in
Case 1, and mixed results under Case 2. Hence, at this stage
it remains challenging to conclude a clear inter-relation be-
tween signal noise and exploitation behavior, agnostic of the
signal complexity.

5 Application: Avalanche Search & Rescue with
Multi-UAV Teams

5.1 Problem Description & Numerical Settings

The popular sport of backcountry skiing brings the risk of
getting buried under an avalanche. Currently, backcountry
skiers use beacons to facilitate getting found, if they en-
counter an avalanche accident. It has been shown that more
than 90% of people buried by avalanches survive if found
and dug out within 15 minutes; unfortunately, after 45 min-
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Table 7 Analysis of Impact of Noise on Bayes-Swarm-P for Case 1
with 5 robots. The completion time (τ ) is reported in mean±std-dev,
over 55 runs. Smaller value of Tmax decreases the level of exploita-
tion in Bayes-Swarm-P. The COBYLA/L-BFGS-B optimizer has been
used.

Case Noise (σ) Tmax Completion Time (τ )

1

0 100 0.44± 0.10
1,000 0.52± 0.13

∥A∥
50

100 0.51± 0.35
1,000 0.84± 0.48

∥A∥
20

100 1.07± 0.55
1,000 1.35± 0.70

∥A∥
10

100 1.22± 0.71
1,000 1.64± 0.79

2

0 100 0.83± 0.49
1,000 0.89± 0.45

∥A∥
50

100 0.97± 0.42
1,000 0.83± 0.44

∥A∥
20

100 1.58± 0.71
1,000 1.54± 0.81

∥A∥
10

100 2.58± 2.13
1, 000 2.76± 2.15

utes, the odds of survival drop to about 20% due to risks of
hypothermia and suffocation [62]. As a part of the European
project, Smart collaboration between Humans and ground-
aErial Robots for imProving rescuing activities in Alpine en-
vironments (SHERPA) [2], UAVs have been shown to serve
as an effective partner in such rescue operations [3]. Utiliz-
ing UAVs to locate the victim can decrease the search time
by at least 50%, and thus increase the chances of survival
[11,3]. Not only can UAV’s travel faster than skiers when
searching, but they also do not have to worry about the ter-
rain and steepness of the mountain unlike skiers. It is con-
ceivable that using a team of small UAVs can provide even
faster search times compared to single units, especially if
guided by an efficient collective search method. To explore
this concept, here we develop a discrete event simulation of
the process of searching for signal source (i.e., beacon on
victim) trapped under an avalanche. A high-level illustrative
description of how the manned mission progresses vs. how
a team of UAVs would conceivably operate is provided in
Fig. 9 in the Appendix.

Avalanche Beacon Signal: To model the spatial distri-
bution of the beacon’s electromagnetic signal strength (H),
we use the model given by [63], where H is expressed as
a function of distance (r = [rx, ry, rz]

T ) and the magnetic
moment of the transmitter (m), as given by:

H =
1

4πr5
Am (13)

where

A =

[
2r2x − r2y − r2z 3rxry 3rxrz

3rxry 2r2y − r2x − r2z 3ryrz
3rxrz 3ryrz 2r2z − r2x − r2y

]
(14)

Fig. 7 A screenshot of the Pybullet-based avalanche environment.

Environment Settings & Assumed UAV Platform: We use
Pybullet and a mountain object to simulate the mountain en-
vironment. Figure 7 shows a screenshot of the environment
with 6 UAVs. Here, we assume the use of a small UAV with
25 min flight time, 1 km flight range, and 0.5 m/s opera-
tional speed. We set this speed based on a physical experi-
ment conducted by [11] for this application, which ensures
appropriate measurement of the beacon signal. We consider
a 40×40 sq.m search environment, given the limited range
within which the beacon signal can be registered by the re-
ceiver. In practice, the team of UAVs might start from a de-
pot that is farther apart, and initiates a scouting process that
divides the overall larger search area into partitions, with
Bayes-Swarm-P (or Glowworm, Levy walk etc.) taking over
once any UAV registers a non-zero signal measurement. In
our experiments, this initial scouting process was not used,
solely to keep the overall simulation costs low. We also con-
sider the possibility of experiencing measurement noise, and
present results where the H measurements have a noise of
N (0, ∥Hmax∥2

1002 ).

5.2 Results

We use a 6-UAV team to perform the search, with the bea-
con located at (20,20). We run the simulation using four
methods, namely, Bayes-Swarm-P, Glowworm swarm, Levy
walk, and exhaustive search. Due to the inherent stochastic
nature of each of the search methods, they are run 5 times
on the same search & rescue mission scenario. Table 8 sum-
marizes the results in term of normalized completion time, τ
(in mean±std over 5 runs). Here Bayes-Swarm-P comes out
to be a clear winner. The results show that Bayes-Swarm-P
outperforms Levy walk and exhaustive search by providing
two orders of magnitude smaller completion time. The com-
pletion time (τ ) of Bayes-Swarm-P (with different α) is also
observed to be approximately 1/5 to 1/3 of that of Glow-
worm search.

Based on the results in Table 8, the mean value of the
actual completion times in minutes roughly translate to 1.1
and 1.5 mins, respectively for Bayes-Swarm-P and Glow-



16 Payam Ghassemi et al.

worm. Thus, Bayes-Swarm-P and Glowworm swarm search
are the only two approaches that are able to find victims
within the practically desirable time frame of < 5 mins.
We further compare the performance of these two meth-
ods under measurement noise, both in terms of completion
time and communication/planning-load. While the perfor-
mance of both methods become worse under measurement
noise, Bayes-Swarm-P is less affected compared to Glow-
worm search. As seen from Table 8, under noise, the com-
pletion time of Bayes-Swarm-P remains an order of magni-
tude smaller than that of Glowworm (these roughly 1.6 mins
vs. 9.7 min in actual time). Moreover, Glowworm incurs a
much higher planning and communication load (357 plan-
ning and information exchange instances per robot) com-
pared to Bayes-Swarm-P (5 planning and information ex-
change instances per robot) in achieving these completion
performance. These results point to the real-world perfor-
mance benefits of Bayes-Swarm-P.

Table 8 Comparative analysis of Bayes-Swarm-P on the avalanche
problem with a team of 6 robots. The COBYLA/L-BFGS-B optimizer
has been used for Bayes-Swarm-P.

Noise Algorithm Completion Time
N (0, σ2) (τ )

-

Bayes-Swarm-P 0.19± 0.09
Bayes-Swarm-P (α = 1) 0.12± 0.03
Glowworm Swarm Search 0.62± 0.1
Levy Walk Search ∗33.06± 19.99
Exhaustive Search †14.09± 0.00

N (0, ∥Hmax∥2

1002 )
Bayes-Swarm-P 0.66± 0.47
Glowworm Swarm Search 9.30± 0.86

The idealized time, the robot velocity, and the Lipschitz constant are
set as follows: Tmax = 100s, Tidealized = 56.57s, T = 10s,
V = 0.5m/s, L = 2, ϵ = 0.15m. The observation frequency for
Bayes-Swarm-P is set at 0.5Hz. The maximum value of signal is
∥Hmax∥ = 47. ∗ Levy walk search fails to find the target in several
sample runs, and the results here represent that of 5 best runs among
roughly a total of 9-13 runs. † Exhaustive search is conducted in
parallel by 6 robots.

6 Path Towards Implementation on Physical Robots

In this paper, the proposed Bayes-Swarm-P algorithm has
been tested on synthetic environments with few real-world
complexities, in order to focus on the novel algorithmic de-
velopment underlying the work, and the unique scalability
and real-time performance it offers. Now, although there is
limited precedence in the literature to physical demonstra-
tion of swarm-robot search with functional ground/aerial
robots (e.g., UAVs), it is important to lay down a tangible
path towards making that possible; and in that process, out-
line the potential challenges that one might face due to real-
ity gaps. Both of these aspects are discussed in this subsec-
tion, with regards to translating Bayes-Swarm-P to practice.

Realistic Simulation: Figure 8(a) shows the architecture
of the current simulation code as a UML diagram. As shown
in this figure, the code has been developed based on the
Object-Oriented Programming (OOP) paradigm, with dif-
ferent components such as robot, network, and world ab-
stracted as separate classes. This modular and OOP design
not only enables transfer and testing on other state-of-the-art
simulators (e.g., Gazebo), but also allows porting the cur-
rent code to physical implementation. For this purpose, each
abstracted component must be replaced with corresponding
hardware component. Figure 8(b) shows how a physical im-
plementation of this code might be structured. A Robot Op-
erating System (ROS) framework can be used to perform
this software integration in hardware, where most of the
software behavior can be run as separate ROS nodes.

Hardware Implementation: For physical robots, UAVs
with avalanche beacon are required. There are two options
for this purpose: i) Enhance an off-the-shelf or customized
UAV by equipping it with an avalanche beacon similar to
the demonstrated implementation in [11]. ii) Use a com-
mercially available UAV that is equipped with a built-in
avalanche beacon sensor, such as PowderBee [64]. Another
critical hardware required for running such multi-robot al-
gorithms is the communication network that robots use to
share information with each other. For providing an effec-
tive inter-robot communication link, a 900MHz frequency
band, e.g., XBee Pro 900HP [65] can be used. This commu-
nication link has been previously used for multi-UAV appli-
cations by [66], with a reported range of 5 km and frugal
energy footprint, which makes it suitable for our conceived
applications.

Potential Challenges and Considerations: Key chal-
lenges expected in successfully transitioning from the syn-
thetic environment to a physical demonstration include: i)
Noisy signal measurements and localization errors: these
can be in part dealt with low pass filters, and moreover the
Bayesian algorithm can handle noise implicitly as well, un-
like other methods. ii) Straight-line paths may not be vi-
able in real-world environments, and a prediction of the path
length to the candidate go-to points must be used, which
can be handled as an uncertainty itself within the optimal
planning process, thus requiring the solution of a robust op-
timization at every path planning instance of a robot. iii)
Imperfect communication: As discussed in Section 4 - Ex-
periment 5, Bayes-Swarm-P can work with partial observa-
tions, as is expected in real-world settings; the asynchronous
and low-frequency information sharing occurring in Bayes-
Swarm-P alleviates its dependence on perfect communica-
tion. iv) Tackling cost of GP updating: One of the challenges
in preserving the real-time performance of Bayes-Swarm-
P is the cost of updating the GP model at each decision-
making instance, which grows with the number of robots,
mission time and sampling rate. In the future, one could ex-
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Simulator

+ run()
+ get_mission_metrics()
+ check_all_found_source()
+ get_ideal_times()
+ plot_robot_trajectory()

Robot

+ step()
+ plan_next_waypoint()
+ get_robot_plan()
+ share_information()
+ receive_information()
+ get_peers_plan()
+ get_observation()
+ is_reached()
+ motion_model()
+ observation_model()

Source

+ get_source_location()
+ measure()

Network

+ broadcast_information()
+ get_information()
+ get_neighbours_list()
+ find_neighbours()

BayesSwarm

+ get_next_point()
+ constraint_optimizer()
+ get_first_decision()
+ update_model()
+ acquisition_function()

Filtering

+ downsample()1

1
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1
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(b) Physical Implementation

Fig. 8 System architecture

plore scalable GPs and blending of localized GPs [67,68,
69], as well as data compression heuristics, as potential ap-
proaches to retain the modeling advantages of GP (in cap-
turing noisy, highly nonlinear signal distributions), while al-
lowing real-time performance as we translate the techniques
to compute-scarce hardware.

7 Conclusion

In this paper, we advanced our new decentralized swarm-
robotic method to perform searching for the maximum
strength source of a spatially distributed signal, which could
in practice cater to search & rescue and hazard localization
applications. A novel modification of the batch Bayesian
optimization formalism is used to construct this method,
named as Bayes-Swarm-P. The original modifications ac-
count for the constraints and capabilities that differentiate
embodied search from a non-embodied Bayesian Optimiza-
tion process. The fundamental advancements, to this orig-
inal Bayes-Swarm-O method, presented in this paper in-
clude: i) incorporation of a marginalization-penalization ap-
proach to account for the interactions among the waypoints,
leading to improved search efficiency and convergence; and
ii) dynamic adaptation of the exploitation-exploration bal-
ance during the mission. Targeted simulation experiments
were presented to study the performance and scalability of
the advanced Bayes-Swarm-P method under different opti-
mization solver choices, and under the impact of the new
penalty formulation. We also investigated how this perfor-
mance compares with well-known swarm search methods.
A new PyBullet based discrete-event simulator, with dis-
tributed agent control, was also implemented to run these
experiments, and could serve as an open-source environment
for benchmarking distributed search and target localization
methods.

Both a COBYLA/L-BFGS-B combination and a PSO
implementation was observed to serve well in the role of the
optimization solver within the Bayes-Swarm-P method. In

terms of comparative performance, Bayes-Swarm-P exhib-
ited clearly superior mission completion times – 100 times
faster than Levy-Walk and exhaustive search, and 4 times
faster than Glowworm search – over simulated multimodal
signal distributions. The performance advantage of Bayes-
Swarm-P persisted over the multi-UAV avalanche search &
rescue problem, and was further enhanced when signal noise
was taken into consideration.

Scalability analysis of Bayes-Swarm-P demonstrated a
superlinear reduction in completion time and mapping er-
ror with increasing number of robots. The computing cost
per waypoint planning did increase sharply with increasing
swarm size, since swarm size exacerbates the cost of re-
fitting the GP (onboard swarm robots), which grows as the
mission progresses. Thus, while Bayes-Swarm-P’s model-
based approach provides search efficiency benefits over
model-free swarm heuristics like Glowworm, onboard com-
puting costs remains a concern. Dedicated refitting meth-
ods, e.g., particle learning, will be explored in the future
to address this concern. Limiting communication range and
thus reduced peer observability seemed to cause perfor-
mance losses that are unlikely to justify additional expec-
tation modeling (and its associated computing costs) over
unobserved peers. However, these findings were dependent
on the case studies that we used here – given the capabili-
ties of the open-source GP libraries that we used. We mainly
considered uni-/multi-modal continuous signal distributions
with moderate signal-to-noise ratios. This leaves scope for
future investigations into scenarios with other types of signal
distributions, such as involving gradual variation over large
distances, higher noise-to-signal ratios and/or discontinu-
ities e.g., due to impassable areas. In the literature [70,71],
it has been shown that by choosing correct kernel functions,
GP is able to model non-exponential functions and those
with discontinuities, and hence in principle Bayes-Swarm-
P could be extended to cover signal distributions with such
characteristics with informed choice of kernels and hyper-
parameters. These advancements along with physics-infused
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GP modeling could further enhance the efficiency and ro-
bustness of Bayes-Swarm-P, and translate it to field experi-
ments.

Nomenclature

α The exploitation weight, where α = 1 would be
purely exploitative.

∆θ Initial feasible direction
ϵ Detection range, a distance that robot can detect the

signal source location
Γr(.) The local penalty term of robot-r in Bayes-Swarm-

P
X̂kr

−rp Current local peer-p’s next waypoint of robot-r at
the decision-time kr

X̂kr
−r Current local peers’ next waypoint of robot-r at the

decision-time kr; i.e., X̂kr
−r =

⋃
p=1;p ̸=r X̂

kr
−rp

xk+1
r Next waypoint of robot-r at the decision-time kr

Xi
r Location of the observations made by robot-r while

it is moving from waypoint-(i− 1) to waypoint-i
yi
r Source signal measurements made by robot-r while

it is moving from waypoint-(i− 1) to waypoint-i
D1:kr Observations history of robot-r, including self-ob-

servations and shared by its peers, from beginning
of the mission until finishing its i-th waypoint

Di
r Observations of environment that made by robot-r

after finishing its i-th waypoint; i.e., Di
r = [Xi

r,y
i
r]

Ωr(.) The source seeking term of robot-r in Bayes-
Swarm-P

Σr(.) The knowledge-uncertainty reducing term of robot-
r in Bayes-Swarm-P

GPr Gaussian process (GP) model trained and used by
robot-r

l Length of path s

m Number of robots (swarm size)
Nmax Downsample threshold, which defines the maxi-

mum allowed samples for fitting the GP model by
each robot

r Robot index, a value between 1 and m

T Decision-horizon time of robots
V Nominal velocity of robots

Appendix

A Preliminaries: Gaussian Process Model

Gaussian process (GP) models provide non-parametric surrogates [72]
that can be used for Bayesian inference over a function space [36].
For a set of n observations, D = xi, yi|i = 1 . . . n, GP expresses
the observed values yi as a summation of the approximating function
f(xi) and an additive noise ϵi, i.e., yi = f(xi) + ϵi. Assuming the

noise follows an independent, identically distributed Gaussian distri-
bution with zero mean and variance, σ2

ϵ , we have ϵ ∼ N (0, σ2
ϵ ). The

function f(x) can then be estimated by a GP with mean µ(x) and a
covariance kernel σ2(x):

P (f | x, X, y) = N
(
µ(x,X,y), σ2(x,X)

)
(15)

µ(x,X,y) = kn(x)
T (Kϵ)−1y (16)

σ2(x,X) = k(x,x)− kn(x)
T (Kϵ)−1kn(x) (17)

Kϵ(x) = K+ σ2
ϵ (x)I (18)

Here K = K(X,X|θ) is the covariance matrix, (K)ij = k(xi,xj),
with kn(x) = [k(x1,x), . . . , k(xn,x)]T . In this paper, the squared
exponential kernel is used to define the covariance k(xi,x).

B Communication Settings

Further details of the communication settings is given in Table 9.

Table 9 Content, size, and frequency of information shared by robot-r
via communication across the swarm.

Item Descriptions

Inter-robot communication
frequency

After each instance of waypoint
planning

Content of transmitted data • Robot-r’s planned next way-
point to visit (xkr

r )
• Its observations along the last
path (Dkr

r )
Average size of outgoing data
packets (with time-horizon 1
min)

364 Bytes

Potential weaker source can-
didates

Each robot has a list to track of
potential weaker sources

C Definition of Case Studies

C.1 Case Study 1: Small arena, non-convex signal
distribution

f = exp(−
∥x− c1∥2

3
) +

1

2
exp(−2∥x− c2∥2) (19)

Here, x = (x1, x2), where 0 ≤ xi ≤ 2.4, c1 = (1, 2), and c2 =
(2, 0.5). The initial feasible direction, ∆θ is set at 90.

C.2 Case Study 2: Large arena, highly multi-modal signal
distribution

f = exp(−
∥x− c1∥2

130
) +

2

5

7∑
i=2

exp(−
∥x− ci∥2

40
) (20)

Here, x = (x1, x2), where −24 ≤ xi ≤ 24. Moreover, c1 =
(21, 19), c2 = (21,−19), c3 = (0,−15), c4 = (0, 15), c5 =
(−19, 10), c6 = (21, 19), c7 = (−15,−15). The initial feasible
direction, ∆θ is set at 360.
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C.3 Case Study 3: Very large arena, highly multi-modal
signal distribution

f = exp(−
∥x− c1∥2

6, 500
) +

2

5

7∑
i=2

exp(−
∥x− ci∥2

1, 600
) (21)

Here, x = (x1, x2), where −24 ≤ xi ≤ 24. Moreover, c1 =
(55, 45), c2 = (105,−95), c3 = (0,−75), c4 = (−25, 100),
c5 = (−95, 50), c6 = (125, 40), c7 = (−75,−75). There are
four depot locations, where located at each corner of the area; i.e.,
(−120,−120), (120,−120), (120, 120), and (−120, 120).

D Bayes-Swarm-P & Glowworm Settings

Table 10 summarizes the major settings that have been used for Bayes-
Swarm-P and Bayes-Swarm-O for all experiments and case studies.
Tables 11 and 12 respectively list the settings that have been used for
the Glowworm Search and the Levy Walk algorithms in Experiment 2
and the avalanche problem.

Table 10 The settings of the Bayes-Swarm-P algorithm.

Experiment Case Study m V [m/s] T [s]

1 1 5 0.1 10
1 2 5 1 20
2 1 5 0.1 10
2 2 10 1 20
3 2 [5-50] 1 20
4 1 5 0.1 10
4 2 10 1 20
5 1 5 0.1 10
5 2 10 1 20
6 3∗ 6 1 20

m: # robots; V : Velocity of robots; and T : Decision-horizon length.
∗Case 3 represents the avalanche problem in Sec. 5.

Table 11 Glowworm algorithm settings (experiment 2 & avalanche
problem).

ρ γ β rs ∆s [m]

0.4 0.6 0.08 20 0.03

m: Number of robots; ρ: Luciferin decay constant; γ: Luciferin
enhancement constant; β: Decision range gain; rs: Sensor range of
robots; and ∆s: Distance moved by each Glowworm when a decision
is taken.

E Avalanche: Search & Rescue Operation

Figure 9 illustrates a high-level description of how the manned mis-
sion progresses vs. how a team of UAVs would conceivably operate.
The left side of Fig. 9 shows a typical search procedure that is con-
ducted by human rescuer using a beacon receiver. This includes four
main stages [73]: A) Signal Search: In this signal search or scouting

Table 12 Levy walk search algorithm settings (experiment 2 &
avalanche problem).

ρ µ l0

0.2 2 0.5

ρ: Luciferin decay constant; µ: Luciferin enhancement constant; l0:
Decision range gain.

process, the rescuer skies downslope along the path taken by the victim
to detect measurable beacon signal; B) Coarse Search: After detect-
ing the first signal, the rescuer searches the area with a coarse step size
to get within the vicinity of the buried victim; C) Fine Search: The
rescuer searches the vicinity of the buried victim with smaller step size
to reach to get closer to the victim; and D) Pinpointing: At the end,
the rescuer uses a probe to pinpoint the exact location of the victim.
It should be noted the rescuer uses the beacon receiver during the first
three stages of the search, and uses a probe for the last stage.

A

B

C

Signal Search (Scouting)

Target Search (e.g., Bayes-Swarm-P)

A

B-C

D

Fig. 9 Process of searching for skier trapped under avalanche: Left
figure demonstrates manned mission progress; right figure shows how
a team of UAVs would operate. [Image recreated based on [73]]

The first three stages of the search (A-C) can be achieved using
a UAV or a team of UAVs, as shown on the right side of Fig. 9. For
this purpose, the signal search can be achieved using an exhaustive
scanning search. The stages B and C can be conducted using Bayes-
Swarm-P or other similar methods.
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