
Proceedings of Machine Learning Research vol 145:568–597, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

A deep learning method for solving Fokker-Planck equations

Jiayu Zhai ZHAI@MATH.UMASS.EDU
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, 01002, USA

Matthew Dobson DOBSON@MATH.UMASS.EDU
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, 01002, USA

Yao Li YAOLI@MATH.UMASS.EDU

Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, 01002, USA

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract
The time evolution of the probability distribution of a stochastic differential equation follows the
Fokker-Planck equation, which usually has an unbounded, high-dimensional domain. Inspired by
Li (2019), we propose a mesh-free Fokker-Planck solver, in which the solution to the Fokker-Planck
equation is now represented by a neural network. The presence of the differential operator in the
loss function improves the accuracy of the neural network representation and reduces the demand
of data in the training process. Several high dimensional numerical examples are demonstrated.
Keywords: Stochastic differential equation, Monte Carlo simulation, invariant measure, coupling
method, data-driven and machine learning methods

1. Introduction

Stochastic differential equations are widely used to model dynamics of real world problems in the
presence of uncertainty (such as events driving stock markets) or in the presence many small forces
whose origins are not all tracked (such as a solvent acting on a larger molecule). The instantaneous
and cumulative effects of the noise on the dynamics can be visualized through the transient and in-
variant probability distribution of the solution process, respectively. These probability measures can
be analytically described by the Fokker-Planck equations (also known as the Kolmogorov forward
equation Kolmogoroff (1933)). It is well known for the Langevin and Smoluchowski equations
that if the deterministic part of the stochastic differential equation is a gradient flow, the invariant
measure is the Gibbs measure whose probability density function is explicitly given. However in
general, the Fokker-Planck equation can only be solved numerically. Traditional numerical PDE
solvers do not work well for Fokker-Planck equations due to both the lack of a suitable boundary
condition and the curse of dimensionality (see Section 2 for detailed explanation). Although many
novel methods are introduced to resolve this difficulty, solving high dimensional Fokker-Planck
equation remains as a challenge.

With the rapid growth of accessibility of data and demand for its analysis in various applica-
tion realms, such as computer vision, speech recognition, natural language processing, and game
intelligence, machine learning methods prove their strong performance in representing these high
dimensional models. Mathematicians have also made quite many efforts on proving the error esti-
mates of neural network representations using function spaces like Sobolev spaces, Besov spaces,
and Barron spaces Gühring et al. (2020); Petersen and Voigtlaender (2018); Suzuki (2019); E et al.
(2019). Although these results are still far away from explaining their strong performance, the suc-
cess of machine learning methods in modelling high dimensional models in big data applications

© 2021 J. Zhai, M. Dobson & Y. Li.

NEURAL NETWORK FOKKER-PLANCK SOLVER

motivates their consideration as a numerical scheme for solving mathematics problems, particu-
larly in partial differential equations. Among others, we highlight the references Sirignano and
Spiliopoulos (2018); Beck et al. (2018, 2019); Han et al. (2018); Macris and Marino (2020); Raissi
et al. (2019); Wu et al. (2018); Chen et al. (2020); Xu et al. (2020a) that are related to this work.

In Li (2019), the author proposed a novel data-driven solver to solve the Fokker-Planck equation.
The key idea is to remove the reliance on the boundary conditions and construct a constrained
optimization problem that uses the Monte Carlo simulation data as the reference. We find that a
low accuracy Monte Carlo data is sufficient to guide the optimization problem to produce a highly
accurate solution. And the solver has very high tolerance to spatially uncorrelated noise presented
in the reference data (Monte Carlo data). This approach is still grid-based, so it (including its
extension in Dobson et al. (2019)) does not work well for high dimensional problems. Motivated by
the progress of applying artificial neural network to traditional computational problems, in this paper
we propose a mesh-free version of the data-driven solver studied in Li (2019); Dobson et al. (2019).
Similar to those works, the focus here is on the steady state Fokker-Planck equation as the invariant
probability measure plays a very important role in applications. The case of time-dependent Fokker-
Planck equation is analogous. All our algorithms can be applied to time-dependent problems with
some minor modifications.

The key idea in this paper is to replace the constrained optimization problem studied in Li (2019)
by an unconstrained optimization problem, as it is not easy to use neural networks to study the
constrained optimization problem on a high dimensional hyperplane. We first propose the uncon-
strained optimization problem and prove the convergence of its minimizer to the true Fokker-Planck
solution for the discrete case. Then we propose an analogous loss function that is trainable by artifi-
cial neural networks. Our further studies find that the Fokker-Planck operator L plays an important
role in the training. It dramatically increases the tolerance of noisy simulation data and reduces
the amount of simulation data used in the training. In general, we only need 102 to 104 “reference
points” with probability densities on them to train the neural network. And the probability density
function obtained by Monte Carlo simulation does not have to be very accurate. (see Section 3 for
explanation and Section 4 for numerical demonstrations). The reduction of demand for simulation
data is significant since the stochastic dynamical systems in applications usually have high dimen-
sionality, whereas the training data collected from either Monte Carlo simulation or experiments
has high cost. The use of the PDE operator L in the loss function to regularize the solution has
some similarity with the situation of the Physics-Informed Neural Network (PINN) Raissi et al.
(2019); Wu et al. (2018); Chen et al. (2020) and the Deep Galerkin Method (DGM) Sirignano and
Spiliopoulos (2018). The difference is that both PINN and DGM still rely on the boundary con-
dition, which is hard to get for the Fokker-Planck equations defined on unbounded domains. The
Fokker-Planck solver presented in this paper follows the idea of the grid-based solver studied in Li
(2019); Dobson et al. (2019). We only need some rough estimates of the probability density function
at a relative small number of reference points in the interior of the numerical domain. The proba-
bility density can be obtained by either the direct Monte Carlo method or the conditional Gaussian
high dimensional sampler Chen and Majda (2017, 2018). Similar to the grid-based version of our
Fokker-Planck solver, significant spatially uncorrelated error of probability densities at reference
points can be tolerated by the neural network (Figure 4). This makes our Fokker-Planck solver
different from the PINN-based Fokker-Planck solver presented in Chen et al. (2020), especially for
high dimensional problems. In comparison, Chen et al. (2020) uses Kullback–Leibler divergence

569

ZHAI DOBSON LI

as a part of the loss function, which requires a numerical integration in each evaluation of the loss
function.

In Section 2, we describe the problem setting, the unconstrained optimization we study, and the
idea of using neural network representation. All training and sampling algorithms are studied in
Section 3. In Section 4, we use several numerical examples to demonstrate the main feature of our
neural network Fokker-Planck solver.

2. Preliminaries and motivation

2.1. Fokker-Planck equation and data-driven solver.

We consider the stochastic differential equation

dXt = f(Xt)dt+ σ(Xt)dWt , (2.1)

where f is a vector field in Rn, σ is a coefficient matrix, and Wt is an n-dimensional white noise.
The time evolution of probability density of the solution processXt is characterized by the Fokker-
Planck equation, which is also known as the Kolmogorov forward equation

ut = Lu = −
n∑
i=1

(fiu)xi +
1

2

n∑
i,j=1

(Σi,ju)xixj , (2.2)

where u(x, t) denotes the probability density function of the stochastic process Xt at time t, Σ =
σTσ is the diffusion coefficient, and subscripts t and xi denote partial derivatives. In this paper, we
focus on the invariant probability measure of (2.1), whose density function Rn 3 x 7→ u(x) ∈ R
satisfies the stationary Fokker-Planck equation{

Lu = 0∫
Rn u dx = 1

(2.3)

Throughout the present paper, we assume the existence and uniqueness of the solution to the sta-
tionary Fokker-Planck equation.

The Fokker-Planck equation is defined on an unbounded domain with the constraint
∫

Ω u dx =
1. Since the numerical domain has to be bounded, it is not easy to give a suitable boundary condition
to describe the “zero-boundary condition at infinity”. In practice, one can assume a zero boundary
condition on a domain that is large enough to cover all high density areas with sufficient margin.
A classic computational method, e.g., finite element method, is then applied to find a non-trivial
solution. One usually needs to solve a least square problem because of the constraint

∫
Rn u dx = 1.

In general, the computational cost of classical PDE solver is too high to be practical when n ≥
3. The other way to solve the Fokker-Planck equation is the Monte Carlo method, which uses
the fact that the empirical distribution of a long trajectory converges to the solution to the steady
state Fokker-Planck equation. The Monte Carlo method is very simple regardless of the boundary
condition. One only needs to divide the numerical domain into lots of “bins”, run a long trajectory
of the equation (2.1), and count the number of samples in each bin. However, the solution from the
Monte Carlo method is much less accurate.

In Li (2019), the author introduced a data-driven method that overcomes the drawbacks of the
two aforementioned methods, so that one can solve the Fokker-Planck equation locally and does

570

NEURALNETWORKFOKKER-PLANCKSOLVER

notrelyontheboundaryconditionanymore. LaterinDobsonetal.(2019),theauthorsproved
theconvergenceofthemethodandimprovedthemethodbyintroducinga“blockedversion”that
usesadivide-and-conquerstrategy(seeforexampleCormenetal.(2009)). LetD ⊂ Rnbethe
numericaldomain.Assumethereisarectangulargrid{xi}

Nn

i=1 definedinDwithN gridpointson
eachdimension.Thekeyideaofthisdata-drivenmethodistosolvetheoptimizationproblem

min
u

u−v2

subjectto Au=0,
(2.4)

whereA ∈R(N−2)n×Nn
isadiscretizationoftheFokker-PlanckoperatorLonDwithoutbound-

arycondition,andv∈RNn
isaMonteCarloapproximationobtainedbyanumericalsimulationof

(2.1).Anentryviofthevectorvistheprobabilitythatalongtrajectorystaysinasmallneighbor-
hoodofxi,whichisusuallyalowaccuracyapproximationoftheinvariantmeasure.Eachrowof
matrixA isobtainedbyadiscretizationoftheFokker-Planckequation(usingthefinitedifference
method)atainteriorpointxi. MatrixAonlyhas(N−2)nrowsbutNncolumnsbecausewedonot
knowtheboundaryvalue.ThemotivationisthataninaccurateMonteCarlosolutioncaneffectively
replacetheboundaryvalue.Thesolutiontotheoptimizationproblem(2.4)projectstheMonteCarlo
solutionvtothenullspaceofA.Theprojectionworksasa“smoother”thatnotonlydramatically
removestheerrortermfromthe MonteCarloapproximation,butalsopushesmosterrortermsto
theboundaryofthedomain.SeetheproofanddiscussioninDobsonetal.(2019)fordetails.

2.2. Analternativeoptimizationproblem.

Touseartificialneuralnetworkapproximations,weneedtoconverttheoptimizationproblemin
equation(2.4)toanunconstrainedoptimizationproblem.Ifweusethepenaltymethodwithpenalty
parameter1for(2.4),wehaveanewoptimizationproblem

min
u

Au 2
2+ u−v2

2, (2.5)

whereAandvarethesameasinequation(2.4). Weclaimthatthenewoptimizationproblem(2.5)
hasasimilareffectastheoriginalonein(2.4).

Tocomparetheresult, wechoosethenumericalsolutionobtainedbythefinitedifference
method,denotedbyu∗,asthebaseline,becausewehaveAu∗=0.SeeAppendixAforamore
precisedescriptionofu∗.Let̄ubetheminimizeroftheoptimizationproblem(2.5). Denotethe
errortermsoftheMonteCarlosimulationandtheoptimizerbye=v−u∗andz=ū−u∗respec-
tively.LetA =Ahwherehisthegridsizeofdiscretization. Wemakethefollowingassumptions
toconducttheconvergenceanalysis.

(A1)Randomvectorehasi.i.d.entrieswhoseidenticalexpectationandvarianceare0andζ2

respectively.

(A2)Letλh
1,···,λhrbeallnonzeroeigenvaluesofAT

hAh. LetQ(h) =hn r
i=1

1
1+h 4λh

i

2
.

Wehave Q(h)→ 0ash→ 0.

Theorem2.1 If(A1)and(A2)hold,then

lim
h→0

E[z2]

E[e2]
=0.

571

ZHAI DOBSON LI

Remark: One needs to multiply the volume of n-dimensional grid box when calculating the
discrete L2 error. Hence the discrete L2 error of v is hn/2E[‖e‖] = const · ζ. Theorem 2.1 implies
that the error of ū converges to zero as h→ 0.

Assumption (A1) assumes the error term e has i.i.d entries. This is because the error terms
of Monte Carlo solutions have very little spatial correlation. See Figure 1 bottom left panel as an
example of the spatial distribution of the error term of a Monte Carlo solution. The real Monte Carlo
simulation has smaller error than that in Assumption (A1), as the absolute error is smaller in the low
density area. Assumption (A2) is due to technical reasons. It means nonzero eigenvalues of Ah

shouldn’t be extremely small. This is true for all examples that we have tested. But a rigorous proof
of the eigenvalue distribution of Ah is very difficult and beyond the scope of the present paper. See
Appendix A for more discussions.

3. Neural network train algorithms

In Theorem 2.1, we show that the solution to the unconstrained optimization problem (2.5) con-
verges to the true solution of the Fokker-Planck equation. Since it is very difficult to do spatial
discretization in high dimension, it is natural to consider the mesh-free version of the optimization
problem (2.5), in which the variable u is represented by an artificial neural network.

3.1. Loss function.

Now let ũ(x,θ) be an approximation of u that is represented by an artificial neural network with
parameter θ. Inspired by equation (2.5), we work on the squared error loss function

L(θ) =
1

NX

NX∑
i=1

(Lũ(xi,θ))2 +
1

NY

NY∑
j=1

(ũ(yj ,θ)− v(yj))
2 := L1(θ) + L2(θ), (3.1)

with respect to θ, where xi ∈ Rn, i = 1, 2, . . . , NX and yj ∈ Rn, j = 1, 2, . . . , NY are collocation
points sampled fromD, and v(yj) is the Monte Carlo approximation from a numerical simulation of
(2.1) at yj . This loss function (3.1) is in fact the Monte Carlo integration of the following functional

J(u) = ‖Lu‖2L2(D) + ‖u− v‖2L2(D), (3.2)

which can be seen as the continuous version of the discrete optimization problem (2.5).
The loss function (3.1) has two parts. The minimization of L1(θ) is to generate parameters θ∗

that guides the neural network representation ũ(x,θ∗) to fit the Fokker-Planck differential equation
Lũ = 0 empirically at the training points xi, i = 1, 2, . . . , NX (we use automatic differentiation
here to generate derivatives of ũ with respect to x using the same parameters θ). It works as a reg-
ularization mechanism such that the resultant neural network representation ũ(x,θ∗) approximates
one of the infinitely many solutions of the Fokker-Planck equation without boundary conditions.
Similar to Li (2019) and Dobson et al. (2019), the second part L2(θ) of the loss function serves
as a reference for the solution. It is the low accuracy Monte Carlo approximation that guides the
neural network training process to converge to the desired solution, namely the one satisfying the
stationary Fokker-Planck equation (2.3). The accuracy of v(yi) does not have to be very high. As
shown in Li (2019); Dobson et al. (2019) and Section 2.2, the optimization problem removes spa-
tially uncorrelated noise in the Monte Carlo, so that the minimizer is a good approximation of the
exact solution of the Fokker-Planck equation.

572

NEURAL NETWORK FOKKER-PLANCK SOLVER

Let X := {xi; i = 1, 2, . . . , NX} and Y := {yj ; j = 1, 2, . . . , NY } be two training sets that
consists of collocation points. To distinguish them, we call X the “training set” and Y the “reference
set”. We find that these two sets do not have to be very large. In our simulations NX ranges from
104 to 105, while NY ranges from 102 to 104. This loss function can be easily trained in a simple
feedforward neural network architecture. (See Appendix E.1.) We remark that the choice of loss
function has some similarity to the so called physics-informed neural network (PINN) studied in
Raissi et al. (2019); Wu et al. (2018). The first part ‖Lu‖2L2(D) serves a similar role by using the
differential operator from the physics laws there, whereas the second part of the loss function plays
a similar role as the boundary and initial data in PINN. The difference from PINN is that we do not
use boundary conditions. Instead, a rough estimate of probability density at reference points is used
to guide the neural network training.

The neural network approximation learns the differential operator over collocation points and
learns the probability density function from the reference data points. It is proved in many related
works that it works effectively to recover a complicated solution function (see Raissi et al. (2019);
Sirignano and Spiliopoulos (2018); Wu et al. (2018)). To further accelerate the training process, we
introduce a “double shuffling” method that only uses a small batch of X and Y in each iteration
to update the parameter. Since L1 and L2 could have very different magnitude, in each iteration,
we use Adam optimizer Kingma and Ba (2015) to train L1 and L2 and update the parameter θ
separately (Because Adam optimizer is invariant to rescaling. See Kingma and Ba (2015).) This
method avoids the trouble of rebalancing the weight ofL1 andL2 during the neural network training.
See Algorithm 1 for detailed implementation of the “double shuffling” method.

Algorithm 1: Neural network training
Input: Training set X and reference set Y.
Output: Minimizer θ∗ and ũ(x,θ∗).

1 Initialize a neural network representation ũ(x,θ) with undetermined parameters θ.
2 Run Monte Carlo simulation to get an approximate density v(yj) at each reference data points
yj , j = 1, 2, . . . , NY .

3 repeat
4 Pick a mini-batch in X, calculate the mean gradient of L1, and use the mean gradient to

update θ.
5 Pick a mini-batch in Y, calculate the mean gradient of L2, and use the mean gradient to

update θ.
6 until Losses of L1 and L2 are both small enough
7 Return θ∗ and ũ(x,θ∗).

3.2. Sampling collocation points and reference data.

For many stochastic dynamical systems (2.1), the invariant probability measure is concentrated near
some small regions or low dimensional manifolds, while the probability density function is close to
zero far away. Hence samples of the collocation points in X and Y must effectively represent the
concentration of the invariant probability density function. The solution is to use the dynamics of the
system to choose representative X and Y. We run a numerical trajectory of the stochastic differential
equation (2.1), and pick α ∈ [0, 1] of the collocation points xj and yj from this trajectory. When

573

ZHAI DOBSON LI

sampling from the long trajectory, we set up an “internal burn-in time” s0 and only sample at time
{ns0}n=1,2,··· to avoid samples being too close to each other. Then to represent the complement set
so that the network can learn small values from it, we sample the other 1 − α of the collocation
points xj and yj from the uniform distribution on D. Since the concentration part preserves more
information of the invariant distribution density, we usually set α = 0.5 ∼ 0.9. See Algorithm 2 for
the full detail.

Algorithm 2: Data collocation sampling
Input: Rate α ∈ [0.5, 0.9].
Output: Training collocation points xi, i = 1, 2, . . . , NX (or yj , j = 1, 2, . . . , NY).
InitializeX0. ;
Run a numerical trajectory of (2.1) to time t0 to “burn in”.;
Choose an internal “burn in” time s0 ;
for i = 1 to NX do

Generate a random number ci ∼ U([0, 1]). ;
if ci ≤ α then

Let ti = ti−1 + s0;
Run the numerical trajectory of (2.1) up to time ti;
Let xi = Xti . ;

else
Let ti = ti−1.;
Generate a random point xi ∼ U(D).;

end
end
Return xi, i = 1, 2, . . . , NY .;

It remains to discuss how to sample the probability density v(yi) for yi ∈ Y. If the dimension
is low, one can sample v(yi) use grid-based approaches as in Li (2019). For higher dimensional
problems, some improvements on sampling techniques are needed. A memory-efficient Monte
Carlo sampling algorithm for higher dimensional problems is discussed in Appendix B. For some
stochastic differential equations with conditional linear structure, a conditional Gaussian sampler
developed in Chen and Majda (2018) can be used. See Appendix C for the full detail.

4. Numerical examples

In this section, we use three numerical examples with explicit exact solution to demonstrate several
properties of our Fokker-Planck solver. Then a six dimensional example is used to demonstrate
its performance in higher dimensions. In addition to these three numerical examples in the main
text, a few additional numerical tests are carried out to further examine the performance and the
limitation of our data-driven Fokker-Planck solver. We test the early stopping technique (Appendix
D.1), the robustness of the algorithm against random initializations (Appendix D.2), a comparison
of neural network architectures (Appendix D.3), the performance of the Fokker-Planck solver for
multimodal distributions under the weak noise setting (Appendix D.4), and the performance in
higher dimensional problems (Appendix D.5). See Appendix D for the full detail.

574

NEURAL NETWORK FOKKER-PLANCK SOLVER

4.1. A 2D ring density

Consider a two dimensional stochastic gradient system{
dXt = (−4Xt(X

2
t + Y 2

t − 1) + Yt) dt+ σ dW x
t ,

dYt = (−4Yt(X
2
t + Y 2

t − 1)−Xt) dt+ σ dW y
t ,

(4.1)

where W x
t and W y

t are independent Wiener processes, and we choose diffusion coefficient σ = 1.
The drift part of equation (4.1) is a gradient flow of the potential function

V (x, y) = (x2 + y2 − 1)2

plus a rotation term orthogonal to the equipotential lines of V . Hence the probability density func-
tion of the invariant measure of (4.1) is

u(x, y) =
1

K
e−2V (x,y)/σ2

,

where K = π
∫∞
−1 e

−2t2/σ2
dt is the normalization parameter. Note that the orthogonal rotation

term does not change the invariant probability density function. This can be verified by substituting
u(x, y) into the Fokker-Planck equation of (4.1). In this example and other numerical examples,
unless otherwise specified, we use the small feed-forward neural network with fixed architecture of
hidden layers as described in Appendix E.1.

Figure 1: A comparison of probability density function of the invariant measure obtained by Monte
Carlo simulation, linear projection method, linear optimization method, and optimization
through an artificial neural network. First row: probability density functions. Second
row: Distributions of error against the exact solution. (Grid size = 200 × 200. Sample
size of Monte Carlo: 107.)

Our first goal is to compare the performance of the neural network representation, solution
to the constrained optimization problem, and solution to the unconstrained optimization problem
(2.5). In Figure 1, the first column gives a Monte Carlo approximation and its error distribution. As

575

ZHAI DOBSON LI

expected, the Monte Carlo approximation is both noisy and inaccurate. Note that the error term of
the Monte Carlo approximation has very little spatial correlation. This motivates Assumption (A1).
In the second and the third columns of Figure 1 respectively, we see the data-driven solvers (2.4)
and (2.5) can clearly “smooth out” the fluctuation in the Monte Carlo approximation. This confirms
the convergence result proved in Dobson et al. (2019) and Theorem 2.1. The last column of Figure
1 show that the artificial neural network method with loss function (3.1) has a similar “smoothing”
effect. In the neural network training of this example, we let two sets of collocation points X and
Y be the set of grid points to compare the result. This result validates the use of the loss function
(3.1) as a continuous version of the unconstrained optimization problem (2.5). We can see when
a grid-based approach is available, it usually has higher accuracy. However, the neural network
method is more applicable to higher dimensional problems.

Instead of grid points, the second numerical simulation uses Algorithm 2 with randomly sample
collocation points (using Algorithm 2). Figure 2 shows the neural network representations learnt
from various amounts of reference points v(yj). The discrete L2 errors is computed with respect to
this grid and demonstrated on the title of each subfigures. The neural network is then trained with
Algorithm 1, in which the norm of Lu is evaluated at each training point. In order to numerically
check the effect of the Fokker-Planck operator in the loss function, we train the neural network
without calculating Lu, and demonstrate the result in Figure 3. More precisely, in Figure 3, we
only use a large training data set Y. Step 3 in Algorithm 1 is skipped. See Appendix E.2 for
implementation details.

In Figure 2, we can see a clear underfitting when using too few reference points. The training
result becomes satisfactory when the number of training points is 256 or larger. As a comparison,
if Lu is not added to the loss function, one needs as large as 16384 training points to reach the
same accuracy. This shows the advantage of including Lu into the loss function. The differential
operator Lu helps the neural network to find a solution to the Fokker-Planck equation. And the
role of reference points is to make sure that the Fokker-Planck solution is the one we actually need.
We can train the neural network with only a few hundreds reference points, and the accuracy of the
probability density at those reference points does not have to be very high. Similarly to the discrete
case in Theorem 2.1, the spatially uncorrelated noise can be effectively removed by training the loss
function L2. This observation is very important in practice, as in high dimension it is not practical to
obtain the probability densities for a very large reference set, and the result from a high dimension
Monte Carlo simulation is unlikely to be accurate.

4.2. A 2D Gibbs measure

We consider a two dimensional stochastic gradient system{
dXt = (X2

t Yt −X5
t) dt+ σ dW x

t ,
dYt = (1

3X
3
t − 7

3Yt) dt+ σ dW y
t ,

(4.2)

where W x
t and W y

t are independent Wiener processes, and σ = 1 in this example is the strength of
the white noise. The drift part of equation (4.2) is a gradient flow of the potential function

V (x, y) = −1

3
x3y +

1

6
x6 +

7

6
y2 =

1

6
(x3 − y)2 + y2.

576

NEURAL NETWORK FOKKER-PLANCK SOLVER

Figure 2: A comparison of different sizes of reference set with Lu being in the loss function. Top
left to bottom right: heat map of the invariant probability density function if the “ring
model” with 32, 64, 128, 256, 512, and 1024 reference points are used. The L2 error is
shown in the title of each subplot.

So the invariant measure of (4.2) is the Gibbs measure with probability density function

u(x, y) =
1

K
exp(−2V (x, y)),

whereK =
∫∞
−∞

∫∞
−∞ exp(−2V (x, y)) dxdy is the normalization parameter. We choose this system

because Yt is conditionally linear with respect to Xt. We can use this system to test the conditional
Gaussian sampler.

One aim of this numerical experiment is to show the unconstrained optimization problem used
by the artificial neural network can tolerate spatially uncorrelated noise at a very high level. To
demonstrate this, we artificially add a noise to the exact solution u(x) of the Gibbs measure to
get the reference data v. We first run Algorithm 2 to get four sets of collocation points yj , j =
1, 2, . . . , 1024. Then we generate four sets of reference data v at these collocation points by injecting
an artificial noise with maximal relative error α for α = 0.01, 0.05, 0.1, and 0.5, such that v(yj) =
u(yj)(1−α+2αU), whereU is uniformly distributed on [0, 1]. Then we run Algorithm 1 with these
sets of reference data {v(yj)}1024

j=1 . The first row of Figure 4 shows how the artificial noise is applied
by increasing α and the second row shows the neural network approximation. Observing from the
third row of Figure 4, it is surprising that even when the magnitude of the multiplicative noise is
increased to 0.5, namely, the relative error of the Monte Carlo approximation is 50%, the correction
ũ(·, θ) is still quite accurate. This shows our method has high tolerance to spatially uncorrelated
noise, which is usually the case of the reference data obtained from Monte Carlo simulations.

Then we use the conditional Gaussian sampler (Algorithm 4 in Appendix C) to generate the
probability density function. In Figure 5, we can see there is a small but systematic bias in the

577

ZHAI DOBSON LI

Figure 3: A comparison of different sizes of reference set without Lu being in the loss function.
Top left to bottom right: heat map of the invariant probability density function if the “ring
model” with 2048, 4096, 8192, 16 384, 32 768, and 65 536 reference points are used. The
L2 error is shown in the title of each subplot.

probability density function given by Algorithm 4. We suspect that this bias comes from the use
of one long trajectory in Algorithm 4. As a result, if we use it to generate reference data v(yj) for
yj ∈ Y, the error will be systematic, which is very different from the spatially uncorrelated noise
seen in the Monte Carlo result. This systematic bias makes the differential operator Lu in the loss
function hard to guide the training, because there are infinitely many functions that solve Lu = 0.
To maintain a minimization of the two parts of the loss function (3.1), a balance between them forces
the neural network approximation to produce an approximation biased from the exact solution. In
other words, e = v−u∗ as defined in Section 2.2 for this conditional Gaussian approximation does
not satisfy Assumption (A1). Consequently, the convergence of E[z] = E[ū−u∗] is not guaranteed.
However, the conditional Gaussian sampler has its advantage in higher dimensions. See Section 4.4
for more discussion.

4.3. A 4D ring density

Consider a generalization of the stochastic gradient system in Subsection 4.1 in four dimensional
state space 

dXt = (−4Xt(X
2
t + Y 2

t + Z2
t + S2

t − 1) + Yt) dt+ σ dW x
t ,

dYt = (−4Yt(X
2
t + Y 2

t + Z2
t + S2

t − 1)−Xt) dt+ σ dW y
t ,

dZt = (−4Zt(X
2
t + Y 2

t + Z2
t + S2

t − 1)) dt+ σ dW z
t ,

dSt = (−4St(X
2
t + Y 2

t + Z2
t + S2

t − 1)) dt+ σ dW s
t ,

(4.3)

578

NEURAL NETWORK FOKKER-PLANCK SOLVER

Figure 4: Neural network representations with different level of artificial noise. First row: Artificial
noises added to the exact solution. Second row: Neural network approximation with 1024
reference points and 10000 training points. Third row: The error of the neural network
approximation and the discrete L2 error.

where W x
t ,W

y
t ,W

z
t and W s

t are independent Wiener processes, and σ = 1 in this example is the
strength of the white noise. The drift part of equation (4.3) is a gradient flow of the potential function

V (x, y, z, s) = (x2 + y2 + z2 + s2 − 1)2

plus a rotation term orthogonal to the equipotential lines of V in the first two dimensions of variables
x and y. Hence the invariant measure of (4.3) is

u(x, y, z, s) =
1

K
exp(−2V (x, y, z, s)),

where K =
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞ exp(−2V (x, y, z, s)) dxdydzds is the normalization parameter.

Similar to Subsection 4.1, the rotation term does not change the invariant probability density func-
tion, which can be verified by substituting u(x, y, z, s) into the Fokker-Planck equation of (4.3).

The aim of this example is to demonstrate the accuracy of neural network representation in 4D.
The numerical domain is D = [−2, 2]2. We use Algorithm 2 to sample 104 reference points and
105 training points. Probability densities at training points are obtained by Algorithm 3. After we
get the neural network approximation by Algorithm 1, we evaluate it on the four x-y slices for
(z, s) = (0, 0), (0.5, 0.5), (1, 0) and (1, 1) in Figure 6. Figure 6 also shows the error distributions
and the L2 error on these slices. The errors at all points in these 4 slices are controlled at a very
low level ≤ 0.04. And the discrete L2 errors are satisfactory. Figure 6 illustrates that after training
the loss function (3.1) on a sparse set of reference data, this solution function is accurate at any

579

ZHAI DOBSON LI

Figure 5: A comparison of the conditional Gaussian method and the direct Monte Carlo method.
First column: The invariant probability density function and its error obtained by the
conditional Gaussian method. Second column: Top: The invariant probability density
function and its error obtained by the neural network approximation, with 1024 training
points whose densities are obtained by Algorithm 4. Bottom: The invariant probability
density function and its error obtained by the neural network approximation, with 1024
training points whose densities are obtained by Monte Carlo simulation.

point in D. It demonstrates strong representing power of the neural network approximation, both
globally and locally. We remark that it is not possible to solve this 4D Fokker-Planck equation
with traditional numerical PDE approach. The divide-and-conquer strategy in Dobson et al. (2019)
would be difficult to implement as well, due to the high memory requirement of a 4D mesh.

4.4. A 6D conceptual dynamical model for turbulence

In this subsection, we consider a six dimensional stochastic dynamical system with conditional
Gaussian structure as (C.1)-(C.2) withX l

I(t) = Xt andX l
II(t) = (Y

(1)
t , Y

(2)
t , Y

(3)
t , Y

(4)
t , Y

(5)
t)T

dXt = (−0.1Xt + 0.5 + 0.25Xt(Y
(1)
t + Y

(2)
t + Y

(3)
t + Y

(4)
t + Y

(5)
t)) dt+ 2 dW x

t ,

dY
(1)
t = (−0.2Y

(1)
t − 0.25X2

t) dt+ 0.5 dW
(1)
t ,

dY
(2)
t = (−0.5Y

(2)
t − 0.25X2

t) dt+ 0.2 dW
(2)
t ,

dY
(3)
t = (−Y (3)

t − 0.25X2
t) dt+ 0.1 dW

(3)
t ,

dY
(4)
t = (−2Y

(4)
t − 0.25X2

t) dt+ 0.1 dW
(4)
t ,

dY
(5)
t = (−5Y

(5)
t − 0.25X2

t) dt+ 0.1 dW
(5)
t ,

(4.4)

where W x
t and W

(i)
t , i = 1, 2, . . . , 5, are independent Wiener processes. This model has been

studied in Chen and Majda (2018) as a numerical example.

580

NEURAL NETWORK FOKKER-PLANCK SOLVER

Figure 6: Invariant probability density function of the 4D ring (Equation (4.3)). Total number of
reference points is 10 000. Probability density at reference points is obtained by direct
Monte Carlo method with 1010 sample points. First row: Invariant probability density
functions restricted on the x-y slices with z = 0, s = 0. z = 0.5, s = 0.5, z = 1, s = 0,
and z = 1, s = 1. Second row: Error of probability density functions when comparing
with the exact solution. The discrete L2 error is shown in the title of each subplot.

In this high dimensional system, we compare the direct Monte Carlo approximation and neural
network approximation with the reference data obtained from both Monte Carlo and the modified
conditional Gaussian sampler in Algorithm 4. It is not possible to visualize a 6D probability density
function, so we compare probability densities on the central slices in the 6D state space, namely,
the u-vi, i = 1, 2, . . . , 5 hyperplanes with vj = 0, j 6= i. The first row demonstrates the probability
density functions at the five slices obtained by a direct Monte Carlo simulation. The solution has
low resolution and low accuracy because It is difficult to collect enough samples in high dimension.

In this example, we generate a reference point set Y with size NY = 20000 using Algorithm 2.
These collocations are very sparse in this six dimensional region D. Then we use both Monte Carlo
approximation and the conditional Gaussian sampler in Algorithm 4 to generate the probability
density v(yi) for yi ∈ Y. Note that the simulation time of Monte Carlo sampler is about 100 times
more than the conditional Gaussian sampler. Then in both cases, we use Algorithm 1 to obtain
a neural network approximation of the invariant probability measure. After the neural network is
trained in the whole region D, we evaluate and plot it on the five central slices (see the second and
third row in Figure 7). Although a closed-form solution for this example is not possible, we can still
see that the solution obtained by three different approaches are not very far away from each other.
This confirms the validity of the solutions. The neural network has low demand (20000 points) on
reference data points and fast training speed (less than one hour). After the training, we can use it
to predict the invariant probability density at any point in the domain. This is a remarkable result,
because it is impossible to solve such as six dimensional problem by using traditional grid-based
approaches.

581

ZHAI DOBSON LI

Figure 7: Heat maps of the invariant probability density function of the 6D turbulence model re-
stricted on 2D slices. From left to right: the ith plot is the u-vi, i = 1, 2, . . . , 5 slice with
vj = 0, j 6= i. Top row are invariant probability density functions obtained by the direct
Monte Carlo method. Middle row and bottom row are the neural network approximation
using Algorithm 1 with probability densities {v(yi)} obtained by Monte Carlo simulation
and the conditional Gaussian sampler, respectively.

5. Conclusion and Prospective Works

We proposed a neural network approximation method for solving the Fokker-Planck equations. The
motivation is that the data-driven method studied in Li (2019); Dobson et al. (2019) can be converted
to a similar unconstrained optimization problem, and a mesh-free neural network solver can be used
to solve the “continuous version” of this unconstrained optimization problem. We only present
the case of the stationary Fokker-Planck equation that describes the invariant probability measure,
because the case of the time-dependent Fokker-Planck equation is analogous. By introducing the
differential operator of the Fokker-Planck equation into the loss function, the demand for large
training data in the learning process is significantly reduced. Our simulation shows that the neural
network can tolerate very high noise in the training data so long as it is spatially uncorrelated. In
terms of performance, one training epoch that goes through all training points once takes a few
seconds for 2D problems and about six minutes for the 20D problem shown in Appendix D.5. It
takes 20 to 30 epochs for the neural network to converge to the desired solution. This is significantly
faster than the traditional grid-based method in dimension 3 or higher. We believe this work provides
an effective numerical approach to study many high dimensional stochastic dynamics.

In this paper, the convergence of minimizer of the new unconstrained optimization problem is
only carried out for the discrete case. It is tempting to extend this result to the space of functions.
The problem becomes trivial and not interesting if we work with the space of C∞ functions and

582

NEURAL NETWORK FOKKER-PLANCK SOLVER

assume that the error term of the Monte Carlo simulation is a spatial white noise. So we need to
consider the more realistic case such as the Barron space, and find a more realistic assumption to
describe the reference data obtained by the Monte Carlo simulation. We plan to carry out this study
in our subsequent work. In the future, we will also apply this method to more complicated but inter-
esting systems such as systems with non-Gaussian Lévy noises and quasi-stationary distributions.

References

Rikard Anton, David Cohen, and Lluis Quer-Sardanyons. A fully discrete approximation of the
one-dimensional stochastic heat equation. IMA Journal of Numerical Analysis, 40(1):247–284,
2020.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

Christian Beck, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf Jentzen. Solv-
ing stochastic differential equations and Kolmogorov equations by means of deep learning.
arXiv:1806.00421, 2018.

Christian Beck, Weinan E, and Arnulf Jentzen. Machine learning approximation algorithms
for high-dimensional fully nonlinear partial differential equations and second-order backward
stochastic differential equations. Journal of Nonlinear Science, 29:1563–1619, 2019.

Nan Chen and Andrew J Majda. Beating the curse of dimension with accurate statistics for the
Fokker-Planck equation in complex turbulent systems. Proceedings of the National Academy of
Sciences, 114(49):12864–12869, 2017.

Nan Chen and Andrew J Majda. Efficient statistically accurate algorithms for the Fokker-Planck
equation in large dimensions. Journal of Computational Physics, 354:242–268, 2018.

Xiaoli Chen, Liu Yang, Jinqiao Duan, and George Em Karniadakis. Solving inverse stochastic prob-
lems from discrete particle observations using the fokker-planck equation and physics-informed
neural networks. arXiv:2008.10653, 2020.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 2009.

Aaron R Dinner, Jonathan C Mattingly, Jeremy OB Tempkin, Brian Van Koten, and Jonathan Weare.
Trajectory stratification of stochastic dynamics. SIAM Review, 60(4):909–938, 2018.

Matthew Dobson, Yao Li, and Jiayu Zhai. An efficient data-driven solver for Fokker-Planck equa-
tions: algorithm and analysis. arXiv:1906.02600, 2019.

Weinan E, Chao Ma, and Lei Wu. Barron spaces and the compositional function spaces for neural
network models. arXiv:1906.08039, 2019.

Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approximations with deep
ReLU neural networks in W s,p norms. Analysis and Applications, 18(5):803–859, 2020.

583

ZHAI DOBSON LI

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. PNAS, 115(34):8505–8510, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Andrey Kolmogoroff. Zur theorie der stetigen zufälligen prozesse. Mathematische Annalen, 180:
149–160, 1933.

Yao Li. A data-driven method for the steady state of randomly perturbed dynamics. Communica-
tions in Mathematical Sciences, 17(4):1045–1059, 2019.

Nicolas Macris and Raffaele Marino. Solving non-linear kolmogorov equations in large dimensions
by using deep learning: a numerical comparison of discretization schemes. arXiv:2012.07747,
2020.

Jay M Newby. Isolating intrinsic noise sources in a stochastic genetic switch. Physical biology, 9
(2):026002, 2012.

Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions
using deep ReLU neural networks. Neural Networks, 108:296–330, 2018.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:586–707, 2019.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

Taiji Suzuki. Adaptivity of deep reLU network for learning in besov and mixed smooth besov
spaces: optimal rate and curse of dimensionality. In International Conference on Learning Rep-
resentations, 2019. arXiv:1810.08033.

Jin-Long Wu, Heng Xiao, and Eric Paterson. Physics-informed machine learning approach for
augmenting turbulence models: A comprehensive framework. Phys. Rev. Fluids, 3:074602, Jul
2018. doi: 10.1103/PhysRevFluids.3.074602. URL https://link.aps.org/doi/10.
1103/PhysRevFluids.3.074602.

Yong Xu, Hao Zhang, Yongge Li, Kuang Zhou, Qi Liu, and Jürgen Kurths. Solving fokker-planck
equation using deep learning. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:
013141, 2020a.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. Communications in Computational Physics,
28(5):1746–1767, 2020b.

584

http://arxiv.org/abs/1412.6980
https://link.aps.org/doi/10.1103/PhysRevFluids.3.074602
https://link.aps.org/doi/10.1103/PhysRevFluids.3.074602

NEURAL NETWORK FOKKER-PLANCK SOLVER

Appendix A. Proof of Theorem 2.1

We first need to describe how the “baseline” solution u∗ is obtained. Let û ∈ RNn
denote the true

solution of the Fokker-Planck equation restricted on the rectangular grid {xi}N
n

i=1 in D, that is, ûi is
the solution to equation (2.2) at point xi. Then u∗ is the numerical solution obtained by the finite
difference method such that Au∗ = 0 and u∗ = û at all grid points on ∂D. More precisely, we
need to solve a new linear system [

A
P0

]
u∗ =

[
0
P0û

]
,

whereA is the aforementioned (N−2)n×Nn matrix, P0 is an (Nn−(N−2)n)×Nn matrix such
that P0u gives entries of u on grid points on ∂D. Since the finite difference method is convergent
for second order elliptic PDEs with given boundary value, when h� 1, u∗ is a good approximation
of û. And the accuracy of u∗ is considerable higher than the result of Monte Carlo simulations.

Proof [Proof of Theorem 2.1] Let F (u) = uTATAu+ (u− v)T (u− v). It is easy to see that the
minimizer solves

∂F (u)

∂u
= 2ATAu+ 2u− 2v = 0 .

Therefore, the quadratic form (2.5) has a unique minimizer ū = (I +ATA)−1v.
DenoteB = (I +ATA)−1. Then

B−1u∗ = (I +ATA)u∗ = u∗,

and
v = B−1ū = B−1ū−B−1u∗ + u∗ = B−1z + u∗.

So z = Be. Therefore, E[z] = 0 by assumption (A1), and cov(z, z) = ζ2BBT = ζ2B2 by the
symmetry ofB. Furthermore,

E[‖z‖22] = Trace(cov(z, z)) = ζ2Trace(B2) = ζ2
M∑
k=1

λ2
k,

where M = Nn and {λk}Mk=1 are the eigenvalues ofB.
For the sake of simplicity let M = Nn. Recall that Ah = h2A. Since AT

hAh is symmetric,
there is a orthonormal matrixQ such thatAT

hAh = QΛhQ
T , where Λh = diag{λh1 , · · ·λhM} is the

diagonal matrix whose diagonal elements are the eigenvalues ofAT
hAh. A short calculation shows

λk =
1

1 + h−4λhk
.

Since AT
hAh is positive semi-definite and Ah ∈ R(N−2)n×Nn

has full rank, AT
hAh has Nn −

(N − 2)n zero eigenvalues, while r = (N − 2)n eigenvalues are positive. So for all sufficiently
small h > 0, we have

E[‖z‖22] = ζ2
M∑
k=1

λ2
k = ζ2

M∑
k=1

(
1

1 + h−4λhk

)2

= ζ2

[
Nn − (N − 2)n +

r∑
i=1

(
1

1 + h−4λhi

)2
]
.

585

ZHAI DOBSON LI

Since E[‖e‖2] = ζ2Nn and N = O(h−1), by Assumption (A2), we have

E[‖z‖22]

E[‖e‖2]
≤ Nn − (N − 2)n

Nn
+O(1)Q(h)→ 0

as h→ 0.

It remains to discuss why Assumption (A2) is a valid assumption. Because A is obtained by
finite difference method, it has the form A = h−2(A0(h) + hA1(h)), where A0 (resp. A1) is a
constant matrix if σ (resp. f) is constant. It is extremely difficult to rigorously prove Assumption
(A2) when σ and f in equation (2.1) are location-dependent. In general, the smallest nonzero
eigenvalue is O(h4), but other eigenvalues are significantly larger than O(h4). There are O(h−n)
terms in the summation in the definition of Q(h). Hence Q(h) approaches to zero when h � 1.
In Figure 8, we numerically verify Assumption (A2) for 1D and 2D Fokker-Planck equations. We
can see that Q(h) → 0 as h → 0 in both cases. This numerical result is for σ = Idn and f = 0.
Note that f determinesA1(h), which is only a small perturbation of the matrixA(h). So we expect
Assumption (A2) to hold for any bounded f .

Figure 8: Left: Q(h) vs. h for the discretized 1D Fokker-Planck operator. Right: Q(h) vs. h for
the discretized 2D Fokker-Planck operator.

Appendix B. Sampling probability densities – direct Monte Carlo.

It remains to discuss the sampling technique to obtain v(yi) for yi ∈ Y. This step is trivial when
using traditional grid-based method. One only needs to set up a grid in the numerical domain and
count sample points in the neighborhood of each grid from a long trajectory. However, instead
of the full space, Algorithm 1 only requires probability densities at thousands of reference points
yi ∈ Y. Also a high dimensional grid could occupy an unrealistic amount of memory. So we need
to improve the efficiency of the Monte Carlo sampler.

As mentioned in Section 2.1, to obtain a desirable accuracy of the reference data v(yj) using
a Monte Carlo method, one needs to run very long numerical trajectories of (2.1) to guarantee
enough points on the trajectories are counted around yj . On the other hand, when the dimensionality
increases, the size of reference set Y in the training process also increases. For example, to solve a

586

NEURAL NETWORK FOKKER-PLANCK SOLVER

6D Fokker-Planck equation, NY needs to be as large as tens of thousands. If we do not optimize the
algorithm, then every time a new sample point is obtained from a long trajectory, one must check
whether it belongs to the neighborhood of each collocation points yj ∈ Y. This will make the long
trajectory sampler too slow to be useful.

An alternative approach is to create an N mesh with Nn grid points on D =
∏n
ι=1[aι, bι] and

denote the vector of grid points by yk, k = 1, 2, . . . , Nn. Let hι = (biota−aiota)/h be the grid size.
This gives an n-dimensional “box”

∏n
ι=1[ykι − hι,ykι + hι] around each mesh point yk. Instead

of using Algorithm 2 to sample yj directly, we choose the closest mesh point ykj for each yj
given by Algorithm 2. So we have Y = {ykj}, j = 1, · · · , NY . With the help of the mesh, we can
put a sample point into the corresponding n-dimensional “box” after implementing 2n comparisons.
After running a sufficiently long trajectory, the number of samples in each box gives the approximate
probability density at each grid point. Then we can look up the probability density of ykj from the
corresponding boxes. This approach dramatically improves the efficiency, at the cost of storing a
big array with Nn points. When n ≥ 4, this method could have an unrealistically high demand of
the memory.

We propose the following “splitting” method to balance the efficiency and the memory pressure.
The idea is to split the dimensions in to groups to reduce the size of vector stored in the memory. To
be specific, we use n = 6 as an example to state this method. One can easily generalize it to other
dimensions. For R6 = R3 × R3, we create an array of arrays Q with 2×N3 entries. The first and
secondN3 entries are for the first and second R3, respectively. Each entry ofQ is an array of indices
of training points. More precisely, for a collocation point yj = (yj1, y

j
2, . . . , y

j
6) ∈ Y that is also

a mesh point, we denote its index by (n1, n2, . . . , n6), where nι = (yjι − aι)/hj , ι = 1, 2, . . . , 6.
Then we record the numbering j in two arrays corresponding to the (n1N

2 + n2N + n3)-th and
the (N3 + n4N

2 + n5N + n6)-th entries of Q. When a sample point x = (x1, x2, . . . , x6) is
obtained from the Monte Carlo sampler, we compute its mesh index (nx1 , n

x
2 , . . . , n

x
6), where nxι =

b(xι−aι)/hι + 1/2c, ι = 1, 2, . . . , 6. Then we check the arrays at the (nx1N
2 +nx2N +nx3)-th and

the (N3 + nx4N
2 + nx5N + nx6)-th entries of A. The sample point x is associated to the training

point yj if and only if the intersection of the two aforementioned arrays is j. See Algorithm 3 for
the full detail.

Appendix C. Sampling probability densities – conditional Gaussian sampler.

As discussed before, the direct Monte Carlo method still suffers from the curse of dimensionality.
It is more and more difficult to collect enough samples in a higher dimensional box. To maintain
the desired accuracy in high dimensional spaces, the requirement of sampling grows exponentially
with the dimension. We need to either run much longer numerical trajectories of (2.1) or make
the grid more coarse. Otherwise the simulation will give a lot of v(yi) = 0 at reference points yi
whose invariant probability density is not zero. This makes it not applicable as a reference data in
the neural network training. For some high dimensional problems with conditional linear structure,
the conditional Gaussian framework introduced in Chen and Majda (2017, 2018) can be effectively
applied to solve the problem of curse-of-dimensionality. Consider a stochastic differential equation
with the following the conditional linear structure

dXI = [A0(t,XI) +A1(t,XI)XII] dt+ ΣI(t,XI) dWI(t), (C.1)

dXII = [a0(t,XI) + a1(t,XI)XII] dt+ ΣII(t,XI) dWII(t), (C.2)

587

ZHAI DOBSON LI

Algorithm 3: Reference data sampling with Monte Carlo method for high dimensional spaces
R6

Input: Reference set Y = {y1, · · · ,yNY }. yi are grid points.
Output: Probability densities v(yj) at yj , j = 1, 2, . . . , NY .
Set a zero array η with length NY and an array of arrays Q that contains 2×N3 empty arrays.
;

Sample NY collocation points using Algorithm 2 ;
for j = 1 to NY do

Compute nι = (yjι − aι)/hι, ι = 1, 2, . . . , 6.;
Add j to the (n1N

2 + n2N + n3)-th and the (N3 + n4N
2 + n5N + n6)-th elemental

arrays of Q. ;
end
InitializeX(0) and run a numerical simulation of equation (2.1)) for sometime t0 and “burn
in” time t0.;

ResetX(0) = X(t0).;
for l = 1 to L do

Continue the numerical simulation of (2.1) with step size ∆t to get a new sample point
x = X(l∆t). ;

Compute nxι = b(xι − aι)/hι + 1/2c, ι = 1, 2, . . . , 6.;
Check the intersection Bx of the (nx1N

2 + nx2N + nx3)-th and the
(N3 + nx4N

2 + nx5N + nx6)-th elemental arrays of Q.;
if Bx = {j} then

η(j) = η(j) + 1.;
end

end
Return v(yj) = η(j)

∏6
ι=1 h

−1
ι /L, j = 1, 2, . . . , NY . ;

where X(t) = (XI(t),XII(t)) ∈ RnI × RnII is the solution stochastic process. Then given the
current path XI(s), s ≤ t, the conditional distribution of XII(t) is approximated by a Gaussian
distribution

(XII(t)|XI(s), s ≤ t) ∼ N(XII(t),RII(t)),

where the expectationXII(t) and varianceRII(t) follow the ordinary differential equations

dXII = [a0 + a1XII] dt+ (RIIA
∗
1(ΣIΣ

∗
I)
−1[dXI − (A0 +A1XII) dt], (C.3)

dRII = [a1RII +RIIa
∗
1 + (ΣIΣ

∗
I)− (RIIA

∗
1(ΣIΣ

∗
I)
−1(RIIA

∗
1)∗] dt. (C.4)

The original algorithm in Chen and Majda (2018) is for simulating the time evolution of the
probability density function. The probability density function is obtained by averaging the condi-
tional probability density of many independent trajectories of equation (2.1). Since the focus of this
paper is the invariant probability density function, we make some modification to the conditional
Gaussian framework in Chen and Majda (2018). The main difference is that we use one long tra-
jectory to simulate the conditional probability density. This is because the speed of convergence of
the evolution of transient distribution to the invariant distribution of equation (2.1) is unknown. In

588

NEURAL NETWORK FOKKER-PLANCK SOLVER

a simulation, we don’t know when the probability density function becomes a satisfactory approxi-
mation of the invariant probability density function.

In equation (C.1)-(C.2), the first partXI is usually in a relatively low dimension nI. So for this
part, a Monte Carlo approximation is reliable. Let Y be the set of reference points. Denote the two
coordinates of a reference point yi ∈ Y by yIi and yIIi respectively. Then we run a long numerical
trajectoryX , for (C.1)-(C.2) and evaluate the trajectory at discrete times 0 = t0 < t1 < t2 < · · · <
tI = T . Denote the visiting times of XI to an h-neighborhood of yIi by tk1 , · · · , tkS(j)

. Then at
time tki , the conditional probability density of at yIIi is

vi,j = f(yII
j (tki)|y

I
j(s),s≤tki)

(yIIj)

= 1√
(2π)nII |RII(tki)|

exp(−1
2(yIIj −XII(tki))

TRII(tki)
−1(yIIj −XII(tki)))

(C.5)

according to the Gaussian distribution N(XII(tki),RII(tki)).This gives a more reliable approxi-
mation for the reference data v(yj)

v(yj) =
1

S(j)

S(j)∑
i=1

vi,j . (C.6)

See Algorithm 4 for the full detail.

Algorithm 4: Reference data sampling for high dimensional spaces with conditional Gaussian
structure

Input: Conditional linear stochastic differential equations (C.1)
and (C.2). Output: Reference approximation v(yj) at yj = (yIj ,y

II
j), j = 1, 2, . . . , NY .

InitializeX(0) and run a numerical simulation of equation (C.1)-(C.2) for sometime t0 and
“burn in”. ;

ResetX(0) = X(t0).;
Continue the numerical simulation of (2.1) for a relatively large T and collectXI(s), s ≤ t.;
Run a numerical solver for (C.3) and (C.4) to getXII(t) andRII(t).;
for j = 1 to M do

RecordX(tki), i = 1, 2, . . . , S(j) ∈ B(yIj , h) in RnI .;
Evaluate vk,j using (C.5).;

end
Return v(yj), j = 1, 2, . . . , NY using (C.6). ;

Appendix D. Additional numerical tests

In this section, we perform a few additional numerical tests to show the effectiveness of our data-
driven Fokker-Planck solver.

D.1. Test on early stopping method.

The first test is on the early stopping method when the loss function only includes L2(θ). Because
it is known that a neural network learns the low frequency part of a function first Xu et al. (2020b),

589

ZHAI DOBSON LI

there is a possibility that early stopping can make the solution more smooth. Hence one needs to
exclude the possibility that the low performance when training the neural network without Lu is
caused by overtraining. To check this, we run the same numerical test that generates Figure 3 with
smaller amount of training epochs. The early stopping method does not improve the accuracy in
all cases that we have tested. In Figure 9, we show the result of using only 20% of the training
epochs. We can see that early stopping does not improve the performance of training without Lu.
This further justifies the use of Lu term in the loss function.

Figure 9: Ring example. A comparison of different sizes of reference set without Lu being in the
loss function when training with early stopping. Top left to bottom right: heat map of the
invariant probability density function if the “ring model” with 2048, 4096, 8192, 16 384,
32 768, and 65 536 reference points are used. The L2 error is shown in the title of each
subplot.

D.2. Test on robustness of solutions.

The second numerical experiment tests the robustness of solutions. We run the same example in
Figure 2 with 512 reference points 20 times, with different initializations each time. The initial
values of the neural network parameters are drawn from a standard normal distribution. Each test
stops after 20 epochs. Three runs out of 20 have slow convergence and have not converged very
well when stopped at 20 epochs. Results of the rest 17 tests are in line with the results demonstrated
in Figure 2. The result of three slow convergence tests is shown in Figure 10 together with the
exact solution. We can see that they are already fairly close to the true solution. We expect them

590

NEURAL NETWORK FOKKER-PLANCK SOLVER

to further converge to the true solution after a few more epochs. In general, the simulation result is
more robust to different network initializations if more reference points are used.

Figure 10: Ring example. Results of 3 slow converging tests out of 20 total tests and a comparison
with the true invariant probability density function. The L2 error is shown in the title of
each subplot.

D.3. Test on smaller neural networks.

The third test compares the solution with smaller neural network. We run the same example in
Figure 2 with 512 reference points with six smaller feed-forward neural network, denoted by small
network 1 to 6. The first network has 5 hidden layers with 16, 128, 128, 128, 12 neurons respectively.
The second network has 4 layers with 128, 128, 128, 12 neurons respectively. The third network has
3 hidden layers with 128, 128, 128 neurons respectively. The fourth network has 3 hidden layers
with 128, 128, 12 neurons respectively. The fifth network has 3 hidden layers with 64, 64, 8 neurons
respectively. The sixth network has 2 hidden layers with 265, 16 neurons respectively. The training
result (after 20 epochs) is demonstrated in Figure 11. From these training results we can find that
our Fokker-Planck solver still works on a suitable smaller neural network with 4 − 5 layers. But
networks with 3 layers or fewer do not have satisfactory performance, mainly because it cannot
approximate the target function properly. In addition, the number of neurons in each layer should
not drop too quickly when feeding to the output layer. Otherwise errors in the second-to-last layer
can accumulate to the output layer and significantly interrupt the training result, which is the case of
small network 3. Based on the result in this example and numerical tests in Appendix D.4 and D.5,
we can see that for most problems, it is sufficient to have about 100 neurons in each hidden layer.
However, if the target solution is either highly concentrated or in high dimension, wider hidden
layers can significantly improve the approximating ability of the neural network.

D.4. Test on multimodal distribution.

The fourth test checks the performance of our Fokker-Planck solver on a multimodal distribution
with weak noise, which is known to be a challenging issue for both numerical computations and
sampling. In addition, it is known that the upper bound of the neural network approximation of a
function f depends on the Barron norm of f Barron (1993), which is considerably higher if f is
highly concentrated at the vicinity of some low dimensional sets. Hence it is important to understand
the performance and limitations of the neural network Fokker-Planck solver in the setting of weak
noise and multimodal distribution. Consider a Toggle Switch model that models a gene circuits
with two genes GA and GB that produces proteins A and B respectively Newby (2012). Assume

591

ZHAI DOBSON LI

Figure 11: Ring example. Training results of 6 smaller neural networks are compared with the true
solution. The L2 error is shown in the title of each subplot.

that each protein turns off the other gene (A turns off GB and B turns off GA). Each off-gene turns
itself back on with a certain rate. Let x and y be the concentration of proteins A and B. The system
is

dXt = (
b+ x2

b+ x2 + y2
− x)dt+ εdW

(1)
t (D.1)

dYt = (
b+ y2

b+ x2 + y2
− y)dt+ εdW

(2)
t , (D.2)

where b = 0.25 is a constant, ε is a changing parameter, and W (1)
t ,W

(2)
t are two independent

Wiener processes. It is easy to see that the deterministic part of equation (D.1) admits two stable
equilibria P,Q and one saddle equilibrium R. When 0 < ε � 1, the solution concentrates in the
vicinity of P and Q, while the probability density everywhere else is very low. This system has a
very slow rate of convergence in this situation.

We compute the results produced by the data-driven solver with ε = 0.05, 0.1, and 0.15. Since
the invariant probability density of equation (D.1) cannot be explicitly given, we use the grid-based
data-driven solver to compute it again on a 512 × 512 mesh as a comparison. Because of the very
slow convergence of equation (D.1), we use 8 parallel trajectories from different initial values to
balance the probability of sampling the neighborhood of P and Q. The result is shown in Figure
12. When the noise is small (ε = 0.05), we enlarge the first hidden layer to 256 neurons because
a small first hidden layer does not represent a function with very large derivatives very well. As
seen in Figure 12, the neural network successfully converges in all three cases. But the weight of

592

NEURAL NETWORK FOKKER-PLANCK SOLVER

two “wells” has some error when ε is very small. Overall the performance of the neural network
solver is satisfactory when ε is as small as 0.1. However, very small noise does cause some prob-
lems. We expect this situation to be improved by using better Monte Carlo sampler such as the
stratified Markov Chain Monte Carlo Dinner et al. (2018). In addition, wider neural networks could
approximate probability distributions that are highly concentrated in low dimensional sets better
than narrow networks.

Figure 12: Toggle Switch model with ε = 0.05, 0.1, and 0.15. Top row: result from the grid-based
data-driven solver. Bottom row: result from the mesh-free data-driven solver.

D.5. Test on high dimensional problems.

The last numerical example tests the performance of our data-driven Fokker-Planck solver on a
higher dimensional problem. It is very difficult to verify the result in high dimension, so we choose
a linear system with known invariant probability measure. Consider the following SDE with linear
deterministic part

dX
(1)
t = (−2X

(1)
t +X

(2)
t)dt+ dW

(1)
t (D.3)

dX
(i)
t = (X(i−1) − 2X

(i)
t +X

(i+1)
t)dt+ dW

(i)
t i = 2, · · · , N − 1 (D.4)

dX
(N)
t = (X

(N−1)
t − 2X

(N)
t)dt+ dW

(N)
t , (D.5)

where W (i)
t , i = 1, · · · , N are independent Wiener processes. This equation can be seen as a dis-

crete approximation of the 1D stochastic heat equation Anton et al. (2020). Let X = (X(1), X(2), · · · , X(N))T

be the column vector of variables. The deterministic part of equation (D.3) has the matrix formAX.
The invariant probability measure of equation (D.3) satisfies

u(X) = (2π)−N/2|Σ|−1/2 exp(−1

2
XTΣ−1X) ,

593

ZHAI DOBSON LI

where Σ solves the Lyapunov equation AΣ + ΣAT + 2I = 0. Since A is symmetric, we have
Σ = 1

2A
−1. It is easy to see that the probability density on the (X(1), X(2))-slice at the origin is

independent of the dimension N .
We use the mesh-free data-driven solver to solve the invariant probability measure of equation

(D.3) withN = 10 andN = 20. The probability density at reference points are from the theoretical
invariant probability measure. We use 4000 reference points and 40000 training points for the 10D
problem and 8000 reference points and 80000 referene points for the 20D problem. To accommo-
date more input neurons, we change the size of first hidden layer from 16 to 32. Number of neurons
in other hidden layers are the same as in other numerical examples. It is not possible to fully visu-
alize a high dimensional probability density function so we only plot the (X(1), X(2))-slice at the
origin. The result is compared with the theoretical density function in Figure 13. We can see in the
top row that the result in 10D is still satisfactory. However, the solution has higher variance than
it is expected to have in 20D. We believe this is because a high dimensional Gaussian distribution
is actually more concentrated (because the volume of high dimensional unit sphere converges to
zero). Also it is easy to check that the Barron norm of a high dimensional Gaussian distribution
is exponentially higher, so the theoretical upper error bound of the neural network approximation
grows exponentially. This may contribute to higher error that we have observed in the 20D problem.
In general, the small neural network we use has some limitation in dealing with highly concentrated
probability density functions in higher dimensions. The performance of the data-driven Fokker-
Planck solver in high dimension could be improved by using wider neural networks. In the second
row of Figure 12, we further increase the width of the first hidden layer from 32 to 128. And the
problem of “artificial diffusion” seen in the numerical result is clearly alleviated. We expect larger
neural networks to have better performance in those high dimensional problems.

Appendix E. Numerical simulation details

E.1. Parameter of the neural network.

Throughout this paper, unless otherwise specified, we use a small feed-forward neural network with
6 hidden layers, each of which contains 16, 128, 128, 128, 16, 4 neurons respectively, to approximate
the solution to Fokker-Planck equation in all numerical examples. The output layer always has one
neuron. Number of neurons in the input layer depends on the problem. All activation functions are
the sigmoid function. We choose sigmoid function because (1) the solution of the Fokker-Planck
equation is everywhere nonnegative and (2) the second order derivative of the neural network output
is included in the loss function.

E.2. Numerical example 1.

In Figure 1, the Monte Carlo solution is obtained by running an Euler-Maruyama numerical scheme
for (4.1) with 107 steps and calculating the empirical probability on a 200× 200 mesh of the region
D = [−2, 2] × [−2, 2]. The time step size is 0.001. Optimization problems in equation (2.4) and
(2.5) are solved by linear algebra solvers. The neural network training with loss function 3.1 uses all
probability densities at grid points obtained by the same Monte Carlo simulation. The architecture
of the artificial neural network is described in Section E.1 with two input neuron and one output
neuron.

594

NEURAL NETWORK FOKKER-PLANCK SOLVER

Figure 13: Invariant probability density of system (D.3) on (X(1), X(2)) slice at the origin. Left:
true solution. Top Middle: 10 dimensional problem with narrow first hidden layer (32
neurons). Bottom Middle: 10 dimensional problem with wide first hidden layer (128
neurons). Top Right: 20 dimensional problem with narrow first hidden layer (32 neu-
rons). Bottom Right: 20 dimensional problem with wide first hidden layer (128 neu-
rons).

595

ZHAI DOBSON LI

In Figure 2, Algorithm 2 is used to generate reference points and training points. The number
of reference points in six panels of Figure 2 are 32, 64, 128, 256, 512, and 1024 respectively. The
number of training points is 10000 in all cases. All probability densities v(yi) at training points are
obtained by Algorithm 3, which runs the Euler-Maruyama scheme for 108 steps. Then we train the
artificial neural network with loss function (3.1). The architecture of the artificial neural network is
described in Section E.1 with two input neuron and one output neuron. The trained neural network
is evaluated on a 400× 400 grid.

When generating Figure 3, we use the loss function without Lu, so there is no training set X.
In six panel of Figure 3, the numbers of reference points v(yj) with probability densities are 2048,
4096, 8192, 16 384, 32 768, and 65 536, respectively. Reference points are obtained by Algorithm
2. The probability density at each reference point is exact (obtained from the Gibbs density). The
architecture of the artificial neural network is described in Section E.1 with two input neuron and
one output neuron. The trained neural network is evaluated on a 400× 400 grid.

E.3. Numerical example 2.

In Figure 4, Algorithm 2 is used to generate 1024 reference points and 10000 training points. Then
we artificially inject some noise into the training data. For a reference point yi ∈ Y, we have
vi(yj) = ri(yj)u(yj), where u is the Gibbs density, ri ∼ U([1 − α, 1 + α]) is a random variable
uniformly distributed in a range [1−α, 1+α]. Here, α controls the “strength” of the artificial noise.
Four different values α = 0.01, 0.05, 0.1 and 0.5 are used to generate four different reference data
sets {v(yj)}1024

j=1 . The architecture of the artificial neural network is described in Section E.1 with
two input neuron and one output neuron. The trained neural network is evaluated on a 400 × 400
grid.

In Figure 5, the conditional Gaussian simulation is obtained by running Algorithm 4. The
trajectory is recorded at 50000 discrete times. The probability density at 400 × 400 grid points
are evaluated by using Algorithm 4. (Two panels in the first column). Next, Algorithm 2 is used
to generate 1024 reference points and 10000 training points. The probability densities at those
training points are evaluated by running Algorithm 4 (same sample size as above) and Algorithm
3, respectively. Two sets of probability densities at reference points are used in the neural network
training (with loss function (3.1)) to generate subplots in the second and third column, respectively.
The architecture of the artificial neural network is described in Section E.1 with two input neuron
and one output neuron. The trained neural network is evaluated on a 400× 400 grid.

E.4. Numerical example 3.

In Figure 6, algorithm 2 is used to sample 10000 reference points and 105 training points in the
domain D = [−2, 2]4. Then we run algorithm 3 with 1010 steps of the Euler-Maruyama scheme to
estimate the probability densities at training points. The values of the probability density function
are rescaled on the whole domain D such that the maximum is 1 (for otherwise the neural network
cannot easily learn the distinction among small values). Then we train the artificial neural network
with loss function (3.1). The architecture of the artificial neural network is described in Section
E.1 with four input neuron and one output neuron. The trained neural network is evaluated at four
(x, y)-slices for (z, s) = (0, 0), (0.5, 0.5), (1, 0) and (1, 1) respectively. Each (x, y) slice contains
400× 400 grid points.

596

NEURAL NETWORK FOKKER-PLANCK SOLVER

E.5. Numerical example 4.

In Figure 7, the numerical domain is [−3, 3] × [−3, 0] × [−1.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5] ×
[−0.5, 0.5] ⊂ R6. A direct Monte Carlo simulation that uses 8 × 109 steps of Euler-Maruyama
scheme is used to generate subplots in the first row. The grid size of the Monte Carlo simpler is
0.05. Then we use Algorithm 2 to sample 20000 reference points and 105 training points in the
domain D. Two sets of probability densities at reference points are obtained using two approaches.
The first approach uses Algorithm 3 with 4×1010 steps of the Euler-Maruyama scheme. The second
approach uses 8× 105 samples from the conditional Gaussian sampler in Algorithm 4. The values
of the probability density function are rescaled on the whole domain D such that the maximum is
1. Then we train two artificial neural networks (with loss function (3.1)) using the same collocation
points but two sets of probability densities at reference points. The results are shown in the second
and third row of Figure 7 respectively. The architecture of the artificial neural network is described
in Section E.1 with six input neuron and one output neuron. The trained neural network is evaluated
at five (u, vi)-slices for i = 1, · · · , 5 centering at the origin.

597

	Introduction
	Preliminaries and motivation
	Fokker-Planck equation and data-driven solver.
	An alternative optimization problem.

	Neural network train algorithms
	Loss function.
	Sampling collocation points and reference data.

	Numerical examples
	A 2D ring density
	A 2D Gibbs measure
	A 4D ring density
	A 6D conceptual dynamical model for turbulence

	Conclusion and Prospective Works
	Proof of Theorem 2.1
	Sampling probability densities – direct Monte Carlo.
	Sampling probability densities – conditional Gaussian sampler.
	Additional numerical tests
	Test on early stopping method.
	Test on robustness of solutions.
	Test on smaller neural networks.
	Test on multimodal distribution.
	Test on high dimensional problems.

	Numerical simulation details
	Parameter of the neural network.
	Numerical example 1.
	Numerical example 2.
	Numerical example 3.
	Numerical example 4.

