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Asymmetric Localization of Light by Second-Harmonic Generation

Hamed Ghaemi-Dizicheh,1 Amir Targholizadeh,1 Baofeng Feng,2 and Hamidreza Ramezani 1,*

1
Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA

2
School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539,

USA

 (Received 25 October 2021; revised 11 February 2022; accepted 5 May 2022; published 11 July 2022)

We introduce a nonlinear photonic system that enables asymmetric localization and unidirectional trans-
fer of an electromagnetic wave through the second-harmonic generation process. Our proposed scattering
setup consists of a noncentrosymmetric nonlinear slab with nonlinear susceptibility χ (2) placed to the
left side of a one-dimensional periodic linear photonic crystal with an embedded defect. We engineered
the linear lattice to allow the localization of a selected frequency 2ω� while frequency ω� is in the gap.
Thus in our proposed scattering setup, a left-incident coherent transverse electric wave with frequency
ω� partially converts to frequency 2ω� and becomes localized at the defect layer while the unconverted
remaining field with frequency ω� exponentially decays throughout the lattice and gets reflected. For a
right-incident wave with frequency ω� there will not be any frequency conversion and the incident wave
gets fully reflected. Our proposed structure will find application in designing optical components such as
optical sensors, switches, transistors, and logic elements.
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I. INTRODUCTION

The method of generating a localized mode in peri-
odic structures has paved its footprints in some photonics
systems. One can achieve this localization by breaking the
translation symmetry through embedding a defect in a peri-
odic lattice [1–6]. Photonic crystal lasers [7–9], strain field
traps [10], strong photon localization [11], and mode selec-
tion [12] are instances for applications of defect mode in
periodic photonic systems.

Because of the time-reversal symmetry, the photon con-
finement happens regardless of the direction of the incident
electromagnetic wave. In recent years, the applications of
asymmetric transport have drawn attention in optical sys-
tems [13–21], acoustics [22–28], and electronics [29,30].
To create a system with nonreciprocal light-propagation
characteristics, we can apply some techniques such as
magnetic biasing [31–33], and spatiotemporally modulat-
ing index of refraction [34]. In the last method, the fre-
quency and wavevector of the photon shift simultaneously
during the photonic transition process. One can embed
a defect in spatiotemporally periodic modulated photonic
lattice to localize photons in a nonreciprocal manner [35].
While spatiotemporal modulation is a powerful method to
attain unidirectional localization, deriving the system and
achieving such modulation in practice, specifically in a
high-frequency regime, is arduous. This is due to the fact
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that at higher frequencies one needs to change the medium
physical properties, for instance, index of refraction, at
the speed that the photons are traveling in the medium.
Achieving such fast modulation is not a trivial task. Con-
sequently, it is imperative to propose a photonic structure
capable of localizing photons asymmetrically such that it
does not need modulation during photon transmission.

This paper provides a technique of asymmetric pho-
ton localization by exploiting second-harmonic generation
(SHG). The process of SHG is the well-known observa-
tion in nonlinear optics where an electromagnetic wave,
called a fundamental wave (FW), interacts with the non-
linear material and generates an alternative wave with
twice the frequency of initial light. The generated wave
is referred to as the second-harmonic wave (SHW). To
achieve the asymmetric localization, we introduce an opti-
cal setup consisting of a nonlinear slab located to the
left side of a linear periodic lattice. By embedding an
engineered defect in the linear lattice, we show that the
generated SHW becomes localized with a finite transmis-
sion while the remaining unconverted FW gets reflected
by the band gap. In the opposite direction, the photon in
the same frequency as the fundamental wave gets totally
reflected.

We employ the transfer matrix approach to study our
scattering system. This approach provides us with a theo-
retical understanding of the idea investigated in this paper
for asymmetric localization. The transfer matrix approach
for a second-harmonic generation as a method has been
developed in optical systems to address low nonlinear
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conversion efficiency [36–38]. We apply a similar
approach in a different context to deal with our scattering
problem. Indeed, we extend a formalism that is introduced
in Refs. [39,40] for a nonlinear scattering process by com-
bining it with the scattering formalism for linear layered
medium. The main characteristic of the transfer matrix for
nonlinear scattering potential is that its entries depend on
the amplitudes of incoming waves. This property in some
nonlinear scattering problems makes it complicated to find
the nonlinear transfer matrix. However, despite its severity,
the main motivation for using a nonlinear transfer matrix
is its composition rule.

Throughout the process of generating a second har-
monic, the fundamental and generated electromagnetic
fields satisfy a system of nonlinear coupled Helmholtz
equations [41]. The solution of these equations in a slowly
varying envelope approximation is given in terms of the
Jacobi elliptic functions. Instead of implementing these
special functions in our analytical calculations, we con-
sider a simplified approach to describing the solution
associated with generated second harmonic more straight-
forward, allowing us to be more focused on the physics
behind the observed phenomenon. In this approach, we
suppose that the energy conversion to the second harmonic
is very low such that the fundamental wave remains essen-
tially undepleted. This process is known as a nondepletion
approximation in SHG [42]. To show that our approxima-
tion method gives a qualitatively correct result in the last
section, we use the finite-element method to demonstrate
asymmetric photon localization in a system with similar
composition.

II. SCATTERING SETUP

To facilitate the semianalytical approach, let us consider
a photonic scattering setup as depicted in Fig. 1(a) includ-
ing a nonlinear material with nonlinear susceptibility χ (2)

located to the left side of a one-dimensional photonic crys-
tal structure SL with a distance δ. The linear lattice is made
of N segments of length d, and each segment consists of
two homogeneous slabs. The thickness and the refractive
index of slab I are, respectively, d1 and n1(ω), while those
for slab II are d2 and n2(ω), then we have d = d1 + d2.
Here we consider that, in general, a medium’s refractive
index depends on the frequency (ω) of passing light. We
can embed a defect by breaking the translation symme-
try in the periodic linear lattice. To do this, we manipulate
segment Nj by changing one of its slab’s thickness or sub-
stituting it with dissimilar material whose refractive index
is different from the other part of the lattice.

In Fig. 1(a), the gray rectangle is demonstrating the non-
linear slab that generates the SHW. On the right side, we
show the defect layer of the linear periodic structure with
green color in which d3 and n3(ω) stand for its thickness
and refractive index, respectively.

(a)

(b)

(c)

FIG. 1. (a) Schematic diagram of scattering setup consists of
a nonlinear material (gray) SN and one-dimensional defective
photonic crystal SL. The defect is depicted in green. In this dia-
gram, to embed a defect layer, the linear lattice consists of eight
segments in which the second slab of segment four is manip-
ulated. (b),(c) Transmission T := |t|2 and reflection R := |r|2

spectrum of the defective linear photonic crystal in the ranges of
λ = 0.924 − 0.821 µm and λ = 2.094 − 1.570 µm. The arrows
indicate the transmission amplitude for the FW (with frequency
ω�) and SHW (with frequency 2ω�).

Consider a normally left incident electromagnetic wave
with frequency ω = ω1 hits the system in which its electric
field is given by

�E(�r, t) = E(z)Ex(x)e
−iω1têy , (1)

where Ex(x) is a component of the electric field along the
x direction and has the form of eikxx, with kx as the wave
number along the x direction, E(z) is the complex ampli-
tude of the electric field, and êy is the unit vector pointing
along the y axis. The propagation of the fundamental
wave in the nonlinear slab SN excites the second nonlinear
polarization PNL = ε0χ

(2) �E · �E. The induced polarization
by the nonlinear medium acts as a source and creates
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the second-harmonic field with frequency ω2 := 2ω1. The
whole nonlinear process can be described by the following
nonlinear couple equation [41]:

E (1)′′ + η2
1k2

1E
(1) = −k2

1χ
(2)E (1)∗E (2), (2)

E (2)′′ + η2
2k2

2E
(2) = −k2

2χ
(2)(E (1))2. (3)

Here, k1 := ω1/c is the wave number, c is the speed of
light in vacuum, k2 := ω2/c is the wave number of the
SHW and η1 := n(ω1) and η2 := n(ω2) are, respectively,
the refractive index of the nonlinear medium for the funda-
mental E (1) and second-harmonic wave E (2). In the case of
the undepleted fundamental wave, the right side of Eq. (2)
becomes infinitesimal in comparison with the left side, and
we can neglect it. Then Eq. (2) admits the following linear
solution:

E (1)(z) = C(1)eik1η1z + D(1)e−ik1η1z. (4)

Here, C(1) and D(1) are the complex-valued plane-wave
coefficients of FW and, respectively, denote forward and
backward propagating waves. Then by substituting E (1)

from the above equation into Eq. (3), we get a nonhomoge-
neous wave equation such that the right-hand side acts as
a source for the SHW induced by FW through the second-
order coefficient χ (2) of the nonlinear medium. Through
this process we can express the solution of Eq. (3) as

E (2)(z) = C(2)eik2η2z + D(2)e−ik2η2z

+ χ (2)G1[(C(1))2e2ik1η1z + (D(1))2e−2ik1η1z]

+ χ (2)G2C(1)D(1), (5)

where G1 := −k2
2/(k

2
2η

2
2 − 4k2

1η
2
1), G2 := −1/η2

2 and, sim-
ilar to the pumping wave, C(2) and D(2) are the complex-
valued plane wave coefficients of SHW.

By adding a photonic crystal on the right side of non-
linear slab SN , we construct a scattering setup for both
fundamental and second-harmonic waves. In other words,
we wish to construct a scattering solution in the form

E (l)(z) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A
(l)
− eik1,2z + B

(l)
− e−ik1,2z z < z0,

E (l)(z) z ∈ [z0, z1],
A

(l)
j eik1,2nj z + B

(l)
j e−ik1,2nj z z ∈ [zj , zj +1],

A
(1,2)
+ eik1,2z z > z2N ,

(6)

where l = 1 (l = 2) stands for fundamental (second-
harmonic) wave and, j := 1, . . . , 2N − 1 labels slabs in the
linear multilayered slab SL.

We aim to show that for an incident wave with specific
frequency ω1 := ω�, our scattering system transfers the
generated wave with frequency 2ω� and bans the incident

fundamental wave from the left, i.e., A
(1)
+ = 0. For the right

incoming wave, our system completely acts as a mirror and
fully reflects the fundamental wave with frequency ω�.

We theoretically analyze our system by applying
the transfer matrix approach. In this approach, we consider
the scattering process of the left and right incident wave in
the following steps:

a. The fundamental wave propagating in the nonlin-
ear medium induces the nonlinear polarization in which
it radiates SHW. In general and without considering non-
depletion fundamental wave, the propagation of the initial
fundamental wave and the second-harmonic wave can be
characterized by the nonlinear transfer matrix M

(1,2)
N . The

entries of the nonlinear transfer matrix for both FW and
SHW can be given in terms of the solutions of Eqs. (2)
and (3) for E (1,2). The main characteristic of the nonlin-
ear transfer matrix is that its entries depend on the incident
amplitudes A

(1,2)
− and B

(1,2)
− and they are not unique [40].

However in the nondepletion regime, the nonlinear transfer
matrix for the fundamental wave reduces to the linear one.

b. The FW and SHW created inside the nonlinear
medium propagate through the linear periodic structure.
The scattering of both waves can be given by the linear
transfer matrix ML(ω). The combination of these two steps
can be expressed by a single transfer matrix given by

M(1,2) = ML(ω1,2) · M
(1,2)
N . (7)

In particular, for n0 = 1, the linear transfer matrix ML

is uniquely determined by the reflection and transmission
amplitudes of the linear crystal SL. They are given by the
following relation [43]:

[ML]11 = t −
rlrr

t
, [ML]12 =

rr

t
,

[ML]21 = −
rl

t
, [ML]12 =

1

t
,

(8)

where t := t(ω) is the transmission amplitude, and rl :=
rl(ω) (rr := rr(ω)) is left (right) reflection amplitude.
According to Eqs. (7) and (8) and in light of the scattering
solution (6), the scattering of the generated wave is given
by the following relation:

(

A
(2)
+

0

)

= M(2)

(

A
(2)
−

B
(2)
−

)

= ML(ω2) · M
(2)
N

(

A
(2)
−

B
(2)
−

)

= ML(ω2)

(

A
(2)

0

B
(2)

0

)

=
1

t

(

[t2 − rlrr]A
(2)

0 + rrB
(2)

0

−rlA
(2)

0 + B
(2)

0

)

.

(9)

This in turns implies

B
(2)

0 − rl(2ω)A
(2)

0 = 0, A
(2)
+ = t(2ω)A

(2)

0 . (10)
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Following the similar steps for the FW we have

B
(1)

0 − rl(ω)A
(1)

0 = 0, A
(1)
+ = t(ω)A

(1)

0 . (11)

In the above equation, the intermediate amplitudes A
(1,2)

0

and B
(1,2)

0 are complex-valued functions of incident ampli-
tudes. Equations (10) and (11) form a system of complex-
valued equations where one can solve it to get the scatter-
ing amplitudes B

(1,2)
− and A

(1,2)
+ .

For the right-incident wave, the scattering solution is
given by Eq. (6) for z ∈ (z0, z2N ) and for elsewhere, we
have

E(z) :=

{

B
(1,2)
− e−ik1,2z, z < z0,

A
(1,2)
+ eik1,2z + B

(1,2)
+ e−ik1,2z z > z2N ,

(12)

The scattering amplitudes of the system for the right-
incoming wave can be given by the following transfer
matrix:

M(1,2) = M
(1,2)
N · M−1

L , (13)

where M−1
L is the inverse of the linear transfer matrix

and M
(1,2)
N is the nonlinear transfer matrix that its entries

depends on A
(1,2)
+ and B

(1,2)
+ . By applying the above transfer

matrix, we find

B
(j )
− =

det M
(j )
N

[M(j )
N ]11

B
(j )

0 , A
(j )

0 = −
[M(j )

N ]12

[M(j )
N ]11

B
(j )

0 , (14)

where j = 1, 2 and

B
(j )

0 =
rl(ωj )

t(ωj )
A

(j )
+ + [t(ωj ) −

rl(ωj )rr(ωj )

t(ωj )
]B(j )

+ , (15)

A
(j )

0 =
1

t(ωj )
A

(j )
+ −

rl(ωj )

t(ωj )
B

(j )
+ . (16)

In general, the entries of the nonlinear transfer matrix MN

can be given in terms of the exact solutions of Eqs. (2)
and (3) [41]. In light of them, the system of Eqs. (10) and
(11) consists of Jacobi elliptic functions where scattering
amplitudes appear in the elliptic integral of the first kind.
Therefore, finding the analytic scattering solution of the
second-harmonic generation is possible but complicated.

Under the nondepletion limit, the second-harmonic gen-
eration admits a manageable solution, Eq. (5), which
makes it feasible to find the entries of the nonlinear trans-
fer matrix. Given the nondepletion regime, the nonlinear
transfer matrix of the fundamental wave M

(1)
N reduces to

the linear one. In the Appendix, we introduce the nonlin-
ear transfer matrix for the SHW that illuminates the system
from the left. Here, we suppose that there is no left incident
wave with the same frequency as the second harmonic,

i.e., A
(2)
− = 0 and the second-harmonic reflection emerges

through the reflection from the surfaces.
Our strategy for localizing the SHW is to engineer the

band structure of the linear lattice SL by embedding defects
in the linear crystal. This manufacturing can be done by
tuning the thickness of layers, and refractive indices of
the linear crystal. Those parameters, as mentioned here,
indeed provide the degrees of freedom in our system to
apply optimization and reach a desirable band structure of
the system. In our system, we implement this optimization
to get the wave number k� := ω�/c for the fundamental
wave lies in the stopband, and simultaneously, the wave
number 2k� for the SHW stands on the passband.

Allowing that, on the right hand of Eq. (10), the trans-
mission coefficient for the SHW, i.e., t(2)(2k�) takes a finite
value while for the FW, it vanishes. Subsequently, it can be
seen easily from Eqs. (10) and (11) for the ω = ω�, that the
transmitted amplitudes satisfy the following relations [44]:

A
(1)
+ = 0, A

(2)
+ /∈ 0. (17)

This solution leads to a localized SHW with frequency 2ω�

in the defect layer of the linear system and exponentially
decayed FW [45]. The wave number lies in the stop-
band for the right incident wave with frequency ω�, which
means the transmission coefficient is zero. By substituting
t(ω�) in Eqs. (15) and (16), we have

A
(1)

0 = B
(1)

0 = 0. (18)

In this case, the photonic crystal totally reflects the wave,
and there is no passing FW in the nonlinear medium. In
other words, the source term generating a second harmonic
is absent. Consequently, the right incident fundamental
wave exponentially decays in the linear lattice.

In Figs. 1(b) and 1(c), we plot the transmission and
reflection for the linear multilayered structure with a defect
layer. In our design, the defective linear crystal consists of
N = 8 segments each made of two slabs with refractive
index n1 = 1.2 (blue layer) and n2 = 3.2 (orange layer)
and slabs take the same thickness, i.e., d1 = d2 = 1 µm.
The linear structure becomes defective by making twice
the thickness of the second slab of the fourth segment
(d3 = 2 µm).

The transmission coefficient T := |t|2 and reflection
coefficient R := |r|2 are given by Eq. (8). We plot them
in terms of the wavelength in Figs. 1(b) and 1(c). One
can see that defect state appears within the photonic
band gap between 0.924–0.821 µm (left diagram) and
2.094–1.570 µm (right diagram). For this defective struc-
ture, a fundamental wave with ω� = 10.783 × 102 Hz is
trapped through the crystal while the generated wave with
frequency 2ω� is transmitted. In Fig. 2, we plot the inten-
sity of the transmitted fundamental and second-harmonic
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FIG. 2. Transmitted intensity |E(1,2)
+ |2 = |A(1,2)

+ |2 of the FW
(blue line) and SHW (red line) for the left incident wave. The
arrows indicate the value of transmitted intensity at λ� and 2λ�.

wave |E(1)
+ |2 = |A(1)

+ |2 (|E(2)
+ |2 = |A(2)

+ |2) for the left inci-
dent wave. In this diagram, |E(1)

+ (ω�)|
2/|E(2)

+ (2ω�)|
2 ≈

10−2. In the calculation, the second-order nonlinear coef-
ficient for the nonlinear slab is χ (2) = 100 pm/V and the
refractive index for the FW and SHW is, respectively,
η1 = 3.21 and η2 = 3.22. Since the efficiency of the non-
linear medium is very low, we assume that a strong light
with an amplitude |E0| = |A−| = 100V/µm incident nor-
mally on the system. In this case the localization and the
transmission of the passing SHW is detectable. A large
value of nonlinear susceptibility taken in our data does not
exclude the practical application for our proposed setup
since, first, we use the approximation to solve the nonlinear
differential equations associated with our system and, sec-
ond, there are studies showing the possibility of creating
large optical nonlinearity in photonic systems [46,47]. The
intensity distribution of the FW and SHW into the linear
defective crystal is plotted in Fig. 3. For the left incident
wave, the SHW localizes through the defective layer while
the FW exponentially decays. We also show the mode dis-
tribution of the right coming wave. One can see that the
FW exponentially decays in the linear lattice.

III. NUMERIC SIMULATION

This section numerically demonstrates second-harmonic
localization by using the finite-element-method simula-
tions in a time-dependent area. We use COMSOL Multi-
physics to perform a time-domain transient simulation of
a sinusoidal wave passing through an optical setup, which
is similar to the one we depict in Fig. 1(a). In our codes,
we consider that our linear crystal consists of 12 seg-
ments made of two slabs with refractive index n1 = 1.2
and n2 = 3.2. Our linear system has been made defective
by adding an extra slab in the middle of the crystal. The
optimization of the linear system for finding an appropriate
band gap in the way that the generated frequency stands on

(a)

(b)

FIG. 3. (a) Intensity distribution of the left incident FW and
SHW (inset), and (b) the right incident FW into linear photonic
crystal at λ� = 1.736 µm.

the passing band determines the length of slabs and defect
layer. The optimization defines the length of slabs such that
d1 = 0.2 µm, d2 = 0.26 µm, and d3 = 1.593 µm. Figure 4
illustrates the corresponding transmission and reflection
amplitudes of the linear crystal in the logarithmic scale.
Regarding these plots, one can see that the asymmetric
localization takes place for the left incoming photon with
frequency ω� = 282.82 Hz. The nonlinearity is enrolled in
our simulation by considering the coupling between funda-
mental wave and second-harmonic wave via the following
polarization:

P
(1)
NL = 2deffE(2)E(1)∗, P

(2)
NL = deff(E

(1))2, (19)

where we aligned our polarization in y-direction and deff is
nonlinear coefficient for the SHG process. We then probe
the transient on the right side of our system and measure
the amplitude of time dependent electric field. The cor-
responding contribution of an electric field for different
modes in the frequency domain is given by the Fourier
transformation.

In Fig. 5, we show the mode contribution of the FW
at ω� = 282.82 THz and SHW at 2ω� = 565.65 THz. The
density of the electromagnetic wave in the linear photonic
crystal is depicted in Fig. 6(a) showing that the FW is expo-
nentially decayed in the defective linear system while the
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FIG. 4. Logarithmic diagram of transmission T := |t|2 and
reflection R := |r|2 spectrum of the defective linear photonic
crystal in the numeric simulation. In the upper diagram, the fre-
quency of the fundamental wave (ω� = 282.82 THz ) lies in the
band gap while the second harmonic generated frequency 2ω� is
located on the passband.

SHW is localized in the defect layer. For the right incident
wave with the frequency ω�, we find the mode intensity in
Fig. 6(b) and show that the FW exponentially decays in the
photonic crystal.

In summary, we suggest an optical system that makes
the photon localized when it hits the photonic system
from one particular side. In our method for asymmetric
localization, the incident wave is reflected from the opti-
cal device while the generated harmonic wave transfers.
The system is adjustable in which one can manipulate the
linear crystal and its defect to localize higher generated
harmonic. We employ two distinct approaches based on
nondepletion approximation and finite-element method to
demonstrate such asymmetric localization. We apply the
nonlinear transfer matrix to find the scattering solutions in
the former one. The nonlinear transfer-matrix method can
be extended beyond the nondepletion approximation by

FIG. 5. This plot shows the contribution of the transmit-
ted wave (P(ω) := |a(ω)|2) versus frequency derived from the
Fourier transform of the time domain transient. Here a(ω) is the
electric field mode in frequency domain. The first and second
marked point represents P(ω�) and P(2ω�) for the fundamental
and the second harmonic.

the considering exact solution of the nonlinear equation.
Also, the result based on the nondepletion limit can be
optimized by a technique of shooting method [48]. Our
proposed photonic structure can be employed in designing
optical sensors [49] and unidirectional lasers [50]. More-
over, the unidirectional characteristic of our system for
localizing photons makes it potentially a candidate for
designing optical devices, which is cutting-edge research
nowadays, precisely because of their application in optical
communication and signal processing. While we consider
a lossless photonic structure in our approach for localizing
photons, this method can be extended to the more practi-
cal one where losses appear from the strong light-matter
interaction. In the case of a lossy system, one can explore
the implementation of light-stopping techniques [51,52]
to improve the system’s effectiveness under experimental
conditions. In the case of high-efficiency harmonic genera-
tion where the fundamental mode almost totally transforms
to higher harmonics, one can simply make changes in the
linear part of our setup to have asymmetric localization of
fundamental wave.

To sum up, unidirectional localizing by generating
higher harmonic and tuning the localized frequency by
engineering the band structure of the periodic layer are
the most important outcomes of this paper, making it an
alternative in the field of light localization. An interesting
future extension of this work could be in the generation of
asymmetric qubits for quantum applications using defect
centers.
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(a)

(b)

FIG. 6. In these figures, we demonstrate the mode density
throughout the linear crystal. For the left incident wave (a), the
higher intensity on the left side corresponds to the fundamen-
tal wave. One can see the localized SHW in the middle of the
diagram in the defect layer. For the right incident wave (b), the
higher intensity on the right side corresponds to the exponentially
decaying fundamental wave. In the diagram, the vertical axis rep-
resents the spatial extension of the linear part in x direction while
the horizontal axes represents the size in z direction. The color
bar demonstrates the norm of electric field (104 × V/m).
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APPENDIX: NONLINEAR TRANSFER MATRIX

In this Appendix, we construct the nonlinear transfer
matrix of a nonlinear layer under the nondepletion sig-
nal approximation [36,38]. In terms of the definition of
transfer matrix [43] and continuity condition for electric
field �E and magnetic field �H at z = z0, z1 [53], the transfer
matrix M2 of slab S1 for second-harmonic generation can
be given by the following relation:

(

A
(2)

0

B
(2)

0

)

= M
(2)
L

(

0
B

(2)
−

)

+ χ (2)M
(2)
N (A

(1)
− , B

(1)
− )

(

A
(1)
−

B
(1)
−

)

. (A1)

The first term on the right side presents the linear transfer
matrix, which is generated by the homogenous solution of
Eq. (3) of the main text and relates the free-wave amplitude
of the second harmonic field on both sides of the nonlinear
medium. It is given by the following relation:

M
(2)
L =

1

η2
Q

(2)

−1K
(2)
+ P

(2)

+1P
(2)

−0K
(2)
− Q

(2)

+0. (A2)

The related matrices are defined as

Q
(i)
±j =

(

e±ikizj 0
0 e∓ikizj

)

, P
(i)
±j =

(

e±ik̃izj 0

0 e∓ik̃izj

)

,

K
(j )
± =

1

2ηj

(

ηj + 1 ±ηj ∓ 1
±ηj ∓ 1 ηj + 1

)

,

(A3)

and k̃j = ηj kj . The second part in Eq. (3) of the main
text denotes the nonlinear transfer matrix, which relates
the bound-wave amplitudes of the second-harmonic field
created by the fundamental wave. We find the nonlinear
transfer matrix as

M
(2)
N =

G1

2k̃2

Q
(2)

−1[KO1 − K̃O0]N1P
(1)

−0K
(1)
+ Q

(1)
+

+ G2Q
(2)

−1N2P
(1)

−0K
(1)
+ Q

(1)
+ , (A4)

where

K̃ =

(

k̃2 + 2k̃1 k̃2 − 2k̃1

k̃2 + 2k̃1 k̃2 − 2k̃1

)

,

K =

(

k2 + 2k̃1 k2 − 2k̃1

k2 + 2k̃1 k2 − 2k̃1

)

,

Oj =

(

e2ik̃1zj 0

0 e−2ik̃2zj

)

,

(A5)

and, we introduce amplitude-dependant matrices

N1 =

(

C(1) 0
0 D(1)

)

, N2 =

(

0 C(1)

D(1) 0

)

. (A6)

The amplitudes C(1) and D(1) can be defined from the FW
such as

(

C(1)

D(1)

)

= P
(1)

−0K
(1)
+ Q

(1)

+0

(

A
(1)
−

B
(1)
−

)

. (A7)
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