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Abstract: On-shell methods are particularly suited for exploring the scattering of electri-
cally and magnetically charged objects, for which there is no local and Lorentz invariant La-
grangian description. In this paper we show how to construct a Lorentz-invariant S-matrix
for the scattering of electrically and magnetically charged particles, without ever having to
refer to a Dirac string. A key ingredient is a revision of our fundamental understanding
of multi-particle representations of the Poincaré group. Surprisingly, the asymptotic states
for electric-magnetic scattering transform with an additional little group phase, associated
with pairs of electrically and magnetically charged particles. The corresponding “pairwise
helicity” is identified with the quantized “cross product” of charges, e1g2 − e2g1, for every
charge-monopole pair, and represents the extra angular momentum stored in the asymp-
totic electromagnetic field. We define a new kind of pairwise spinor-helicity variable, which
serves as an additional building block for electric-magnetic scattering amplitudes. We then
construct the most general 3-point S-matrix elements, as well as the full partial wave de-
composition for the 2→ 2 fermion-monopole S-matrix. In particular, we derive the famous
helicity flip in the lowest partial wave as a simple consequence of a generalized spin-helicity
selection rule, as well as the full angular dependence for the higher partial waves. Our
construction provides a significant new achievement for the on-shell program, succeeding
where the Lagrangian description has so far failed.
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1 Introduction

Unitary representations of the Poincaré group, classified by Wigner [1] in the 1930s, provide
the foundation of the quantum mechanical (QM) description of particle physics and quan-
tum field theory. The essential elements in Wigner’s construction are one-particle states —
representations of the Poincaré group associated with a single asymptotic particle, in an
irreducible representation of its little group (LG) [2]. While this satisfying picture provides
the full classification of one-particle states, the general construction of multi-particle states
has rarely been addressed: they are simply assumed to be direct products of one-particle
states. However, in a beautiful, under-appreciated paper in 1972 Zwanziger [3] found that
quantum states with both electric and magnetic charges transform in non-trivial multi-
particle representations of the Poincaré group. In the first part of this paper we address the
general construction of multi-particle states and introduce the concept of the pairwise LG,
which is necessary to fully classify the multi-particle representations of the Poincaré group.
In addition to the one-particle LGs introduced by Wigner, the pairwise LG completes the
characterization of the transformation properties of the multi-particle system as a whole.
In particular, it may yield an additional phase under Lorentz transformations on top of the
one-particle LG transformations, as in the first specific realization found by Zwanziger [3].
The pairwise LG is always just a U(1), and in the most commonly considered scattering
processes the corresponding helicity q12 simply vanishes, confirming the expectation that
the asymptotic multi-particle state is simply a direct product of the one-particle states.
However, for charge-monopole scattering the pairwise U(1) helicity is the quantized “cross
product” of charges

q12 = e1g2 − e2g1 , (1.1)

where e1,2 (g1,2) are the electric (magnetic) charges of the two particles. This implies
modified transformation properties for scattering amplitudes involving both electrically
and magnetically charged particles. We note that three-particle and higher LGs are always
trivial, and so the general classification of multi-particle states in 4D will be given in terms
of the momenta, spins/helicities and pairwise LG helicities

|p1, . . . , pn ; σ1, . . . , σn ; q12, q13, . . . , qn−1,n〉 . (1.2)

In the second half of our paper we use our refined understanding of the pairwise LG
to construct scattering amplitudes of electrically and magnetically charged states. Under-
standing the interactions of magnetically charged states has been a long standing issue

– 1 –



in particle physics. Dirac showed that a Lorentz invariant Lagrangian with both electric
and magnetic charges must be non-local [4], and such interactions are often referred to as
being “mutually non-local.” Alternatively, Zwanziger showed [5] that one can write a local
Lagrangian, but manifest Lorentz invariance is lost. These problems seem to be an artifact
of the unphysical, gauge-variant Dirac string. For some time it was not even clear that the
scattering of electrically and magnetically charged particles makes sense. Paradoxically,
Weinberg found [6] that the amplitude for one photon exchange between an electric charge
and a magnetic monopole is not Lorentz invariant (and implicitly not gauge invariant [7]).
However, recently it was shown by Terning and Verhaaren [7] that an all orders resummation
of soft photons can restore both Lorentz and gauge invariance if Dirac charge quantization
[8] is satisfied. Hence it is believed that the electric-magnetic S-matrix is both local and
Lorentz invariant, but Lagrangian formulations cannot make both properties manifest at
the same time, leading, unsurprisingly, to seemingly unending difficulties in calculating
scattering amplitudes [9–16].

Thus we can see that electric-magnetic scattering is an ideal proving ground for on-
shell methods. In this paper we indeed find that electric-magnetic scattering demonstrates
a success for the on-shell program in theories where Lagrangian methods fall short. We
should note that in our formulation we never need to introduce a Dirac string. This is
in contrast to previous attempts to apply on-shell methods to electric-magnetic scattering
[17–19] which have been only partially successful in eliminating the unphysical Dirac string,
thus suffering from a Lorentz violating sign ambiguity.

The bulk of our paper is devoted to extending on-shell amplitude methods to calcula-
tions of electric-magnetic S-matrix elements while maintaining manifest Lorentz invariance
and locality. Thus we see that “mutually non-local” scattering is, in fact, local aside from
the angular momentum carried in the Coulomb fields of the particles. The key is to ensure
that the full action of the Poincaré group, including the one-particle and pairwise LGs, is
properly incorporated. We find a beautiful and simple implementation of this scheme in the
spinor-helicity framework, allowing us to go far beyond Zwanziger’s special case of pairwise
helicities equal to one. To capture the effect of the pairwise LG, we define null “pairwise”
momenta p[±ij which are linear combinations of the momenta of each electric-magnetic pair.
The pairwise momenta are then naturally expressed using pairwise spinor-helicity variables∣∣∣p[±ij 〉 , [p[±ij ∣∣∣ , (1.3)

which are constructed such that under Lorentz transformations they pick up exactly the
phase dictated by the pairwise LG. Along with the standard massless and massive spinor-
helicity variables, the pairwise spinor-helicity variables serve as the fundamental building
blocks for the construction of the S-matrix for magnetic scattering1.

We utilize our newly defined pairwise spinors to construct all 3-point electric-magnetic
amplitudes, as a direct generalization of Arkani-Hamed, Huang, and Huang [20]; our deriva-

1Note that we will use the term magnetic scattering or magnetic S-matrix to emphasize that there is at
least one magnetically charged object among the scattered states, but our discussion is fully general and
applicable to generic multi-dyon scattering.
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tion implies a non-trivial generalization of the selection rules derived in [20]. For example in
the decay of a massive spin s to two massless particles, we get the selection rule |∆h−q| ≤ s,
which reduces to the standard |∆h| ≤ s in the non-magnetic case with q = 0. Another
non-trivial selection rule we derive is for the decay of a massive spin s1 into two massive
particles with spins s2 and s3. In this case we get s1 +s2 +s3 ≥ |q23|, indicating, as a special
case, that a scalar dyon cannot decay into two other scalar dyons with q23 6= 0. Armed
with our general classification of 3-point magnetic amplitudes, we move on to address the
2 → 2 scattering of a fermion and a monopole, making use of the fully relativistic partial
wave decomposition, adapted to the magnetic case. Using minimal dynamical information
about the phase shifts of the higher partial wave amplitudes, we are able to fully repro-
duce the results of the non-relativistic quantum mechanics (NRQM) calculation of Kazama,
Yang and Goldhaber [21]. In particular, our selection rules immediately tell us that in the
lowest partial wave only the helicity-flip amplitudes are non-zero while forward scattering
is not allowed. Furthermore, we are able to determine the full expression for the helicity
flip amplitude. For the higher partial waves our formalism allows us to fix the full angular
dependence of the amplitudes, while the overall magnitude of all partial waves can be fixed
using unitarity and the phase shifts.

The paper is organized as follows. Section 2 contains our discussion of the general
transformation properties of multi-particle states under the Poincaré group. We introduce
the concept of pairwise LG here. We also give a basic introduction into the unusual proper-
ties of the charge-monopole system, rooted in the asymptotic angular momentum contained
in the electromagnetic field. In section 3 we define our main objects of interest — the pair-
wise spinor-helicity variables which transform covariantly under the pairwise LG. These
new spinor-helicity variables, together with the standard spinors for massless and massive
particles, serve as a complete set of building blocks for the magnetic (and non-magnetic)
S-matrix. We put our new building blocks to use in section 4, in which we demonstrate
how to construct the magnetic S-matrix and derive concrete expressions for all magnetic
3-point amplitudes in the spirit of ref. [20]. In section 5 we take a further step and derive
the general partial wave expansion for magnetic 2 → 2 matrix elements. Finally, in sec-
tions 6-7, we apply our formalism to the case of fermion-monopole scattering, effortlessly
reproducing the non-trivial results of Kazama, Yang, and Goldhaber [21], including the
helicity-flip of the lowest partial wave and the full angular dependence of the higher partial
waves. Finally, in section 8 we discuss partial wave unitarity in the context of the magnetic
S-matrix, knowledge of which is required to obtain the magnitude of higher partial wave
processes.

2 Representations of the Poincaré Group for Charge-Monopole System:
Pairwise LG

It has long been known that the simultaneous presence of a magnetic monopole and an
electric charge results in unusual rotational properties. The first explicit statement of this
came from J.J. Thomson [22] who found that the EM field of a system containing an electric
charge e and magnetic charge g carries an angular momentum even when both charges are
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at rest:2
~J field =

1

4π

∫
d3x ~x×

(
~E × ~B

)
= −eg r̂ ≡ −qr̂ (2.1)

where r̂ is a unit vector pointing from the magnetic monopole to the charge. Quantum
mechanically, angular momentum is quantized in half integer units, and so we get yet
another derivation of the Dirac quantization condition [8] eg = n/2.

The angular momentum of the electromagnetic field Eq. (2.1) was generalized to the
case of dyons by Schwinger [23] and Zwanziger [24]

~J field =
∑

qij r̂ij (2.2)

with the sum taken over all dyon pairs and

qij = ei gj − ej gi =
n

2
, (2.3)

where the Dirac-Schwinger-Zwanziger quantization condition3 for qij is once again implied
by angular momentum quantization.

Zwanziger [3] further showed how to write the angular momentum for scattering dyons
in a Lorentz covariant fashion

Mνρ
field;± = ±

∑
i>j

qij
ενραβ piα pjβ√

(pi · pj)2 −m2
i m

2
j

, (2.4)

where the sum is taken over all distinct dyon pairs in the initial state (final state) with a
+(−) sign. The origin of the unusual ± sign is the appearance of a t/|t| in the asymptotic ex-
pression forM . In the non-relativistic limit, this expression reduces to ~J field

± = ±
∑

qij p̂ij ,
where p̂ij is the relative 3-momentum between the dyons in each pair. Since asymptotically
p̂ · r̂ = ∓1, this exactly reproduces Eq. (2.2).

The physical implications of (2.1)-(2.2) are hard to overstate. They imply the following
unusual properties of charge-monopole (or general dyonic) systems:

• The conserved angular momentum for the interacting theory is different from the
angular momentum of the free theory

• As a consequence, the asymptotic quantum states representing dyon pairs do not
completely factorize into single-particle states

• In general there is no crossing symmetry for the electric-magnetic S-matrix

The first and second points can be immediately understood. Since the angular momentum
of the EM field depends only on qij and does not depend on the relative distance (just

2Due to the appearance of E and B the field angular momentum must be proportional to eg. It is also a
dimensionless vector for which the only candidate is r̂, hence the result must be proportional to egr̂ which
can be verified by explicit calculation [22].

3Sometimes this condition is given as (ei gj − ej gi)/4π = n
2
. Here and throughout we normalize the

magnetic charge such that Eq. (2.3) holds, and there is never a (4π)−1 factor in the quantization condition.
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orientation) this term does not vanish no matter how far the charge and the monopole
are separated, hence the direct product of two single-particle states never captures this
additional contribution to the angular momentum. The third point will be elaborated
below once we consider the LG transformation of the magnetic S-matrix.

2.1 Electric-Magnetic angular momentum: the NRQM case

Before jumping into our main topic, which is the representation of the Poincaré group and
quantization of theories with magnetic charges, let us briefly remark on the NRQM case.
Rather than defining the non-relativistic S-matrix in full generality, we show here how the
conserved angular momentum operator ~L is modified in the presence of magnetic charges
[25].

The Hamiltonian of a charged particle in the background field of a stationary monopole
is given by

H = − 1

2m

(
~∇− ie ~A

)2
+ V (r) = − 1

2m
~D2 + V (r) (2.5)

where ~D = ~∇ − ie ~A and ~A is the vector potential for the monopole, defined most conve-
niently using two coordinate-patches in [26]. Specifically, with the monopole at the origin,
Aφ = ±g

r sin θ (1∓ cos θ) on each of the patches, usually chosen to be the upper (lower) hemi-
sphere in the monopole rest frame. One can easily check that the usual particle definition
of the angular momentum ~L = −i~r × ~D does not satisfy the angular momentum algebra

[Li, Lj ] = iεijkLk (2.6)

[Li, H] = 0 . (2.7)

This algebra, however, is satisfied once the angular momentum operator is generalized to
include a term that depends both on electric and magnetic charges

~L = −i~r × ~D − egr̂ = m~r × ~̇r − egr̂ (2.8)

where r̂ = ~r/r is a unit vector pointing radially outward and we used the Heisenberg
equation of motion ~̇r = −i ~D/m in the second equality. Hence for a charged particle moving
in a monopole background, angular momentum must be supplemented with an additional
term proportional to q corresponding to the contribution of the EM field. Importantly, the
contribution of the EM field, as well as the total angular momentum, is non-vanishing even
when ~̇r = 0 (i.e. in a situation where both the charged particle and the monopole are at
rest).

This expression can be generalized to a quantum field theory in the the case of a
‘t Hooft-Polyakov monopole background. The ’t Hooft-Polyakov monopole solution in an
SU(2) gauge theory is not invariant either under spatial rotations or gauge transformations,
however, it is invariant under a combined transformation generated by ~L + ~τ

2 (recall that
the solution for the scalar field is Φcl ∝ τar̂a). For a particle of spin S in a representation
R of SU(2) and moving in the monopole background, the conserved angular momentum is
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given by

~J = ~L+ ~TR + ~S , (2.9)

where ~TR are the SU(2) generators in the representation R. This expression is especially
instructive for a particle in a doublet representation of the SU(2) (so that the electric
charges under the unbroken U(1) are minimal). In the singular gauge where the magnetic
field of the monopole points in the τ3 direction in group space and the field contribution
to the angular momentum is ±1/2, we find an exact match to the NRQM result. In the
relativistic quantum theory, this extra contribution gives rise to the additional LG phase,
as we discuss below.

2.2 Pairwise LG

In order to properly understand the effect of the modified angular momentum operator on
the construction of the quantum mechanical Hilbert space we first need to go back and
understand the properties of multi-particle representations of the Poincaré group. It is
well-known that for single particles one needs to define a reference momentum k, which
may be chosen as (M, 0, 0, 0) for massive particles or (E, 0, 0, E) for massless particles. The
LG is then the set of Lorentz transformations that leave the reference momenta invariant.
For massive particles the LG is SO(3) ∼ SU(2), while for massless particles it is ISO(2)

the two dimensional Euclidean group. The nature of the particle we are describing thus
determines the required representation of the LG. For example, given a massive particle the
representation is specified by the mass and the spin, s, and the state in the Hilbert space
is just |k, s〉. For the case of massless particles, while interesting non-trivial representations
of ISO(2) are in principle allowed by the kinematics of the Lorentz group [27], the models
needed to match experiment do not take advantage of the additional quantum number
offered by using the entire ISO(2) group rather than just the SO(2) ∼ U(1) subgroup
corresponding to ordinary helicity.

When considering the representations of the Poincaré group one usually stops here and
assumes that multi-particle states transform as products of single particle states. However
a closer examination of the Poincaré group shows that this is not the only possibility: as
first pointed out by Zwanziger [3], there are rotations that leave the momenta of a pair
of particles invariant. To see this, we can consider a two-particle state |p1, p2〉 and again
consider some reference momenta for this multi-particle state. The simplest choice is to go
into the center of momentum (COM) frame

(k1)µ = (Ec1, 0, 0,+ pc)

(k2)µ = (Ec2, 0, 0,− pc) , (2.10)

where

pc =

√
(p1 · p2)2 −m2

1m
2
2

s
, Ec1,2 =

√
m2

1,2 + p2
c , (2.11)
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are Lorentz invariant, and s = (Ec1+Ec2)2. A Lorentz boost Lp brings the reference momenta
back into the arbitrary pair of original momenta p1 = Lp k1, p2 = Lp k2. The important
observation is that there exists a non-trivial two-particle or pairwise LG which leaves these
reference momenta unchanged — it is simply a rotation around the z-axis, corresponding
to a U(1) pairwise LG. We would like to emphasize that this pairwise LG is independent of
the usual one-particle LG: it describes the relative transformation of the two particle state
compared to the product of the one-particle states. Hence the general two-particle state
is characterized by the representations of the individual particles under the one-particle
LG, as well as the additional U(1) charge, q12, corresponding to the representation of the
two-particle state under the pairwise LG. We call this charge the “pairwise helicity”. Thus
the state is | p1, p2 ; σ1, σ2 ; q12 〉. The p1, p2 are simply the individual momenta for each
particle, and the σi are collective indices denoting the individual s2

i , s
z
i for massive particles

or the helicity hi for massless ones. The novelty here is the additional quantum number
q12, which is associated with the particle pair rather than an individual particle. Under a
Lorentz transformation, this quantum state transforms as

U(Λ) | p1, p2 ; σ1, σ2 ; q12 〉 = ei q12 φ Dσ′1 σ1 Dσ′2 σ2
∣∣Λp1,Λp2 ; σ′1, σ

′
2 ; q12

〉
(2.12)

where φ is the U(1) rotation angle corresponding to the pairwise LG, while the Ds’ are
representations of one-particle LG rotations for each of the two particles. For massive
particles, the LG is just SU(2) and the D matrices are in the spin si representation of
SU(2). For massless particles, the LG is U(1) and the Ds are the ordinary helicity phases
eihiφi . We will show that this is indeed the right transformation for the spinless case, and
leave the general case for future work.

This transformation rule can be derived in the usual way by applying Wigner’s method
of induced representations [1] , which we briefly summarize at the end of this subsection.
But first we would like to ask what happens for the case of more than two particles. To
that end it is sufficient to consider a three particle state. Clearly, its transformation in-
cludes a product of three representations of the one-particle LG. Each one-particle LG
transformation leaves the momentum of the corresponding particle invariant. The three
particle state also transforms as a product of representations under three pairwise LGs,
each leaving the momenta of the corresponding pair invariant. However, there is no non-
trivial subgroup of the Poincaré group that leaves invariant an arbitrary set of three mo-
menta. Hence the three-particle LG is trivial and the Lorentz transformations of three
particle states are fully characterized by their transformations under three single particle
LGs and three pairwise LGs. This conclusion easily generalizes to all n-particle states: such
states are characterized by n masses and spins, as well as

(
n
2

)
pairwise U(1) helicities qij ,

| p1, p2, . . . , pn ; σ1, σ2, . . . , σn ; q12, q13, . . . , qn−1,n 〉 with Lorentz transformations given by

U(Λ) | p1, . . . , pn ; σ1, . . . , σn ; q12, q13, . . . qn−1,n 〉 =

ei
∑
i<j qijφ(pi,pj ,Λ) ∏n

i=1 Diσ′iσi |Λp1, . . . ,Λpn ; σ′1, . . . , σ
′
n ; q12, q13, . . . , qn−1,n 〉 .

(2.13)
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The exact representations of the pairwise LGs for multi-particle states, i.e. the helicities
qij , depend on the dynamics of the theory. In most cases only trivial representations of
the pairwise LGs arise and qij = 0. The one known exception is a state containing both
electric and magnetic charges. As we will see below, the action of the angular momentum
operator requires in this case the identification qij = eigj−ejgi, corresponding to the Dirac-
Schwinger-Zwanziger quantization condition; the existence of EM field angular momentum
implies that multi-particle states do not fully factorize into products of single particle states.

We conclude this subsection by reviewing theWigner method of induced representations
to derive Eq. (2.13) for the spinless case with two particles, following [1–3]. This also
provides us with an explicit formula for the pairwise LG phase φ(pi, pj ,Λ). We define our
reference quantum states as

| k1, k2 ; q12 〉 . (2.14)

Having identified the effect of the pairwise LG on the reference states with a rotation around
z-axis we have

Jz | k1, k2 ; q12 〉 = q12 | k1, k2 ; q12 〉 . (2.15)

This equality correctly reproduces the EM field contribution to the angular momentum in
Eqs. (2.2)-(2.4) provided that qij = eigj−ejgi. Interestingly, this identification also directly
implies the Dirac-Schwinger-Zwanziger condition for q12, simply from the properties of the
Lorentz group. To see this, note that due to the spinorial double coverings of the Lorentz
group, any 4π rotation (rather than 2π) around ẑ must be the identity,

ei4πq12 = 1 ⇒ q12 ≡ e1 g2 − e2 g1 =
n

2
, n ∈ Z. (2.16)

The quantum states for general momenta p1, p2 can be obtained from the reference
pairwise state with a Lorentz boost

| p1, p2 ; q12 〉 ≡ U (Lp) | k1, k2 ; q12 〉 , (2.17)

where U(Lp) is a unitary operator representing the Lorentz boost Lp. We now wish to learn
how a generic Lorentz transformation Λ acts on the states | p1, p2 ; q12 〉. Proceeding as in
the standard method of induced representations, we have

U(Λ) | p1, p2 ; q12 〉 = U (LΛp) U
(
L−1

ΛpΛLp

)
| k1, k2 ; q12 〉

= U (LΛp) U (Wk1,k2) | k1, k2 ; q12 〉 , (2.18)

where Wk1,k2(p1, p2,Λ) ≡ L−1
ΛpΛLp = Rz [φ(p1, p2,Λ)] is a LG transformation, which is

nothing but a rotation around the z-axis with an angle φ(p1, p2,Λ). By definition, this LG
transformation acts on |k1, k2 ; q12〉 as exp [iq12φ(p1, p2,Λ)], so that

U(Λ) | p1, p2 ; q12 〉 = eiq12φ(p1,p2,Λ) |Λp1,Λp2 ; q12 〉 . (2.19)
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We can easily see that the transformation rule for general multi-particle states in
Eq. (2.13) is unitary and indeed forms a representation of the Lorentz group. First, since
Eq. (2.13) only differs from the standard Lorentz transformation by a phase eiΣ, this trans-
formation is clearly unitary. Second, because the phase angles φ(pi, pj ,Λ) are identical to
the ones that arose as LG phases for the two-scalar case, and since they furnish a represen-
tation, we know that

φ(pi, pj ,Λ2Λ1) = φ(Λ1pi,Λ1pj ,Λ2) + φ(pi, pj ,Λ1) . (2.20)

This proves that U(Λ2Λ1) = U(Λ2)U(Λ1) and so our transformation rule is indeed a rep-
resentation of the Lorentz group.

2.3 In- and Out-states for the Electric-Magnetic S-matrix

Now that we understand the general transformation properties of dyonic multi-particle
states, we are ready to define the relativistic S-matrix for electric-magnetic scattering pro-
cesses. To do this we have to first properly define the multi-particle in- and out- states. As
usual, we separate the full Hamiltonian of the system into a free Hamiltonian, H0, and an
interaction:

H = H0 + V . (2.21)

In the standard definition, due to Weinberg [2], we can choose our quantum in/out states
to be eigenstates of the full interacting Hamiltonian that approach free states4 as t→ ±∞.
However, in the case of electric-magnetic scattering, this definition has to be modified. This
is because H0 and H have different conserved angular momentum operators,[

H, ~J
]

=
[
H0, ~J0

]
= 0, ~J 6= ~J0 . (2.22)

The operator J0 represents the total orbital and spin angular momentum of different par-
ticles, while J also includes the contribution of the EM field, as is evident from Eq. (2.4).
The inequality of J and J0 seems, so far, to be unique to electric-magnetic scattering. As
a consequence the Lorentz group is represented differently5 on the in- and out- eigenstates
of H. This is simply a reflection of the fact that qij can be non-vanishing for the in- and
out states, while the eigenstates of H0 are simply the direct product states of the free
one-particle states with all qij = 0.

In accordance with our discussion in section 2.2, we identify the multi-particle in- and
out-states as the states transforming with definite values of qij :

U(Λ) |p1, . . . , pn ; ±〉 =
∏
i

D(Wi) |Λp1, . . . ,Λpn ; ±〉 e±iΣ , (2.23)

4Actually this language is not completely accurate since the in/out- states are conventionally defined in
the Heisenberg picture and are time independent. For a rigorous definition of our S-matrix, see appendix C.

5The generator of boosts K is always represented on the in/out states differently from its representation
on free states. The surprise here is the difference between in- and out- states, which is a unique consequence
of J 6= J0.
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where Σ ≡
∑n

i>j qij φ(pi, pj ,Λ). Here, and below, ‘+’ stands for ‘in’, and ‘−’ stands for
‘out’, the D(Wi) are the one-particle LG transformations, while the e±iΣ is the additional
phase factor corresponding to the pairwise LGs. Note that we need to choose opposite
signs for the pairwise LG phases for the in- and out- sates, in accordance with the extra
sign showing up in the asymptotic expression (2.4). We see that the transformation rule
Eq. (2.23) is a departure from Weinberg’s standard definition of the S-matrix, in the sense
that the Lorentz group is represented differently on in- and out- states.

2.4 Lorentz transformation of the electric-magnetic S-matrix

In the previous section, we presented the Lorentz transformation, Eq. (2.23), of multi-
particle quantum states involving electric and magnetic charges. The general LG transfor-
mation for the S-matrix readily follows,

S
(
p′1, . . . , p

′
m | p1, . . . , pn

)
≡
〈
p′1, . . . , p

′
m; − | p1, . . . , pn; +

〉
=
〈
p′1, . . . , p

′
m; − |U(Λ)† U(Λ)| p1, . . . , pn; +

〉
= ei(Σ++Σ−)

m∏
i=1

D(Wi)
†

n∏
j=1

D(Wj), S
(
Λ p′1, . . . ,Λ p

′
m |Λ p1, . . . ,Λ pn

)
(2.24)

where 6

Σ+ ≡
n∑
i>j

qij φ(pi, pj ,Λ) , Σ− ≡
m∑
i>j

qij φ(p′i, p
′
j ,Λ) . (2.25)

and Wi are the LG rotations for one-particle states in the in- and out- states. To go from
the second to the third line, we used the fact that the extra U(1) LG factor has the same
sign for 〈out| and |in〉 states. Note that since Σ± pairs particles within the in- and out-
states but doesn’t involve in-out pairs, this is a manifest violation of crossing symmetry.
Inverting Eq. (2.24), we have

S
(
Λ p′1, . . . ,Λ p

′
m |Λ p1, . . . ,Λ pn

)
=

e−i (Σ++Σ−)
m∏
i=1

D(Wi)
n∏
j=1

D(Wj)
† S

(
p′1, . . . , p

′
m | p1, . . . , pn

)
(2.26)

This transformation rule was first derived in [3]. If all qij = 0 (in particular, if none of the
scattering particles have magnetic charge), the transformation rule Eq. (2.26) reduces to
the standard LG transformation with Σ± = 0. To construct the electric-magnetic S-matrix
elements that satisfy the transformation rule given in Eq. (2.26) using on-shell methods
we need to introduce a new kind of spinor-helicity variable that enables us to saturate the
extra “electric-magnetic” U(1) phase in Eq. (2.26).

6Below we use the notation φij = φ(pi, pj ,Λ) when it’s clear whether we are talking about the in- or
out- state.
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3 Pairwise Spinor-Helicity Variables for the Electric-Magnetic S-matrix

3.1 Standard spinor-helicity variables for the standard LG

In the spinor-helicity formalism without magnetic charges, we can directly write down the
amplitude that transforms by construction as in Eq. (2.26) with q = 0. To do this, we
construct the amplitude from contractions of the spinor-helicity variables. For a massless
particle i, we use the spinor-helicity variables |pi〉α [pi|α̇, which transform under Lorentz
transformations as

Λ β
α |pi〉β = e+ i

2
φ(pi,Λ) |Λpi〉β , [pi|β̇ Λ̃β̇α̇ = e−

i
2
φ(pi,Λ) [Λpi|α̇ , (3.1)

where the phase φ(pi,Λ) corresponds to the action of the one-particle LG for massless
particles. For a derivation of this transformation rule, see for example [28–30]. In many
cases we simply drop the pi from the spinors and just use the notation |i〉α ≡ |pi〉α and
[i|α̇ ≡ [pi|α̇. An S-matrix involving an outgoing massless particle i with helicity hi has the
correct LG phase for the ith particle if we construct it from ni copies of |i〉α and ñi copies
of [i|α̇, such that ñi − ni = 2hi.7

Similarly, an amplitude involving a massive particle j of spin sj is constructed from
2sj insertions of the massive spinor-helicity variables |i〉Iα, with their spinor indices sym-
metrized. The indices I on the massive spinors indicate that they transform as doublets
of the LG SU(2) for massive particles. These indices are usually suppressed, as they are
only needed when taking the massless limit (specifying a value for the I index is like choos-
ing a particular helicity in the massless limit). Note that the I indices are automatically
symmetrized when one symmetrizes over the spinor indices α or α̇. We refer the reader to
ref. [20] for a detailed discussion of the spinor-helicity formalism for massive particles.

3.2 Pairwise momenta

As we argued in the previous section, in the case of the electric-magnetic S-matrix8, the
transformation rule involves an additional pairwise LG phase associated with the angular
momentum in the EM field, as can be seen in Eq. (2.26). Since this extra phase is associated
with pairs of momenta pi, pj , it is not possible to reproduce the correct transformation rule
using only the standard spinor-helicity variables |i〉α and [i|α̇ (or |i〉Iα and [i|Iα̇). This
motivates us to the define a new kind of spinor-helicity variable associated with pairs of
momenta pi, pj , which transform with the pairwise LG phase φij . Importantly, the pairwise
LG transformation of the S-matrix is always a U(1) phase, and so we need the new spinors
to be massless, and associated with null momenta.

Since the extra LG factor for the electric-magnetic S-matrix is associated with the
momenta pi, pj of each pair in the in/out- state, it is natural to define two null linear

7Notice that while |p〉 (|p]) carries a helicity weight ±1/2, as is evident from Eq. (2.26), for checking LG
scaling of the S-matrix, we need to do |p〉 → |Λp〉 ∝ ω−1|p〉 and |p] → |Λp] ∝ ω|p], where ω is a helicity
+1/2 factor.

8In our construction for electric-magnetic scattering we refer to the “S-matrix” rather than the usual
scattering amplitude. The reason behind this is that in the magnetic case, selection rules sometimes forbid
the appearance of the δ function in the standard relation Sαβ = δ(α− β) − 2iπδ(4)(pα − pβ)Aαβ .
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combinations of pi, pj , which we call the pairwise momenta9 p[±ij . Below, we will define
pairwise spinor-helicity variables associated with these pairwise momenta, and show that
they have the correct pairwise LG weight to be used as building blocks for the electric-
magnetic S-matrix. We first define the “reference” pairwise (null) momenta in the COM
frame as (

k[±ij

)
µ

= pc (1, 0, 0,±1) , (3.2)

where pc is the COM momentum of the ij pair, as in Eq. (2.11). The pairwise momenta p[±ij
in any other frame can be obtained by boosting k[±ij into that frame. Clearly k[±ij · k

[±
ij = 0

and k[+ij · k
[−
ij = 2p2

c , and these relations obviously hold in any other frame.
For reference, we also present the Lorentz covariant definition of p[±ij ,

p[+ij =
1

Eci + Ecj

[(
Ecj + pc

)
pi − (Eci − pc) pj

]
p[−ij =

1

Eci + Ecj

[
(Eci + pc) pj −

(
Ecj − pc

)
pi
]
. (3.3)

In the mi → 0 limit, we have Eci → pc and so p[+ij → pi and p[−ij becomes Parity-
conjugate of pi. Similarly, in the mj → 0 limit, we have Ecj → pc and so p[−ij → pj and p[+ij
becomes Parity-conjugate of pj . By inverting these equations, we can express the massive
momenta using the null momenta as

pi =
1

2pc

[
(Eci + pc) p

[+
ij + (Eci − pc) p[−ij

]
pj =

1

2pc

[(
Ecj + pc

)
p[−ij +

(
Ecj − pc

)
p[+ij

]
. (3.4)

3.3 Pairwise spinor-helicity variables

We are now in a position to define spinor-helicity variables related to the pairwise momenta
p[±ij . As we will show, these pairwise spinor-helicity variables transform with a U(1) LG
phase directly related to the pairwise LG phase of the in- and out- states in Eq. (2.23).
This makes them natural building blocks for the electric-magnetic S-matrix.

As a first step, note that linearity implies that the canonical Lorentz transformation
Lp defined in Eq. (2.17) that takes ki → pi also gives

Lp k
[±
ij = p[±ij . (3.5)

This is instrumental in proving that the pairwise spinor-helicity variables defined below
transform with the same LG phase as the two-particle states in Eq. (2.19). The next step

9The use of the label [ to denote null linear combinations of timelike momenta is inspired by the notation
of [31] and of the OPP reduction [32] in the context of generalized unitarity [33, 34]. There, null combinations
of external momenta were used in order to construct a null basis to span the internal loop momenta that
have been put on shell.
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is to define the reference pairwise spinor-helicity variables,

∣∣∣k[+ij 〉
α

=
√

2 pc

(
1

0

)
,

∣∣∣k[−ij 〉
α

=
√

2 pc

(
0

1

)
[
k[+ij

∣∣∣
α̇

=
√

2 pc (1 0) ,
[
k[−ij

∣∣∣
α̇

=
√

2 pc (0 1) . (3.6)

These spinors are the “square roots” of the null reference momenta

k[±ij · σαα̇ =
∣∣∣k[±ij 〉

α

[
k[±ij

∣∣∣
α̇
. (3.7)

The above relation is a standard mapping of a bi-spinor into a vector. Multiplying both
sides by σ̄α̇αν and taking the trace we can also write it in the form

2
(
k[±ij

)ν
=
〈
k[±ij

∣∣∣α σναα̇ ∣∣∣k[±ij ]α̇ . (3.8)

While the LHS of this relation transforms with Lp under a Lorentz transformation, the

helicity variables on the RHS transform with (Lp) β
α and

(
L̃p
)β̇
α̇
appropriate for spinorial

representation. Thus up to a LG invariant factor the pairwise spinors p[±ij are defined by

∣∣∣p[±ij 〉
α

= (Lp) β
α

∣∣∣k[±ij 〉
β

,
[
p[±ij

∣∣∣
α̇

=
[
k[±ij

∣∣∣
β̇

(
L̃p
)β̇
α̇

. (3.9)

This guarantees the relation

p[±ij · σαα̇ =
∣∣∣p[±ij 〉

α

[
p[±ij

∣∣∣
α̇
. (3.10)

Following the same procedure as in the standard definition of spinor-helicity variables, it is
straightforward to show that they transform with a U(1) LG factor as required, since

Λ β
α

∣∣∣p[±ij 〉
β

= e±
i
2
φ(pi,pj ,Λ)

∣∣∣Λp[±ij 〉
α

,
[
p[±ij

∣∣∣
β̇

Λ̃β̇α̇ = e∓
i
2
φ(pi,pj ,Λ)

[
Λp[±ij

∣∣∣
α̇
.

(3.11)

Where Λ β
α and Λ̃β̇α̇ are the spinor versions of the Lorentz transformation Λ. Note that∣∣∣p[+ij 〉

α
and

∣∣∣p[−ij 〉
β

have opposite pairwise helicities ±1/2. Importantly, the LG phase

φ(pi, pj ,Λ) in Eq. (3.11) is defined with respect to the canonical Lorentz transformation
Lp, which is the same as the one we used to derive the transformation rule of the quantum
states in section 2.19. This proves that φ(pi, pj ,Λ) is exactly the same phase as the one
in Eq. (2.19). Consequently, we are free to use our pairwise spinor-helicity variables to
construct an S-matrix that transforms correctly under the pairwise (and also one particle)
LGs. Explicit expressions for spinor-helicity variables in the COM frame are given in
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appendix B. Here we simply present the main results in the mi → 0 limit:[
p[+ij i

]
=
〈
i p[+ij

〉
=
[
η̂i p

[−
ij

]
=
〈
p[−ij η̂i

〉
= 0[

p[−ij i
]

=
〈
i p[−ij

〉
=
√

2pc

[
η̂i p

[+
ij

]
=
√

2pc

〈
p[+ij η̂i

〉
= 2pc , (3.12)

where |i〉α , [i|α̇ are the standard massless spinor-helicity variables, and |η̂i〉α , [η̂i|α̇ are the
(dimensionless) Parity-conjugate massless spinors that appear in the massless limit of the
massive spinors |i〉Iα , [i|Iα̇ (see ref. [20] for their definition). Note that the above equations
are Lorentz and LG invariant, and so hold in any other reference frame as well.

4 Constructing Electric-Magnetic S-matrices

In section 2.4 we derived the transformations of electric-magnetic S-matrices under the
pairwise and one-particle LGs:

S
(
Λ p′1, . . . ,Λ p

′
m |Λ p1, . . . ,Λ pn

)
=

e−i (Σ−+Σ+)
m∏
i=1

D(Wi)
n∏
j=1

D(Wj)
† S

(
p′1, . . . , p

′
m | p1, . . . , pn

)
(4.1)

To make use of this transformation for constructing electric-magnetic S-matrix elements,
we defined the pairwise spinor-helicity variables in section 3.3. Now we can use the pairwise
and regular spinor-helicity variables to construct S-matrices that respect Eq. (4.1). This
enables us to fix electric-magnetic S-matrix elements up to a LG invariant.

We also reiterate here that we are constructing electric-magnetic S-matrix elements
rather than amplitudes. This is because by using the word “amplitude” we are implicitly
assuming the possibility of forward scattering, as encoded in the standard relation

Sαβ = δ(α− β) − 2iπδ(4)(pα − pβ)Aαβ . (4.2)

However, in our very peculiar case of electric-magnetic scattering, the decomposition of
Eq. (4.2) may not actually hold. In fact, we will see below that selection rules generically
forbid forward scattering for the lowest partial wave, which makes the relation Eq. (4.2)
inadequate for electric-magnetic scattering. Rather than trying to adapt it to our case, we
opt to never use this relation at all and just construct the S-matrix itself directly. Energy
and momentum conservation are implicitly assumed.

In constructing the S-matrix we use an all-outgoing convention common in the ampli-
tudes literature. However, the use of this convention in the study of magnetic S-matrix
elements is non-trivial due to lack of crossing symmetry in electric-magnetic scattering.
Thus we begin by reviewing the subtleties associated with the all-outgoing convention.

4.1 The all-outgoing convention

In section 2.4, we described how general electric-magnetic S-matrices transform under
Lorentz transformations. In that section, the discussion was in terms of in- and out-
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states. In the spinor-helicity formalism it is however customary to use a notation where all
particles are outgoing which we call the out-out formalism. In the standard cases without
magnetic charges this is achieved using the crossing symmetry of the S-matrix. To define
crossing symmetry, we first assume analyticity, namely, that the S-matrix is an analytic
function of its complexified external momenta. Crossing symmetry is then the condition
that the scattering S-matrix for a process with an in-state that includes particle A, and
some out-state, has the same analytic form as the “crossed” versions of the original process,
with an outgoing anti-particle Ā. While in the original process, the particle appearing in
the in-state carries positive energy, in the crossed process, the anti-particle Ā appearing in
the out-state carries negative energy. However, crossing symmetry allows one to use the
same analytic S-matrix element to also calculate the process with an outgoing anti-particle
Ā in its physical kinematic regime. In the presence of crossing symmetry, a single ana-
lytic function provides the S-matrix for several different processes in different regions of
complexified momentum space. For massless particles, under crossing,

particle ↔ antiparticle

incoming ↔ outgoing

helicity h ↔ −h
pµ ↔ −pµ

Since the S-matrix for electric-magnetic scattering processes does not obey crossing sym-
metry, one can not describe different processes using the same S-matrix element. Neverthe-
less, we can still use a crossing transformation to translate the problem formulated in in-out
language into the out-out language, which is the conventional choice of the spinor-helicity
community. This is possible because, as can be seen from Eq. (4.1), the LG transformation
of an S-matrix involving incoming states with helicities hi and pairwise helicities qij is the
same as that of an S-matrix with outgoing states with helicities −hi and pairwise helicities
qij .

Consequently, we are free to construct S-matrices in the out-out formalism, as long as
we keep working in the same kinematic regime of the original in-out S-matrix. Furthermore,
even in the out-out formalism, we consider pairwise helicities qij only for pairs of states
which are both in the initial state or both in the final state for a given physical process.

4.2 Constructing the electric-magnetic S-matrix: spinor-helicity cheat sheet

We are now ready to formulate general rules for constructing electric-magnetic S-matrix
elements. As usual in the amplitudes program, the spinor-helicity variables are the basic
building blocks. The main novelty is the appearance of the pairwise spinor-helicity variables,
needed to capture the additional pairwise LG phase in the S-matrix, in addition to the
ordinary ones. As usual, we will assign helicity weights (or for massive particles SU(2)

quantum numbers) to each spinor-helicity variable, as well as a separate pairwise helicity
weights to each pairwise spinor-helicity variable. We will require that the helicity weights
under each individual particle as well as the pairwise helicity weights are matched for
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both the initial and the final states. Of course only the diagonal Lorentz transformation
(where each particle and each pair of particles are transformed simultaneously) is physical.
However, as is common in the amplitudes approach, as a book-keeping tool we can pretend
that helicity and pairwise helicity transformations can be performed independently on each
particle/pair of particles, which will make the construction of the properly transforming S-
matrix particularly easy. Hence for the pairwise helicity variable we assign only the pairwise
helicity (and no ordinary helicities), even though these pairwise spinor-helicity variables are
constructed as a function of the ordinary helicity variables, and in some limits they even
coincide with one of the ordinary spinor-helicity variables.10

These rules are summarized by the following equations.

S
(
ω−1|i〉, ω|i]

)
= ω2hiS (|i〉, |i]) , for ∀i (4.3)

S
(
ω−1|p[+ij 〉, ω|p

[+
ij ], ω|p[−ij 〉, ω

−1|p[−ij ]
)

= ω−2qijS
(
|p[+ij 〉, |p

[+
ij ], |p[−ij 〉, |p

[−
ij ]
)

for ∀ pair {i, j},

(4.4)

where ω represents the LG weight +1/2. The resulting rules for the full set of charge
assignments of the spinor-helicity variables are presented in Table 1, which summarizes the
different LG weights of the regular and pairwise spinor-helicity variables, as well as the
overall weights of the amplitude implied from Eq. (4.3) and (4.4).

U(1)i SU(2)i U(1)ij

Required weight hi Si -qij

|i〉α , [i|α̇ -1
2 ,

1
2 − −

〈i|I;α − � −∣∣∣p[+ij 〉
α
,
[
p[+ij

∣∣∣
α̇

− − -1
2 ,

1
2∣∣∣p[−ij 〉

α
,
[
p[−ij

∣∣∣
α̇

− − 1
2 , -

1
2

Table 1. LG weights of the standard and pairwise spinor-helicity variables, as well as the overall
weight required by Eq. (4.3) and (4.4).

4.3 First examples

To illustrate the construction of electric-magnetic S-matrix elements, let us work out a few
examples.

(1) Massive fermion decaying to massive fermion + massless scalar, q = −1.
In this case we need to use one massive spinor for the decaying fermion and one massive

10In the massless limit, the regular LG phase coincides with the pairwise phase, and LG weights of some
of the regular variables are used to match the regular LG weights, while the rest are used to saturate the
pairwise LG weight.
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spinor for the final fermion. This gives us two spinor indices that should be contracted with
pairwise spinors. Note that in general, the number of pairwise spinors is not completely
fixed by the LG: only the difference n−23−n

+
23 between the number of pairwise spinors with

weight 1
2 and −1

2 is fixed to be −2q23. In our case we need a total of 2 spinor indices and
so n+

23 = 2, n−23 = 0. The S-matrix is then

S
(
1s=1/2 |2s=1/2, 30

)
q23=−1

∼
〈
p[−23 1

〉〈
p[−23 2

〉
, (4.5)

up to a LG invariant.11

(2) Massive scalar decaying to massive scalar + massless vector, q = −1.
In this case we need to use two regular spinor-helicity variables for the helicity of the vector,
as well as two pairwise spinors for the q23 = −1 of the final state. The S-matrix elements
for helicity ±1 vectors are then

S
(
1s=0 |2s=0, 3+1

)
q23=−1

∼
[
p[+23 3

]2
∼
〈
p[−23 |2|3

]2
, (4.6)

up to a LG invariant. On the other hand, there is no way to write a LG covariant expression
for S

(
1s=0 |2s=0, 3−1

)
q23=−1

. We will see later that this is a particular example of a more
general LG selection rule.

(3) Massive vector decaying to two different massless fermions, q = −2.
In this case we need to use 2 massive spinors for the vector and one regular spinor-helicity
variable for each fermion, as well as four pairwise spinors for the q23 = −2 of the out state.
The S-matrix for opposite helicity fermions is then

S
(
1s=1 | 2−1/2, 3+1/2

)
q23=−2

∼
〈

2p[−23

〉 [
p[+23 3

] 〈
1 p[−23

〉2
. (4.7)

up to a LG invariant. Note that the S-matrix for same helicity fermions12 is forbidden in
this case, due to the fact that

〈
p[−23 3

〉
=
[
p[+23 2

]
= 0. This is our second encounter with a

LG selection rule.

(4) Massive vector decaying to two different massless fermions, q = −1.
In this case we need to use 2 massive spinors for the vector and one regular spinor-helicity
variable for each fermion, as well as four pairwise spinors for the q23 = −1 of the out state.
Note that unlike the previous examples, here the total number of pairwise spinors is not
given by −2q23. This is because there are four spinor indices from the standard spinors
that need to be contracted, so that n+

23 +n−23 = 4. Pairwise LG, on the other hand, implies

11In principle, there are other “legally” acceptable expressions such as
[
p[+23 1

] [
p[+23 2

]
or
[
p[+23 1

] 〈
p[−23 2

〉
or
〈
p[−23 1

〉 [
p[+23 2

]
. However, using the Dirac equations for the massive variable, pαα̇λ̃α̇I = mλIα and

pαα̇λαI = −mλ̃Iα̇, one can check that these are equivalent to Eq. (4.5) up to LG invariants.
12In the all-outgoing sense.
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n+
23−n

−
23 = −2q23 = 2, and so we have n+

23 = 3, n−23 = 1. The S-matrix for positive helicity
fermions is then

S
(
1s=1 | 2−1/2, 3−1/2

)
q23=−1

∼
〈

2p[−23

〉〈
p[+23 3

〉 〈
1 p[−23

〉2
. (4.8)

up to a LG invariant. Note that the S-matrix for h2 = −h3 = 1/2 is forbidden in this case,
due to the fact that

[
p[−23 3

]
= 0.

4.4 All electric-magnetic 3-point S-matrix elements

The examples above give us a flavor of how to construct electric-magnetic S-matrix elements
up to LG invariants. In the case of 3-point S-matrix elements, we can make the discussion
even more concrete and write down systematic expressions and selection rules for electric-
magnetic S-matrix elements. These are modifications of the general 3-point amplitudes
derived in [20], when the three scattering particles can have magnetic charge. Without loss
of generality, we choose one massive particle (that may be a dyon) in the incoming state,
and two particles (that may also be dyons) in the outgoing state. Note that our expressions
extend the ones presented in [20] to the case of electric-magnetic scattering, and reduce
to them when q = 0 for the outgoing states. Below, whenever we call a particle “dyon”,
we mean that it may, or may not, have a magnetic charge. In all our cases, the decaying
particle may be any kind of “dyon”.

• Incoming massive particle, two outgoing massive particles

In this case the S-matrix is the contraction of the massive part (in the notation of [20])

(
〈1|2s1

){α1...α2s1} (〈2|2s2){β1...β2s2} (〈3|2s3){γ1...γ2s3} (4.9)

with a massless part involving the pairwise spinors |w〉α ≡
∣∣∣p[−23

〉
α
and |r〉α ≡

∣∣∣p[+23

〉
α
(with

pairwise helicities ±1
2), which saturates the pairwise LG transformation. The most general

expression is

Sq{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3}
=

C∑
i=1

ai

(
|w〉ŝ−q |r〉ŝ+q

)
{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3}

,

(4.10)

where ŝ = s1 + s2 + s3, C counts all the possible ways to group the spinors into α, β and γ
indices, and q = q23 = e2g3 − e3g2. Since both exponents have to be non-negative integers,
we get a selection rule:

|q| ≤ ŝ . (4.11)

We can also check that Eq. (4.10) reduces to the standard expression from [20] for q = 0.
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To see this, note that

( |w〉 |r〉 ){αβ} ∼ O{αβ} ≡ (p2){αγ̇ (p3) γ̇
β}

( |w〉 |r〉 )[αβ] ∼ εαβ . (4.12)

where the two index tensors O{αβ} were defined in [20]. This can be seen from Eq. (3.4),
i.e.

(p2){αγ̇ (p3) γ̇
β} =

Ec2 + Ec3
2pc

(
p[+23

)
{αγ̇

(
p[−23

) γ̇

β}
= (Ec2 + Ec3) ( |w〉 |r〉 ){αβ} .

(4.13)

When q = 0, we get Eq. (4.27) of [20],

S0
{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3}

=
1∑
i=0

ãi

(
Oŝ−iεi

)
{α1,...,α2s1}{β1,...,β2s2}{γ1,...,γ2s3}

.

(4.14)

• Incoming massive particle, outgoing massive particle + massless particle; unequal
mass case.

This is the electric-magnetic version of the two massive, one massless S-matrix from
[20]. In this case the S-matrix is the contraction of the massive part

(
〈1|2s1

){α1...α2s1}(〈2|2s2){β1...β2s2} , (4.15)

with the massless part constructed from two “regular” spinors:

(|u〉α , |v〉α) = (|3〉α , | 2 |3]α) , (4.16)

with regular LG weights ∓1
2 , as well as the pairwise spinors

(|w〉α , |r〉α) =
(∣∣∣p[−23

〉
α
,
∣∣∣p[+23

〉
α

)
, (4.17)

with pairwise LG weights ±1
2 . Note that | 2 |p[−23 ]α is nothing but a LG invariant times∣∣∣p[+23

〉
α
.

The general massive 3-point S-matrix for an initial spin s1 particle and an final spin
s2 particle is then

Sh,q, unequal{α1,...,α2s1}{β1,...,β2s2}
=

C∑
i=1

∑
j,k

aijk 〈ur〉max(j+k,0) 〈vw〉max(−j−k,0)

(
|u〉

ŝ
2
−h−j |v〉

ŝ
2

+h+k |w〉
ŝ
2
−q+j |r〉

ŝ
2

+q−k
)
{α1,...,α2s1}{β1,...,β2s2}

,

(4.18)
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where ŝ = s1 + s2, and q = q23 = e2g3 − e3g2. Again C is the number of distinct tensor
structures. The j and k sums are over values that give non-negative exponents. In particu-
lar, they are in the intervals − ŝ

2 + q ≤ j ≤ ŝ
2 − h and − ŝ

2 − h ≤ k ≤
ŝ
2 + q . These intervals

exist only if |h+ q| ≤ ŝ, which gives us a selection rule. In particular,

s1 = s2 = 0 → h = − q . (4.19)

• Incoming massive particle, outgoing massive particle + massless particle; equal mass
case.

When the two masses are equal, we know that 〈uv〉 ∝ p2 · p3 = 0, hence, u and v

are parallel. For constructing the S-matrix, therefore, we use only one of the two, say |u〉.
However, the ratio x of the two is defined via13

mx |u〉 = |v〉 , (4.21)

and carries regular helicity of +1 for the particle 3, and can be used to satisfy the regular
helicity weight of the S-matrix. Similarly, 〈wr〉 = 0 and we have the relation

〈ur〉2 x |w〉 ∼ |r〉 , (4.22)

up to an overall LG invariant. Overall, the S-matrix is then constructed using x, |u〉α , |w〉α
and εαβ . A solution consistent with the regular/pairwise helicity weight and the number of
required spinor indices is found to be

Sh,q,equl
{α1...α2s1}{β1...β2s2}

=
C∑
i=1

∑
j

j∑
k=−j

xh+q+j 〈ur〉max[2q+j−k,0] 〈vw〉max[−2q−j+k,0] ·

(
|u〉j+k |w〉j−k εŝ−j

)
{α1...α2s1}{β1...β2s2}

,

(4.23)

where the j sum extends over 0 ≤ j ≤ ŝ. Note that while the powers of u,w, ε have to be
non-negative integers, there is no such requirement for the power of x.

• Incoming massive particle, two outgoing massless particles

In this case the S-matrix is the contraction of the massive part(
〈1|2s

){α1...α2s}
(4.24)

13An alternative expression for this x-factor can be written as [20]

x =
〈ζ|2|3]

m 〈ζ3〉 , (4.20)

where 〈ζ| is an arbitrary spinor which drops out of any physical calculation.
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with a massless part involving the regular spinors |u〉α = |2〉α , |v〉α = |3〉α and the pairwise
spinors |w〉α =

∣∣∣p[−23

〉
α
and |r〉α =

∣∣∣p[+23

〉
α
. The most general expression is

Sq{α1,...,α2s} =
∑
ij

aij

(
|u〉s/2−i−∆ |v〉s/2−j+∆ |w〉s/2+j−q |r〉s/2+i+q

)
{α1,...,α2s}

·

[uv]max[Σ+(s−i−j)/2 , 0] 〈uv〉max[−Σ−(s+i+j)/2 , 0] (〈uw〉 [vr])
1
2
max[i−j , 0] ([uw] 〈vr〉)

1
2
max[j−i , 0] ,

(4.25)

with Σ = h2 +h3, ∆ = h2−h3. Again q = q23 = e2g3− e3g2, and the i and j sums are over
values in the intervals −s/2− q ≤ i ≤ s/2−∆ and −s/2 + q ≤ j ≤ s/2 + ∆, such that
all of the exponents are non-negative integers. These intervals exists only when |∆−q| ≤ s,
which gives us another selection rule. In the non-magnetic q = 0 case, this gives us the
same selection rule as [20]. In particular, for a spin s coupling to h2 = −h3, we have

For q = 0 :

s = 0 → h2 = h3 = 0

s = 1 → |h2 − h3| ≤ 1 → |h2| = |h3| ≤ 1/2

s = 2 → |h2 − h3| ≤ 2 → |h2| = |h3| ≤ 1 ,(4.26)

in other words, massless particles with |h| > 1
2 cannot couple to a Lorentz covariant con-

served current, and massless particles with |h| > 1 cannot couple to a conserved stress
tensor. For q 6= 0, the situation is even more restrictive. For example, when |q| = 1

2 we
have

For q = ±1/2 :

s = 0 → forbidden

s = 1 → |h2 − h3 ∓ 1/2| ≤ 1 → |h2| = |h3| = 0 or h2 = −h3 = ±1/2

s = 2 → |h2 − h3 ∓ 1/2| ≤ 2 → |h2| = |h3| ≤ 1/2 or h2 = −h3 = ±1 .

(4.27)

We see that for |q| = 1/2 the selection rule is more restrictive than in the q = 0 case, since
it discards the h2 = −h3 = −qs option.
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5 Partial Wave Decomposition for 2→ 2 Electric-Magnetic S-matrix

Following [20] and [35], we can now perform a relativistic partial wave decomposition for
2 → 2 electric-magnetic S-matrix elements14. In a Poincaré invariant setting, the partial
wave decomposition is nothing but the expansion in a complete eigenbasis of the Casimir
operator W 2, where Wµ is the Pauli-Lubanski operator defined by

Wµ ≡ 1

2
εµνρσ P

νMρσ . (5.1)

In the above expression P ν is the momentum operator and Mρσ is the Lorentz generator.
The eigenvalues of W 2 are given by −P 2 J (J + 1) where J is the total angular momentum,
so clearly this is the relativistic version of a partial wave decomposition. The operators
Pµ, Mµν and Wµ act on the amplitude or parts of it. In particular, we will make use
of their representation as differential operators acting in spinor-helicity space [37]. In the
non-magnetic case and for massless particles, these are given by [37, 38]

(σµ)αα̇ P
µ ≡ Pαα̇ =

∑
i

|i〉α [i|α̇

(σµν)αβ M
µν ≡ Mαβ = i

∑
i

|i〉{α
∂

∂ 〈i|β}

(σ̄µν)α̇β̇ M
µν ≡ M̃α̇β̇ = i

∑
i

[i|{α̇
∂

∂ |i] β̇}
, (5.2)

where the sum i is over a collection of particles. In the 2 → 2 case we are interested in
the total angular momentum of particles 1 and 2, and so the sum will be over i = 1, 2.
The generalization of Eq. (5.2) for massive particles is straightforward [38, 39]: we bold the
spinors and contract their SU(2) LG indices. The Casimir operator W 2 is then expressible
as [35, 38]

W 2 =
P 2

8

[
Tr
(
M2
)

+ Tr
(
M̃2
)]
− 1

4
Tr
(
M P M̃ PT

)
. (5.3)

Eq. (5.2) can be straightforwardly generalized to our electric-magnetic case by treating the
regular and pairwise spinors on the same footing:

(σµν)αβ M
µν ≡ Mαβ = i

∑
i

|i〉{α
∂

∂ 〈i|β}
+
∑
i>j,±

∣∣∣p[±ij 〉{α ∂

∂
〈
p[±ij

∣∣∣β}


(σ̄µν)α̇β̇ M
µν ≡ M̃α̇β̇ = i

∑
i

[i|{α̇
∂

∂ |i] β̇}
+

∑
i>j,±

[
p[±ij

∣∣∣
{α̇

∂

∂
∣∣∣p[±ij ] β̇}

 , (5.4)

14For a complementary approach to mapping all possible spinor structures for 4-point non-magnetic
amplitudes, see [36]
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where the sum is now over all pairs as well as individual particles in the state. It is easy to
see that

W 2 〈12〉 = W 2
〈
p[±12 2

〉
= W 2

〈
p[±12 1

〉
= W 2

〈
p[±12 p

[∓
12

〉
= 0 , (5.5)

with W 2 the Casimir associated with particles 1 and 2 and defined via Eq. (5.4). Similarly,

W 2
∣∣∣ 1[〉

{α

∣∣∣p[−12

〉
β}

= − s 1(1 + 1)
∣∣∣ 1[〉

{α

∣∣∣p[−12

〉
β}
. (5.6)

In other words, the eigenfunctions of W 2 are combinations of regular and pairwise spinors
with symmetrized spinor indices. The eigenvalues are −s j (j+1) where j is just the number
of uncontracted spinor indices, divided by 2. This is the same conclusion as in ref. [35],
only with the inclusion of of pairwise spinors in the definition of W 2. It is now natural to
expand the S-matrix in a complete eigenbasis of W 2 with eigenfunctions

W 2 BJ = − s J (J + 1) BJ . (5.7)

Following [35], we call the BJ basis amplitudes. The most general expansion then reads

S12→34 = N
∑
J

(2J + 1)MJ(pc)BJ , (5.8)

where N ≡
√

8πs is a normalization factor andMJ(pc) are coefficients15 satisfying

W 2
12 MJ(pc) = W 2

34 MJ(pc) = 0 . (5.9)

The eigenfunctions BJ are then nothing but symmetrized products of spinors,

BJ = CJ ; in
{α1,...,α2j}C

J ; out; {α1,...,α2j} , (5.10)

where

W 2
12 C

J ; in
{α1,...,α2J} = − s J (J + 1)CJ ; in

{α1,...,α2J}

W 2
34 C

J ; out; {α1,...,α2J} = − s J (J + 1)CJ ; out; {α1,...,α2J} . (5.11)

In the above expression W 2
12 and W 2

34 are the Casimir operators associated with particles
1,2 and 3,4, respectively. The coefficient functionsMJ(pc) are angular momentum singlets,
and so they can only depend on the energy scale of the scattering, given by the COM
momentum pc . Inspired by the Wigner-Eckart theorem, we call them “reduced matrix
elements”. They contain the dynamical information of the scattering process, as opposed
to the angular dependence that is fixed for every partial wave. The coefficients CJ ; in/out,

15We also added the factor (2J + 1) as part of normalization so that the partial wave unitarity equation
is expressed in a simple form in terms ofMJ(pc) Eq. (8.8).
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on the other hand, are generalized Clebsch-Gordan coefficients [35].16 These coefficients
are completely fixed by group theory, and we can easily find them using an elegant trick
from [20, 35]. Simply put, the Clebsch-Gordan coefficient connecting the particles i and j
to the total angular momentum J is directly extracted from the 3-point S-matrix element
with the particles i and j and a massive, spin J particle. For example, if 1 and 2 are two
massive scalar dyons with q12 = −1, the corresponding 3-point S-matrix element is

S
(
10, 20 |3J

)
q12=−1

= a
〈
3 p[−12

〉J+1 〈
3 p[+12

〉J−1
. (5.12)

Since there is only one relevant tensor structure for this S-matrix (see Eq. (4.10)), we have
only one coefficient a. This will change when we include non-scalar particles — for example
with a massive fermion f and a scalar there are two possible tensor structures, depending
on which spinor is contracted with |f ]. The corresponding generalized Clebsch-Gordan part
can be directly read off from this 3-point S-matrix element by stripping off the spinors 〈3|α

corresponding to the massive spin J ,(
CJ ; in

0,0,−1

)
{α1,...,α2J}

=

(∣∣∣p[−12

〉J+1 ∣∣∣p[+12

〉J−1
)
{α1,...,α2J}

, (5.13)

where the subscript (0, 0,−1) indicates (s1, s2, q12) and we have normalized away the a
coefficient.

6 Fermion-Monopole Scattering: Lowest Partial Wave and Helicity Flip

As an illustrative application of our generalized amplitude formalism we now consider scat-
tering of an electrically charged fermion with charge e off a massive magnetic monopole
with magnetic charge g (with q = eg), reproducing the well known results of ref. [21]. In
this section we eamine the lowest partial wave process, (J = |q| − 1

2), and derive the cele-
brated helicity flip amplitude. In section 7 we apply our formalism to higher partial wave
processes.

6.1 Massive Fermion

It is convenient to start with a massive Dirac fermion denoted by

ψ =

(
f

f̄ †

)
, (6.1)

where f, f̄ are both LH Weyl fermions with opposite charges e and −e.
The J = |q| − 1

2 Clebsch-Gordan coefficient for the in state can be obtained by taking
s1 ≡ sf = 1/2, s2 ≡ sM = 0 and s3 ≡ sJ = J = |q| − 1/2 in Eq. (4.10). That means that

16To be more precise, our CJ; in/out are not really coefficients, they are SL(2,C) tensors.
The generalized Clebsch-Gordan coefficients defined in [35] is given in terms of our CJ; in/out by
CJ; in/out;{α1...,α2J}λI1α1

· · ·λI2Jα2J .
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ŝ = |q|, and for q > 0 the only valid 3-point S-matrix element is

S3-pt,in
q>0 = a

〈
f p[+fM

〉 〈
J p[+fM

〉2|q|−1
. (6.2)

As explained in the previous section there is only one a coefficient, which we absorb in the
reduced matrix elementMJ=|q|−1/2. Stripping away the 〈J|α part, we find

C
|q|−1/2; in
q>0 =

〈
f p[+fM

〉 (∣∣∣p[+fM〉2|q|−1
)
{α1,...,α2|q|−1}

, (6.3)

and a similar one for the out state. Contracting the generalized Clebsch-Gordan factors for
the in- and out-states, we find the basis amplitude17

B|q|−1/2
q>0 =

〈
f p[+fM

〉〈
f ′ p[+f ′M ′

〉
4p2
c


〈
p[+fMp

[+
f ′M ′

〉
2pc

2|q|−1

. (6.4)

We can repeat the exercises for q < 0, obtaining

B|q|−1/2
q<0 =

〈
f p[−fM

〉〈
f ′ p[−f ′M ′

〉
4p2
c


〈
p[−fMp

[−
f ′M ′

〉
2pc

2|q|−1

. (6.5)

6.2 The massless limit

In the massless fermion limit the particles are labeled by their helicity. Overall there are
four possible choices, namely helicity ±1

2 for the initial fermion (particle 1) and helicity ±1
2

for the final fermion (particle 3). In our all-outgoing convention, the helicity flip process
involves the same helicity for the initial state and the final state fermions, while in the
non-flip process they have opposite helicity.

The allowed processes for external fermions of charge e are

Helicity non-flip : f + M → f + M , f̄ † + M → f̄ † + M

Helicity flip : f + M → f̄ † + M , f̄ † + M → f + M . (6.6)

We first consider the last process in Eq. (6.6), the right-handed incoming fermion (he-
licity +1/2) and the left-handed outgoing fermion (helicity −1/2). In the out-out formalism
this corresponds to both fermions having helicity −1/2. We can take the massless limit of
Eqs (6.4) and (6.5) by simply unbolding 〈f | , 〈f ′| spinors [20].

B|q|−
1
2 =

〈
f p[±fM

〉〈
f ′ p[±f ′M ′

〉
4p2
c


〈
p[±fMp

[±
f ′M ′

〉
2pc

2|q|−1

for sgn(q) = ±1 (6.7)

17Since we aim to determine the S-matrix up to reduced matrix elementMJ(pc) we rescale our expression
by powers of pc to make the basis amplitude dimensionless.
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We further note that the helicity flip amplitude Eq. (6.7) is only non-trivial for q < 0.
Indeed, in the mi → 0 limit the spinor

∣∣∣p[+ij 〉 is parallel to |i〉 and, according to Eq. (3.12),〈
f p[+fM

〉
=
〈
f ′ p[+f ′M ′

〉
= 0. The vanishing of the S-matrix element for q > 0 has a simple

intuitive physical explanation. When q > 0 the EM field component of the magnetically
modified angular momentum operator (2.8) points towards the monopole and has eigen-
values q, q + 1, q + 2, . . . Since we are considering the right-handed incoming fermion the
minimal value of the z-component of the total angular momentum will be q + 1/2 which is
not part of the lowest partial wave state corresponding to J = |q| − 1/2. One can similarly
see that the outgoing left-handed particle can not be a part of the lowest partial wave when
q > 0.

Similarly, let us consider the helicity-flip amplitude where the incoming fermion is
left-handed while the outgoing fermion is right-handed. In the out-out formalism this cor-
responds to both massless fermions having helicity +1

2 . In this case we can’t simply unbold
the 〈f | , 〈f ′| spinors, but instead have to replace them with the Parity-conjugates18 of 〈f |
and 〈f ′|, denoted by 〈η̂f | ,

〈
η̂f ′
∣∣,

B|q|−
1
2 =

〈
η̂f p

[±
fM

〉〈
η̂f ′ p

[±
f ′M ′

〉
4p2
c


〈
p[±fMp

[±
f ′M ′

〉
2pc

2|q|−1

for sgn(q) = ±1 (6.8)

This time, Eq. (3.12) tells us that
〈
η̂f p

[−
fM

〉
=
〈
η̂f ′ p

[−
f ′M ′

〉
= 0, and so the S-matrix

vanishes for q < 0. Once again, there is a simple physical explanation of this fact: neither
a left-handed incoming particle nor a right-handed outgoing particle can be a be part of
the J = |q| − 1

2 partial wave when q < 0. Therefore, we find that the only non-vanishing
amplitude basis for the helicity-flip process is given by

B|q|−
1
2

q<0 =

〈
f p[−fM

〉〈
f ′ p[−f ′M ′

〉
4p2
c


〈
p[−fMp

[−
f ′M ′

〉
2pc

2|q|−1

(6.9)

B|q|−
1
2

q>0 ∼

[
f p[−fM

] [
f ′ p[−f ′M ′

]
4p2
c


〈
p[+fMp

[+
f ′M ′

〉
2pc

2|q|−1

(6.10)

where once again we used Eq. (3.12).
One can similarly show that, regardless of the sign of q, the S-matrix element van-

ishes for the two remaining helicity choices:
(
±1

2 ,∓
1
2

)
. Mathematically, this is the con-

sequence of the fact that now the amplitude basis is proportional to a factor of the form〈
f p[±fM

〉〈
η̂f ′ p

[±
f ′M ′

〉
, and this vanishes for either choice of sgn(q). Physically, this happens

because for the helicity-non-flip process either incoming or outgoing fermion can not be a
part of the lowest partial wave. In other words, at the lowest partial wave helicity-non-flip
process can not occur.

18We use the properly normalized 〈η̂i| instead of 〈ηi| = mi 〈η̂i| and absorb the normalization in our
reduced matrix element.
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Using the explicit expressions for the helicity variables in the COM frame obtained in
appendix B we can finally write the S-matrix in terms of the scattering angle θ. The only
non-vanishing S-matrix element is

S
|q|− 1

2

f→f̄ † = N 2 |q|M|q|−
1
2

− 1
2
, 1
2

[
sin

(
θ

2

)]2|q|−1

for q > 0

S
|q|− 1

2

f̄ †→f = N 2 |q|M|q|−
1
2

1
2
,− 1

2

[
sin

(
θ

2

)]2|q|−1

for q < 0 , (6.11)

where we have explicitly included the normalization coefficient N ≡
√

8πs and the reduced
matrix elementM|q|−

1
2

∓ 1
2
,± 1

2

, which is angle independent. The factor 2|q| is from the prefactor

(2J + 1) (for J = |q| − 1/2) introduced in the definition of the S-matrix Eq. (5.10). Note
that for future convenience we have used the in-out notation for the physical helicities
of incoming and outgoing fermions denoted as the subscripts M−hin,hout , where hin, hout

are helicities in out-out formalism. In general, one needs a dynamical input to determine
M in Eq. (6.11). However, as we will show in section 7 the higher partial waves do not
contribute to the helicity-flip matrix element. When combined with the unitarity conditions
(see section 8 for a detailed discussion) this implies that∣∣∣∣M|q|− 1

2

− 1
2
, 1
2

∣∣∣∣ =

∣∣∣∣M|q|− 1
2

1
2
,− 1

2

∣∣∣∣ = 1 . (6.12)

Since the two helicity-flip processes never occur at the same time (they do or do not happen
depending on the sign of q), we can set them to ∓1. As shown in detail in appendix E,
the lowest partial wave S-matrix Eq. (6.11) with the reduced matrix elements Eq. (6.12)
exactly reproduces the QM calculation of [21].

The result is rather interesting: in the limit of massless fermions, the S-matrix element
is only non-vanishing for processes where the products of fermion helicities, hf and hf ′ ,
with q are positive, hf · q = hf ′ · q > 0 (in the out-out sense). It’s even more striking once
we remember that this discussion is in the all-outgoing convention, and so the physical
interpretation in terms of in-out states is of a positive helicity fermion scattering into a
negative helicity fermion for q < 0, or of a negative helicity fermion scattering into a
positive helicity fermion for q > 0. In other words, our electric-magnetic S-matrix has a
selection rule that tells us that the lowest partial wave always involves a helicity flip! In
particular, forward or elastic scattering is forbidden by our selection rule since it does not
flip the helicity of the fermion. This is the well-known Kazama-Yang result [21], and also
the precursor of the Rubakov-Callan effect [40, 41] in the scattering of two fermions and a
monopole.

– 27 –



7 Fermion-Monopole Scattering: Higher Partial Waves

7.1 Massive fermions

We now consider the S-matrix elements for the higher partial waves in the fermion-monopole
scattering process. Once again, it is convenient to start with a massive fermion. Following
our derivation of the generalized Clebsch-Gordan coefficients, we have19

BJ ∼
∑
σ

∑
σ′

aσa
′
σ′

〈
f p[σfM

〉〈
f ′ p[σ

′
f ′M ′

〉
4p2
c

B̃J(−qσ,−qσ′) , (7.1)

where sum is taken over σ = (+,−), σ′ = (+,−), while q+ = q − 1
2 , q− = q + 1

2 . We
also included the coefficients aσ (a′σ) for the two possible tensor structures in the in (out)
3-point S-matrix elements. The B̃J are given by

B̃J(∆,∆′) =
1

(2pc)2J

(〈
p[−fM

∣∣∣J+∆ 〈
p[+fM

∣∣∣J−∆
){α1,...,α2J}(∣∣∣p[−f ′M ′〉J+∆′ ∣∣∣p[+f ′M ′〉J−∆′

)
{α1,...,α2J}

.

(7.2)

Using Eq. (B.19) from appendix B.1, in the COM frame these become

B̃J(∆,∆′) = (−1)J−∆′ DJ∗−∆,∆′ (Ωc) . (7.3)

where Ωc = {θc, φc} is the direction of the outgoing COM momenta (we chose the COM
frame such that φc = 0). Here DJ∆,−∆′(Ω) is the Wigner matrix [1, 42]

DJ−∆,∆′(Ω) ≡ DJ−∆,∆′(φ, θ,−φ) = eiφ(∆+∆′) dJ−∆,∆′(θ) . (7.4)

The standard definition of the Wigner d-matrix is dJm,m′(θ) = 〈J,m| exp(−iθJy)|J,m′〉.
The emergence of these specific D-matrices is particularly satisfying, because they also
go by another name: the spin-weighted spherical harmonics qYl,m [26, 43], or monopole
harmonics [21, 26]. Specifically20:

Dl∗q,m (Ω) =

√
4π

2l + 1
qYl,m (−Ω) , (7.5)

where −Ω = (π − θ,−φ). Monopole harmonics emerge in the solution of the Klein-Gordon
or Dirac equations in the presence of a background magnetic field of a monopole [21, 26, 44].
It is reassuring to see them arise here in a completely relativistic setting, and based solely
on LG and angular momentum arguments.

The J-partial wave matrix element for the COM scattering of a massive scalar monopole

19Notice that this result is valid for all J , including the lowest partial wave case J = |q| − 1/2.
20Our qYlm are defined according to the b-hemisphere definition of [26]
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and a massive fermion is then

SJ = N (2J + 1)
MJ

4 p2
c{

a1a
′
1

〈
f p[−fM

〉 〈
f ′ p[−f ′M ′

〉
DJ∗
q+ 1

2
,−q− 1

2

(Ωc) + a2a
′
1

〈
f p[+fM

〉 〈
f ′ p[−f ′M ′

〉
DJ∗
q− 1

2
,−q− 1

2

(Ωc)

a1a
′
2

〈
f p[−fM

〉〈
f ′ p[+f ′M ′

〉
DJ∗
q+ 1

2
,−q+ 1

2

(Ωc) + a2a
′
2

〈
f p[+fM

〉〈
f ′ p[+f ′M ′

〉
DJ∗
q− 1

2
,−q+ 1

2

(Ωc)
}
,

(7.6)

where the (−1)J−∆′ prefactors have been absorbed into the coefficients a′i, and N ≡
√

8πs .

7.2 Massless fermion

We now consider the massless limit for the fermions in the J > |q| − 1
2 partial waves.

The S-matrix Eq. (7.6) contains all of the possible helicity assignments, and so we can
immediately extract the individual helicity amplitudes. For instance, the S-matrix for a
helicity non-flip process f → f is obtained by unbolding the finial state massive fermion
variable, and replacing the initial massive variable with P -conjugate η̂-variable. Under this
replacements, only the second term survives and Eq. (7.6) simplifies significantly to

SJf→f = N (2J + 1) MJ
1
2
,− 1

2

DJ∗
q− 1

2
,−q− 1

2

(Ωc) , (7.7)

where we dropped the

[
f p[−fM

]〈
f p[−fM

〉
4p2c

factor, which equals to 1 in the COM frame. Other
cases can be worked out easily, and the general results are summarized in a compact ex-
pression as

SJhin→hout = N (2J + 1) MJ
−hin,hout D

J∗
q−hin,−q+hout (Ωc) . (7.8)

As shown in appendix E, Eq. (7.8) exactly reproduces the angular dependence of the higher
partial wave amplitudes in [21], obtained by a brute force solution of the Dirac equation in
a monopole background.21

As in textbook QM scattering in a central potential, our partial wave expansion only
determines the angular dependence of each partial wave, while the relative magnitude of
the different partial waves is determined dynamically in the form of phase shifts. For the
lowest partial wave, our selection rule forbids forward scattering, and so the full partial
amplitude was completely fixed by unitarity. In contrast, for the higher partial waves,
unitarity alone does not uniquely determine the amplitude, and some knowledge of the
underlying dynamics is needed to specify the reduced matrix elements. To this end we

21We remind the reader that hin, hout are defined in the all-outgoing convention, and so an incoming
f
(
f̄ †
)
has helicity hin = 1

2

(
− 1

2

)
, while an outgoing f

(
f̄ †
)
has helicity hout = − 1

2

(
1
2

)
. Note also that

the indices onMJ are −hin and hout, such that the labeling ofMJ respects particle kind (f or f̄ †) rather
than helicity in the out-out convention: − 1

2
→ f and + 1

2
→ f̄†. This will be useful to keep in mind when

consideringMJ†.
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extract the reduced matrix elements for the helicity non-flip amplitude from [21]:

MJ
± 1

2
,± 1

2

= e−iπµ, (7.9)

where µ =

√(
J + 1

2

)2 − q2. One can see that these are indeed merely phase shifts, and they
are the only dynamical information needed to completely fix the S-matrix. The unitarity
condition discussed in the next section then leads to∣∣∣MJ

± 1
2
,∓ 1

2

∣∣∣2 = 1−
∣∣∣MJ
± 1

2
,± 1

2

∣∣∣2 = 0 , (7.10)

so the helicity-flip processes for J > |q|− 1
2 vanish simply because a 100% of the probability

goes to the helicity non-flip process Eq. (7.8).
To emphasize what we have achieved, note that all of the new information gained

from the full solution of the QM scattering problem can be summarized in the phase shift
Eq. (7.9). In this paper we reproduced everything else based on LG and partial wave
decomposition alone, in a manifestly relativistic setting. In particular, we reproduced the
full angular dependence of all partial waves and the selection rule that requires a helicity-flip
in the lowest partial wave.

8 Partial Wave Unitarity

To complete our analysis of charged fermion scattering off a massive scalar monopole, we
need to discuss partial wave unitarity. Here we follow the standard derivation of partial wave
unitarity given in [45], generalizing it to the electric-magnetic scattering case. Unitarity of
the S-matrix implies

pc
16π2

√
s

∫
dΩm

∑
ab

(
S(fM)i→ab S

∗
(f†M)f→a†b†

)
=

16π2√s
pc

δ(Ωc) , (8.1)

where the momenta of fi (Mi) are directed along ±ẑ and the momenta of ff (Mf ) are
directed along ±Ω̂c with the angles (θc, φc). The intermediate states a, b can be either
(fm,Mm) or (f̄ †m,Mm) with their momenta along ±Ω̂m with the angles (θm, φm).22 We
now wish to perform a partial wave expansion of the unitarity relation (8.1), in order to
obtain a partial wave unitarity condition for our S-matrix. We begin by expanding the
relevant S-matrix elements in partial waves, using Eq. (7.8), which we repeat here for
completeness:

Shin→hout = N
∑
J

(2J + 1) MJ
−hin,hout D

J∗
q−hin,−q+hout (Ωm) , (8.2)

22Currently, we assume that the complete set of possible intermediate state consists of fermion and
monopole pair {f,M} (with all possible choices of fermion helicity). Of course, it is certainly possible to have
a microscopic theory containing other possible states, e.g. dyon pair, or multi-particle states. However, note
that what the S-matrix method does is to provide S-matrices consistent with the assumption of spectrum.
Indeed, under this assumption, we find results in complete agreement with the full QM calculation with
the same assumption made here.
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where N ≡
√

8πs is our usual normalization factor. Note that here, in contrast with the
original Eq. (7.8), the argument of the D-matrix is Ωm rather than Ωc. This is because we
are considering the S-matrix for an in-state with COM momenta along the ẑ axis and an
out-state along the ±Ω̂m direction. Similarly, we expand the inverse process as

Shin→hout = N
∑
J

(2J + 1) MJ
−hin,hout

J∑
p=−J

DJp,q−hin
(Ωc) DJ∗p,−q+hout (Ωm) . (8.3)

This time we need twoD-matrices because we start from an in-state in the direction±Ω̂c and
go to an out-state along ±Ω̂m. The explicit derivation of this particular angular dependence
is presented in appendix B.1. Substituting the above expansions in Eq. (8.1), the unitarity
relation becomes

1

16π2

∫
dΩm

∑
J,J ′

(2J + 1) (2J ′ + 1) · MJ
− 1

2
,− 1

2

MJ ′†
− 1

2
,− 1

2

DJ∗
q− 1

2
,−q− 1

2

(Ωm)
J ′∑

p=−J ′
DJ ′∗
p,q+ 1

2

(Ωc) DJ
′

p,−q− 1
2

(Ωm)

+MJ
− 1

2
, 1

2

MJ ′†
1
2
,− 1

2

DJ∗
q− 1

2
,−q+ 1

2

(Ωm)
J ′∑

p=−J ′
DJ ′∗
p,q+ 1

2

(Ωc) DJ
′

p,−q+ 1
2

(Ωm)

 = δ(Ωc) .

(8.4)

We can perform the Ωm integration using the orthogonality condition for DJm,b (Ωm),∫
dΩm DJ∗a,b (Ωm) DJ ′a′,b′ (Ωm) =

4π

2J + 1
δaa′ δbb′ δJJ ′ . (8.5)

Using this relation, our expression simplifies to

1

4π

∑
J

(2J + 1)
(
MJMJ†

)
− 1

2
,− 1

2

DJ∗
q− 1

2
,q+ 1

2

(Ωc) = δ(Ωc) . (8.6)

Eq. (8.6) is the unitarity relation applied to f + M → f + M scattering. Repeating the
same steps for f, f̄ † in the in and out state, we get the general relation Repeating this
derivation for all other in/out- states, we get

1

4π

∑
J

(2J + 1)
(
MJMJ†

)
−hin,hout

DJ∗q−hin,q−hout (Ωc) = δ−hin,hout δ(Ωc) . (8.7)

Multiplying by DJq−hin,q−hout
(Ωc) and using Eq. (8.5), we have

MJMJ† = I , (8.8)
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where MJ is the 2 × 2 matrix representing f or f̄ † in the in / out state, and I is the
2 × 2 identity matrix. In other words, the unitarity of the S-matrix leads to the unitarity
of each individual reduced matrix element MJ . This is also the standard result for non-
magnetic amplitudes [45], which leads to the partial-wave unitarity bound [46]. Here we
see that it holds for the electric-magnetic case as well, even though the eigenfunctions of
the partial wave decomposition are modified by the extra angular momentum in the EM
field. The unitarity condition Eq. (8.8) is key in reproducing the full helicity-flip amplitude
for the J = |q| − 1

2 partial wave in section 6, as well as the vanishing of the helicity-flip
amplitudes for J > |q|− 1

2 in section 7.2 (assuming that the helicity non-flip process is given
by Eq. (7.9)).

9 Conclusions

In this paper we have initiated the systematic study of electric-magnetic scattering ampli-
tudes, using on-shell methods. We have identified the multi-particle representations of the
Poincaré group that are necessary to incorporate asymptotic states with both electric and
magnetic charges. At the heart of our study is the appearance of a new pairwise LG and
its corresponding pairwise helicity, which describe the transformation of electric-magnetic
multi-particle states relative to the direct product of the one-particle states. This pairwise
helicity is non-zero for a charge-monopole pair and corresponds to the angular momentum
stored in the asymptotic electromagnetic field, which is appropriately quantized if Dirac-
Schwinger-Zwanziger charge quantization is satisfied. This novel pairwise helicity gains a
simple and intuitive implementation in the scattering amplitude formalism, through the
definition of pairwise spinor-helicity variables. We then used the pairwise spinor-helicity
variables to formulate the general rules for building the electric-magnetic S-matrix. In par-
ticular, we were able to classify all 3-particle magnetic S-matrix elements, corresponding
to decays of magnetically charged particles. Many of these electric-magnetic S-matrix ele-
ments are subject to simple selection rules among the spins/helicities and pairwise helicities
of the various particles. In addition, we performed a pairwise LG covariant partial wave
expansion for the generic 2 → 2 fermion-monopole scattering amplitude. For the lowest
partial wave, our LG based selection rules allowed us to derive the famous helicity flip
for the lowest partial wave. Furthermore, the well-known monopole spherical-harmonics
appear naturally in our formalism, and the general results of [21] are fully reproduced up
to dynamics-dependent phase shifts. We never have to introduce a Dirac string, and the
resulting S-matrix elements are always manifestly Lorentz invariant. For monopoles that
do not satisfy Dirac-Schwinger-Zwanziger charge quantization due to kinetic mixing with a
hidden sector photon [16] a separate treatment is needed [47].

Recently the authors of ref. [48] discussed the need for a more careful definition of
the S-matrix; they define a “hard” S-matrix by evolving the asymptotic states with an
asymptotic Hamiltonian which is not the free Hamiltonian, but allows for the emission and
absorption of massless photons. This evolution builds up a cloud of photons representing
the Coulomb fields of the charged in and out particles. In the presence of both electric and
magnetic charges the Coulomb fields carry additional angular momentum which we have
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included explicitly using the pairwise LG. It would be interesting to see how this angular
momentum could be handled in the “hard” S-matrix formalism. It will also be interesting
to consider the double copy relation between dyons and Taub-NUT spaces [17, 19, 49] in
light of our results.
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A Notation

We work in mostly-minus signature (+,−,−,−). Our Pauli matrices are defined as

(σµ)αα̇ = (I , ~σ) , (σ̄µ)α̇α = (I , −~σ) , (A.1)

where

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

Undotted indices are raised and lowered by the two index epsilon symbol

εαβ = εαβ =

(
0 1

−1 0

)
, (A.3)

following a northwest-southeast convention:

λα = εαβλβ , λα = λβεβα . (A.4)

Similarly, dotted indices are raised and lowered with

εα̇β̇ = εα̇β̇ =

(
0 −1

1 0

)
, (A.5)
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following a northwest-southeast convention:

λ̃α̇ = λ̃β̇ ε
β̇α̇ , λ̃α̇ = εα̇β̇ λ̃

β̇ . (A.6)

We define symmetrized products as:

( |a1〉n1 · . . . · |ak〉nk ){α1,...α2J} ≡

N
∑
σk

|a1〉ασk(1) · . . . · |a1〉ασk(n1) · . . . · |ak〉ασk(2J−nk+1)
· . . . · |ak〉ασk(2J) ,

(A.7)

where
∑

ni = 2J , and the sum is over permutations on k elements. We choose the
normalization factor to be

N =

[
(2J)!

k∏
i=1

(ni)!

]− 1
2

. (A.8)

This choice of normalization gives us Wigner D-matrices when contracting symmetric prod-
ucts of spinors in the COM frame.

A.1 Conventions

The fermions in our paper are all left-handed Weyl, while their hermitian conjugates are
right-handed:

f ≡ LH Weyl , f † ≡ RH Weyl . (A.9)

We work in the all-outgoing convention for the S-matrix, for consistency with the rest
of the scattering S-matrix literature. In practice it means that h = 1

2 (−1
2) for the initial

(i.e. originally incoming but crossed to outgoing) LH (RH) Weyl fermions, and h = −1
2 (1

2)

for the final (outgoing) LH (RH) Weyl fermions.

Reduced matrix elements are labeled as

MJ
−hin,hout (A.10)

in our all-outgoing convention, hin = 1
2 (−1

2) for incoming f (f̄ †), and hout = −1
2 (1

2) for
outgoing f (f̄ †). This means that the labels onMJ respect particle identity: MJ

− 1
2
, 1
2

is for

f → f̄ † whileMJ
1
2
,− 1

2

is for f̄ † → f , etc.
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B Spinor-helicity variables in the COM frame and in the heavy monopole
limit

In the COM frame of a dyon pair i, j we have

pµi = (Eci , + p̂c)

pµj =
(
Ecj , − p̂c

)
, (B.1)

where p̂c is in the direction given by {θc, φc} and

pc =

√
(pi · pj)2 −m2

im
2
j

s
, Eci,j =

√
m2
i,j + p2

c . (B.2)

In this case, the Lorentz transformation Lp taking the reference momenta Eq. (2.10) to
pi, pj is just a rotation

Lp = Rz (φc) Ry (θc) . (B.3)

Acting with the spinor version of this transformation on the reference pairwise spinors∣∣∣k[±ij 〉
α
,
[
k[±ij

∣∣∣
α̇
, etc. we get

∣∣∣p[±ij 〉
α

=
√

2pc |± p̂c〉α ,
[
p[±ij

∣∣∣
α̇

=
√

2pc [± p̂c|α̇ , (B.4)

where we use “-” instead of − inside the brackets for ease of reading. In the equation above
we use the notation

|n̂〉α ≡

(
cn
sn

)
, [n̂|α̇ ≡ (cn , s

∗
n)

| -n̂〉α ≡

(
−s∗n
cn

)
, [ -n̂|α̇ ≡ (−sn , cn) . (B.5)

where sn = eiφn sin
(
θn
2

)
, cn = cos

(
θn
2

)
. In particular, under a parity transformation

n̂↔ −n̂, we have

|n̂〉α ↔ − eiφn | -n̂〉α , [n̂|α̇ ↔ − e−iφn [ -n̂|α̇ . (B.6)

The expressions for 〈± n̂|α and |± n̂]α̇ are obtained by raising the spinor indices with εαβ

and εα̇β̇ , following the northwest-southeast convention for α and the southwest-northeast
convention for α̇. Explicitly,

〈n̂|α = (sn , − cn) , |n̂]α̇ =

(
s∗n
−cn

)

〈 -n̂|α = (cn , s
∗
n) , | -n̂]α̇ =

(
cn
sn

)
. (B.7)
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Also, since in the center of mass frame p̂i = −p̂j = p̂c , we automatically get the following
relations in the mi → 0 limit∣∣∣p[+ij 〉

α
= | i 〉α ,

[
p[+ij

∣∣∣
α̇

= [ i |α̇∣∣∣p[−ij 〉
α

=
√

2pc |η̂i〉α ,
[
p[−ij

∣∣∣
α̇

=
√

2pc [η̂i|α̇ , (B.8)

where |i〉α , [i|α̇ are the standard massless spinor-helicity variables, and |η̂i〉α , [η̂i|α̇ are
the (dimensionless) Parity-conjugate massless spinors that appear in the massless limit of
the massive spinors |i〉Iα , [i|Iα̇ (see [20] for their definition). Consequently, the following
contractions vanish:[

p[+ij i
]

=
〈
i p[+ij

〉
=
[
η̂i p

[−
ij

]
=
〈
p[−ij η̂i

〉
= 0[

p[−ij i
]

=
〈
i p[−ij

〉
=
[
η̂i p

[+
ij

]
=
〈
p[+ij η̂i

〉
= 2pc , (B.9)

since [-n̂ | n̂] = 〈n̂ | -n̂〉 = 1. Note that the above equations are Lorentz and LG invariant,
and so hold in any other reference frame as well.

B.1 2→ 2 scattering in the COM frame and Wigner D-matrices

We now explicitly present the relevant formulas for 2 → 2 scattering in the COM frame.
We take the colliding momenta to be

pµi = (Eci , n̂ pc ) , pµj =
(
Ecj , −n̂ pc

)
p̃µi =

(
Eci , k̂ pc

)
, p̃µj =

(
Ecj , −k̂ pc

)
, (B.10)

where n̂ is in the (θn, φn) direction and k̂ is in the (θk, φk) direction. Later we will specialize
to the case θn = 0 in which the initial momenta point along the ẑ direction. From Eq. (B.5)
we have 〈

-n̂ | -k̂
〉∗

=
〈
n̂ | k̂

〉
= sn ck − cn sk

−
〈
n̂ | -k̂

〉∗
=

〈
-n̂ | k̂

〉
= cn ck + s∗n sk . (B.11)

where si = eiφi sin (θi/2) , ci = cos (θi/2) for i = n, k. We put a | to separate contractions
involving a “-” for ease of reading. The expression for square brackets are obtained by
[ab] = 〈ba〉∗.

When writing down 2 → 2 electric-magnetic S-matrix elements, we encounter the
ubiquitous spinor contraction

B̃J(∆,∆′) =
(
〈 -n̂|J+∆ 〈 n̂|J−∆

){α1,...,α2J}
(∣∣∣ -k̂〉J+∆′ ∣∣∣ k̂〉J−∆′

)
{α1,...,α2J}

. (B.12)
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By simple combinatorics, this expression simplifies to the sum

B̃J(∆,∆′) =
∑
i

wi

〈
-n̂ | -k̂

〉i 〈
n̂ | k̂

〉i−∆−∆′ 〈
-n̂ | k̂

〉J+∆−i 〈
n̂ | -k̂

〉J+∆′−i
. (B.13)

where the sum is over max(0,∆ + ∆′) ≤ i ≤ J + min(∆,∆′). The coefficients ωi are
combinatoric factors denoting the number of equivalent contractions [35],

wi =

√
J + ∆)! (J −∆)! (J + ∆′)! (J −∆′)!

i! (i−∆−∆′)! (J + ∆− i)! i! (J + ∆′ − i)!
. (B.14)

Note that to get wi we have used our particular normalization for symmetrized products,
Eq. (A.8). Substituting the values Eq. (B.11) in Eq. (B.12), one can check explicitly that
the following relation holds:

B̃J(∆,∆′) = (−1)J−∆′
J∑

p=−J
DJp,−∆ (φn, θn,−φn) DJ∗p,∆′ (φk, θk,−φk) . (B.15)

DJm,m′ (α, β, γ) is the Wigner D-matrix, defined as

DJm,m′ (α, β, γ) ≡ 〈J,m|R(α, β, γ)|J,m′〉 = e−i (mα+m′ γ) dJm,m′ (β) , (B.16)

where R(α, β, γ) = e−iαJze−iβJye−iγJz is a 3-dimensional rotation operator, and therefore

dJm,m′ (β) ≡
〈
J,m | e−iJyβ | J,m′

〉
. (B.17)

Since our D-matrices always involve γ = −α = −φ, β = θ, we use the shorthand notation

DJm,m′ (Ω) ≡ DJm,m′ (φ, θ,−φ) , (B.18)

where Ω = {θ, φ}. In the particular case where the initial momenta are along the ±ẑ
direction, we have θn = 0, and Eq. (B.15) reduces to

B̃J(∆,∆′) = (−1)J−∆′ DJ∗−∆,∆′ (Ωk) . (B.19)

We make use of this expression in section 6, where we consider 2 → 2 electric-magnetic
S-matrix elements in the COM frame.

B.2 The heavy particle limit

In the mj →∞ limit, Eq. (3.3) leads to very simple expressions for the spatial parts of the
pairwise momenta,

~p [±
ij = ± ~pi . (B.20)

– 37 –



Note that in this limit pi ∼ pc up to O
(
m−1
j

)
corrections. That implies∣∣∣p[±ij 〉

α
=
√

2pc |±p̂i〉α ,
[
p[±ij

∣∣∣
α̇

=
√

2pc [± p̂i|α̇ , (B.21)

and we are free to use all the expressions derived throughout appendix B for the COM
frame also in any other frame with the substitution p̂c → p̂i. This is correct up to O

(
m−1
j

)
corrections.

C Definition of the electric-magnetic S-matrix

In this section we define the S-matrix rigorously following Weinberg [2], making changes
when necessary to adapt to the electric-magnetic case. We work in the Heisenberg picture,
where all of the time dependence is concentrated in the operators rather than in the quantum
states. As in the standard definition of the S-matrix, we separate the full Hamiltonian of
the system into a free and interacting part, as in Eq. (2.21). Note that in the case of
electric-magnetic scattering, the free part H0 and the full Hamiltonian H have different
conserved angular momentum operators,[

H, ~J
]

=
[
H0, ~J0

]
= 0, ~J 6= ~J0 . (C.1)

This means that the Lorentz group is represented differently on the eigenstates of H and
H0. We’ll return to this point below.

As a first step towards the definition of the S-matrix, we define the eigenstates |α; free〉
of the non-interacting part H0 such that,

H0 |α; free〉 = Eα |α; free〉 . (C.2)

The label α denotes the different eigenstates of H0. Since H0 is free, its eigenfunctions are
just direct products (or sums of direct products) of one-particle states,

|α; free〉 =
∏
i∈α
|pi; si; ni〉 , (C.3)

where pi and si are the momentum and spin/helicity of each particle, and ni denotes its
charges and gauge representations.

As in [2], we define our in (out) states as eigenstates of H. Since the interaction V

vanishes asymptotically, the eigenstates of H and H0 coincide, and we can write

H |α; ±〉 = Eα |α; ±〉 , (C.4)

where ‘+’ denotes in states and ‘−’ denotes out states. In Weinberg’s definition, the labels
in (out) define two different eigenbases of H, which differ by their asymptotic forms at
t→ ±∞. From this limiting relation and using J = J0 (valid in his case but not in ours),
he deduces how the Lorentz group is represented on in/out- states, and more importantly,
that the in- and out- representations are identical.
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In the case of an electric-magnetic S-matrix, J 6= J0 by the non-vanishing asymptotic
value of the angular momentum in the EM field. Inspired by Zwanziger [3], we follow an
opposite route to Weinberg, namely, we define our in out states by their different repre-
sentations under the Lorentz group, and derive the implications for the S-matrix. The
transformation rule that we impose on our in- and out- states is given in Eq. (2.23), and
we repeat it here for completeness,

U(Λ) |p1, . . . , pn ; ±〉 =
∏
i

D(Wi) |Λp1, . . . ,Λpn ; ±〉 e±iΣ

Ufree(Λ)
∣∣p′′1 . . . p′′l ; free

〉
=

∏
i

D(Wi)
∣∣Λp′′1 . . .Λp′′l ; free

〉
, (C.5)

where Σ ≡
∑

i>j qij φ(pi, pj ,Λ). We explicitly present the momenta pi of the particles in-
volved but suppress their spin/helicity labels, which are implicit in the LG transformations
D(Wi). The magnetic part of the transformation for in/out-states is evident in the qij
dependence of Σ, where qij = eigj − ejgi is the pairwise helicity of each particle pair. In
section 2.3 we prove that these transformation rules constitute a unitary representation of
the Lorentz group, by explicitly constructing them through the method of induced rep-
resentations. The transformation rule Eq. (C.5) is a departure from Weinberg’s standard
definition of the S-matrix, in the sense that the Lorentz group is represented differently on
in- and out- sates.

Having defined our in/out states in terms of their representations under Lorentz trans-
formation, we can now take their t→ ±∞ limits to get relations similar to Weinberg’s Eq.
3.1.12. In these limits, we would like to make the statement that our in- and out- states
approach free states, since the interaction term V vanishes for t→ ±∞. However, our naive
expectation is hindered by the extra phases in the transformation of our in- and out-states.
To compensate for that, we define our compensated free states:∣∣p′′1 . . . p′′l ; (free±)

〉
≡ C±(p′′1 . . . p

′′
l )
∣∣p′′1 . . . p′′l ; free

〉
, (C.6)

where C± is a “compensator” function of the momenta which satisfies

C±(p′′1 . . . p
′′
l ) = e±iΣ C±(Λp′′1 . . .Λp

′′
l )

|C±(p′′1 . . . p
′′
l )|

2
= 1 . (C.7)

The compensator functions are unique up to a constant phase, and we can construct them
explicitly from our pairwise spinor-helicity variables, as we demonstrate for the 2→ 2 case
in section 8.

Because of the compensator functions, the compensated free states have the same
transformation rule as their in/out- counterparts, so they can serve as the right limits at
t→ ±∞. We now make this statement in a more formal manner. Since we are working in
the Heisenberg picture, we define time dependent superpositions of in, out, and free states
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as

|g, t; ±〉 = exp (−iH t)

∫
dα g(α) |α; ±〉

|g, t; (free±)〉 = exp (−iH0 t)

∫
dα g(α) |α; (free±) 〉 . (C.8)

Taking the t → ±∞ limit of our in/out- superpositions, and noting that H → H0 in this
limit, we get the limiting forms

lim
t→∓∞

|g, t ; ±〉 = lim
t→∓∞

|g, t ; (free±) 〉 . (C.9)

A different way of stating the same relation is the formal expression

|α; ±〉 = Ω(∓∞) |α; (free±) 〉 , (C.10)

where Ω(t) ≡ exp(iHt) exp(−iH0t). This relation should be understood in terms of super-
positions as in Eq. (C.8). The S-matrix is defined as usual as:

Sβα = 〈β; − |α; + 〉 , (C.11)

or equivalently as

Sβα = 〈β; (free−) |S|α; (free+) 〉 , (C.12)

where S ≡ Ω†(∞) Ω(−∞).

D Zwanziger’s Vectors

The first derivation of the LG transformation for electric-magnetic S-matrix elements was
given by Zwanziger for qij = 1 in a seminal paper [3]. Beyond deriving the LG transforma-
tion similarly23 to our section 2.3, Zwanziger also defined LG covariant vectors, which he
used to construct manifestly LG covariant S-matrix elements. Unfortunately, Zwanziger’s
vectors were explicitly Lorentz non-invariant, as they have an explicit dependence on an
arbitrary direction n̂. This was not a major detractor from his formalism, though, since all
of the n̂ dependence canceled out when taking the absolute value squared of the S-matrix.
Our use of pairwise spinors rather than vectors eliminates this n̂ dependence, up to our
choice of the canonical Lorentz transformation Lp which takes ki,j → pi,j . However, this
is no different from the usual choice of a canonical Lorentz transformation in the standard
Wigner method. The other main detractor from using Zwanziger’s pairwise vectors was
the fact that they have pairwise helicity ±1 rather than ±1

2 , which excludes writing down
S-matrix elements with half integer q. Our formalism closes this gap, and allows us to write
down pairwise LG covariant S-matrix elements in their most general form.

23The main difference between our derivation and Zwanziger’s original derivation is our choice of the
reference momenta ki,j to be the COM momenta rather than the momenta in the monopole rest frame.
This makes our formalism more symmetric and suitable for the introduction of pairwise spinors.
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In this appendix we define Zwanziger’s vectors in terms of our pairwise spinor-helicity
variables, and reproduce his results from section V of [3]. To define LG covariant vectors,
we first pick a reference vector nµ and define:

aµ+ = i

√√√√√
〈
p[+ij |n|p

[−
ij

]
〈
p[−ij |n|p

[+
ij

] 〈p[−ij |σµ|p[+ij ]
aµ− = aµ∗+ . (D.1)

We’ve constructed these vectors so that (a+ + a−) · n = 0. Additionally, we have a± · pi =

a± · pj = 0. To see this, note that

a+ · pi ∼
〈
p[−ij | i |p

[+
ij

]
, (D.2)

and since pi is a linear combination of p[+ij and p[−ij the whole expression is zero by the Dirac
equation. By similar arguments a± · pi = a± · pj = 0.

Finally, we reproduce Zwanziger’s Eq. (5.9):

aµ+a
ν∗
+ =

〈
p[−ij |σ

µ|p[+ij
] 〈
p[+ij |σ

ν |p[−ij
]

aµ−a
ν∗
− =

〈
p[+ij |σ

µ|p[−ij
] 〈
p[−ij |σ

ν |p[+ij
]
. (D.3)

Using the identity

〈v|σµ|u] 〈u|σν |v] =
1

v · u
[vµuν + uµvν − (v · u) gµν + i εµνρσ vµuρ] ,

(D.4)

valid for any null vector u, v, we have

aµ± a
ν∗
± =

1

(p[+ij · p
[−
ij )

[
pµ;[+
ij pν;[−

ij + pµ;[−
ij pν;[+

ij −
(
p[+ij · p

[−
ij

)
gµν ∓ i εµνρσ p[+µ;ijp

[−
ρ;ij

]
,

(D.5)

or explicitly

aµ± a
ν∗
± = − gµν +

(pi · pj)
(
pµi p

ν
j + pµj p

ν
i

)
−m2

j p
µ
i p

ν
i − m2

i p
µ
j p

ν
j

(pi · pj)2 −m2
i m

2
j

−

∓ i εµνρσ pµ;ipν;j√
(pi · pj)2 −m2

i m
2
j

. (D.6)
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This is exactly Zwanziger’s Eq. (5.9). Contracting this with gµν , we see that

−1

2
(a± · a∗±) = 1 , (D.7)

and so ε̂µ ≡ i
2(aµ+ + aµ∗+ ) and ζ̂µ ≡ 1

2(aµ+ − a
µ∗
+ ) are two orthonormal vectors, orthogonal to

pµi,j . By definition ε̂ · n = 0.
To show the LG covariance of aµ±, we follow Zwanziger’s argument. We note that

aµ±(Λpi,Λpj , n) = Λµν a
ν
±(pi, pj ,Λ

−1n) . (D.8)

As we Lorentz transform, n, ε̂ remains in the plane orthogonal to pi,j and so is rotated by
the angle φij such that

cosφij = ε̂(Λ−1n) · ε̂(n) . (D.9)

Since ζ̂ · ε̂ = 0 and is also in the ζ̂ same plane orthogonal to pi,j , it is rotated by the same
angle. But since aµ± = iε̂µ ± ζ̂µ, this rotation amounts to a phase factor exp(±iφij) for aµ±.
Summing up, we have

aµ±(Λpi,Λpj , n) = Λµν a
ν
±(pi, pj , n) exp(±iφij) . (D.10)

The last thing to show is that the angle φij is the same LG angle as in Eq. (2.19). But
Zwanziger shows that we can always fix the U(1) ambiguity in the definition of L(pi, pj)

such that:

L(pi, pj)
µ
2 = ε̂µ , (D.11)

and consequently the LG rotation angle is exactly the rotation angle of ε̂.

E Comparison of amplitude formalism to QM calculations

Here we show that Eq. (7.8) exactly reproduces the angular dependence of the higher partial
amplitudes in [21]. Starting from their partial amplitude

SJf→f = SJf̄→f̄ =

N e−iπµ
µ

cos(θc/2)

[√
4π

2j
qYj− 1

2
,−q(−Ωc) −

√
4π

2j + 2
qYj+ 1

2
,−q(−Ωc)

]
, (E.1)

where −Ωc = (π − θc,−φc) and µ ≡
√

(J + 1
2)2 − q2. and using the relation Eq. (7.5)

between the qYlm and Wigner D-matrices, we can cast it in the form

SJf→f = SJf̄→f̄ = N e−iπµ
µ

cos(θc/2)

[
DJ−

1
2
∗

q,−q (Ωc) +DJ+ 1
2
∗

q,−q (Ωc)

]
. (E.2)
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Finally we can use D-matrix identities in sec 4.8.2 of [42] to transform this expression to

SJf→f = SJf̄→f̄ =

N (2J + 1) e−iπµ DJ∗
q− 1

2
,−q− 1

2

(Ωc) = N (2J + 1) e−iπµ DJ∗
q+ 1

2
,−q+ 1

2

(Ωc) . (E.3)

Comparing this to the result obtained in our amplitude formalism,Eq. (7.8), implies that

MJ
± 1

2
,± 1

2

= e−iπµ . (E.4)

where µ =

√(
J + 1

2

)2 − q2. Combining this expression with the unitarity condition leads
to ∣∣∣MJ

± 1
2
,∓ 1

2

∣∣∣2 = 1−
∣∣∣MJ
± 1

2
,± 1

2

∣∣∣2 = 0 , (E.5)

for helicity-flip J > |g| − 1
2 processes in an agreement with the explicit calculation in [21].
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