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Abstract
This paper studies computational methods for quasi-stationary distributions (QSDs). We
first proposed a data-driven solver that solves Fokker–Planck equations for QSDs. Similar
to the case of Fokker–Planck equations for invariant probability measures, we set up an
optimization problem that minimizes the distance from a low-accuracy reference solution,
under the constraint of satisfying the linear relation given by the discretized Fokker–Planck
operator. Then we use coupling method to study the sensitivity of a QSD against either
the change of boundary condition or the diffusion coefficient. The 1-Wasserstein distance
between a QSD and the corresponding invariant probability measure can be quantitatively
estimated. Some numerical results about both computation of QSDs and their sensitivity
analysis are provided.

Keywords Quasi-stationary distribution · Monte Carlo simulation · Data-driven
computation · Coupling method

1 Introduction

Many models in various applications are described by Markov chains with absorbing states.
For example, any models with mass-action kinetics, such as ecological models, epidemic
models, and chemical reaction models, are subject to the population-level randomness called
the demographic stochasticity, which lead to extinction in finite time. There are also many
dynamical systems that have interesting short term dynamics but trivial long term dynamics,
such as dynamical systems with transient chaos [19]. A common way of capturing asymptot-
ical properties of these transient dynamics is to find the quasi-stationary distribution (QSD),

Yao Li is partially supported by NSF DMS-1813246 and DMS-2108628.

B Yao Li
yaoli@math.umass.edu

Yaping Yuan
yuan@math.umass.edu

1 Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01002,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-022-10137-2&domain=pdf
http://orcid.org/0000-0002-4241-7723


Journal of Dynamics and Differential Equations

which is the conditional limiting distribution conditioning on not hitting the absorbing set
yet. However, most QSDs do not have a closed form. So numerical solutions are necessary
in various applications.

Computational methods for QSDs are not very well developed. Although the relation
between QSD and the Fokker–Planck equation is well known, it is not easy to use classical
PDE solver to solve QSDs because of the following two reasons. First a QSD is the eigen-
function of the Fokker–Planck operator whose eigenvalue is unknown. The cost of solving
eigenfunction of a discretized Fokker–Planck operator is considerably high. Secondly the
boundary condition of the Fokker–Planck equation is unknown. We usually have a mixture
of unbounded domain and unknown boundary value at the absorbing set. There are some
literatures about Monte Carlo sampling from a QSD, which usually include regenerating
samples from an empirical distribution once hitting the boundary [4–7, 26]. However the
efficiency of the Monte Carlo simulation is known to be low. To get the probability density
function, one needs to deal with undesired noise associated to the Monte Carlo simulation.
Methods like the kernel density estimator and the variable kernel density estimation can
smooth the solution but also introduce undesired diffusions to the solution, especially when
a QSD is highly concentrated at the vicinity of some low-dimensional sets.

The first goal of this paper is to extend the data-driven Fokker–Planck solver developed
by the first author to the case of QSDs [10]. Similar to [10], we need a reference solution
v generated by the Monte Carlo simulation. Then we discretize the Fokker–Planck operator
in a numerical domain D without the boundary condition. Because of the lack of boundary
conditions, the discretization only gives an underdetermined linear system, denoted byAu =
0. Then we minimize ‖v − u‖ in the null space of A. As shown in [11], this optimization
problemprojects the error terms of v to a lowdimensional linear subspace,which significantly
reduces its norm. Our numerical simulations show that this data-driven Fokker–Planck solver
can tolerate very high level of spatially uncorrelated error, so the accuracy of v does not have
to be high. The main difference between QSD solver and the Fokker–Planck solver is that
we need a killing rate to find the QSD, which is obtained by a Monte Carlo simulation. We
find that the QSD is not very sensitive against small error in the estimation of the killing rate.

The second goal of this paper is to study the sensitivity of QSDs. Some modifications of
either the boundary condition or the model parameters can prevent the Markov process from
hitting the absorbing state in finite time. So the modified process would admit an invariant
probability measure instead of a QSD. It is important to understand the difference between
the QSD of a Markov process and the invariant probability measure of its modification. For
example, many ecological models do not consider demographic noise because the popula-
tion size is large and the QSD is much harder to study. But would the demographic noise
completely change the asymptotical dynamics? More generally, a QSD captures the tran-
sient dynamics of a stochastic differential equation. If we separate a domain from the global
dynamics by imposing a reflecting boundary condition, howwould the local dynamics be dif-
ferent from the corresponding transient dynamics? All these require some sensitivity analysis
with quantitative bounds.

The way of sensitivity analysis is similar to [11]. We need both finite time error and the
rate of contraction of the transition kernel of the Markov process. The finite time error is
given by both the killing rate and the change of model parameters (if any). Both cases can
be estimated easily. The rate of contraction is estimated by the data-driven method proposed
in [21]. We design a suitable coupling scheme for the modified Markov process that admits
an invariant probability measure. Because of the coupling inequality, the exponential tail of
the coupling time can be used to estimate the rate of contraction. The sensitivity analysis
is demonstrated in several numerical examples. We can find that the invariant probability
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measure of the modified process is a better approximation of the QSD if (i) the speed of
contraction is faster and (ii) the killing rate is lower.

The organization of this paper is as follows. A short preliminary about QSD, Fokker–
Planck equation, simulation method, and coupling method is provided in Sect. 2. Section 3
introduces the data-driven QSD solver. The sensitivity analysis of QSD is given in Sect. 4.
Section 5 is about numerical examples.

2 Preliminary

In this section, we provide some preliminaries to this paper, which are about the quasi-
stationary distribution (QSD), the Fokker–Planck equation, the coupling method, and
numerical simulations of the QSD.

2.1 Quasi-Stationary Distribution

We first define the QSD and the exponential killing rate λ of a Markov process with an
absorbing state. Let X = (Xt : t ≥ 0) be a continuous-time Markov process taking values in
ameasurable space (X ,B(X )). Let Pt (x, ·) be the transition kernel of X such that Pt (x, A) =
P[Xt ∈ A | X0 = x] for all A ∈ B. Now assume that there exists an absorbing set ∂X ⊂ X .
The complement X a := X\∂X is the set of allowed states.

The process Xt is killed when it hits the absorbing set, implying that Xt ∈ ∂X for all
t > τ , where τ = inf{t > 0 : Xt ∈ ∂X } is the hitting time of set ∂X . Throughout this paper,
we assume that the process is almost surely killed in finite time, i.e. P[τ < ∞] = 1.

For the sake of simplicity let Px (resp. Pμ) be the probability conditioning on the initial
condition x ∈ X (resp. the initial distribution μ).

Definition 2.1 A probability measureμ onX a is called a quasi-stationary distribution(QSD)
of the Markov process Xt with an absorbing set ∂X , if for every measurable set C ⊂ X a

Pμ[Xt ∈ C |τ > t] = μ(C), t ≥ 0, (2.1)

If there is a probability measure μ exists such that

lim
t→∞Px [Xt ∈ C |τ > t] = μ(C), ∀x ∈ X a . (2.2)

in which case we also say that μ is a quasi-limiting distribution(QLD).

Remark 2.1 When μ satisfies (2.2), it is called a quasi-limiting distribution, or a Yaglom
limit. A QLD must be a QSD. Under some mild ergodicity assumptions, a QSD is also a
QLD [9].

In the analysis of QSD, we are particularly interested in a parameter λ, called the killing
rate of theMarkov process. If the distribution of the killing timePx (τ > t) has an exponential
tail, then λ is the rate of this exponential tail. The following theorem shows that the killing
time is exponentially distributed when the process starts from a QSD[8].

Theorem 2.1 Let μ be a QSD of stochastic process X. Then

∃ λ = λ(μ) such that Pμ[τ > t] = e−λt , ∀t ≥ 0,

where λ is called the killing rate of X.
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Throughout this paper, we assume that X admits a QSD denoted by μ with a strictly
positive killing rate λ.

2.2 Stochastic Differential Equations and the Fokker–Planck Equation

Consider a stochastic differential equation (SDE)

dXt = f (Xt )dt + σ(Xt )dWt , (2.3)

where Xt ∈ R
d and Xt is killed when it hits the absorbing set ∂X ⊂ R

n ; f : Rd → R
d is

a continuous vector field; σ is an d × d matrix-valued function; and dWt is the white noise
in R

d . The following well known theorem shows the existence and the uniqueness of the
solution of Eq. (2.3).

Theorem 2.2 Assume that there are two positive constants C1 and C2 such that the two
functions f and σ in (2.3) satisfy

(1) (Lipschitz condition) for all x, y ∈ R
d and t

| f (x) − f (y)|2 + |σ(x) − σ(y)|2 ≤ C1|x − y|2;
(2) (Linear growth condition) for all x, y ∈ R

d and t

| f (x)|2 + |σ(x)|2 ≤ C2(1 + |x |2).
Then there exists a unique solution X(t) to Eq. (2.3).

There are quite a few recent results about the existence and convergence of QSD. Since
the theme of this paper is numerical computations, in this paper we directly assume that
Xt admits a unique QSD μ on set X a that is also the quasi-limit distribution. The detailed
conditions are referred to in [12, 17, 22, 24, 25].

Let u be the probability density function of μ. We refer [2] for the fact that u satisfies

− λu = Lu = −
d∑

i=1

( fi u)xi + 1

2

d∑

i, j=1

(Di j u)xi x j , (2.4)

where D = σ T σ , and λ is the killing rate.

2.3 Simulation Algorithm of QSD

It remains to review the simulation algorithm for QSDs. In order to compute the QSD, one
needs to numerically simulate a long trajectory of X . Once Xt hits the absorbing state, a
new initial value is sampled from the empirical QSD. The re-sampling step can be done in
two different ways. We can either use many independent trajectories that form an empirical
distribution [3] or re-sample from the history of a long trajectory [5]. In this paper we use
the latter approach.

Let X̂ = {X̂ δ
n, n ∈ Z+} be a stochastic process that samples the “numerical QSD”.

When X̂ δ
n ∈ X a , X̂ simply approximates the time-δ sample chain of Xt , i.e., Xnδ . The

approximation uses either Euler–Maruyama scheme or the Milstein scheme. The Euler–
Maruyama numerical scheme is given by

X̂ δ
n+1 = X̂ δ

n + f (X̂ δ
n)δ + σ(X̂ δ

n)(W(n+1)δ − Wnδ), (2.5)
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where X̂ δ
0 = X0, W(n+1)δ − Wnδ ∼ N (0, δIdd), n ∈ Z+ is a d-dimensional normal random

variable. A more accurate scheme is the Milstein scheme, which reads

X̂ δ
n+1 = X̂ δ

n + f (X̂ δ
n)δ + σ(X̂ δ

n)(W(n+1)δ − Wnδ) + σ(X̂ δ
n)I L,

where I is a d × d matrix with its (i, j)-th component being the double Itô integral

Ii, j =
∫ (n+1)δ

nδ

∫ s2

nδ

dWi (s1)dW
j (s2),

and L ∈ R
d is a vector of left operators with i-th component

uLi =
d∑

i=1

σi, j (X̂
δ
n)

∂u

∂xi
.

Under suitable assumptions of Lipschitz continuity and linear growth conditions for f and
σ , the Euler–Maruyama approximation provides a convergence rate of order 1/2, while the
Milstein scheme is an order 1 strong approximation[18].

To deal with the situation when X̂ hits the absorbing set, in addition to X̂ δ
n , we also need

to update a temporal occupation measure

μn = 1

n

n−1∑

k=0

δX̂δ
n
.

If the numerical scheme gives X̂ δ
n+1 ∈ ∂X , we immediately resample X̂ δ

n+1 from μn . More

precisely, let the transition kernel of the numerical scheme of X (without resampling) be Q̂.
Then Q̂ has an absorbing set, i.e., Q̂(∂X , ∂X ) = 1. The transition kernel of X̂ δ

n is modified
from Q̂ such that

P[X̂ δ
n+1 ∈ A | X̂ δ

n = x] = Q̂(x, A) + Q̂(x, ∂X )μn(A) .

We have the following convergence result from [5].

Proposition 2.1 (Theorem 2.5 in [5]) Under suitable assumptions about X̂ , the occupation
measure μn converges to the QSD μ as n → ∞.

The assumption in Proposition 2.1 about X̂ is that X̂ must be Feller, the absorbing set
is accessible, X̂ admits a “weak small set”, and that the killing rates from different initial
values are uniformly controlled. It is easy to check that these assumptions are satisfied by the
numerical scheme of most ergodic SDEs. Since this paper focuses on numerical algorithm,
throughout this paper, we assume that all assumptions in Proposition 2.1 are satisfied.

For simplicity, we introduce the algorithm for n = 2, specifically, we solve u in Eq.
(2.4) numerically on a 2D domain D = [a0, b0] × [a1, b1]. Firstly, we construct an N × M
grid on D with grid size h = b0−a0

N = b1−a1
M . Each small box in the mesh is denoted by

Oi, j = [a0 + (i − 1)h, a0 + ih] × [a1 + ( j − 1)h, a1 + jh]. Let u = {ui, j }i=N , j=M
i=1, j=1 be

the numerical solution on D that we are interested in, then u can be considered as a vector
in RN×M . Each element ui, j approximates the density function u at the center of each Oi, j ,
with coordinate (ih + a0 − h/2, jh + a1 − h/2). Generally speaking, we count the number
of {X̂ δ

n} falling into each box and set the normalized value as the approximate probability
density at Oi, j . The detail of the simulation is shown in Algorithm 1 below.

Sometimes the Euler–Maruyama method underestimates the probability that X moves to
the absorbing set, especially when Xt is close to ∂X . This problem can be partially fixed
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Algorithm 1Monte Carlo for QSD
Input: Equation (2.5) and the grid
Output: A Monte Carlo approximation u = {ui, j }. Sample size Ns .

Pick any initial value X0 /∈ ∂X in D
for n = 1 to Ns do

Use X̂δ
n and Eq. (2.5) to compute X̂δ

n+1
Record the coordinates of the small box Oi, j where X̂δ

n+1 stands, say i∗, j∗
if X̂δ

n+1 /∈ ∂X then
ui∗, j∗ ← ui∗, j∗ + 1

else
X̂δ
n+1 = X̂δ�U∗n�, where U is a uniformly distributed random variable

end if
end for
Return ui, j /Nsh2 for all i, j as the approximation solution.

by introducing the Brownian bridge correction. We refer to [5] for details. For a sample
of X̂ δ

n falling into a small box which are closed to ∂X , the probability of the continuous-
time process falling into the trap ∂X before the discrete one is relatively high. In fact, this
probability is exponentially distributed and the rate is related to the distance from ∂X . Let
BT
t = Wt − t

T WT be the Brownian Bridge on the interval [0, T ]. In the 1D case, the law
of the infimum and the supremum of the Brownian Bridge can be computed as follows: for
every z ≥ max(x, y)

P[ sup
t∈[0,T ]

(x + (y − x)
t

T
+ φBT

t ) ≤ z] = 1 − exp(− 2

Tφ2 (z − x)(z − y)), (2.6)

where x = X̂ δ
n ∈ X a, y = X̂ δ

n+1 ∈ X a , and φ = σ(X̂ δ
n) is the strength coefficient of

Brownian Bridge. This means that at each step n, if X̂ δ
n+1 ∈ X a , one can compute, with the

help of Eq. (2.6), a Bernoulli random variable G with the parameter

p = P[∃t ∈ (nδ, (n + 1)δ), X̂t ∈ ∂X |x = X̂ δ
n, y = X̂ δ

n+1] (If G = 1, the process is killed).

2.4 CouplingMethod

The coupling method is used for the sensitivity analysis of QSDs.

Definition 2.2 (Coupling of probability measures) Let μ and ν be two probability measures
on a measurable space (X ,B(X )). A probability measure γ on (X × X ,B(X ) × B(X )) is
called a coupling of μ and ν, if two marginals of γ coincide with μ and ν respectively.

The definition of coupling can be extended to any two random variables that take value
in the same state space. Now consider two Markov processes X = (Xt : t ≥ 0) and
Y = (Yt : t ≥ 0) with the same transition kernel P . A coupling of X and Y is a stochastic
process (Xm, Ym) on the product state space X × X such that

(i) The marginal processes Xm and Ym are Markov processes with the transition kernel P;
(ii) If Xm

s = Ym
s , we have Xm

t = Ym
t for all t > s.

The first meeting time of Xm
t and Ym

t is denoted as τ c := inf t≥0{Xm
t = Ym

t }, which is called
the coupling time. The coupling (Xm, Ym) is said to be successful if the coupling time is
almost surely finite, i.e. P[τ c < ∞] = 1. Here the super index m stands for the marginal
distribution, which is dropped when it causes no confusion.
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In order to give an estimate of the sensitivity of the QSD, we need the following two
metrics.

Definition 2.3 (Wasserstein distance) Let d be a metric on the metric state space V equipped
with distanced(·, ·). For probabilitymeasuresμ and ν onV , theWasserstein distance between
μ and ν for d is given by

dw(μ, ν) = inf{Eγ [d(x, y)] : γ is a coupling of μ and ν.}
= inf{

∫
d(x, y)γ (dx, dy) : γ is a coupling of μ and ν.} (2.7)

In this paper, without further specification, we assume that the 1-Wasserstein distance is
induced by d(x, y) = max{1, ‖x − y‖}, where ‖x − y‖ is the Euclidean norm.

Definition 2.4 (Total variation distance) Let μ and ν be probability measures on (X ,B(X )).
The total variation distance of μ and ν is

‖μ − ν‖T V := sup
C∈B(X )

|μ(C) − ν(C)|.

Lemma 2.1 (Coupling inequality)For the coupling given above and theWasserstein distance
induced by the distance given in (2.7), we have

P[τ c > t] = P[Xm
t �= Ym

t ] ≥ dw(Pt (x, ·), Pt (y, ·)).

Proof By the definition of Wasserstein distance,

dw(Pt (x, ·), Pt (y, ·)) ≤
∫

d(x, y)P[(Xm
t , Ym

t ) ∈ (dx, dy)]

=
∫

x �=y
d(x, y)P[(Xm

t , Ym
t ) ∈ (dx, dy)]

≤
∫

x �=y
P[(Xm

t , Ym
t ) ∈ (dx, dy)]

= P[Xm
t �= Ym

t ].
The lemma follows because P[τ c > t] = P[Xm

t �= Ym
t ] by definition. ��

Consider a Markov coupling (X̂ , Ŷ ), where X̂ = {X̂ δ
n : n ∈ N} and Ŷ = {Ŷ δ

n : n ∈
N} are two numerical trajectories of the stochastic differential equation described in (2.5).
Theoretically, there are many ways to make stochastic differential equations couple. But
since numerical computation always has errors, two numerical trajectories may miss each
other when the true trajectories couple. Hence we need to apply a mixture of the following
coupling methods in practice.

Independent coupling Independent coupling means the noise term in the two marginal
processes X̂ and Ŷ are independent when running the coupling process (X̂ , Ŷ ). That is

X̂ δ
n+1 = X̂ δ

n + f (X̂ δ
n)δ + (W (1)

(n+1)δ − W (1)
nδ )

Ŷ δ
n+1 = Ŷ δ

n + f (Ŷ δ
n )δ + (W (2)

(n+1)δ − W (2)
nδ ),

where (W (1)
(n+1)δ − W (1)

nδ ) and (W (2)
(n+1)δ − W (2)

nδ ) are independent random variables for each
n.
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Reflection coupling TwoWiener processes meet less often than the 1D case when the state
space has higher dimensions. This fact makes the independent coupling less effective. The
reflection coupling is introduced to avoid this case. Take the Euler–Maruyama scheme of the
SDE

dXt = f (Xt )dt + σdWt

as an example, where σ is a constant matrix. The Euler–Maruyama scheme of Xt reads as

X̂ δ
n+1 = X̂ δ

n + f (X̂ δ
n)δ + σ(W(n+1)δ − Wnδ),

where W is a standard Wiener process. The reflection coupling means that we run X̂ δ
n as

X̂ δ
n+1 = X̂ δ

n + f (X̂ δ
n)δ + σ(W(n+1)δ − Wnδ),

while run Ŷ δ
n as

Ŷ δ
n+1 = Ŷ δ

n + f (Ŷ δ
n )δ + σ P(W(n+1)δ − Wnδ),

where P = I − 2eneTn is a projection matrix with

en = σ−1(X̂ δ
n − Ŷ δ

n )

‖σ−1(X̂ δ
n − Ŷ δ

n )‖ .

Nontechnically, reflecting coupling means that the noise term is reflected against the hyper-
plane that orthogonally passes the midpoint of the line segment connecting X̂ δ

n and Ŷ δ
n . In

particular, en = −1 when the state space is 1D.
Maximal couplingAbove coupling schemes can bring X̂ δ

n moves close to Ŷ δ
n when running

numerical simulations. However, a mechanism is required to make X̂ δ
n+1 = Ŷ δ

n+1 with
certain positive probability. That’s why the maximal coupling is involved. One can couple
two trajectories whenever the probability distributions of their next step have enough overlap.
Denote p(x)(z) and p(y)(z) as the probability density functions of X̂ δ

n+1 and Ŷ
δ
n+1 respectively.

The implementation of the maximal coupling is described in the following algorithm that is
first proposed by [15].

Algorithm 2Maximal coupling

Input: X̂δ
n and Ŷ δ

n
Output: X̂δ

n+1 and Ŷ δ
n+1, and τ c if coupled

Compute probability density functions p(x)(z) and p(y)(z)
Sample X̂δ

n+1 and calculate r = Up(x)(X̂δ
n+1), where U is uniformly distributed on [0,1]

if r < p(y)(X̂δ
n+1) then

Ŷ δ
n+1 = X̂δ

n+1, τ
c = (n + 1)δ

else
Sample Ŷ δ

n+1 and calculate r ′ = V p(y)(Ŷ δ
n+1), where V is uniformly distributed on [0,1]

while r ′ < p(x)(Ŷ δ
n+1) do

Resample Ŷ δ
n+1 and V . Recalculate r ′ = V p(y)(Ŷ δ

n+1)
end while
τ c is still undetermined

end if

For discrete-time numerical schemes of SDEs, we use reflection coupling when X̂ δ
n and

Ŷ δ
n are far away from each other, and maximal coupling when they are sufficiently close. The
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threshold of changing coupling method is 2
√

δ‖σ‖ in our simulation, that is, the maximal
coupling is applied when the distance between X̂ δ

n and Ŷ δ
n is smaller than the threshold.

3 Data-Driven Solver for QSD

Recall that QSD solves the equation −λu = Lu where L is the Fokker–Planck operator
defined in (2.4). The QSD solver consists of three components: an estimator of the killing
rateλ, aMonteCarlo simulator ofQSD that produces a reference solution, and anoptimization
problem similar to in [20].

3.1 Estimation of �

Let X̂ = {X̂ δ
n, n ∈ Z+} be a long numerical trajectory of Xt as described in Algorithm 1.

Let τ = {τm}Mm=0 be recordings of killing times of the numerical trajectory such that Xt hits
∂X at τ0, τ0 + τ1, τ0 + τ1 + τ2, . . . when running Algorithm 1. Note that τ is an 1D vector
and each element in τ is a sample of the killing time. It is well known that if the QSD μ

exists for a Markov process, then there exists a constant λ > 0 such that

Pμ[τ > t] = e−λt .

Recall that the killing times τ is exponentially distributed and the rate can be approximated
by

λ = 1

mean of τ
.

One pitfall of the previous approach is that Algorithm 1 only gives a QSD when the time
approaches to infinity. It is possible that τ has not converged close enough to the desired
exponential distribution. So it remains to checkwhether the limit is achieved. Our approach is
to check the exponential tail in a log-linear plot. After having τ , it is easy to choose a sequence
of times t0, t1, . . . , tn and calculate ni = |{τm > ti | 0 ≤ m ≤ M}| for each i = 0, . . . n.
Then pi = ni/M is an estimator of Pμ[τ > ti ]. Now let pui (resp. pli ) be the upper (resp.
lower) bound of the confidence interval of pi such that

pui = p̃ + z

√
p̃

ñi
(1 − p̃) ( resp. pli = p̃ − z

√
p̃

ñi
(1 − p̃)) ,

where z = 1.96, ñi = ni + z2 and p̃ = 1
ñi

(ni + z2
2 ) [1]. If pli ≤ e−λti ≤ pui for each

0 ≤ i ≤ n, we accept the estimate λ. Otherwise we need to run Algorithm 1 for longer time
to eliminate the initial bias in τ .

3.2 Data Driven QSD Solver

The data driven solver for the Fokker–Planck equation introduced in [20] can be modified
to solve the QSD for the stochastic differential Eq. (2.3). We use the same 2D setting in
Sect. 2.3 to introduce the algorithm. Let the domain D and the boxes {Oi, j }i=N , j=M

i=1, j=1 be the

same as defined in Sect. 2.3. Let u be a vector in R
N×M such that ui j approximates the

probability density function at the center of the box Oi, j . As introduced in [10], we consider
u as the solution to the following linear system given by the spatial discretization of the
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Fokker–Planck Eq. (2.4) with respect to each center point:

A0u = λu, (3.1)

where A0 is an (N − 2)(M − 2) × (NM) matrix, which is called the discretized Fokker–
Planck operator, and λ is the killing rate, which can be obtained by the way we mentioned in
previous subsection. More precisely, each row in A0 describes the finite difference scheme
of Eq. (2.4) with respect to a non-boundary point in the domain D.

Similar to [20], we need the Monte Carlo simulation to produce a reference solution v,
which can be obtained via Algorithm 1 in Sect. 2. Let {X̂ δ

n}Nn=1 be a long trajectory of the

numerical process X̂ produced by Algorithm 1, and let v = {vi, j }i=N , j=M
i=1, j=1 such that

vi, j = 1

Nh2

N∑

n=1

1Oi, j (X̂
δ
n)

It follows from the convergence result in Proposition 2.1 that v is an approximate solution of
Eq. (2.4) when the trajectory is sufficiently long. However, as discussed in [20], the trajectory
needs to be extremely long to make v accurate enough. Noting that the error term of v has
little spatial correlation, we use the following optimization problem to improve the accuracy
of the solution.

min ‖u − v‖2
subject to A0u = λu.

(3.2)

The solution to the optimization problem (3.2) is called the least norm solution,which satisfies
u = v − AT(AAT)−1(Av), with A = A0 − λI. [20]

An important method called the block data-driven solver is introduced in [10], in order
to reduce the scale of numerical linear algebra problem in high dimensional problems. By
dividing domain D into K × L blocks {Dk,l}k=1,l=1

k=K ,l=L and discretizing the Fokker–Planck
equation, the linear constraint on Dk,l is

Ak,luk,l = λuk,l,

where Ak,l is an (N/K − 2)(M/L − 2) × (NM/K L) matrix. The optimization problem on
Dk,l is

uk,l = −AT
k,l(Ak,lAT

k,l)
−1Ak,lvk,l + vk,l,

where vk,l is a reference solution obtained from theMonte-Carlo simulation. Then the numer-
ical solution to Fokker–PlanckEq. (3.1) is collage of all {uk,l}k=1,l=1

k=K ,l=L on all blocks.However,
the optimization problem “pushes”most error terms to the boundary of domain, whichmakes
the solution less accurate near the boundary of each block. Paper [10] introduced the over-
lapping block method and the shifting blocks method to reduce the interface error. The
overlapping block method enlarges the blocks and set the interior solution restricted to the
original block as new solution, while the shifting block method moves the interface to the
interior by shifting all blocks and recalculate the solution. We refer [10] for full details of the
shifting block method.

Note that in Sect. 3.1, we assume that λ is a pre-determined value given by theMonte Carlo
simulation. Theoretically one can also search for the minimum of ‖u − v‖2 with respect to
both λ and v. But empirically we find that the result is not as accurate as using the killing
rate λ from the Monte Carlo simulation, possibly because v has too much error.

One natural question is that how the simulation error in λwould affect the solution u to the
optimization problem (3.2). Some linear algebraic calculation shows that the optimization
problem (3.2) is fairly robust against small change of λ.
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Theorem 3.1 Let u and u1 be the solution to the optimization problem (3.2) with respect to
killing rates λ and λ1 respectively, where |λ − λ1| = ε � 1. Then

‖u − u1‖ ≤ 2s−1
minε‖v‖ + O(ε2),

where smin is the smallest singular value of A.

Proof Let E = [
εI(N−2)(M−2)|0

]
be an (N − 2)(M − 2) × (NM) perturbation matrix. Let

Ã = A + E,B = AT(AAT)−1A and B̃ = ÃT(ÃÃT)−1Ã. Sinceu = v−Bv andu1 = v−B̃v,
it is sufficient to prove

‖B − B̃‖ ≤ 2s−1
minε + O(ε2).

Note that

ÃÃT = (A + E)(A + E)T = AAT + AET + EAT + EET.

Since ‖EET‖ is O(ε2), we can neglect it when we consider the inverse matrix of ÃÃT. This
means

(ÃÃT)−1 ≈ (AAT)−1 − (AAT)−1(AET + EAT)(AAT)−1.

Without considering the high order term O(ε2), we can see

ÃT(ÃÃT)−1Ã ≈ (AT + ET)((AAT)−1 − (AAT)−1(AET + EAT)(AAT)−1)(A + E)

= AT(AAT)−1A + (ET(AAT)−1A − AT(AAT)−1(AET)(AAT)−1A)

+ (AT(AAT)−1E − AT(AAT)−1(EAT)(AAT)−1A)

= B + [ET − AT(AAT)−1(AET)](AAT)−1A

+ AT(AAT)−1[E − (EAT)(AAT)−1A].

Consider the singular value decomposition(SVD) of matrix A, i.e. A = uSvT, wherein

S =
⎡

⎢⎣
s1 0

. . .
...

s(N−2)(M−2) 0

⎤

⎥⎦ is an (N − 2)(M − 2) × (NM) matrix and both u ∈

R
(N−2)(M−2)×(N−2)(M−2), v ∈ R

(NM)×(NM) are orthogonal. ThenAT(AAT)−1A = vD1vT,

where D1 =
[
I(N−2)(M−2) 0

0 0

]

(NM)×(NM)

, and

(ET − AT(AAT)−1AET) = (ET − vD1vTET)

= vD2vTET, where D2 = I − D1.

E − (EAT)(AAT)−1A = E − EAT(AAT)−1A

= E − EvD1vT

= EvD2vT.

Note that ‖vD2vTET‖ ≤ ε, ‖EvD2vT‖ ≤ ε. Since AT(AAT)−1 and (AAT)−1A are two
generalized inverse of A,

AT(AAT)−1 = vS∗TuT, (AAT)−1A = uS∗v,
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where

S∗ =

⎡

⎢⎢⎣

1
s1

0
. . .

...
1

s(N−2)(M−2)
0

⎤

⎥⎥⎦ (3.3)

and ‖AT(AAT)
−1‖ = ‖(AAT)−1A‖ = 1

smin
. Hence we conclude that

‖B − B̃‖ ≤ 2smin
−1ε + O(ε2).

��
Remark 3.1 It is very difficult to estimate theminimumsingular value ofmatrixA analytically,
even for the simplest case when the Fokker–Planck equation is just a heat equation. But
empirically we find that s−1

min is usually not very large. For example, s−1
min for the gradient

flow with a double well potential is Sect. 5.4 is 0.4988, and s−1
min for the “ring example” in

Sect. 5.3 is only 0.2225.

4 Sensitivity Analysis of QSD

A stochastic differential equation has a QSD usually because it has a natural absorbing state.
For example, in ecological models, this absorbing state is the natural boundary of the domain
at which the population of some species is zero. Obviously invariant probability measures are
easier to study than QSDs. One interesting question is that if we slightly modify the equation
such that it does not have absorbing states any more, how can we quantify the difference
between QSD and the invariant probability measure after the modification? This is called the
sensitivity analysis of QSDs.

In this section, we focus on the difference between the QSD of a stochastic differential
equation X = {Xt , t ∈ R} and the invariant probability measure of a modification of X ,
denoted by Y = {Yt , t ∈ R}. For the sake of simplicity, this paper only compares the QSD
(resp. invariant probability measure) of the numerical trajectory of X (resp. Y ), denoted by
X̂ = {X̂ δ

n, n ∈ Z+} (resp. Ŷ = {Ŷ δ
n , n ∈ Z+}). Denote the QSD (resp. invariant probability

measure) of X̂ (resp. Ŷ ) by μ̂X (resp. μ̂Y ) and the QSD (resp. invariant probability measure)
of the original SDE X (resp. Y ) by μX (resp. μY ). The sensitivity of invariant probability
measure against time discretization has been addressed in [11]. When the time step size
of the time discretization is small enough, the invariant probability measure μY is close
to the numerical invariant probability measure μ̂Y . The case of QSD is analogous. Hence
d(μ̂X , μ̂Y ) is usually a good approximation of d(μX , μY ).

We are mainly interested in the following two different modifications of X .
Case 1 Reflection at ∂X One easy way to modify the numerical trajectory X̂ to eliminate

the absorbing state is to add a reflecting boundary. This method preserves the local dynamics
but changes the boundary condition. More precisely, the trajectory of X̂ follows that of Ŷ
until it hits the boundary ∂X . Without loss of generality assume ∂X is a smooth manifold
embedded in R

d . If Ŷ δ
n = X̂ δ

n ∈ X a but X̂ δ
n+1 /∈ X a , then Ŷ δ

n+1 is the mirror reflection of

X̂ δ
n+1 against the boundary of X . Denote the intersection of ∂X and the line segment from

X̂ δ
n to X̂ δ

n+1 by Xa . Denote the unit normal vector of ∂X at Xa by n. Then some simple
calculations give

Ŷ δ
n+1 = Xa + (Id − 2nnT )(X̂ δ

n − Xa) .
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In most ecological and epidemiological models the natural boundary is ∂X = {(x1, . . . , xn) |
xi = 0 for some 1 ≤ i ≤ n, x j ≥ 0 for all 1 ≤ j ≤ n}. In this setting Ŷ δ

n+1 has an easy

expression Ŷ δ
n+1 = abs(X̂ δ

n+1), where abs(·) means element-wise absolute value of a vector.
We remark that this reflection of the numerical trajectory is not consistent with the stochas-

tic differential equation with reflecting boundary conditions, which solves a Skorohod’s
equation [23]. The problem is that the noise vanishes at ∂X for most ecological models.
Hence ∂X remains to be absorbing even if the stochastic differential equation has reflect-
ing boundaries. The “reflection” we use here is only for the numerical trajectory. It can be
interpreted as a small random number of individuals are artificially added immediately after
the extinction of this species happens. The goal here is to investigate the sensitivity of QSDs
against a change of the boundary condition. See the summary at the end of Sect. 4.2

Case 2Demographic noise in ecological models.Wewould also like to address the case of
demographic noise in a class of ecological models, such as population model and epidemic
model. For the sake of simplicity consider an 1D birth-death process with some environment
noise

dYt = f (Yt )dt + σYtdWt , (4.1)

where Yt ∈ R. Note that for the birth-death process model, {0} is an absorbing state. It is
known that for suitable f (Yt ), the probability of Yt hitting zero in finite time is zero [13].
However, if we take the demographic noise, i.e., the randomness of birth/death events, into
consideration, the birth-death process becomes

dXt = f (Xt )dt + σ ′XtdW
(1)
t + ε

√
XtdW

(2)
t , (4.2)

where ε � 1 is a small parameter that is proportional to −1/2-th power of the scale of the
population size, σ ′ is the new parameter that addresses the separation of environment noise
and demographic noise. For example, if the steady state of Xt is around 1, we can choose

σ ′ = √
σ 2 − ε2.

Different from Eq. (4.1), the magnitude of random perturbation in Eq. (4.2) near the
boundary is much larger. As a result, Eq. (4.2) could hit the boundary in finite time with
strictly positive probability. (For example dXt = r Xtdt + ε

√
XtdWt has strictly positive

extinction probability in finite timewhenever ε > 0. This can be checked by applying the Itô’s
formula to a test function 1/Xt then taking the expectation. Whether Eq. (4.2) has finite time
extinction depends on details of f (x). But most ecological model has f (Xt ) ≈ O(1) × Xt

when Xt is small in order to model the intrinsic growth of the population. That fits the
setting of the example above.) Therefore, it is common for Eq. (4.1) to admit an invariant
probability measure while Eq. (4.2) has a QSD. One very interesting question is that, if ε

is sufficiently small, how different is the invariant probability measure of Eq. (4.1) from
the QSD of Eq. (4.2)? This is very important in the study of ecological models because
theoretically every model is subject a small demographic noise. If the invariant probability
measure is dramatically different from the QSD after adding a small demographic noise term,
then the Eq. (4.1) is not a good model due to its high sensitivity, and we must study the Eq.
(4.2) directly.

We roughly follow [11] to carry out the sensitivity analysis of QSD. Here we slightly
modify X̂ δ

n such that if X̂ δ
n ∈ ∂X , instead of sampling from the occupation measure, we

immediately re-sample X̂ δ
n from the QSD μ̂X . This new process, denoted by X̃ δ

n , admits an
invariant probability measure μ̂X . Now denote the transition kernel of X̃ δ

n and Ŷ
δ
n by PX and

PY respectively. The following Proposition is motivated by [16].
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Proposition 4.1 For any T > 0, if there exists a constant 0 < α < 1 such that

dw(μ̂X P
T
Y , μ̂Y P

T
Y ) ≤ αdw(μ̂X , μ̂Y ) ,

then we have

dw(μ̂X , μ̂Y ) ≤ dw(μ̂X PT
X , μ̂X PT

Y )

1 − α
.

Proof Let dw(·, ·) be the 1-Wasserstein distance defined in Sect. 2. We can decompose
dw(μ̂X , μ̂Y ) via the following triangle inequality:

dw(μ̂X , μ̂Y ) ≤ dw(μ̂X P
T
X , μ̂X P

T
Y ) + dw(μ̂X P

T
Y , μ̂Y P

T
Y ).

Since the transition kernel PT
Y has enough contraction such that

dw(μ̂X P
T
Y , μ̂Y P

T
Y ) ≤ αdw(μ̂X , μ̂Y )

for some α < 1, after some simplification, we have

dw(μ̂X , μ̂Y ) ≤ dw(μ̂X PT
X , μ̂X PT

Y )

1 − α
. ��

Therefore, in order to estimate dw(μ̂X , μ̂Y ), we need to look for suitable numerical esti-
mators of the finite time error and the speed of contraction of PT

Y . The finite time error can
be easily estimated in both cases. And the speed of contraction α comes from the geometric
ergodicity of the Markov process Ŷ . If our numerical estimation gives

dw(μPT
Y , νPT

Y ) ≤ Ce−γ T , (4.3)

then we set α = e−γ T . As discussed in [11], this is a quick way to estimate α. In fact, in all
examples that we have tested, when starting from μ̂X and μ̂Y , the prefactorC of the coupling
probability in Eq. (4.3) is not far away from 1. Hence in practice it does not differ from the
“true upper bound” very much. The “true upper bound” of α in [11] comes from the extreme
value theory, which is much more expensive to compute.

4.1 Estimation of Contraction Rate

Similar to in [21], we use the following coupling method to estimate the contraction rate α.
Let Ẑ = Ẑ δ

n = (Ŷ 1
n , Ŷ 2

n ) be a Markov process in R
2d such that Ŷ 1

n and Ŷ 2
n are two copies of

Ŷ , ans that Ẑ is a coupling of Ŷ 1
n and Ŷ 2

n . Recall that τ c is the coupling time, which is also
the first passage time to the “diagonal” hyperplane {(x, y ∈ R

2d)|y = x}. Then by Lemma
2.1

dw(μ̂X P
t
Y , μ̂Y P

t
Y ) ≤ P[τ c > t].

As discussed in [21], we need a hybrid coupling scheme to make sure that two numerical
trajectories can couple. Some coupling methods such as reflection coupling or synchronous
coupling are implemented in the first phase to bring two numerical trajectories together. Then
we compare the probability density function for the next step and couple these two numerical
trajectories with the maximal possible probability (called the maximal coupling). After doing
this for many times, we will have many samples of τ c denote by τ c. We use the exponential
tail of P[τ c > t] to estimate the contraction rate α. More precisely, we look for a constant
γ > 0 such that
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−γ = lim
t→∞

1

t
log(P[τ c > t])

if the limit exists. SeeAlgorithm 3 for the detail of implementation of coupling. Note that we
cannot simply compute the contraction rate start from t = 0 because only the tail of coupling
time can be considered as exponentially distributed. In practice, we apply the same method
as we compute the killing rate in Sect. 3.1. After having τ c, it is easy to choose a sequence of
times t0, t1, . . . , tn and calculate ni = |{τ cm > ti | 0 ≤ m ≤ M}| for each i = 0, . . . n. Then
pi = ni/M is an estimator of Pμ[τ c > ti ]. Now let pui (resp. pli ) be the upper (resp. lower)
bound of the confidence interval of pi such that

pui = p̃ + z

√
p̃

ñi
(1 − p̃) resp. pli = p̃ − z

√
p̃

ñi
(1 − p̃) ,

where z = 1.96, ñi = ni + z2 and p̃ = 1
ñi

(ni + z2
2 ). Let tn be the largest time that we can still

collect available samples. If there exist constants C and i0 < n such that pli ≤ Ceγ ti ≤ pui
for each i0 ≤ i ≤ n, we say that the exponential tail starts at t = ti0 . We accept the estimate
of the exponential tail with rate e−γ t if the confidence interval pui0 − pli0 is sufficiently small,
i.e., the estimate of coupling probability at t = ti0 is sufficiently trustable. Otherwise we
need to run Algorithm 3 for longer time to eliminate the initial bias in τ c.

Algorithm 3 Estimation of contraction rate α

Input: Initial values x, y ∈ K
Output: An estimation of contraction rate α

Choose threshold d > 0
for i = 1 to Ns do

τ ci = 0, t = 0, (Ŷ 1
t , Ŷ 2

t ) = (x, y)
Flag = 0
while Flag=0 do

if |Ŷ 1
t − Ŷ 2

t | > d then
Compute (Ŷ 1

t+1, Ŷ
2
t+1) using reflection coupling or independent coupling

t ← t + 1
else

Compute (Ŷ 1
t+1, Ŷ

2
t+1) using maximal coupling

if coupled successfully then
Flag=1
τ ci = t

else
t ← t + 1

end if
end if

end while
end for
Use τ c1 , . . . , τ cNs

to compute P(τ c > t)

Fit the tail of logP(τ c > t) versus t by linear regression. Compute the slope γ .

4.2 Estimator of Error Terms

It remains to estimate the finite time error dw(μ̂X PT
X , μ̂X PT

Y ). As we mentioned in the
beginning of this section, we will consider two different cases and estimate the finite time
errors respectively.
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4.2.1 Case 1: Reflection at @X

Recall that the modified Markov process Ŷ reflects at the boundary ∂X when it hits the
boundary. Hence two trajectories

X̃ δ
n+1 = X̃ δ

n + f (X̃ δ
n)δ + σ(X̃ δ

n)(W(n+1)δ − Wnδ)

Ŷ δ
n+1 = Ŷ δ

n + f (Ŷ δ
n )δ + σ(Ŷ δ

n )(W(n+1)δ − Wnδ)

are identical if we set the same noise in the simulation process. X̃ only differs from Ŷ when
X̃ hits the boundary ∂X . When X̃ and Ŷ hit the boundary, X̃ is resampled from μ̂X , and
Ŷ reflects at the boundary. Hence the finite time error dw(μ̂X PT

X , μ̂X PT
Y ) is bounded from

above by the killing probability within the time interval [0, T ] when starting from μ̂X .
In order to sample initial value x from the numerical invariant measure μ̂X , we consider a

long trajectory {X̃ δ
n}. The distance between X̃ and the modified trajectory Ŷ is recorded after

time T . Then we let Ŷ δ
0 = X̃ δ

0 = xi+1 and restart the simulation, where xi+1 = X̃ δ
T from the

i−th iteration. See the Algorithm 4 for the detail.

Algorithm 4 Estimate finite time error for Case 1
Input: Initial value x1
Output: An estimator of dw(μ̂X PT

X , μ̂X PT
Y )

for i = 1 to Ns do
Using the same noise, simulate X̃ and Ŷ with initial value xi up to T
Set di = 0
if τ < T then

Regenerate X̃ as its empirical distribution
di = d(X̃δ

T , Ŷ δ
T )

end if
Let xi+1 = X̃δ

T
end for
Return 1

Ns

∑Ns
i=1 di

When the number of samples is sufficiently large, x1, . . . , xNs are from a long trajectory
of the time-T skeleton of X̃T . Hence they are approximately sampled from μ̂X . The error
term di = d(X̃ δ

T , Ŷ δ
T ) for X̃ δ

0 = Ŷ δ
0 = xi estimates d(X̃T , ŶT ). Let μ̂2

X be the probability
measure on R

d × R
d that is supported by the hyperplane {(x, y) ∈ R

d × R
d | x = y}

such that μ̂2
X ({(x, x) | x ∈ A}) = μ̂X (A) for any A ∈ B(X ). Since the pushforward map

μ̂2
X (PT

X × PT
Y ) is a coupling, it is easy to see that the output of Algorithm 4 gives an upper

bound of dw(μ̂X PT
X , μ̂X PT

Y ).
From the analysis above, we have the following lemma, which gives an upper bound of

the finite time error dw(μ̂X PT
X , μ̂X PT

Y ).

Lemma 4.1 For the Wasserstein distance induced by the distance given in (2.7), we have

dw(μ̂X P
T
X , μ̂X P

T
Y ) ≤

∫

Rd
Px (τ < T )μ̂X (dx),

where x is the initial value with distribution μY .
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Proof Note that μ2
X (PT

X × PT
Y ) is a coupling of μX PT

X and μX PT
Y . From the definition of

Wasserstein distance, we have

dw(μ̂X P
T
X , μ̂X P

T
Y ) ≤

∫

Rd×Rd
d(x, y)μ̂2

X (PT
X × PT

Y )(dxdy)

=
∫

Rd
E(x,x)[d(X̃ δ

T , Ŷ δ
T )]μ̂X (dx)

=
∫

Rd
Px (τ < T )d(X̃ δ

T , Ŷ δ
T )μ̂X (dx)

≤
∫

Rd
Px (τ < T )μ̂X (dx),

the inequality in the last step comes from the definition d(x, y) = max(1, ‖x − y‖). ��

4.2.2 Case 2: Impact of a Demographic Noise �
√
XtdWt

Another case that often involves QSD is the demographic noise. Let X̂ be the numerical tra-
jectory of the SDE with an additive demographic noise ε

√
XtdWt . Let X̃ be the modification

of X̂ that resample from μ̂X whenever hitting ∂X so that it admits μ̂X as an invariant proba-
bility measure. Let Ŷ be the numerical trajectory of the SDE without demographic noise so
that Ŷ admits an invariant probability measure. We have trajectories

X̃ δ
n+1 = X̃ δ

n + f (X̃ δ
n)δ + σ(X̃ δ

n)(W(n+1)δ − Wnδ) + ε

√
X̃ δ
n(W

′
(n+1)δ − W ′

nδ)

Ŷ δ
n+1 = Ŷ δ

n + f (Ŷ δ
n )δ + σ ′(Ŷ δ

n )(W(n+1)δ − Wnδ) .

Herewe assume that Ŷ has zero probability to hit the absorbing set ∂X in finite time. Different
from the Case 1, we will need to study the effect of the demographic noise. When estimating
the finite time error dw(μ̂X PT

X , μ̂X PT
Y ), we still need to sample the initial value x from μ̂X

and record the distance between these two trajectories X̃ and Ŷ up to time T . The distance
between X̃ and Ŷ can be decomposed into two parts: one is from the killing and resampling,
the other is from the demographic noise. The first term is the same as in Case 1. The second
term is due to the nonzero demographic noise that can separate X̃ and Ŷ before the killing.
In a population model, this effect is more obvious when one species has small population,
because

√
x � x when 0 < x � 1. See the description of Algorithm 5 for the full detail.

When Ns is sufficiently large, x1, . . . , xNs are from a long trajectory of the time-T skeleton
of X̃T . Hence they are approximately sampled from μ̂X . The error term di for X̃ δ

0 = Ŷ δ
0 = xi

estimates d(X̃T , ŶT ). A similar coupling argument shows that the output of Algorithm 5 is
an upper bound of dw(μ̂X PT

X , μ̂X PT
Y ).

For each initial value x ∈ R
d , denote

θx = Ex [d(X̃ δ
T , Ŷ δ

T ) | X̃ δ
0 = Ŷ δ

0 = x, τ > T ] . (4.4)

Similar to in Case 1, the following lemma gives an upper bound for the finite time error
dw(μX PT

X , μX PT
Y ).

Lemma 4.2 For the Wasserstein distance induced by the distance given in (2.7), we have

dw(μ̂X P
T
X , μ̂X P

T
Y ) ≤

∫
Px (τ < T )μ̂X (dx) +

∫
θx μ̂X (dx),

where x is the initial value with distribution μ̂X and θx .
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Algorithm 5 Estimate finite time error for Case 2
Input: Initial value x1
Output: An estimator of dw(μX PT

X , μX PT
Y )

for i = 1 to Ns do
Using the same noise, simulate X̃ and Ŷ with initial value xi up to T
Set Flag = 0, di = 0
if τ < T then

Regenerate X̃ as its empirical distribution
ηi = d(X̃δ

T , Ŷ δ
T )

Flag = 1
else

θi = d(X̃δ
T , Ŷ δ

T )

end if
di = θi + 1{Flag=1}(ηi − θi )

Let xi+1 = X̃δ
T

end for
Return 1

Ns

∑Ns
i=1 di

Proof Note that μ̂2
X (PT

X × PT
Y ) is a coupling of μ̂X PT

X and μ̂X PT
Y . From the definition of

the Wasserstein distance, we have

dw(μ̂Y P
T
X , μ̂Y P

T
Y ) ≤

∫

Rd×Rd
d(x, y)μ̂2

X (PT
X × PT

Y )(dxdy)

=
∫

Rd
E(x,x)[d(X̃ δ

T , Ŷ δ
T )]μ̂X (dx)

=
∫

Rd
Px (τ < T )d(X̃ δ

T , Ŷ δ
T )μ̂X (dx)

+
∫

Rd
Px (τ > T )d(X̃ δ

T , Ŷ δ
T )μ̂X (dx)

≤
∫

Rd
Px (τ < T )μ̂X (dx) +

∫
θx μ̂X (dx)

according to the definition of θx . ��

In summary, the sensitivity of QSD depends on both mixing rate of the modified process
and the killing probability. Both higher mixing rate and lower killing probability per unit
time lead to a more robust QSD that is not sensitive against small change of the dynamics or
the boundary condition. More precisely, let T be the constant time we choose and α be the
contraction of operator PT

Y .

(1) If the modified process Ŷ only differs from X̂ with a reflection, then we have

dw(μ̂X , μ̂Y ) ≤ (1 − α)−1
∫

Rd
Px [τ < T ]μ̂X (dx) .

(2) If the demographic noise is removed from Ŷ , then

dw(μ̂X , μ̂Y ) ≤ (1 − α)−1
{∫

Rd
Px (τ < T )μ̂X (dx) +

∫

Rd
θx μ̂X (dx)

}
,

where θx is defined in Eq. (4.4).
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Fig. 1 Plot of P(τ > t) vs. t , confidence interval(upper bound and lower bound) and function y = e−λt

5 Numerical Examples

5.1 Ornstein–Uhlenbeck Process

The first SDE example is the Ornstein-Uhlenbeck process :

dXt = θ(μ − Xt )dt + σdWt , (5.1)

where θ > 0 and σ > 0 are parameters, μ is a constant. In addition, Wt is a Wiener process,
and σ is the strength of the noise. In our simulation, we set θ = 1, μ = 2, σ = 1 and the
absorbing set ∂X = (−∞, 0] ∪ [3,∞). In addition, we apply the Monte Carlo simulation
with 512 mesh points on the interval [0, 3].

We first need to use Algorithm 1 to estimate the survival rate λ. Our simulation uses
Euler–Maruyama scheme with δ = 0.001 and sample size N = 106 and N = 108 depending
on the setting. All samples of killing times are recorded to plot the exponential tail. The mean
of killing times gives an estimate λ = −0.267176. The exponential tail of P[τ > t] vs. t ,
the upper and lower bound of the confidence interval, and the plot of e−λt are compared in
Fig. 1. We can see that the plot of e−λt falls in the confidence interval for all t . Hence the
estimate of λ is accepted.

Furthermore, we would like to show the robustness of our data-driven QSD solver. The
QSD is not explicit given so we use very large sample size (1010 samples) and very small
step size (10−4) to obtain a much more accurate solution, which is served as the ground
truth. Then we compare the numerical solutions obtained by the Monte Carlo method and
the data-driven method for QSD with N = 106 and N = 108 samples, respectively. The
result is shown in the first column of Fig. 2. The data-driven solver performs much better
than theMonte Carlo approximation for N = 106 samples. It takes 108 samples for the direct
Monte Carlo sampler to produce a solution that looks as good as the QSD solver. Similar
to the data-driven Fokker–Planck solver, our data-driven QSD solver can tolerate high level
spatially uncorrelated error in the Monte Carlo simulation.

It remains to check the effect of Brownian Bridge. We apply different time step sizes
δ = 0.01 and δ = 0.001 for each trajectory. We use 107 samples for δ = 0.001 and 106

samples for δ = 0.01 tomake sure that the number of killing events (for estimating the killing
rate) are comparable. When δ = 0.001, the error is small with and without Brownian bridge
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Fig. 2 Upperpanel:(Left)Monte Carlo estimation vs. data-driven solver estimation for sample size N = 106.
(Right) Effect of Brownian Bridge for sample size N = 107 and time step size 0.001. Lowerpanel: (Le f t)
Effect of Brownian Bridge for sample size N = 106 and time step size 0.01. (Right) Monte Carlo estimation
vs. data-driven solver estimation for sample size N = 108

correction. But Brownian bridge correction obviously improves the quality of solution when
δ = 0.01. See the lower left panel of Fig. 2. This is expected because, with larger time step
size, the probability that the Brownian bridge hits the absorbing set ∂X gets higher.

5.2 Wright–Fisher Diffusion

The second numerical example is the Wright-Fisher diffusion model, which describes the
evolution of colony undergoing random mating, possible under the additional actions of
mutation and selection with or without dominance [14]. The Wright-Fisher model is an SDE

dXt = −Xtdt + √
Xt (1 − Xt )dWt ,

whereWt is a Wiener process and ∂X = {0} is the absorbing set. By the analysis of [14], the
Yaglom limit, i.e., the QSD, satisfies

lim
t→∞P[Xt ∈ dy|τ > t] = 2(1 − y)dy.

The goal of this example is to show the effect of Brownian bridge when the coefficient of
noise is vanishing at the boundary. Since the Euler–Maruyama scheme only has an order of
accuracy 0.5, in the simulation, we apply the Milstein scheme, which reads

X̂ δ
n+1 = X̂ δ

n − X̂ δ
nδ +

√
X̂ δ
n(1 − X̂ δ

n)(W(n+1)δ −Wnδ)+ 1

4
(1− 2X̂ δ

n)[(W(n+1)δ −Wnδ)
2 − δ]

One difficulty of using the Brownian bridge correction in this model is that the coefficient
of the Brownian motion is vanishing at the boundary. Recall that the strength coefficient
of Brownian bridge is denoted by φ. Larger φ means Xt has higher probability of hitting
the boundary. Since the coefficient of the Brownian motion is vanishing at the boundary,
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Fig. 3 Effect of Brownian Bridge and a correction of Brownian Bridge. Left: Monte Carlo approximations
without Brownian Bridge correction, with original Brownian Bridge correction, and with modified Brownian
Bridge correction, in comparison to the analytical QSD. Right: Result from the data-driven QSD solver using
the Monte Carlo simulation data from Left panel

the effective strength coefficient φ becomes dramatically smaller when Xt gets closer to the
boundary. As a result, it is not a good idea to still approximate Xt by a Brownian motion.

And the original strength coefficient φ =
√
X̂ δ
n(1 − X̂ δ

n) can dramatically overestimate the
probability of hitting the boundary. Estimating the hitting probability of this diffusion bridge
is a difficult problem that is well beyond the scope of this paper. To the best of our knowledge,
it is not possible to explicitly calculate the conditional distribution of the diffusion bridge
that starts from x := X̂ δ

n and ends at y := X̂ δ
n+1. Instead, we find that an empirically found

strength coefficient φ2 = 1
3 min{x(1− x), y(1− y)} can fix this problem.We note that this is

not a simple ad-hoc solution because in a stochastic differential equation, the diffusion plays
a dominate role in a very short time interval. Hence a similar modification of the Brownian
bridge should work for many stochastic differential equations with

√
XtdBt noise terms. In

particular, the vanishing coefficient
√
XtdBt also appears in many ecological models. We

will implement this modified Brownian bridge correction when simulating these models.
The effect of Brownian bridge is shown in the left side of Fig. 3. We compare the solu-

tions obtained via Monte Carlo method and the data-driven method with Brownian Bridge
by running 107 samples on [0, 1] with time step size δ = 0.01. The Monte Carlo approx-
imation is far from the true density function of Beta(1,2) near x = 0, while the use of the
original Brownian Bridge only makes things worse. The modified Brownian Bridge solves
this boundary effect problem reasonably well. The output of the data-driven QSD solver has a
similar result (Fig. 3 Right). Let x = X̂ δ

n and y = X̂ δ
n+1. One can see that the numerical QSD

is much closer to the true distribution if we replace the strength coefficient of the Brownian
bridge φ2 = x(1− x) by the modified strength coefficient φ2 = 1

3 min{x(1− x), y(1− y)}.

123



Journal of Dynamics and Differential Equations

5.3 Ring Density Function

Consider the following stochastic differential equation:

dX = (−4X(X2 + Y 2 − 1) + Y )dt + σdW X
t

dY = (−4X(X2 + Y 2 − 1) − X)dt + σdWY
t ,

whereWX
t andWY

t are independent Wiener processes. In the simulation, we set the strength
of noise σ = 1.

We first look at the approximation obtained by Monte Carlo method with 256×256 mesh
points on the domain D = [−1.5, 1.5]×[−1.5, 1.5]. The simulation uses step size δ = 0.001
and N = 108 samples. (See upper left panel in Fig. 4). The Monte Carlo approximation has
too much noise to be useful. The quality of this solution can be significantly improved by
using the data-driven QSD solver. See upper right panel in Fig. 4.

The simulation result shows the estimated rate of killing λ = −0.176302. We use this
example to test the sensitivity of solution u against small change of the killing rate. We com-
pare the approximations obtained by setting the killing rate be λ, 1.1λ and 0.9λ respectively.
Heat maps of the difference between QSDs with “correct” and “wrong” killing rates are
shown in two middle panels in Fig. 4. It shows that difference brought by “wrong” rates is
only≈ O(10−4), which can be neglected. This result coincides with the analysis in Theorem
3.1 in this paper.

Finally, we would like to emphasize that the data-driven QSD solver can tolerate very
high level of spatially uncorrelated noise in the reference solution v. For example, if we use
the same long trajectory with 108 samples that generates the top left panel of Fig. 4, but only
select 105 samples with intervals of 103 steps of the numerical SDE solver, the Monte Carlo
data becomes very noisy (Bottom left panel of Fig. 4). However, longer intermittency between
samples also reduces the spatial correlation between samples. As a result, the output of the
QSD solver has very little change except at the boundary grid points, because the optimization
problem (3.2) projects most of error to the boundary of the domain. (See bottom right panel of
Fig. 4.) This result highlights the need of high quality samplers. AMonte Carlo sampler with
smaller spatial correlation between samples can significantly reduce the number of samples
needed in the data-driven QSD solver.

5.4 Sensitivity of QSD: 1D Examples

In this subsection, we use 1D examples to study the sensitivity of QSDs against changes on
boundary conditions. Consider an 1D gradient flow of the potential function V (x) with an
additive noise perturbation

Xt = −V ′(Xt )dt + σdWt . (5.2)

Let (−∞, 0] be the absorbing state of Xt . So if V (0) < ∞, Xt admits a QSD, denoted byμX .
If we let the stochastic process reflect at x = 0, the modified stochastic process, denoted by
Yt , admits an invariant probabilitymeasure denoted byμY .Wewill compare the sensitivity of
μX against the change of boundary condition for two different cases whose speed of mixing
are different, namely a single well potential function and a double well potential function.

We choose a single well potential function V1(x) = (x − 1)2 and a double well potential
function V2(x) = x4 −4

√
2x3 +10x2 −4

√
2x +1. The values of minima of both V1 and V2

are zero. The values of V1 and V2 at the absorbing state are 1. And the height of the barrier
between two local minima of V2 is 1. The strength of noise is σ = 0.7 in both examples.
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Fig. 4 (Ring density)Upperpanel :The approximation by Monte Carlo simulation(left) and the algorithm in
Sect. 3.2(right) with 256×256mesh points and 108 samples. Middlepanel: Sensitivity effect of small change
to killing rate λ. Lower panel: The approximation by Monte Carlo simulation with smaller samples(left) and
the output of the data-driven QSD solver(right)

See Fig. 5 middle column for plots of these two potential functions. In both cases, the QSD
and the invariant probability measure are computed on the domain D = [0, 3]. To further
distinguish these two cases, we denote the QSD of Eq. (5.2) with absorbing state x = 0
and potential function V1(x) (resp. V2(x)) by μ1

X (resp. μ2
X ) and the invariant probability

measure of Eq. (5.2) with reflection boundary at (−∞, 0] and potential function V1(x) (resp.
V2(x)) by μ1

Y (resp. μ2
Y ). Probability measures μ1

X and μ1
Y (resp. μ2

X and μ2
Y ) are compared

in Fig. 5 right column. We can see that the QSD and the invariant probability measure have
small difference for the single well potential function V1. But they look very different for
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Fig. 5 (Single well vs. Double well potential function) Le f tcolumn:P(τ c > t) vs. t .Middlecolumn : Single
well and double well potential functions. Rightcolumn: QSD vs. invariant density function

the double well potential function V2. With the double well potential function, there is a
visible difference between probability density functions of μ2

X and μ2
Y . The density function

of QSD is much smaller than the invariant probability measure around the left local minimum
x = 1 − √

2 because this local minimum is closer to the absorbing set, which makes killing
and regenerationmore frequent when Xt is near this local minimum. In other words, the QSD
of Eq. (5.2) with respect to the double well potential is very sensitive against the change at
the boundary.

The reason of the high sensitivity is illustrated by the coupling argument. We first run
Algorithm 3 with 8 independent long trajectories with length of 106 and collect the coupling
times. The slope of exponential tail of the coupling time gives the rate of contraction of PT

Y .
The P(τ c > t) versus t plot is demonstrated in log-linear plot in Fig. 5 left column. The
slope of exponential tail is γ = 2.031414 for the single well potential V1, and γ = 0.027521
for the double well potential case. Then we run Algorithm 4 to estimate the finite time error
dw(μX PT

X , μX PT
Y ) for both cases. Since the single well potential case has a much faster

coupling speed, we can choose T = 0.5. The output of Algorithm 4 is dw(μX PT
X , μX PT

Y ) ≈
0.00391083. This gives an estimate dw(μX , μY ) ≈ 0.0061. The double well potential case
convergesmuch slower.We choose T = 20 tomake sure that the denominator 1−e−γ T is not
too small. As a result, Algorithm 4 gives an approximation dw(μX PT

X , μX PT
Y ) ≈ 0.06402,

which means dw(μX , μY ) ≈ 0.1512. This is consistent with the right column seen in Fig. 5,
the QSD of the double well potential is muchmore sensitive against a change of the boundary
condition than the single well potential case.

5.5 Lotka–Volterra Competitive Dynamics

In this example, we focus on the effect of demographic noise on the classical Lotka-Volterra
competitive system. The Lotka-Volterra competitive system with some environmental fluc-
tuation has the form
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dY1(t) = Y1(t)(l1 − a11Y1(t) − a12Y2(t))dt + σ ′
1Y1(t)dW1(t),

dY2(t) = Y2(t)(l2 − a22Y1(t) − a21Y1(t))dt + σ ′
2Y2(t)dW2(t).

(5.3)

Here li > 0 is the per-capita growth rate of species i and ai j > 0 is the per-capita competition
rate between species i and j . More details can be found in [13]. Model parameters are chosen
to be l1 = 2, l2 = 4, a11 = 0.8, a12 = 1.6, a21 = 1, a22 = 5. Let ∂X be the union of x-axis
and y-axis. For suitable σ ′

1 and σ ′
2, Y1 and Y2 can coexist such that the probability of (Y1, Y2)

hits ∂X in finite time is zero. So Eq. (5.3) admits an invariant probability measure, denoted
by μY .

As a modification, we add a small demographic noise term to Eq. (5.4). The equation
becomes

dX1(t) = X1(t)(l1 − a11X1(t) − a12X2(t))dt + σ1X1(t)dW1(t) + ε
√
X1(t)dW

′
1(t),

dX2(t) = X2(t)(l2 − a22X1(t) − a21X1(t))dt + σ2X2(t)dW2(t) + ε
√
X2(t)dW

′
2(t).
(5.4)

It is easy to see that Eq. (5.4) can exit to the boundary ∂X . It admits a QSD, denoted by μX .
In order to study the effect of demographic noise, we compareμY , the numerical invariant

measure of Eq. (5.3), and μX , the QSD of Eq. (5.4). In our simulation, we fix the strength
of demographic noise as ε = 0.05 and compare μX and μY at two different levels of the
environment noise σ1 = σ2 = 0.75 and σ1 = σ2 = 1.1 respectively. The coefficient σ ′

1 and

σ ′
2 in Eq. (5.3) satisfies σ ′

i =
√

σ 2
i + ε2 for i = 1, 2 to match the effect of the additional

demographic noise. Compare Figs. 6 and 7, one can see thatμY has significant concentration
at the boundary when σ1 = σ2 = 1.1.

The result for σ1 = σ2 = 0.75 is shown in Fig. 6. Left bottom of Fig. 6 shows the invariant
measure. The QSD is shown on right top of Fig. 6. The total variation distance between these
two measures are shown at the bottom of Fig. 6. The difference is very small and it just
appears around boundary. This is reasonable because with high probability, the trajectories
of Eq. (5.4) moves far from the absorbing set ∂X in both cases, which makes the regeneration
events happen less often. This is consistent with the result of Lemma 4.2. We compute the
distribution of the coupling time. The coupling time distribution and its exponential tail are
shown in Fig. 6 Top Left. Then we use Algorithm 5 to compute the finite time error. To better
match two trajectories given by Eqs. (5.3) and (5.4), we separate the noise term in Eq. (5.3)
into σ ′

i Yi (t)dWi (t) = σi Yi (t)dW
(1)
i (t) + εYi (t)dW

(2)
i (t) for i = 1, 2, where W (1)

i (t) and

W (2)
i (t) use the same Wiener process trajectory as Wi (t) and W ′

i (t) in Eq. (5.4) for i = 1, 2.
Let T = 4. The finite time error caused by the demographic noise is 0.01773. As a result, the
upper bound given in Lemma 4.2 is 0.02835. Note that as seen in Fig. 6, this upper bound
actually significantly overestimates the distance between the invariant probability measure
and the QSD. The empirical total variation distance is much smaller that our theoretical upper
bound. This is because theway ofmatchingσ ′

i YidWi (t) andσi Xi (t)dWi (t)+ε
√
Xi (t)dWi (t)

is very rough. A better approach of matching those noise terms will likely lead to a more
accurate estimation of the upper bound of the error.

The results for σ1 = σ2 = 1.1 are shown in Fig. 7. The total variation distance between
these two measures are shown at the bottom of Fig. 7. It is not hard to see the difference is
significantly larger than case σ = 0.75. The reason is that trajectories of Eq. (5.4) have high
probabilitymoving along the boundary in this parameter setting. Thismakes the probability of
falling into the absorbing set ∂X much higher. Same as above, we compute the distribution of
the coupling time and demonstrate the coupling time distribution (as well as the exponential
tail) in Fig. 7 Top Left. The coupling in this example is slower so we choose T = 12 to
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Fig. 6 (Case σ1 = σ2 = 0.75) Upperpanel: (Le f t) P(τ c > t) vs.t . (Right) QSD with demographic noise
coefficient ε = 0.05. Lowerpanel: (Le f t) Invariant density function for σ = 0.75. (Right) Total variation
of QSD and invariant density function

Fig. 7 (Case σ1 = σ2 = 1.1) Upperpanel: (Le f t) P(τ c > t) vs.t . (Right) QSD with demographic noise
coefficient ε = 0.05. Lowerpanel: (Le f t) Invariant density function for σ = 1.1. (Right) Total variation of
QSD and invariant density function

run Algorithm 5. The probability of killing before T is approximately 0.11186 and the total
finite time error caused by the demographic noise is 0.06230. As a result, the error estimate
of dw(μ̂X , μ̂Y ) given in Lemma 4.2 is 0.1356. This is consistent with the numerical finding
shown in Fig. 7 Bottom Right.
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5.6 Chaotic Attractor

In this subsection, we consider a non-trivial 3D example that has interactions between chaos
and random perturbations, called the Rossler oscillator. The random perturbation of the
Rossler oscillator is ⎧

⎪⎨

⎪⎩

dx = (−y − z)dt + σdWx
t

dy = (x + ay)dt + σdW y
t

dz = (b + z(x − c))dt + σdWz
t ,

(5.5)

where a = 0.2, b = 0.2, c = 5.7, and Wx
t ,W y

t and Wz
t are independent Wiener processes.

The strength of noise is chosen to be ε = 0.1. This system is a representative example of
chaoticODEsystems appearing inmany applications of physics, biology and engineering.We
consider Eq. (5.5) restricted to the box D = [−15, 15]×[−15, 15]×[−1.5, 1.5]. Therefore,
it admits a QSD supported by D. In this example, a grid with 1024×1024×128 mesh points
is constructed on D.

It is difficult to use traditional PDE solver to compute a large scale 3D problem. To analyze
the QSD of this chaotic system, we apply the blocked version of the Fokker–Planck solver
studied in [10]. More precisely, a big mesh is divided into many “blocks”. Then we solve the
optimization problem (3.2) in parallel. The collaged solution is then processed by the “shifting
block” technique to reduce the interface error, whichmeans the blocks are reconstructed such
that the center of new blocks cover the boundary of old blocks. Then we let the solution from
the first found serve as the reference data, and solve optimization problem (3.2) again based
on new blocks. See [10] for the full details of implementation. In this example, the grid is
further divided into 32 × 32 × 4 blocks. We run the “shifting block” solver for 3 repeats to
eliminate the interface error. The reference solution is generated by aMonte Carlo simulation
with 109 samples. The killing rate is λ = −0.473011. Two “slices” of the solution, as seen

Fig. 8 (Rossler) Projections of 2 "slices" of the QSD of the Rossler system to the xy-plane. z-coordinates
of 2 slices are [−0.0352, 0.2578], [1.1367, 1.4297]. The solution is obtained by a balf-block shift solver on
[−15, 15] × [−15, 15] × [−1.5, 1.5] with 1024 × 1024 × 128 mesh points, 32 × 32 × 4 blocks, and 109

samples
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in Fig. 8, are then projected to the xy-plane for the sake of easier demonstration. See the
caption of Fig. 8 for the coordinates of these two “slices”. The left picture in Fig. 8 shows
the projection of the solution has both dense and sparse parts that are clearly divided. An
outer "ring" with high density appears and the density decays quickly outside this "ring." The
right picture in Fig. 8 demonstrates the solution has much lower density when z-coordinate
is larger than 1.

6 Conclusion

In this paper we provide some data-driven methods for the computation of quasi-stationary
distributions (QSDs) and the sensitivity analysis of QSDs. Both of them are extended from
the first author’s earlier work about invariant probability measures. When using the Fokker–
Planck equation to solve the QSD, we find that the idea of using a reference solution with low
accuracy to set up an optimization problem still workswell forQSDs.And theQSD is not very
sensitively dependent on the killing rate, which is given by the Monte Carlo simulation when
producing the reference solution. The data-driven Fokker–Planck solver studied in this paper
is still based on discretization. But we expect the mesh-free Fokker–Planck solver proposed
in [10] to work for solving QSDs. In the sensitivity analysis part, the focus is on the relation
between a QSD and the invariant probability measure of a “modified process”, because many
interesting problems in applications fall into this category. The sensitivity analysis needs
both a finite time truncation error and a contraction rate of the Markov transition kernel.
The approach of estimating the finite time truncation error is standard. The contraction
rate is estimated by using the novel numerical coupling approach developed in [21]. The
sensitivity analysis of QSDs can be extended to other settings, such as the sensitivity against
small perturbation of parameters, or the sensitivity of a chemical reaction process against its
diffusion approximation. We will continue to study sensitivity analysis related to QSDs in
our subsequent work.
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