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AN EFFICIENT DATA-DRIVEN SOLVER FOR FOKKER-PLANCK
EQUATIONS: ALGORITHM AND ANALYSIS∗

MATTHEW DOBSON† , YAO LI‡ , AND JIAYU ZHAI§

Abstract. Computing the invariant probability measure of a randomly perturbed dynamical
system usually means solving the stationary Fokker-Planck equation. This paper studies several key
properties of a novel data-driven solver for low-dimensional Fokker-Planck equations proposed in [Y.
Li, Commun. Math. Sci., 17(4):1045–1059, 2019]. Based on these results, we propose a new “block
solver” for the stationary Fokker-Planck equation, which significantly improves the performance of the
original algorithm. Some possible ways of reducing numerical artifacts caused by the block solver are
discussed and tested with examples.
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1. Introduction
Random perturbations to deterministic dynamical systems are ubiquitous in models

used in physics, biology and engineering. The steady state of a randomly perturbed
dynamical system is of critical interest in the study of these physical, biological or
chemical systems and their applications. From a dynamical systems point of view,
the interplay of dynamics and noise is both interesting and challenging, especially if the
underlying dynamics is chaotic. Characteristics of the steady state distribution also help
us to understand asymptotic effects of random perturbations to deterministic dynamics.

The evolution of the probability density function of a randomly perturbed system is
described by the Fokker-Planck equation [21]. Consider a stochastic dynamical system

dXt=f(Xt)dt+σ(Xt)dWt, (1.1)

where f is a vector field in Rn, σ is a coefficient matrix, and dWt is an n-dimensional
white noise. The corresponding Fokker-Planck equation, which is also known as the
Kolmogorov forward equation, is

ut=Lu=−
n∑

i=1

(fiu)xi +
1

2

n∑
i,j=1

(Di,ju)xixj
, (1.2)

where D=σTσ, u(x,t) denotes the probability density at time t, and subscripts t and xi

denote partial derivatives. In this paper, we focus on the invariant probability measure
of (1.1), whose density function satisfies the stationary Fokker-Planck equation

Lu=0

∫
Ω

udx=1.

Detailed assumptions about Equations (1.1) and (1.2) will be given in Section 2.1.
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For Langevin dynamics, the invariant probability measure is given by the Gibbs
distribution which can be computed up to the unknown normalizing constant; however,
in general, the Fokker-Planck equation can not be solved analytically. Rigorous estima-
tions of the invariant probability density function are challenging as well. Most known
results are proved by large deviations techniques [8], which unfortunately only shows
tail properties when the noise is asymptotically small. Some concentration properties
of the invariant probability measure can be proved by assuming some dissipative con-
ditions. For example, it was shown in [4, 16] that such concentration in the vicinity of
a strong attractor is “Gaussian-like”. However, these theoretical results can rarely give
a satisfactory quantitative description of the invariant probability measure. Therefore,
numerical solution techniques are necessary to further study these randomly perturbed
dynamical systems. Numerically solving a steady state Fokker-Planck equation in an
unbounded domain is nontrivial, and additional challenges are present in systems with
high dimensionality, chaotic underlying dynamics, and multiscale coefficient terms.

One difficulty of solving the Fokker-Planck equation numerically is the conflict be-
tween the need for high-resolution local solutions and the necessity to handle large
spatial domains. On one hand, in many applications, what we need is a high-resolution
local numerical solution. It is known that the invariant probability measure tends to
concentrate at the vicinity of the global attractor, and for such systems we are interested
in the distribution in a local region of the phase space. In addition, if the strength of
noise σ is small, it is proved that the probability density function is concentrated in
an O(σ) neighborhood of the global attractor [16]. So in order to obtain a meaningful
solution and to avoid numerical artifacts, the grid size needs to be small enough. On
the other hand, the Fokker-Planck equation in Rd is defined on an unbounded domain
with zero value at infinity. The lack of a local boundary condition makes the problem
computationally challenging. The existing methods usually solve the Fokker-Planck
equation in a region that is large enough to cover all attractors.

In [15], a hybrid method is proposed to partially resolve the difficulties. The
method deals with the local Fokker-Planck equation and completely removes the un-
known boundary condition, which makes the resultant linear system underdetermined.
To solve this underdetermined problem, Monte-Carlo simulation is used to provide a
reference solution for the numerical solver (finite difference or finite element). The ref-
erence solution itself has low accuracy and lots of undesired fluctuations. The algorithm
then projects the “noisy” reference solution onto the kernel of the discretized numerical
solver. This minimizes the distance between the collection of possible numerical solu-
tions (without knowing the boundary condition) and the reference solution from the
Monte Carlo simulation. This method can solve the problem in any local area even if it
doesn’t cover any attractor. It also smooths the oscillation caused by the Monte Carlo
sampling. By reducing the computational cost from non-locality, it can provide a high
resolution solution in a local area.

Paper [15] only introduced the algorithm without proof. Analysis of this algorithm
is carried out in this paper. We prove that the hybrid method introduced in [15] can
significantly reduce the error of the reference solution produced by the Monte Carlo
simulation. The heuristic reason is that the error term of this random reference solution
is very close to an i.i.d. random vector. The expected norm of this random vector is
dramatically reduced when projecting it to a lower dimensional subspace. In addition,
we use a combination of rigorous analysis and numerical computations to show that the
error term of this projection concentrates on the boundary of the numerical domain.
In other words, the empirical performance of the hybrid algorithm is actually much
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better than what can be rigorously proved. In numerical examples, we show that our
Fokker-Planck solver can tolerate very high level of spatially uncorrelated error in the
reference solution. Hence the algorithm does not require a large sample size, but it is
important to choose the correct Monte Carlo sampler that has low spatial correlation.

The other goal of this paper is to improve the performance of this hybrid method by
introducing block solvers. This improvement is motivated by the locality of the hybrid
method. Since the hybrid method does not rely on local boundary conditions, we can
divide the numerical domain into a large number of small blocks and apply the hybrid
method to each block. The global solution is a collage of local solutions on these blocks.
This divide-and-conquer strategy is very efficient. Consider a d-dimensional problem
with N grid points in each dimension. The classical numerical PDE solver needs to solve
a large linear system with Nd variables. Assume the cost of solving a linear system with
n variables is O(np). Then the total cost is O(Ndp), which is considerably large if for
instance d=3 and N =1000. However, if we divide the grid into many blocks with only
m grid points in each dimension. The total cost of solving the Fokker-Planck equation
on (N/m)d blocks becomes mpd×(N/m)d=m(p−1)dNd. Empirically m can be as small
as 20−30. This dramatically reduces the total computational cost, unless the linear
solver can achieve a linear complexity (which usually does not happen). In addition,
parallelizing these block solvers is much easier than computing a large linear system in
parallel. Instead of a local solution in a small subset of the phase space demonstrated
in [15], the block solver now allows us to compute the full invariant probability density
function of 3D or 4D systems, as demonstrated later in this paper.

The idea of using local blocks is supported by our analytical results in the first half
of this paper. Theoretically, using larger blocks gives better reduction of error terms
from Monte Carlo simulations, as proved in Theorem 2.1. But the analysis in this paper
shows that the error tends to concentrate at the boundary of blocks. Hence the size of
blocks does not need to be very large to make the accuracy of solutions in the interior of
blocks acceptable, and the error on the boundary can be repaired by algorithms. Since
the error of numerical solution mainly concentrates on the boundary, a naive block
solver has visible interface errors between blocks. We then develop methods to reduce
this interface error. Two different approaches, namely the overlapping blocks method
and the shifting blocks method, are introduced and tested with several examples.

In this paper, we mainly consider low-dimensional systems up to dimension 3 or 4,
where traditional grid-based numerical methods still work. For systems in much higher
dimensions, all traditional grid-based methods of solving the Fokker-Planck equation,
such as finite difference method or finite elements method, are not feasible any more. Di-
rect Monte Carlo simulation also greatly suffers from the curse-of-dimensionality. There
are several techniques introduced to deal with certain multi-dimensional Fokker-Planck
equations, such as the truncated asymptotic expansion, splitting method, orthogonal
functions, and tensor decompositions [6,7,17,22–24]. These methods usually need some
additional assumptions on the solution, and error analyses for these methods are dif-
ficult in general. In addition, many of those methods still need a large domain to use
a zero boundary condition. It is worth mentioning that an efficient high-dimensional
sampling technique is introduced in [2,3]. This method works well for a class of stochas-
tic differential equations in which most variables are conditionally linear with respect
to a few nonlinear variables. The main idea is to use the conditional Gaussian property
to give a conditional probability density function of “linear” variables conditioning on
the state of “nonlinear” variables. Therefore, one doesn’t need to sample the stochas-
tic differential equation on the entire state space. In the future, we can incorporate
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these high-dimensional sampling techniques to the mesh-free version of our hybrid al-
gorithm [26].

The rest of this paper is organized as follows. In Section 2, we review the hybrid
method in [15] and rigorously analyze the convergence of the method. We also show
that the error will concentrate on the boundary of the domain. A directed block solver is
proposed in Section 3. Two possible methods to repair interface error between blocks are
studied in Section 4. In Section 5, we use three example systems to test our algorithms
and error reduction methods. Section 6 is the conclusion.

2. Analysis of data-driven Fokker-Planck solver

2.1. Algorithm description. Consider a stochastic differential equation

dXt=f(Xt)dt+σ(Xt)dWt, (2.1)

where Xt∈Rn, f :Rn→Rn is a continuous vector field, σ is an n×n matrix-valued
function, and dWt is the white noise in Rn. We assume that f and σ have enough
regularity such that Equation (2.1) admits a unique solutionXt that is a Markov process
with a transition kernel P t(x,·). Similar as in [15], we further assume that Xt admits a
unique invariant probability measure π such that

πP t(A)=

∫
Rn

P t(x,A)π(dx)

for any measurable set A. In addition, we assume π is absolutely continuous with
respect to the Lebesgue measure, and P t(x,·) converges to π for any x∈Rn. We refer
to [1,10–13,19,20,25] for the detailed conditions that lead to the existence of solutions
of (2.1), the existence of an invariant probability measure, and the convergence to the
invariant probability measure.

Let u be the probability density function of π. It is well known that u satisfies the
stationary Fokker-Planck equation

0=Lu=−
n∑

i=1

(fiu)xi +
1

2

n∑
i,j=1

(Di,ju)xixj
, (2.2)

where D=σTσ. In addition, because of the convergence, we have

u(x)= lim
T→∞

1

T

∫ T

0

u(x,t)dt,

where u(x,t) is the probability density function of Xt.
For the sake of simplicity we assume n=2 when introducing the algorithm, but

our algorithm works for any dimension. Now assume that we would like to solve u
numerically on a 2D domain D=[a0,b0]× [a1,b1]. To do this, an N×M grid is con-
structed on D with grid size h=(b0−a0)/N =(b1−a1)/M . Since u is the density func-

tion, we approximate it at the center of each of the N×M boxes {Oi,j}i=N,j=M
i=1,j=1 with

Oi,j =[a0+(i−1)h,a0+ ih]× [a1+(j−1)h,a1+jh]. Let u={ui,j}i=N,j=M
i=1,j=1 be this nu-

merical solution on D that we are interested in. u can be considered as a vector in
RNM . Throughout this paper, we still denote this vector by u when it does not lead
to confusion. An entry of u, denoted by ui,j , approximates the probability density
function u at the center of the (i,j)-box with coordinate (ih+a0−h/2,jh+a1−h/2).
Now, we consider u as the solution to the boundary-free PDE (2.2) and discretize the
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operator L on D with respect to all (N−2)(M−2) interior boxes. The discretization
of the Fokker-Planck equation with respect to each center point gives a linear relation
among {ui,j}. This produces a linear constraint for u, denoted as

Au=0,

where A is an (N−2)(M−2)×(NM) matrix. A is said to be the discretized Fokker-
Planck operator.

Then we need the Monte Carlo simulation to produce a reference solution. Let
{Xn}Nn=1 be a long numerical trajectory of the time-δ sample chain ofXt, i.e., Xn=Xnδ,

where δ>0 is the time step size of the Monte Carlo simulation. Let v={vi,j}i=N,j=M
i=1,j=1

such that

vi,j =
1

Nh2

N∑
n=1

1Oi,j (Xn).

It follows from the ergodicity of (2.1) that v is an approximate solution of (2.2). Again,
we denote the N×M vector reshaped from v by v as well.

As introduced in [15], we look for the solution of the following optimization problem

min∥u−v∥2 (2.3)

subject to Au=0.

This is called the least norm problem. Vector

u=AT (AAT )−1(−Av)+v (2.4)

solves the optimization problem (2.3).

2.2. Error analysis through projections. The aim of this section is to show
that the solution u to the optimization problem (2.3) is a good approximation of the
global analytical solution u on R2. Let uext={uext

i,j }=u(ih+a0−h/2,jh+a1−h/2)
be the values of the exact solution u at the centres of the boxes. We assume that the
Monte Carlo simulation produces an unbiased sample v that approximates uext. We note
that this assumption is usually not exactly satisfied because the invariant probability
measure of the numerical scheme that produces {Xn} is only an approximation of π.
We refer [14] for known results about the difference between the two invariant measures
for Langevin dynamics and [18] for that of generic stochastic differential equations.
However, when N is large (greater than 107 in our simulations), v−uext is usually
“noisy” enough to be treated as a vector of i.i.d. random numbers. Improving the
quality of sampling is extremely important to this algorithm. As seen in the numerical
examples, the algorithm can be used with far fewer samples if the error terms at different
grid points are independent. We will address sampling methods in our subsequent work.

In order to make the rigorous proof, we need the following assumption.
(H)
(a) For i=1,. ..,N,j=1,. ..,M , vi,j−uext

i,j are i.i.d random variables with expecta-

tion 0 and variance ζ2.

(b) The finite difference scheme for Equation (2.2) is convergent for the boundary
value problem on [a0,b0]× [a1,b1] with L∞ error O(hp).

The performance of the algorithm is measured by hE[∥u−uext∥2], which is the L2

numerical integration of the error term. Before solving the optimization problem (2.3),
we have hE[∥v−uext∥2]=O(ζhN)=O(ζ).
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Theorem 2.1. Assume (H) holds. We have the following bound for the L2 error

hE[∥u−uext∥2]≤O(h1/2ζ)+O(hp).

Proof. In order to proceed, we need an auxiliary vector that satisfies the linear
constraint in Equation (2.3). Consider the Fokker-Planck equation on the extended
domain D̃=[a0−h,b0+h]× [a1−h,b1+h] with boundary condition{

Lw=0 (x,y)∈ D̃

w(x,y)=u(x,y) (x,y)∈∂D̃
, (2.5)

where h is the mesh size. This problem is well-posed and has a unique solution
u(x,y),(x,y)∈ D̃.

Consider the discretization of (2.5) by finite difference method. It is of the following
form [

A 0
B C

][
ulin

u0

]
=

[
0
0

]
,

where the extended equations

[
B C

][ulin

u0

]
=0

are the equations for the variables on the boundary ∂D of D, and u0 are the values of
u(x,y) at grid points on the boundary ∂D̃ of D̃. This boundary value problem gives a
solution ulin that satisfies the linear constraint. By assumption (H), we have

∥ulin−uext∥∞=O(hp).

By the triangle inequality, it is sufficient to estimate

∥u−ulin∥2.

Let P be the projection matrix to Ker(A). Then equation (2.3) implies u=Pv. Since
ulin∈Ker(A), we have

u−ulin=Pv−ulin=P (v−ulin)=P (v−uext)+P (uext−ulin).

Take the L2 norm on both sides and apply the triangle inequality to get

h∥u−ulin∥2≤h∥P (v−uext)∥2+h∥P (uext−ulin)∥2. (2.6)

The second term is easy to bound because

h∥P (uext−ulin)∥2≤h∥uext−ulin∥2
≤hN∥uext−ulin∥∞=O(hp). (2.7)

By assumption (H), w=v−uext is a random vector with i.i.d. entries, and P
projects w from RN×N to Ker(A). Note that the dimension of Ker(A) is 4N−4. Let
S∈SO(N2) be an orthogonal matrix such that the first 4N−4 columns of ST form an
orthonormal basis of Ker(A). Let s1,·· · ,sN2 be column vectors of ST . Then S is a
change-of-coordinate matrix such that Ker(A) is spanned by s1,·· · ,s4N−4.
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Let

Sw=[ŵ1,·· · ,ŵN2 ]T .

We have

Pw=
4N−4∑
i=1

ŵisi.

This implies

E[∥Pw∥2]=E[

(
4N−4∑
i=1

ŵ2
i

)1/2

]≤

(
4N−4∑
i=1

E[ŵ2
i ]

)1/2

,

because {sN2

i=1} are orthonormal vectors.
We have

ŵi=
N2∑
j=1

Sjiwi,

where wi is the i-th entry of w. S is orthogonal hence

N2∑
j=1

S2
ji=1.

Recall that entries of w are i.i.d. random variables with expectation zero and variance
ζ2. This implies

E[ŵ2
i ]= ζ2

N2∑
j=1

S2
ji= ζ2.

Hence

E[∥v−uext∥2]=E[∥Pw∥2]≤
√
4N−4 ·ζ. (2.8)

The proof is completed by combining Equations (2.6), (2.7), and (2.8).

2.3. Concentration of errors. The empirical performance of our algorithm is
actually much better than the theoretical bound given in Theorem 2.1. This is because
the error term u−uext usually concentrates at the boundary of the domain. To see this,
we can calculate the basis of Ker(A). In 1D, Ker(A) only contains two linear functions,
which has very little error concentration. In 2D, for the case of the Laplacian, f =0 on
the unit square domain with M =N , a basis of Ker(A) can be explicitly given. The
following proposition follows easily from some elementary calculations.

Proposition 2.1. Let A be the discretized Laplacian on a square domain with
N×N grids. Without loss of generality assume N is odd. Let (x,y)=( i−1

N−1 ,
j−1
N−1 ) and

h=1/(N−1). Define vectors uk,p∈RN×N ,p=1,·· · ,8 by

uk,1
i,j = b1k sin(2kπx)e

cky, uk,2
i,j = b2k cos(2kπx)e

cky

uk,3
i,j = b3k sin(2kπx)e

ck(1−y), uk,4
i,j = b4k cos(2kπx)e

ck(1−y),

uk,5
i,j = b5k sin(2kπy)e

ckx, uk,6
i,j = b6k cos(2kπy)e

ckx,

uk,7
i,j = b7k sin(2kπy)e

ck(1−x), uk,8
i,j = b8k cos(2kπy)e

ck(1−x),

(2.9)
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where ck=h−1cosh−1(2−cos(2kπh)), k=1,·· · ,(N−3)/2 for uk,1,uk,3,uk,5,uk,7 and
k=1,·· · ,(N−1)/2 for uk,2,uk,4,uk,6,uk,8, and bpk are normalizers to make ∥uk,p∥2=1.
Further define vectors ul,p∈RN×N , p=1,2,3,4 such that

ul,1
i,j =1, ul,2

i,j =x, ul,3
i,j =y, ul,4

i,j =xy. (2.10)

Then

B={{uk,p}8p=1,{ul,p}4p=1}

is a basis of Ker(A).

Fig. 2.1. Diagonal entries from the R matrix of the QR decomposition of the basis B in (2.9) and
(2.10) respectively arranged in lexicographical order. The basis functions are nearly orthogonal. The
mesh size N is 101. Value of last diagonal entry is 0.015.

The basis B in Proposition 2.1 is nearly an orthonormal basis in most directions.
For example, a QR decomposition of vectors in B shows that most diagonal terms are
nearly equal to 1 even for large N, as shown in Figure 2.1. The only exception is ul,4,
whose corresponding diagonal term is only 0.015. The exponential terms in vectors uk,p

indicate exponential decay of the solution away from the boundary. Since 4N−8 out
of 4N−4 vectors in B have significant concentration at the boundary, we expect the
concentration of error at the boundary with a high probability.

The basis of Ker(A) for the general case can not be explicitly given. Instead,
we can compute principal angles between Ker(A) and ΘD, where ΘD is the subspace
spanned by coordinate vectors corresponding to boundary layer with thickness D. In
other words,

ΘD=span{ei,j |i≤D or j≤D or i≥N−D or j≥N−D}.

If most principal angles are small, Ker(A) is almost parallel with ΘD, and the projection
of a random vector to ΘD preserves most of its length. In other words, we see a
concentration of error terms at the boundary of the domain.

Principal angles 0≤θ1≤···≤Θ4N−4≤π/2 are a sequence of angles that describe
the angle between Ker(A) and ΘD. The first one is

θ1=min{arccos( α ·β
∥α∥∥β∥

) |α∈Ker(A),β∈ΘD}=∠(α1,β1).
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Other angles are defined recursively with

θi=min{arccos( α ·β
∥α∥∥β∥

) |α∈Ker(A),β∈ΘD,α⊥αj ,β⊥βj ,∀1≤ j≤ i−1},

such that ∠(αi,βi)=θi. Without loss of generality assume ∥αi∥=1 for all 1≤ i≤
4N−4. Since dim(ΘD)≥dim(Ker(A)), it is easy to see that {α1,·· · ,α4N−4} forms
an orthonormal basis of Ker(A). Recall that u∈Ker(A) and that the error u−uext is
approximated by the projection of a random vector w with i.i.d. entries to the subspace
Ker(A). Hence we can further assume that ξ=u−uext is approximated by a random
vector

ξ=
4N−4∑
i=1

ciαi, (2.11)

where ci are i.i.d. random variables with zero mean and variance ζ2. Define

pD(ξ)=
E[∥PΘD

ξ∥]
E[∥ξ∥]

as the mean weight of ξ projected on to the boundary layer, where PΘD
is the projection

matrix to ΘD. Assume ξ satisfies Equation (2.11). It is easy to see that

pD(ξ)=
1

4N−4

4N−4∑
i=1

cos(θi).

Therefore, pD(ξ) measures the degree of concentration of errors on the boundary layer
with thickness D.

Fig. 2.2. Principal angles between Ker(A) and ΘD for D=1,2,3. Left: Diffusion process without
drift. Right: Fokker-Planck equation as given in Example 5.1.

Principal angles can be numerically computed by an SVD decomposition. In Figure
2.2, we list all principal angles for D=1,2,3. The matrices in Figure 2.2 are given by
discretization of 2D Fokker-Planck Equations (2.2) for f =0 (left panel) and f as in
Equation 5.1 (right panel). The size of a block is (50+D)×(50+D). We can see that
the mean weight of ξ projected to ΘD is very large. In other words most of the error
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term u−uext concentrates at the boundary layer. We also remark that the degree of
concentration of error terms increases with the dimension.

The 2D case is demonstrated in Figure 2.2, and our computation shows that the
error concentration is even more significant in 3D.

Fig. 2.3. Empirical spatial distribution of error term for the ring density function as in Section
5.1. Top left: v−uext. Top right: u−uext. Middle left: v′−uext. Middle right: u′−uext. Bottom:
Comparison of ρv, ρu, ρv′ , ρu′ for D=1,2,3,4.

Figure 2.3 shows an empirical test of the spatial distribution of error terms. The
Fokker-Planck equation is still from the ring density function as in Section 5.1. We
choose a 64×64 block on [0,1]× [0,1] and solve the Fokker-Planck equation with our
hybrid solver. The Monte Carlo simulation uses 106 sample points. The numerical
solutions v and u are compared with the exact solution uext in the top left and right
panel, respectively. As a comparison, we also produce 106 unbiased samples from the
invariant density itself, denoted by v′. The solution of the hybrid solver from v′ is
denoted by u′. We can clearly see that most of the error of u and u′ concentrates at
the boundary of the domain. The bottom panel compares the relative weight of error
concentrating on the boundary layer for D=1,2,3,4. The relative weights ρu and ρv
are given by

ρv =
∥PΘD

(v−uext)∥
∥v−uext∥

and ρu=
∥PΘD

(u−uext)∥
∥u−uext∥

,

respectively. ρu′ and ρv′ are also defined analogously.
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From Figure 2.3, the spatial concentration of u−uext on the boundary layer is less
than the theoretical prediction given before, mainly because the sample itself has bias.
However, we can still see a significant concentration of error on the boundary layer. The
error concentration of u′−uext is much better. Almost all errors of u′ are concentrated
on the two boundary layers. It is worth mentioning that although the unbiased sample
v′ has little visual difference from the Monte Carlo data v, the resultant solution u′ has
significant better performance in terms of error concentration on the boundary. Hence
this example also demonstrates the importance of choosing a good Monte Carlo sampler.
We will compare a few different samplers in Section 5.1.

3. Block Fokker-Planck solver

Since we can use the hybrid method to compute the Fokker-Planck equation on any
region in the phase space, a straightforward improvement is to apply the divide-and-
conquer strategy. We can divide the interested numerical domain into small blocks and
then combine the results on these blocks to generate the solution on the original big
domain. As discussed in the introduction, assume we divide an Nd mesh into many
md blocks, where m≪N . If the linear solver to an n×n matrix has O(np) complexity
(usually p>1), the total computational cost is reduced from Npd to m(p−1)dNd. In
addition, this block solver significantly simplifies parallel computing, since all blocks
are independent and satisfy the same Fokker-Planck equation. We can also change the
grid size for each block based on whether the data is dense or sparse in a subregion to
further reduce the computational cost. Moreover, we can apply our method to problems
with irregular domains by dividing it into many small rectangular blocks.

For simplicity, we still use a rectangular domain D=[a,a′]× [b,b′] to describe our
algorithm, and assume that we want to solve u in D. We divide D into K×L blocks
{Dk,l}k=K,l=L

k=1,l=1 with Dk,l=[ak−1,ak]× [bl−1,bl], where ak=a+k(a′−a)/K and bl= b+
l(b′−b)/L.

Following the algorithm presented in Section 2.1, we construct an N×M grid on
Dk,l and discretize the Fokker-Planck equation. This gives a linear constraint

Ak,lu
k,l=0

on Dk,l, where Ak,l is an (N−2)(M−2)×(NM) matrix. Then we obtain a reference
solution vk,l from the Monte-Carlo simulation by picking up the corresponding values
{vk,li,j }

i=N,j=M
i=1,j=1 from the global simulation result v, such that

vk,li,j =v((k−1)N+ i,(l−1)M+j)

for k=1,. ..,K,l=1,. ..,L,i=1,. ..,N,j=1,. ..,M . This gives an optimization problem
on Dk,l

min∥u−vk,l∥2 (3.1)

subject to Ak,lu=0.

We denote the solution to (3.1) by uk,l, which can be obtained by calculating

uk,l=Ak,l
T (Ak,lAk,l

T )−1(−Ak,lvk,l)+vk,l.

Now, the (i,j) coordinate uk,l
i,j of uk,l is an approximation of u at the point

(ih+ak−1−h/2,jh+bl−1−h/2), where h=(ak−ak−1)/N =(bl−bl−1)/M is the grid
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size when we divide Dk,l into N×M boxes. It remains to combine all local solutions

{uk,l}k=K,l=L
k=1,l=1 on all blocks by collaging them together, i.e.,

u(ih+ak−1−h/2,jh+bl−1−h/2)=uk,l
i,j ,

k=1,. ..,K,l=1,. ..,L,i=1,. ..,N,j=1,. ..,M . The collage numerically solves the
Fokker-Planck Equation (2.2) on the whole domain D.

4. Reducing interface error
As discussed in Section 2.3, the optimization problem (2.3) projects most error

terms to the boundary of the domain. For the block algorithm, the solution is less
accurate near the boundary of each block. The error on the boundary usually looks
noisy because it inherits the randomness from Monte Carlo simulations. As a result,
there are visible fluctuations on the interface of two adjacent blocks. To make the block
solver applicable, modifications to the solution on the interface of blocks are necessary.

In this section, we provide two different methods to reduce the interface error,
i.e., the overlapping blocks method and the shifting blocks method. The overlapping
blocks method expands each block locally, and keeps only the interior portion which
has much lower observed errors. The shifting blocks method makes several smoothing
passes, shifting the block boundaries each time so that portions previously on the edges
are now in block interiors. Advantages and limitations of these methods will also be
discussed.

4.1. Overlapping blocks. Since the numerical solution of the hybrid solver
has much higher accuracy at interior points than on the boundary, the most natural
approach is to discard the boundary layer. When applying the block solver, we can
enlarge the blocks by one or two layers of boxes. Then we apply the algorithm in
Section 2.1 on the enlarged block. The interior solution restricted to the original block
is the new output of the block solver. This is called the overlapping blocks method.

More precisely, recall that we first divide D=[a,a′]× [b,b′] into K×L blocks

{Dk,l}k=K,l=L
k=1,l=1 , then divide each block Dk,l=[ak−1,ak]× [bl−1,bl] into N×M boxes

Ok,l
i,j =[ak−1+(i−1)h,ak−1+ ih]× [bl−1+(j−1)h,bl−1+jh], where h=(ak−ak−1)/N =

(bl−al−1)/M . Instead of D, now we work on the extended domain D̃k,l=[ak−1−
ιh,ak+ ιh]× [bl−1− ιh,bl+ ιh], where ι=1 or 2. Then the Monte-Carlo simulation is
used to get the reference solution ṽ on the enlarged domain D̃=[a− ιh,a′+ ιh]× [b−
ιh,b′+ ιh] of D.

Instead of disjoint blocks Dk,l, we construct an (N+2ι)×(M+2ι) grid on D̃k,l and
generate the discretized Fokker-Planck equation

Ãk,lu=0

on D̃k,l, where Ãk,l is a (N+2ι−2)(M+2ι−2)×((N+2ι)(M+2ι)) matrix. Then

a local reference solution ṽk,l is obtained by picking up the corresponding value ṽk,li,j

from the global simulation vector ṽ. For each block, we solve the local optimization
problem (3.1), and keep only the values at the interior points, Dk,l to create the global
approximation u.

The advantage of this overlapping block method is that it is very easy to implement.
No additional treatment is necessary besides discarding one or two boundary layers. But
in higher dimension, a significant proportion of grid points will be on the boundary of
blocks. For example, if ι=2, M =N =30, the percentage of unused grid points is 13%
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in 1D, 28% in 2D, 46% in 3D, and 65% in 4D. Also, as seen in Figure 2.3, visible error
inherited from the reference solution v can easily penetrate through 4−5 boundary
layers. Hence the output of solutions from the overlapping block method usually still
has some visible residual interface error.

4.2. Shifting blocks. The idea of shifting block is also motivated by the con-
centration of error of the solution of (2.3). To resolve the interface fluctuation between
blocks, one can simply move the interface to the interior by shifting all blocks and re-
calculate the solution. Since the solution has much higher accuracy in the interior of
a block, this can easily smooth the interface error. More precisely, after applying the
block solver, we make a “half-block” shift of the blocks so that boundaries of the original
blocks are now in the interior of new blocks. Then we solve optimization problems (2.3)
again on newly shifted blocks. The reference solution fed into the optimization problem
(2.3) is the numerical solution from the first round. If necessary, one can carry out this
shifting block for several rounds to cover all grid points and to improve the accuracy.

Divide the domain D=[a,a′]× [b,b′] into K×L blocks {Dk,l}k=K,l=L
k=1,l=1 with

Dk,l=[ak−1,ak]× [bl−1,bl], where ak=a+k(a′−a)/K and bl= b+ l(b′−b)/L. Then
we make half-block shifts to get the shifted blocks D′

k,l=[a′k−1,a
′
k]× [b′l−1,b

′
l],

where a′k=ak+(a′−a)/2K=a+(k+1/2)(a′−a)/K and b′l= bl+(b′−b)/2L= b+(l+
1/2)(b′−b)/L. The Monte Carlo data needs to cover all blocks Dk,l and D′

k,l.
Now construct N×M grids both on Dk,l and D′

k,l, and generate the discretized
Fokker-Planck equations

Ak,lu=0 and A′
k,lu=0

on Dk,l and D′
k,l respectively, where Ak,l and A′

k,l are (N−2)(M−2)×(NM) matrices.
We first use the original block solver to solve the optimization problem on each

Dk,l, as described in Section 3. This gives approximated solutions uk,l on each block.
The first approximation u1∈RMN is obtained by collaging uk,l from all blocks.

Then we generate the reference solution v′k,l on shifted blocks D′
k,l by using the

corresponding values in u1 whenever available. More precisely we have

v′k,l
i,j =u1

(k−1/2)N+i,(l−1/2)M+j

for k=1,. ..,K−1,l=1,. ..,L−1,i=1,. ..,N,j=1,. ..,M . When k=K or l=L, we use
Monte Carlo data to produce v′k,l

i,j if u1 data is not available. Then we solve the
optimization problem (3.1) on the shifted block D′

k,l to get a numerical solution u′
k,l on

D′
k,l.
Now u′

k,l are computed on shifted blocks. We use data from u′
k,l to produce the

global solution whenever possible, that is, let

u((k−1)N+ ih+ak−1−h/2,(l−1)M+jh+bl−1−h/2)=u′k,l
i,j

for k=2,. ..,K,l=2,. ..,L,i=1,. ..,N,j=1,. ..,M . If k=1 or l=1, we use values from
u1 if the data from u′

k,l is not available.
We remark that in practice one does not have to shift the block by exactly one

half. This shifting block method can be implemented repeatedly, such that the solution
u′ from last round is used as the reference solution for the next round. We find that
one efficient way of implementation is to shift the block by 1/3 for two times to get
two solutions u′ and u′′ on shifted blocks. Then we feed u′′ back to the original block
solver as the reference solution. This implementation covers all grid points by interiors
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of blocks. Using an iterative linear solver can significantly accelerate the shifting blocks
method. Because from the second round, we have uk,l≈vk,l at all interior grid points.
Hence 0 is a good initial guess when solving (Ak,lA

T
k,l)

−1(−Ak,lvk,l) in the optimization
problem (3.1). Empirically, the total computation time of three shifts is roughly similar
to the time needed for the first round, if the conjugated gradient linear solver is used.

5. Numerical examples
In this section, we consider the following three numerical examples to test the

performance of our methods.

Fig. 5.1. Left: Some trajectories of the deterministic part of Equation (5.1). Right: Exact solution
of the Fokker-Planck equation for (5.1).

5.1. Ring density function. Consider the following stochastic differential equa-
tion: {

dx=
(
−4x(x2+y2−1)+y

)
dt+εdW x

t

dy=
(
−4y(x2+y2−1)−x

)
dt+εdW y

t
, (5.1)

where W x
t and W y

t are independent Wiener processes. To compare the performance
of different solvers in this paper, we fix the strength of white noise to be ε=1. The
deterministic part of Equation (5.1) is a gradient system plus a perpendicular rotation
term, where the potential function of the gradient component is

V (x,y)=(x2+y2−1)2.

See Figure 5.1 Left for selected trajectories of Equation (5.1). The rotation term does
not change the invariant probability density function. Therefore, the deterministic part
of Equation (5.1) admits a limit circle x2+y2=1, and the invariant probability measure
of (5.1) has density function

u(x,y)=
1

K
e−2V/ε2 ,

where K=π
∫∞
−1

e−2t2/ε2 dt is the renormalization constant. Therefore, the stationary
Fokker-Planck equation corresponding to (5.1) has an analytic global solution u(x,y)
on R2 (Figure 5.1 Right). We use this example to test a few different aspects of our
data-driven Fokker-Planck solver.
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A. Comparison of samplers. As stated in Section 2.3, the optimization prob-
lem (2.3) can significantly reduce the error in the Monte Carlo sampler if its error
terms have spatially uncorrelated entries. We first compare the performance of different
samplers without using block solvers. In this example, we look at the approxima-
tion obtained from Monte-Carlo simulation with 256×256 mesh points on the domain
D=[−2,2]× [−2,2]. Unless otherwise specified, the simulation is done by running the
Euler-Maruyama method with a step size dt=0.002. We compare the same optimiza-
tion problem (2.3) using the following six different reference solutions v: (1) Only 105

samples are selected from a long trajectory with 107 steps. One sample is collected for
every 100 steps of the Euler-Maruyama scheme. Then we run a kernel density estimator
(KDE) to get the probability density v at each grid point. (2) All points of the long tra-
jectory with 107 samples are used to approximate v. (3) Only 105 samples are selected
from a long trajectory with 107 steps to approximate v. One sample is collected for
every 100 steps of the Euler-Maruyama scheme. (4) Eight parallel long trajectories with
1.25×106 steps are used to approximate v. (5) Instead of Monte Carlo, 106 samples are
independently sampled directly from the known invariant probability density function
using rejection sampler. (6) Same rejection sampler as (5) with only 105 samples. In
cases (2)-(6), we use the direct “box counting” method in Section 2.1 to approximate
v. In Figure 5.2, we can see a clear advantage of the KDE method, while the quality of
the reference solution v is very low when there are only 105 samples.

Fig. 5.2. Top left to bottom right: Reference solution v obtained from (1) KDE approximation
based on 105 samples from one long trajectory of 107 steps, with long sampling interval of 100 steps
per sample, (2) Box counting approximation based on 107 samples from one long trajectory of 107

steps, with short interval of 1 step per sample, (3) Box counting approximation based on 105 samples
from one long trajectory of 107 samples, with long sampling interval of 100 steps per sample, (4)
Box counting approximation based on 107 samples from 8 parallel trajectories of 1.25×106 steps, with
short interval of 1 step per sample, (5) Box counting approximation based on 106 samples from the
true invariant probability measure, and (6) Box counting approximation based on 105 samples from
the true invariant probability measure.
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However, the advantage of the KDE method does not translate to a more accurate
solution to the optimization problem (2.3). We solve the optimization problem (2.3)
using the aforementioned six reference solutions v. The difference between the solution
u to the optimization problem (2.3) and the true invariant probability measure is com-
pared in Figure 5.3. We can see that although the KDE method gives a more accurate
reference solution v, it does not make the solution u more accurate. In contrast, the ref-
erence solution from independent samples has low accuracy, but gives the most accurate
u. Interestingly, fewer samples from a long trajectory with longer intervals in between
can slightly improve the accuracy of the solution u over using all steps of the long tra-
jectory, and a parallel sampler can also improve the accuracy. This result tells us that
the optimization problem (2.3) can tolerate a very high level of spatially uncorrelated
error in the reference solution v. It is more important to improve the independence of
samples between different grid points than reducing the error of the reference solution
itself. More independent samples can be achieved by either longer intervals between
samples or parallel trajectories. Since longer intervals between samples does not reduce
the computational cost (because we still need to simulate the equation for the same
number of steps), in practice the parallel sampler is the best choice over other methods.
Furthermore, the benefit of using a kernel density estimator does not justify its extra
computational cost.

Fig. 5.3. Top left to bottom right: Error of the solution u to the optimization problem (2.3)
when the reference solution is obtained from (1) KDE approximation based on 105 samples from one
long trajectory of 107 steps, with long sampling interval of 100 steps per sample, (2) Box counting
approximation based on 107 samples from one long trajectory of 107 steps, with short interval of 1
step per sample, (3) Box counting approximation based on 105 samples from one long trajectory of 107

samples, with long sampling interval of 100 steps per sample, (4) Box counting approximation based
on 107 samples from 8 parallel trajectories of 1.25×106 steps, with short interval of 1 step per sample,
(5) Box counting approximation based on 106 samples from the true invariant probability measure, and
(6) Box counting approximation based on 105 samples from the true invariant probability measure.
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B. Comparison of block solvers. Then we test the performance of block solvers
on the same numerical domain D=[−2,2]× [−2,2] and the same 256×256 grid. The
goal is to compare the effect of two error reduction methods proposed in Section 4. We
further divide D into 8×8 blocks, each of which thus has 32×32 mesh points. Figure
5.4 Left is the approximation given by the naive block solver described in Section 3.
As expected in Section 2.3 and explained at the beginning of Section 4, the error term
of the Monte-Carlo simulation data v (see Figure 5.4 Left) is spread from the interior
of each block to its boundary because of the projection, which causes visible interface
fluctuation.

The next step is to implement two different error reduction methods introduced
in Section 4 and compare their performances. Figure 5.4 Middle shows the solution
given by overlapping blocks with 1 layer of box overlap, that is, ι=1 (see Section 4.1).
We can see that the interface fluctuation is reduced, especially at the places with high
probability density function and high interface fluctuation. The right panel of Figure
5.4 is obtained by iterating the shifting block solver (see Section 4.2) for three repeats.
We can see a dramatic reduction of the interface error. The solution looks quite smooth
after implementing the shifting block solver.

Fig. 5.4. (Ring density) The approximation computed by the basic block solver (left), 1-
overlapping block solver (middle), and the shifting block solver (right) with 256×256 mesh points,
8×8 blocks and 107 samples.

C. Comparison of performance. Here we compare numerical solutions of the
invariant probability measure of Equation (5.1), which is explicitly known. Figure 5.5
shows a comparison of error terms for solutions obtained by different error reduction
methods, in both discrete L2(D) norm and discrete H1(D) norm. To make a fair
comparison, we let the number of samples change with the grid size. Examples with
mesh sizes N =64,128,256,512,1024, and 2048 are tested and compared. The block
size is 32×32 in all tests. The total number of Monte Carlo samples is chosen to be
390.625N2. Monte Carlo samples are collected by running 8 parallel long trajectories.
Solving local solutions in different blocks is also parallelized. From Figure 5.5, we can
see that the L2 error of the Monte Carlo data is stabilized as expected, because the
average sample count per box (and per grid) is constant.

The performance of two error reduction methods are compared in Figure 5.5. We
can see that the plain block solver reduces the error significantly compared to the
Markov chain data, but the error does not seem to converge to zero. This is not a
surprise because all blocks are 32×32, and Theorem 2.1 says that the error should be
proportional to −1/2 power of the block size. Both error reduction methods reduce the
L2 error from the plain block solver to some degree. The shifting blocks method has
better performance, but also a higher computational cost. We can see that the empirical
rate of error decay for the shifting block method is roughly N−1/2, which is better than
the theoretical result in Theorem 2.1.
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Fig. 5.5. (Ring density) Left: Discrete L2(D) error of solutions produced by different methods.
Right: Discrete H1 error of solutions produced by different methods.

First order derivatives in the discrete H1(D) norm are calculated by taking finite
differences with respect to nearest grid points. With a constant mean sample size per
box, the H1(D) error of the reference solution from Monte Carlo data diverges when
N increases. This is because local fluctuations are roughly unchanged with the mesh
size, while the grid size h becomes smaller. Therefore, the derivative of the reference
solution is O(ζh−1), where ζ is the standard deviation of number of samples per box.
In other words, all algorithms based on Monte Carlo simulations are expected to have
poor performance in H1(D) error. The divergence of H1(D) error is alleviated by the
overlapping block method, and partially overturned by the shifting blocks method. As
we see in Figure 5.5 Right, when N =2048, the shifting block method gives a solution
whose H1(D) error is >150 times less than that of the Monte Carlo data.

We can see that due to the lack of interaction between blocks, the information of
the reference solution obtained by the Monte-Carlo simulation is not transferred to a
neighboring blocks. So if a block is over-sampled, while the others are under-sampled,
then after the block solutions are pasted together, the graph is not “flat” at the places
where it should be. We can see that the shifting block method has better performance in
terms of improving the regularity. This is because it significantly increases interactions
between the neighbourhood blocks, and transfers the information between neighborhood
blocks. Applying the shifting block method repeatedly can make the result more close
to the global solver or the exact solution. But it also incurs some extra computational
cost, as seen in Table 5.1.

Finally, we show a comparison of computation time in Table 5.1. In Table 5.1,
“Sampling” means the Monte Carlo sampling time (including a burn-in time, which
is the waiting time before collecting samples). “Plain” means the plain block solver
proposed in Section 3. “Overlapping” means overlapping blocks method with ι=1 in
Section 4.1. “Shifting” means the shifting blocks method in Section 4.2. We shift blocks
twice by 1/3 and 2/3, and feed the new solution to the original solver as the reference
solution. And “Old Version” means the algorithm proposed in [15], where no block is
used. We can see that the Monte Carlo sampling actually takes most of the time, and
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Mesh Sampling Plain Overlapping Shifting Old Version
64 0.02471 0.003822 0.004112 0.01244 0.017317
128 0.09462 0.009741 0.01050 0.04142 0.124361
256 0.4549 0.03165 0.03891 0.1331 0.8035
512 1.8692 0.1172 0.1378 0.5338 10.9225
1024 10.278 0.4626 0.5393 2.0902 61.5952
2048 52.2137 2.0632 2.2946 8.547 781.52

Table 5.1. CPU time (in seconds) for different algorithms and mesh sizes.

all versions of block-based solvers are very fast. When the mesh size is 2048, the plain
block solver is hundreds times faster than solving a large optimization problem (2.3)
without dividing the domain.

5.2. Chaotic attractor. In this subsection, we apply our solver to a non-trivial
3D example. Consider the Rossler oscillator with small random perturbationsdx=(−y−z)dt+εdW x

t

dy=(x+ay)dt+εdW y
t

dz=
(
b+z(x−c)

)
dt+εdW z

t

, (5.2)

where a=0.2, b=0.2, c=5.7 ε=0.1, and W x
t , W

y
t and W z

t are independent Wiener
processes. This system is a representative example of chaotic ODE systems appearing
in many applications of physics, biology and engineering. Figure 5.6 shows a trajectory
in the corresponding deterministic system and its projection onto the xy-plane.

Fig. 5.6. (Rossler) A trajectory in the Rossler system (5.2) (left) and its projection on the xy-
plane (right).

It is natural to imagine that the invariant density of (5.2) has a similar shape to Fig-
ure 5.6. We use the block solver together with 3 repetitions of the shifting blocks method
on D=[−15,15]× [−15,15]× [−1.5,1.5] with 1024×1024×128 mesh points. The grid is
further divided into 32×32×4 blocks. The reference solution is generated by a Monte
Carlo simulation with 3.2×1010 samples produced by eight parallel long trajectories.
(In practice we let the CPU time of sampling roughly equal the CPU time of linear
algebra solver. But the algorithm can use a much smaller sample size.) Four “slices”
of the solution, as seen in Figure 5.7, are then projected to the xy-plane for the sake
of easier demonstration. Projection of the whole solution to the xy-plane is shown in



822 DATA-DRIVEN FOKKER-PLANCK SOLVER

Fig. 5.7. (Rossler) Projections of 4 “slices” of the invariant density of the Rossler system (5.2)
to the xy-plane. z-coordinates of 4 slices are [−0.09375,0.02344], [0.023440.1406], [0.1406,0.2578], and
[0.2578,0.375]. The solution is obtained by a half-block shift solver on [−15,15]× [−15,15]× [−1.5,2.25]
with 1024×1024×128 mesh points, 32×32×4 blocks, and 3.2×1010 samples.

Fig. 5.8. (Rossler) The projection of the whole solution of the Rossler system (5.2) to the xy-
plane. Three different local regions I-III (the red boxes) are used for comparing block solvers with
different block sizes. See Figure 5.9 also.

Figure 5.8. In addition to the expected similar shape of the distribution, we can see that
many fine local structures of the deterministic system are preserved by the invariant
probability measure.

To demonstrate the performance of our algorithm, we apply the data-driven solver
without blocks to three local regions with different characteristics (see Figure 5.8).
In each region, we use the data-driven solver on 128×128×128 mesh points without
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dividing the domain into blocks.
In Region I, [−15/4,0]× [−15/8,15/8], the projection of the solution has both dense

and sparse parts that are clearly divided. In the first figure of 5.9, we can see that
a similar resolution is preserved when using much smaller block sizes. Both solutions
provide high resolution to demonstrate the influence of strong chaos on the invariant
distribution. The only difference is the local solver with smaller blocks has higher
error on the left and bottom boundary, because the half-shift method does not touch
this part. The discrete L2 norm of the difference between the restriction of global
solution on Region I and the local solution is εI≈0.0032. In Region II, [−15/8,15/8]×
[165/32,285/32], the solution includes an outer “ring” with high density. Outside this
“ring”, the density function decays quickly. We can see that both solutions show the
decay of the density around this ring. The discrete L2 norm of this difference between the
two solutions in Region II is εII≈0.0028. In Region III, [75/16,135/16]× [−45/4,15/2],
the local solution has much lower density. The local solver is still accurate when the
entries of v are much smaller. The discrete L2 norm of the difference between the global
solution and the local solution in this region is εIII≈0.0018.

Overall, the solution from the block solver has little difference from the one ob-
tained over a large mesh, and the solver can provide desired resolution in both settings.
Empirically, we find that a block size of 30−35 is a good balance of performance and
accuracy for most 2D and 3D problems.

Fig. 5.9. (Rossler) The local restrictions of the global solution in Region I–III (the first row),
and the projections onto the xy-plane of solutions by the local solver in the three local regions (the
second row).

5.3. Mixed mode oscillation. In this example, we consider another non-trivial
3D system of mixed mode oscillation (MMO) with small random perturbations

dx= 1
η (y−x2−x3)dt+εdW x

t

dy=(z−x)dt+εdW y
t

dz=(−ν−ax−by−cz)dt+εdW z
t

, (5.3)

where η=0.01, ν=0.0072168, a=−0.3872, b=−0.3251, c=1.17, and W x
t , W y

t and
W z

t are independent Wiener processes. The strength of noise is chosen to be ε=0.1.
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Fig. 5.10. (MMO) A trajectory in the system of mixed mode oscillation (5.3) (left) and its
projection on the xy-plane (right).

Fig. 5.11. (MMO) The projection of the invariant density of the system (5.3) of mixed mode
oscillation onto the xy-plane by a half-block shift solver on [−1.5,0.5]× [−0.15,0.35]× [−0.1,0.15] with
2048×512×256 mesh points, 32×32×32 blocks and 109 samples.

Figure 5.10 provides one trajectory of the corresponding deterministic system and its
projection on the xy-plane. The deterministic part of Equation (5.3) has a critical
manifold y=x2+x3, at which the derivative of the fast variable vanishes. We can see
that oscillations with different amplitudes occur near the fold of the critical manifold,
where the attracting and repelling sheet of the critical manifold meet. This is called
the mixed mode oscillation (MMO) [5]. The mechanism of mixed mode oscillations
is similar as that of the canard explosion, which means the trajectory can follow the
unstable sheet of the critical manifold for some time [9]. It was observed in [15] that
the canard explosion can be destroyed by a small random perturbation. This motivates
us to explore the characteristics of MMO under random perturbations.

We again use the half-block shift solver with 2048×512×256 mesh points, 64×
16×8 blocks and 109 samples (produced by 8 parallel long trajectories) to get the in-
variant measure on D=[−1.5,0.5]× [−0.15,0.35]× [−0.1,0.15]. The entire computation
(sampling, applying block solver, and applying three repeats of shifting block solver)
takes 3560.52s on the author’s laptop. In comparison, the traditional finite difference
method on a much smaller grid with 96×24×12 mesh points takes 3978.53s. We did
further performance tests on grids with 8m×2m×m mesh points for m=8,9,10,11,12
to get the computational times T (m), which are 113.69,289.75,734.53,1730.85, and
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Fig. 5.12. (MMO) The projections onto the xy-plane of solutions by the local solver in the four
z-layers).

3978.53, respectively. A linear regression on the log-log plot gives an empirical relation
T (m)=e−13.57m8.778. So, theoretically, when m=256 (which is our case), a traditional
Fokker-Planck solver would take 1.76×1015 seconds on the same computer to solve this
problem.

The numerical result is still projected to the xy-plane (see Figure 5.11). We can see
that the invariant measure is mainly supported by the neighborhood of the stable sheets
of the critical manifold. Deterministic oscillations with small amplitude are eliminated
by the random perturbation. In other words, similar to the canard explosion, MMO
can not survive a small random perturbation. The mechanism of this phenomenon is
still not clear. It is also not known how small the noise should be in order to see MMO
in Equation (5.3).

To corroborate the performance of the solver on local regions, in this example,
we apply it to four ‘z-layers’, that is, the region in the phase space of the form
[−1.5,0.5]× [−0.15,0.35]×I, where I=[−0.1,−0.1+d],[−0.05,−0.05+d],[0.05,0.05+
d], and [0.1,0.1+d] respectively with d=1/32. In each layer, we apply an iterated
shifting blocks solver with 2048×512×32 mesh points, 64×16×1 blocks, and 109 sam-
ples.

Figure 5.12 shows the invariant distribution in these four local layers when projected
to the xy-plane. We can see the invariant density function on each z-layer. Similar as
in Figure 5.11, most invariant density concentrates at two stable sheets of the invariant
manifold, and no small amplitude oscillations can be seen from the invariant probability
density function.
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6. Conclusion

A data-driven method for computing the invariant probability measure of the
Fokker-Planck equation was proposed in [15]. The key idea is to generate a refer-
ence solution from Monte Carlo simulation to partially replace the role of boundary
conditions. In this paper, we rigorously proved the convergence of this hybrid method.
The data-driven method can tolerate very high level of spatially uncorrelated error in
the reference solution, which is consistent with the analytical result. The concentration
of error is also investigated analytically and numerically. We found that the error tends
to concentrate on the boundary of the numerical domain, which makes the empirical
performance much better than our theoretical result. Motivated by these results and the
divide-and-conquer strategy, we proposed a block version of this hybrid method. It dra-
matically reduces the computational cost for problems up to dimension 4. This method
makes the computation of invariant probability measures possible for many stochastic
differential equations arising in different fields, especially for researchers with limited
computing resources. Finally, to repair the interface error appearing at the interface
between adjacent blocks, two different methods are proposed and tested with several
numerical examples.

The block solver studied in this paper can be extended into several directions. A nat-
ural extension is the time-dependent Fokker-Planck equations. As discussed in [15], one
only needs to slightly modify the optimization problem (2.3) to solve a time-dependent
Fokker-Planck equation. This data-driven framework also works for other PDEs with
available data from stochastic simulations, such as reaction-diffusion equations. It is
well known that a chemical reaction system with diffusions can be computed by both
the stochastic simulation algorithm (SSA) and the reaction-diffusion equation. This is
similar to the case of the Fokker-Planck equation. In addition, mesh-free version of
this block solver can be developed to solve higher dimensional problems. Some high-
dimensional sampling methods [2,3] can be adopted to improve the quality of sampling.
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