
1. Introduction
More than 800 million people live within 100 km of an active volcano and may therefore potentially be exposed 
to health and environmental hazards from eruptions (Brown et al., 2015; Hansell & Oppenheimer, 2004). Basal-
tic fissure eruptions, which are characteristic of Icelandic volcanism, are particularly hazardous due to the large 
quantities of gases and aerosols released into the atmosphere (Carlsen et al., 2021; Thordarson & Larsen, 2007) 
and simulations of the health consequences of volcanic air pollution confirm that future events pose a consider-
able risk to the United Kingdom and Europe (Carlsen et al., 2021; Dawson et al., 2021; Schmidt, 2015; Schmidt 
et al., 2011). Icelandic eruption aerosols may also cause a decrease in temperatures or reduction of incoming solar 
radiation, causing widespread reductions in agricultural yields, as was observed during the 939–940 CE Eldgjá 
eruption (Oppenheimer et al., 2018). More recently, even the comparatively small 2010 CE Eyjafjallajökull and 
the 2011 CE Grímsvötn eruptions impeded air travel and caused economic disruption across Europe and the 
North Atlantic (Budd et al., 2011; Gudmundsson et al., 2012; Oppenheimer, 2015; Schmidt, 2015). These two 
modern eruptions and the 2014 CE–2015 CE Holuhraun eruption also caused detrimental respiratory health ef-
fects (Carlsen et al., 2012, 2021; Damby et al., 2017). Over the entirety of the Common Era however, the 939–940 
CE Eldgjá and 1783–1784 CE Laki (Lakagígar) eruptions have thus far had the most significant environmental 
and climatic impacts. The Laki eruption was one of the largest, in terms of the mass of SO2 emitted, high-latitude 
eruptions of the last millennium (Sigl et al., 2015; Thordarson & Larsen, 2007) and among the most deadly of 
the last 400 years (Auker et al., 2013). The study of Common Era Icelandic eruptions provides perspective on the 
potential hazards and impacts of future events.

The 1783–1784 Laki eruption is particularly interesting because it coincided with a period of extreme and unusual 
weather and atmospheric phenomena across Europe. The Laki eruption sequence began in 8 June 1783 and did not 
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end until 7 February 1784, emitting an estimated 122 megatons SO2 into the atmosphere (Thordarson & Self, 2003). 
Contemporary observations establish both the occurrence of a “haze” across Europe and an abnormal heat wave 
in Western and Central Europe during the summer of 1783 (Franklin, 1785; Grattan & Charman, 1994; Grattan 
& Pyatt, 1999; Grattan & Sadler, 1999; Luterbacher et al., 2004; Stothers, 1996; Thordarson & Self, 1993, 2003). 
This opaque dry haze in the lower troposphere, comprised mostly of sulfuric acid (H2SO4), was observed across 
much of Europe by 26 June, and while the last known appearance of this haze is ambiguous it is likely to have been 
late in October of 1783 (Oman et al., 2006; Thordarson & Self, 2003). Modeling experiments show high surface 
sulfate aerosol concentrations averaged over the longitude band from 24.48°W (Iceland) to 5.68°E (Western Eu-
rope) centered around 65°N throughout the summer of that year (Chenet et al., 2005). The warm summer temper-
atures were intensified by anomalously high pressure and atmospheric blocking over Europe, which would have 
also contributed to a more persistent haze (Thordarson & Self, 2003; Zambri et al., 2019a). Retrospective studies 
have shown that the synoptic atmospheric configuration at the time of the eruption could be considered the worst-
case scenario in terms of bringing volcanic pollution to Europe (Dawson et al., 2021). The haze, also referred to as 
a “dry fog,” lead to widespread respiratory illnesses across Europe (Durand & Grattan, 1999; Grattan et al., 2003; 
Witham & Oppenheimer, 2004). A Laki-like eruption today would be a severe health and environmental hazard 
across Europe (Schmidt, 2015; Schmidt et al., 2011; Sonnek et al., 2017).

While summer cooling due to the reduction of incoming solar radiation is the expected and frequently observed 
climate response to large and sulfur-rich volcanic eruptions (Robock, 2000; Timmreck, 2012), early instrumen-
tal and documentary historical records actually show that the summer of 1783 was abnormally warm through-
out much of Europe, including Sweden (Luterbacher et al., 2004; Thordarson & Self, 2003). This time frame 
coincides with when models show peak sulfate loading in the upper troposphere/lower stratosphere (Oman 
et al., 2006; Zambri et al., 2019b). The summer heatwave has been associated with the presence of a high pressure 
air mass, and written records associate the hottest days of this period with the thickest occurrences of the Laki 
haze (Thordarson & Self, 2003). It has been suggested that the haze may also have played a role in exacerbating 
localized warming (Grattan & Sadler, 1999). Tree-ring data are often used to reconstruct the climate consequenc-
es of past volcanic eruptions and maximum latewood density (MXD) is considered to be the most accurate metric 
for quantifying volcanic climate signals (Anchukaitis et al., 2017; Björklund et al., 2019; D’Arrigo et al., 2013; 
Esper et al., 2015, 2018; Frank et al., 2007; Stoffel et al., 2015; Wilson et al., 2016). Contrary to the historical 
record, however, temperature reconstructions that use MXD indicate widespread cooling over much of Europe in 
the summer of 1783 (Anchukaitis et al., 2017; Edwards et al., 2021; Guillet et al., 2017; Hakim et al., 2016; Lu-
terbacher et al., 2016; Tardif et al., 2019; Tingley & Huybers, 2013). As an example, the Luterbacher et al. (2004) 
reconstruction used predominantly historical, documentary, and early instrumental data to estimate past tem-
peratures and thus shows the warming over much of northern Europe, including Sweden, in 1783. However, 
the more recent Luterbacher et al. (2016) reconstruction uses predominantly tree-ring data over this region, and 
shows cooling in 1783 (Figure 1). Previous authors have speculated this inconsistency—which is seen in most 
tree-ring reconstructions (Edwards et al., 2021)—might be the direct result of the volcanic eruption on European 
tree growth (Briffa et al., 1988; Jones et al., 1995; Schove, 1954). While weather conditions across Europe were 
variable throughout the summer of 1783 (it was, for instance, indeed unusually cold in Iceland) (Thordarson 
& Self, 2003), here we are specifically concerned with the discrepancies between the tree-ring reconstructed 
cooling and the observed warming recorded over Northern Europe. In this study, we use new quantitative wood 
anatomy analyses, historical temperature data, and existing tree-ring carbon isotope data to investigate the origin 
of this discrepancy between the tree-ring temperature proxy data and 18th century weather observations. By 
investigating this difference, we seek to more fully understand the European environmental impacts of the erup-
tion, provide information on the potential biological effects of future Icelandic fissure eruptions, and address the 
paleoclimate implications of the direct impacts of extreme events on tree-ring proxy data.

2. Methods and Data
2.1. Quantitative Wood Anatomy
Both living and preserved dead (subfossil) samples of Scots pine (Pinus sylvestris) were collected just east of 
the Scandinavian Mountains in Jämtland (Sweden) to produce an updated C-Scan (central Scandinavia) chronol-
ogy (63.30°N, 13.25°E; Figure 2), herein identified as CSCAN2019 (Linderholm & Gunnarson, 2019; Zhang 
et al., 2016). Jämtland is one of several Fennoscandian and northwestern Siberia tree-ring density chronologies, 
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including also the Polar Urals, Kola Peninsula, Yamal, and Forfjorddalen, that contribute to reconstructed cold 
temperature anomalies across northern Europe region in 1783 (Anchukaitis et al., 2017; Wilson et al., 2016). 
Most importantly, Jämtland is also relatively close to several 18th century historical climate data records that 
can be used for comparison with the proxy record (see Section 2.2). There is also an existing tree-ring carbon 
isotope chronology in Jämtland at Furuberget (see Section 2.3). From the existing CSCAN2019 collection, we 
selected nine samples for quantitative wood anatomy analysis (QWA; von Arx et al., 2016) that spanned the full 
period from 1768 to 1798. The majority of the samples chosen were mature (>50 years old) at the time of the 
Laki eruption, while three were juvenile (<33 years old). The crossdated chronology, ring-width measurements, 
and MXD series were previously developed following standard dendrochronological procedures (Linderholm & 
Gunnarson, 2019). The original MXD data were measured using an Itrax Multiscanner (Cox Analytical Systems) 
with the opening width of the sensor slit set to 20 μm at each step (Linderholm & Gunnarson, 2019). We used 
the original raw TRW measurements to verify the dating of the nine samples used here prior to processing the 
cores for QWA analysis. For this study, we also created a Jämtland TRW chronology by fitting a cubic smoothing 
spline with 50% frequency response cutoff at 30 years to a selection of raw ring width measurements using the 
R-package dplR (Bunn, 2008; R Core Team, 2019).

We cut the wood samples to a thickness of 10 μm using a rotary microtome (Microm HM355S). The wood mi-
crosections were stained with a safranin solution, permanently fixed in Eukitt, and prepared following standard 
procedures (Gärtner & Schweingruber, 2013; von Arx et al., 2016). Digital images of the microsections were 
produced at the Swiss Federal Research Institute WSL in Birmensdorf, Switzerland, using a Zeiss Axio Scan Z1. 
We measured the cell lumen area, cell wall thickness, and cell wall area for the period 1768 to 1798 on all samples 

Figure 1. Proxy reconstructed summer (June through August) mean temperature anomalies in 1783 CE from (a), Luterbacher et al. (2004) and (b), Luterbacher 
et al. (2016), and in 1784 CE from (c), Luterbacher et al. (2004) and (d), Luterbacher et al. (2016), relative to the mean temperature of the 3 years prior to the Laki 
eruption. The red triangle marks the location of the Laki volcano and the black square marks the location of the Jämtland study site. The positive temperature anomaly 
in (a) is dominated by the use of historical, documentary, and early instrumental data. Panel (b) is created mostly from tree-ring proxy data, including maximum 
latewood density (MXD) at the Jämtland site (Gunnarson et al., 2011). Other temperature field reconstructions using a wide range of proxy observations and statistical 
methods also show cooling over Northern Europe in 1783 (see Figure 1 in Edwards et al., 2021) (e.g., Anchukaitis et al., 2017; Guillet et al., 2017; Tardif et al., 2019; 
Tingley & Huybers, 2013).
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using the ROXAS (v3.1) image analysis software (Prendin et al., 2017; von Arx & Carrer, 2014). We excluded 
measurements of samples with cell walls damaged during sampling or preparation. A total of 452,056 tracheid 
cells were measured for the 30-year period. To create radial profiles of cell measurements for analysis, we used a 
locally weighted smoothing (LOWESS) regression with a 10% span to fit curves to the anatomical measurements 
(Cleveland, 1979). Confidence intervals around each curve were estimated from the residuals of the lowess fit. 
Although the eruption and its environmental consequences did continue into 1784 (D'Arrigo et al., 2011; Zambri 
et al., 2019b), for this study we consider 1783 the “Laki year” and we use the remaining 30 years of wood ana-
tomical data as a “control” to provide context for growth anomalies in 1783.

We calculated anatomical MXD (aMXD) as the maximum ratio between the cell wall area and the full tracheid 
area (the sum of the cell wall area and cell lumen area) for any given year at a range of measurement resolutions. 
We used the same series of 10–160 μm resolutions used by Björklund et al. (2019) to simulate those of other com-
mon density measurement techniques. To calculate the 10 μm resolution values of a single year, for example, the 
raw cellular measurements are assigned 10 μm wide bands parallel to the ring borders (Björklund et al., 2020). 
Then, the median value of all cells within each respective band is used as the representative value for that band. 
If the last band is less than 10 μm then it is defined as the 10 μm adjacent to the terminal ring border (Björklund 
et al., 2020). For aMXD as with traditional MXD, a single value is therefore calculated for each ring. The av-
erage aMXD of the nine cores were used to create an ensemble of multiple resolution aMXD chronologies. A 
number of studies have now shown that detrending may not be necessary for some anatomical data (Björklund 
et al., 2020; Carrer et al., 2018; Liang et al., 2013). We calculated the Pearson correlation coefficient between 
the original CSCAN2019 MXD chronology and each aMXD chronology from 1768 to 1798. We also applied 
a Mann–Kendall test (α = 0.05) to the TRW, MXD, and aMXD chronologies to identify any significant trends.

Intraannual wood density fluctuations (IADFs) in the annual rings were identified both visually and using an au-
tomatic statistical detection approach. For visual identification, we used the classifications described in Campelo 
et al. (2007) and specifically looked for earlywood-like cells in the middle of the latewood (IADF L) and early-
wood-like cells at the very end of the latewood (IADF L+). The same microsection images used to produce the 
quantitative wood anatomy data were used for visual IADF identification (Figure 3). For automatic detection 
of IADFs, we leveraged the increase in lumen area in latewood that is caused by IADFs. We first created trac-
heidograms (Vaganov, 1990), standardized to 100 cells, of lumen area for each core from 1768 to 1798. Then, we 
applied a 10-cell Gaussian smoothing filter to the standardized tracheidograms. Years with an IADF were then 
defined by a peak in the smoothed lumen area tracheidogram in the last 20% of the ring.

Figure 2. Map of locations relevant to this study. C-Scan (orange square) is the general area of the Jämtland (Sweden) sampling sites where the Pinus sylvestris 
samples used in this study were collected. Furuberget (blue circle) is the sampling site from Seftigen et al. (2011) where tree-ring carbon isotope data covering the 
eruption period are available. The mapped location of the Trondheim climate station (pink asterisk) is the approximate average location between the Trondheim/Tyholt 
and Trondheim/Vaernes stations.
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2.2. Climate Data
In order to evaluate the climate signal contained in wood anatomy and wood density series from the 18th century, 
as well as the potential for short-term weather fluctuations to affect wood anatomy (e.g., Piermattei et al., 2020), 
we retrieved historical average monthly adjusted temperature data for the Uppsala (59.88°N, 17.62°E, 27 m a.s.l.), 
Trondheim/Vaernes (63.50°N, 10.90°E, 12  m a.s.l.), and Trondheim/Tyholt (63.41°N, 10.45°E, 122  m a.s.l.) 
climate stations from the Berkeley Earth compilation (BEST; Lawrimore et al., 2011; Menne et al., 2018; Rohde 
& Hausfather, 2020). The Uppsala station is nearly 500 km away from the Jämtland sampling site and the Trond-
heim stations are located on the west side of the Scandinavian mountains, where climate differs from Jämtland. 
To estimate the relationship between climate at the Jämtland sampling site and Uppsala and Trondheim, we also 
retrieved modern average monthly temperature data for the nearby Östersund (63.16°N, 14.40°E, 367 m a.s.l.) 
and Höglekardalen (63.08°N, 13.75°E, 592 m a.s.l.) climate stations from the Berkeley Earth compilation (BEST; 
Lawrimore et al., 2011; Menne et al., 2018; Rohde & Hausfather, 2020). We averaged the data from the Trond-
heim/Vaernes and the Trondheim/Tyholt stations due to their proximity (25 km distance) and similarity (r = 0.99 
for the 1768–1798 period), and to compensate for missing values in each record. We calculated the Pearson 
correlation coefficient between the monthly data at both climate stations and the multiple resolution aMXD and 
CSCAN2019 MXD chronologies from 1768 to 1798. We also retrieved historical homogenized and adjusted 
daily mean temperature data for Stockholm (59.35°N, 18.05°E) from the Bolin Centre Database (Moberg, 2020). 
Summer temperatures in that series have been adjusted to account for a previously identified warm bias in the 
observations (Moberg, 2020).

2.3. Carbon Isotope Data
Here, we use the existing δ13C record of Scots pine from the Furuberget site in the central Scandinavian Mountains 
(63.17°N, 13.50°E—Figure 2) as an additional environmental proxy to compare against the MXD chronologies 

Figure 3. Example micrograph of Scots pine sample Fb06_26a from Jämtland, stained with safranin. An intraannual density fluctuation (IADF) can be seen in the 
1783 ring. Earlywood to latewood growth is shown going from left to right. Raw values of intraannual measurements of anatomical density taken at 10 and 160 μm 
resolution are plotted at their approximate location within each annual ring.
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(Seftigen et al., 2011). This δ13C series was previously found to have a strong positive correlation with summer 
temperatures from 1901 to 2000 across Jämtland and eastern Norway (Seftigen et  al.,  2011). We subtracted 
3‰ from the δ13C series to account for the conversion of leaf carbohydrate to wood, and then converted this 
leaf-corrected δ13C to isotopic discrimination (Δ13C) using Equation (1) (Belmecheri & Lavergne, 2020; Leavitt 
& Long, 1982; Mathias & Thomas, 2018).

Δ
13�퐶 =

⎛
⎜
⎜
⎝

�훿13�퐶�푎�푖�푟 − �훿13�퐶�푝�푙�푎�푛�푡

1 +
�훿13�퐶�푝�푙�푎�푛�푡

1,000

⎞
⎟
⎟
⎠

 (1)

For δ13Cair we used δ13CO2 compiled by Belmecheri and Lavergne (2020), who interpolated pre-1850 δ13CO2 an-
nual values using the Bauska et al. (2015) and Eggleston et al. (2016) reconstructions. We calculated the Pearson 
correlation coefficient between Δ13C and the multiple resolution aMXD and CSCAN2019 MXD chronologies 
from 1768 to 1798, both including and excluding the post-eruption years 1783, 1784, and 1785.

2.4. X-Ray Fluorescence
We conducted X-ray fluorescence (XRF) analysis on three tree-ring core samples in order to test for the presence 
of a potential dendrochemical response from the impact of the acidic haze. Two trees were young (<33 years old) 
and one tree was mature (>100 years old) at the time of the eruption. These three cores were also used for QWA 
analysis. Tree rings can be promising targets for detecting sulfur pollution and may be used to identify volcanic 
events (Binda et al., 2021; Fairchild et al., 2009; Hevia et al., 2018; Pearson et al., 2005, 2009). Because sulfur 
is structurally fixed in the wood, it can be a reliable indicator of environmental pollution (Fairchild et al., 2009). 
However, the final amount of sulfur in the woody tissue is affected by the different sources and pathways to the 
tree. Pine needles take up sulfur directly from the atmosphere whereas nutrients for wood growth come from 
soil water, which are additionally subject to site conditions like soil alkalinity (Fairchild et  al.,  2009; Hevia 
et al., 2018). XRF is nondestructive while providing detection of multiple different elements and has an adjusta-
ble spatial resolution (Smith et al., 2008). We carried out XRF analysis using IXRF System's Atlas Micro-XRF 
unit, making a series of area scans of approximately 3 mm wide by 10 mm long with a point dwell of 800 µs at 20 
micron resolution. The primary excitation source was 50 kV/50 W/1 mA with a Rh target. The instrument uses 
X-rays to excite the surface of the sample, which produces characteristic X-rays that are at measurable energies 
specific to the elements present. By moving the sample under the X-ray source at regular intervals, a map of 
relative elemental abundances on the core surface is produced (Pearson et al., 2020).

3. Results
3.1. Quantitative Wood Anatomy
The original complete TRW chronology (N = 24 cores; Linderholm & Gunnarson, 2019) and the average raw 
TRW of our QWA subset (N = 9 cores) are significantly and positively correlated over their common interval 
(1768–1798, r = 0.65, p < 0.01; Figure 4a). Both show a sharp decrease in ring width after 1783. Based on our 
Mann–Kendall test, the raw TRW series of our QWA subset has a significant downward trend over the period 
1768 to 1798 CE, which is likely in part an age-related growth effect, while none of the aMXD chronologies have 
a significant trend. The high-resolution aMXD chronologies from this study are significantly positively corre-
lated (p < 0.01) and are very similar to the original MXD chronology (Linderholm & Gunnarson, 2019), except 
in 1783 and 1784. The very high-resolution aMXD chronologies (aMXD10–aMXD40) have a 1783 value that 
is actually lower than 1784, while at lower measurement resolutions (aMXD50–aMXD160), 1783 has a higher 
aMXD value than 1784 (Figures 4b and 4c) and is in better agreement with the existing traditional MXD time 
series (Linderholm & Gunnarson, 2019). Irrespective of resolution, all of the aMXD chronologies are significant-
ly and positively correlated with the CSCAN2019 MXD chronology; the correlation coefficient increases from 
the higher-resolution aMXD (aMXD20 m, r = 0.74) to lower-resolution aMXD (aMXD160, r = 0.92; Figure 5).

Examination of the wood anatomy in 1783 reveals the cause of these differences: an IADF in the later half of the 
ring, associated with a band of latewood cells with larger than average lumina that is followed by anomalously 
thin cell walls during the last part of growth (Figure 3). For the late 18th century, the automated IADF detection 
method identifies a slightly greater number of total IADFs overall compared to the simple visual identification 
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method (Figure 6). Using either method, however, 1783 has the highest occurrence of IADFs in the 1768–1798 
period. With automatic detection, 1783 has IADFs in five out of nine cores. With visual identification, 1783 has 
IADFs in six out of nine cores. For non-Laki years, the largest number of cores with an IADF detected were two 
(visual) or three (automated). One sample (Fb06_20days) had very narrow rings and therefore no IADFs could 
be observed with the visual detection method.

Intraannual profiles of lumen area and cell wall area—the individual components that make up the anatomical 
density—reveal the cellular-level drivers of the IADFs in 1783 (Figure 7). While the 1783 Laki lumen area is 

Figure 4. (a) Full sample (N = 24) tree-ring width (TRW) chronology (black line) and average tree-ring width of samples 
measured in ROXAS (N = 9, red line). (b), (c) Updated CSCAN2019 MXD chronology (black line) from Linderholm and 
Gunnarson (2019) and the anatomical MXD (aMXD) measurements (blue line) at a resolution of 10 μ (b) and 160 μ (c). 
Results from the Pearson correlation coefficient calculations are included in each plot. Values are normalized for comparison 
of the related, but different, measurements. The data in this study were analyzed over the 30-year period: 1768–1798. Shaded 
regions show the ±1 SD around the mean values. None of the anatomical chronologies were detrended. The aMXD10 has 
a lower correlation with the CSCAN2019 MXD chronology because of the drop in density in the last part of the ring that is 
captured by the high-resolution aMXD.
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actually larger than in noneruption control years for the first 50% of the total ring width, at between 60% and 80% 
of the total ring width the lumen area drops suddenly below the control (Figure 7a), indicating a premature end to 
the enlarging phase of xylogenesis for these cells. This rapid reduction is accompanied by a simultaneous decline 
in the cell wall area (Figure 7b), further indicating that cambial activity became suddenly disrupted at this time. 
While the Laki year lumen area plateaued and rose slightly above the control year median for the last 15% of 
the total ring width, the Laki cell wall area does not make a similar recovery and remains below the noneruption 
year median. The briefly higher density wood in the Laki year at 65%–80% of the total ring width (Figure 7c) is 
therefore associated with the abrupt decline in lumen area that defines the start of the IADF. For the remainder 

Figure 5. Results from the Pearson correlation coefficient calculations between the CSCAN2019 MXD chronology and each 
aMXD chronology from 1768 to 1798. All correlations are significant at p < 0.001.

Figure 6. Intraannual density fluctuation (IADF) frequency from 1768 to 1798 CE based on automatic detection (light pink) and visual identification (dark park). 
Frequency is out of nine possible trees for every year for both identification methods.
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of the growing season, the declining cell wall area combined with the plateau 
in lumen area resulted in the low density measured in the last 15% of the 
1783 ring.

3.2. Climate Data
For the 1768–1798 period during the latter half of the Little Ice Age, the 
Stockholm, Uppsala, and Trondheim stations experienced cool summers with 
temperatures rising above 0°C by April (Figure 8). Temperatures for 1783 
were higher than the 1768–1798 average, with notably higher temperatures 
particularly in April, July, and September at the Trondheim stations (Fig-
ure 8b). Temperatures in 1784 were consistently lower than the 1768–1798 
average particularly in the winter of that year at both stations (Figures 8a 
and 8b). Daily data also show that Stockholm temperatures in the summer of 
1783 were generally higher than the 1768–1798 average, except for a brief 
period in the beginning of August when temperature was on average 2.48°C 
below normal over a period of 5 days (Figure 8c). A comparison of modern 
weather observations from Östersund and Höglekardalen suggests the Jämt-
land tree-ring site is 0–2.5°C cooler than Trondheim and 3–5°C cooler than 
Uppsala.

All of the aMXD chronologies and CSCAN2019 are significantly and pos-
itively correlated with August temperature at both historical stations over 
the full 1768–1798 period (Figure 9). The highest correlation (r = 0.65) is 
between CSCAN2019 and August temperature at Uppsala, and the strongest 
aMXD correlation (r = 0.60) is between aMXD80 and August temperature 
at Uppsala. Both CSCAN2019 and the lower resolution aMXD (aMXD80–
aMXD160) series have a broader seasonal range of months with significant 
correlations at the Uppsala station, although interestingly not at Trondheim 
(Figure 9a). The correlations with historical climate data from the 18th cen-
tury are stronger overall if 1783 is excluded (not shown).

3.3. Carbon Isotope Data
The Δ13C series has a large negative excursion at 1783–1785, with the largest 
decrease in isotopic discrimination in 1784 (Figure 10). If we consider the 
entirety of the 1768–1798 period, there is no significant correlation between 
any of the MXD chronologies and the Δ13C series (Table 1). However, when 
we simply exclude 1783, 1784, and 1785 from the calculation, the expected 
(Gagen et  al.,  2007; Seftigen et  al.,  2011) significant negative correlation 
between the MXD chronologies and Δ13C emerges. The absolute value of 
the correlation coefficient generally increases from high-resolution aMXD 
to low-resolution aMXD (Table 1), with the weakest negative correlation at 
aMXD20 (r = −0.35, p = 0.07), and the strongest negative correlation at 
aMXD160 (r = −0.62, p < 0.01). All correlations with 1783, 1784, and 1785 
excluded are significant at p ≤ 0.07 (Table 1).

3.4. X-Ray Fluorescence
Both sulfur and chlorine were below detection limits for our XRF analysis of these samples. Elements such as As, 
Br, Cu, and Zn—which could reflect an acidification response—do show a slight decrease in the latewood of the 
1783 and 1784 rings, but this could also result from lower latewood density in these rings (Pearson et al., 2009). 
Similarly, Pearson et al. (2006) were not able to detect chemical evidence for the direct impact of eruption prod-
ucts from the Icelandic volcano Askja (1875) on trees growing downwind in central Sweden, although the Askja 
eruption also differed from the Laki eruption in many important respects. Dendrochemical studies generally 

Figure 7. Lumen area, cell wall area, and anatomical density measurements 
plotted according to their relative position in the tree ring. The anatomical 
density is the ratio between the cell wall area (CWA) and the sum of cell wall 
area (CWA) and cell lumen area (LA). The red line is the lowess curve of all 
cell measurement for the 1783 years throughout the different relative positions 
in the ring. The red envelope represents the area between the lowess curves fit 
to the residuals of the original lowess curve. The black line is the lowess curve 
fit to all cell measurements of the control years: 15 years before and after the 
1783 Laki eruption. The gray envelope represents the area between the lowess 
curves fit to the residuals of the original lowess curve for the control years.
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show a high level of variability in-terms of tracing the onset of chemical 
change in the environment. Even for forests subject to relatively high levels of 
anthropogenically or volcanically produced pollutants, dendrochemical anal-
yses have shown mixed results (Rocha et al., 2020; Watmough, 1997; Watt 
et al., 2007), due to a complex interplay of factors related to the size, spread, 
season, and proximity of the pollution event as well as to tree and micro-site 
specific variables (soil depth and chemistry, topography, etc). Even when 
eruptions do leave a geochemical trace in annual rings, individual trees may 
record different signals (Sheppard et al., 2009). Our dendrochemistry results, 
while compatible with an acid deposition hypothesis, were inconclusive, and 
cannot be strongly argued to support the direct impact of the acidic Laki haze 
on wood anatomical anomalies in 1783.

4. Discussion
4.1. Measurement Resolution, Extreme Events, and the Disruption of 
Wood Formation
Calculating aMXD using multiple different resolutions permits us to identi-
fy the complicated and abnormal intraannual tree-ring response to the Laki 
volcanic eruption (Figure 4), which in turn allows us to better understand 
the discrepancy between historical observations and traditional MXD (Fig-
ure 1). The MXD data from Jämtland used in the Luterbacher et al. (2016) 
reconstruction and others (e.g., Anchukaitis et  al.,  2017) were measured 
using the Itrax wood scanner (Gunnarson et al., 2011; Linderholm & Gun-
narson, 2019). While the measurements were taken at nominal 20 μm steps 
(Linderholm & Gunnarson, 2019), Björklund et al. (2019) calculated an ef-
fective or apparent resolution for Itrax between 100 and 120 μm. The 10 μm 
resolution aMXD typically calculates the density in very last section of the 
latewood, which is relatively low in 1783 CE, as seen in Figure 3. The low 
MXD measured by the Itrax or the low resolution aMXD in 1783 is caused 
by the inclusion of this low density section in the very last portion of the 
latewood but then is ameliorated in part by incorporating the higher density 
portion of the IADF (Figure 4). In other words, the lower effective resolu-
tion of the Itrax data coincidentally compensates somewhat for the very low 
wood density detected by our highest resolution aMXD calculations. Our use 
of the high-resolution aMXD measurements shows that IADFs in 1783 are 
caused by disruptions to the normal anatomical structure of the annual ring. 
When the normal wood formation is disturbed, as it is here after the eruption, 
the expected relationship between summer temperature and traditional MXD 
measurements appears to be altered.

4.2. Potential Causes of Low MXD and IADFs in 1783
IADFs are the result of deviations from the normal growing season patterns 
of xylogenesis (De Micco et al., 2016; Mayer et al., 2020). The characteristic 
density fluctuations of IADFs can form due to changes in cell differentia-
tion or bimodal cambial activity: in our case, cambial activity declines and 

smaller abnormal cells are produced due to detrimental growing conditions (Battipaglia et al., 2016; De Micco 
et al., 2016; Morino et al., 2021; Wimmer et al., 2000). Anatomical anomalies like IADFs are generally formed 
when trees experience stressful conditions, including drought, defoliation, or frost events (Cuny et al., 2014; 
Fritts, 1976). IADFs have been commonly linked to changes in moisture availability in trees from Mediterranean 
or bimodal precipitation monsoon regions (Morino et al., 2021), but are rarely found in boreal forest trees and 
have only been observed in ≈9% of tree rings in previous studies (Battipaglia et al., 2016). However, in boreal 

Figure 8. Historical monthly temperature data from the Uppsala (a) and the 
average Trondheim (b) climate stations. Temperature for 1783 CE (red), 1784 
CE (blue), and the average temperature over the 1768–1798 CE period (black) 
are plotted (a, b). Daily temperature data from the Stockholm climate station 
(c): positive 1783 CE temperature anomalies over the 1768–1798 CE average 
(black) are plotted with red, while negative 1783 CE temperature anomalies 
are plotted with blue. X-axis tick marks in panel c mark the halfway point of 
each month.
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forests the occurrence of IADFs can be the result of defoliation from pollution or sudden cold events (Kozlov & 
Kisternaya, 2004; Kurczyńska et al., 1997) and IADFs are more commonly observed in wider rings (Battipaglia 
et al., 2016; De Micco et al., 2016). The IADFs we observe in 1783 originate from an initial sharp decline in 
lumen area in the later section of the ring, concomitant with a decline in cell wall area in the latewood, which 

Figure 9. Results from the Pearson correlation coefficient calculations between the monthly data at Uppsala (a) and Trondheim (b), and the multiple resolution aMXD 
and CSCAN2019 MXD chronologies from 1768 to 1798 CE. Significant correlations (α = 0.01) are indicated with a dot.

Figure 10. Times series of Δ13C (black) converted from (Seftigen et al., 2011) and aMXD chronologies at the 10 μm resolution (red) and at the 160 μm resolution 
(blue). aMXD chronologies are normalized. The Δ13C time series axis is inverted for better visual interpretation.
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results in a temporary increase in anatomical density followed by a reduction 
at the very end of the year, relative to the control years (Figure 7).

Based on multiple lines of evidence discussed in detail below, we hypoth-
esize that the high prevalence of IADFs in 1783 was most likely caused by 
acid damage from the volcanic eruption and is linked to the anomalous MXD 
values in that year. Our assessment rules out temperature changes through 
comparison between the multiple MXD chronologies, historical observa-
tions, and the Δ13C record. We cannot, however, conclusively parse the pos-
sible effect of changes to light availability as the Furuberget Δ13C chronology 
appears to be overwhelmed by the direct effect of the acidic haze.

We interpret the low MXD and high frequency of IADFs in 1783 to most 
likely be a consequence of the direct and detrimental effect of the Laki erup-
tion's acidic haze on tree growth, as hypothesized by Briffa et  al.  (1988). 
Historical observations in both Sweden and Norway at the time noted acidic 
haze and concurrent vegetation damage (Demarée & Ogilvie, 2001; Grattan 
& Pyatt, 1994; Laufeld, 1994; Thorarinsson, 1981). The grain harvest also 
failed in several parts of Sweden in September 1783 and the hay harvest pro-
duced low yields (Demarée & Ogilvie, 2001). In Trondheim, tree leaves were 
described as “burnt” and vegetation “withered” after acid rain and fog dep-
osition respectively (Demarée & Ogilvie, 2001). In Sweden, the dry fog was 
observed to be “injurious to the vegetation” and that it “damaged the trees” 
and caused plants to “wither and drop their leaves” (Thorarinsson,  1981). 

Reports in western Europe similarly describe trees losing their leaves suddenly, and vegetation looking “burnt” 
or that it had the “appearances of the autumn” (Demarée & Ogilvie, 2001). Volcanic pollutants including SO2 
and H2S are known to damage conifer needles, which leads to a reduction of stomatal aperture and potentially 
defoliation and even tree death (Bartiromo et al., 2012). SO2 and SO4-induced damage to needle stomata also 
limits photosynthetic CO2 fixation and causes preferential uptake of 13C (D’Arcy et al., 2019; Martin et al., 1988; 
Thomas et al., 2013), which is consistent with the decrease in carbon isotope discrimination we observe in the 
Furuberget Δ13C. Trees under consistent industrial sulfur pollution have also displayed reduced MXD and in-
creased occurrences of IADFs compared to trees at nonpolluted sites (Kurczyńska et al., 1997; Wimmer, 2002). 
A study by Myśkow et al. (2019) demonstrated that pollutant fog deposition resulted in decreased cambial activ-
ity, leading to the formation of narrower annual rings such as those observed at Jämtland in the years following 
the eruption (Figure 4). Ring-width suppression and needle damage in P. sylvestris has similarly been reported 
in association with artificial smoke, containing chlorosulfonic acid, used to conceal the location of the German 
battleships Tirpitz during the Second World War (Hartl et al., 2019) and as the result of insect induced defoliation 
(Axelson et al., 2014; Watanabe & Ohno, 2020). A number of investigators have found additionally that latewood 
width, latewood density, and cell wall thickness can all be reduced by defoliation (Arbellay et al., 2018; Castag-
neri et al., 2020; Esper et al., 2007).

A combination of the atmospheric conditions at the time of the Laki eruption and, potentially the influence of site 
topography, likely led to long-lasting and effective volcanic pollutant deposition at our study site. Volcanic gas 
concentration and persistence have a direct effect on the severity of damage to vegetation (Bartiromo et al., 2012; 
Delmelle, 2003). Acidified fog can potentially have 10 times the solute concentration compared to rain, and 
has greater capacity for vegetation damage (Delmelle, 2003). The high pressure cell and atmospheric blocking 
over Europe at the time of the Laki eruption also led to a more persistent sulfuric surface haze (Thordarson & 
Self, 2003; Zambri et al., 2019a). Modeling experiments show high surface sulfate aerosol concentrations over 
central Sweden throughout the summer (Chenet et al., 2005) and historical observations from Stockholm first 
note a “dry fog” on 24 June, which then continued every day for a month, except for 4 days at the end of June/early 
July (Thorarinsson, 1981; Thordarson & Self, 2003). Model simulations of the Laki eruption show peak sulfate 
loading in the upper troposphere/lower stratosphere in August (Oman et al., 2006; Zambri et al., 2019b), the time 
period when temperature would otherwise normally be the primary influence on MXD (Figure 9). The timing 
of the eruption is crucial because it occurred during the boreal forest growing season. While defoliation effects 
can lead to subsequent growth suppression irrespective of season, the sudden change in xylogenesis we observe 

Chronology
1768–
1798 r

1768–1798 
p-value

1783–1785 
excluded r

1783–1785 
excluded p-values

aMXD10 0.18 0.32 −0.43 0.02
aMXD20 0.23 0.21 −0.35 0.07
aMXD30 0.22 0.23 −0.38 0.05
aMXD40 0.17 0.36 −0.44 0.02
aMXD50 0.17 0.37 −0.46 0.01
aMXD60 0.15 0.43 −0.48 <0.01
aMXD80 0.12 0.53 −0.52 <0.01
aMXD100 0.08 0.69 −0.56 <0.01
aMXD120 0.05 0.80 −0.59 <0.01
aMXD160 0.02 0.91 −0.62 <0.01
CSCAN2019 −0.03 0.88 −0.60 <0.01

Table 1 
Results From the Pearson Correlation Coefficient Calculations Between 
the Δ13C Series (Seftigen et al., 2011) and the Multiple Resolution aMXD 
and CSCAN2019 MXD Chronologies From 1768 to 1798, With and Without 
Excluding Concurrent and Post-Volcanic Eruption Years 1783, 1784, and 
1785
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imprinted on the wood anatomy of 1783 is likely the result of the acidic haze and tree damage during a period 
of active cambial growth. Previous studies have also found a positive relationship between elevation and sulfate 
deposition, with fogwater deposition more significant than deposition from precipitation at higher elevations 
(Lükewille & Semb, 1997; Walmsley et al., 1970). While the trees in the full data set were collectively sampled 
over a wide area, the majority of the trees used here for QWA analysis were sampled on the top of a small peak 
at approximately 650 m a.s.l (Linderholm & Gunnarson, 2019), possibly making them even more susceptible to 
the direct effects of the haze (Delmelle, 2003).

In theory, a sudden or transient cold period could also cause low density in the very last section of the 1783 ring 
(cf. Edwards et al., 2021; Piermattei et al., 2020). At lower measurement resolution both traditional MXD and 
aMXD chronologies reflect temperatures integrated over the entire summer, while the high-resolution aMXD 
chronologies capture the anatomical characteristics of only late growing season August temperature (Figure 9). 
The higher resolution aMXD chronologies (Figure 4b) are therefore capable of capturing a monthly or even sub-
monthly climate signal caused by a brief cold period at the end of the growing season, as occurred in Alaska fol-
lowing the Laki eruption (Edwards et al., 2021). The monthly data from the Uppsala and Trondheim stations may 
be too coarse, however, to properly identify such a period. Daily data from Stockholm does show a 5-day period 
of cooler temperature anomalies (−2.48°C below climatology over the 5-day period) in the beginning of August 
(Figure 8c). However, this period is unlikely to be long enough nor sufficiently severe to cause the anomalous 
wood anatomy and low MXD seen in the 1783 ring (Begum et al., 2012). Low August and September tempera-
tures that cause an early end to the growing season, as well as ephemeral cold snaps, have been previously linked 
to lower MXD and associated with “light rings” (Edwards et al., 2021; Gindl et al., 2000; Szeicz, 1996; Vaganov 
et al., 2006) or “blue rings” (Björklund et al., 2021; Matisons et al., 2020; Piermattei et al., 2015; Piermattei 
et al., 2020), neither of which are observed in the 1783 rings. Damage to vegetation from Laki acid deposition 
was often at the time erroneously attributed to overnight frost in England and across Europe, including in Sweden 
(Grattan & Pyatt, 1994; Thordarson & Self, 2003). But because early morning and evening temperatures were 
recorded to be well above freezing (10–15°C), it is unlikely that temperatures would drop below freezing in the 
few hours between measurements (Thordarson & Self, 2003). There is a negative temperature anomaly at the 
beginning of May in Stockholm (Figure 8c) and mild frosts in late spring/early summer have been previously 
linked to IADF occurrence (Kozlov & Kisternaya, 2004). However, early season climate conditions are more 
commonly associated with IADFs defined by latewood-like cells within the earlywood, rather than the type of 
IADFs we see in 1783, which is defined by earlywood-like cells within the latewood (Campelo et al., 2007; De 
Micco et al., 2016).

An alternative hypothesis is that the low MXD in 1783 could be caused by a decrease in light availability after 
the Laki eruption, overwhelming the proxy's normal temperature response. For instance, Tingley et al. (2014) 
suggest that low MXD in years following volcanic eruptions could be caused by light reduction. In contrast, the 
Furuberget Δ13C record (Figure 10) would conventionally be interpreted as indicating an increase in light availa-
bility during and after the Laki eruption (Figure 10), as tree-ring δ13C records from this region have been shown 
to positively covary with sunshine metrics (Gagen et al., 2007; Loader et al., 2013; Seftigen et al., 2011). The 
negative Δ13C excursion may be because an increase in diffuse radiation caused by light scattering from volcanic 
aerosols (Robock, 2005) actually increased photosynthetic capacity. Diffuse radiation has been hypothesized to 
lead to more efficient photosynthesis (Gu et al., 2003; Mercado et al., 2009) and so if anything would presumably 
result in an increase in MXD (Robock, 2005). There are, however, contrasting findings in this regard (e.g., Knohl 
& Baldocchi, 2008). Furthermore, there is no evidence from either TRW or MXD that growth conditions during 
the summer of 1783 were more favorable due to increased diffuse light. The negative Δ13C excursion observed in 
1783 is, however, the expected response to a decrease in carbon isotope discrimination caused by historically sup-
ported acid deposition (Rayback et al., 2020). Other tree-ring δ13C records from further north in Fennoscandia, 
however, are unremarkable in 1783 and do not indicate any consistent changes in cloud cover or light availability 
over the broader region (Loader et al., 2013; Young et al., 2012). Thus, while we cannot eliminate a potential role 
for changing light availability during the eruption in 1783, the carbon isotope evidence from Furuberget is most 
consistent with the expected response to direct damage to trees from acidic haze. Beyond tree-ring data, analysis 
of historical documents may in the future be able to provide additional information on changes in light or diffuse 
radiation caused by the Laki eruption.
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Lumen area is also normally correlated with day length over the course of the growing season, with the longer 
photoperiod of summer promoting the production of auxin, the phytohormone responsible for cell growth and 
extensibility (Buttò et al., 2021; Cuny et al., 2014; Cuny & Rathgeber, 2016; Rathgeber et al., 2016). Oman 
et al. (2006) simulated a strong decrease in surface shortwave radiation during the summer 1783 and contempo-
rary accounts report the “sky was overspread with a dark dry fog” (Brayshay & Grattan, 1999). However, it is not 
clear what the response of the cambium might be to a sudden change in photosynthetically available radiation 
during the eruption or how this would be reflected in the lumen anatomy for that year. Experimental and observa-
tional evidence of the cambial response to sudden changes in light following volcanic eruptions may help further 
parse the relative contributions to the haze itself and the concomitant alteration of surface radiation.

4.3. Abnormal Wood Anatomy Disrupts MXD Temperature Signals
While one would expect to observe high MXD values in 1783 given the high temperatures recorded across 
Scandinavia (Figure 8), the direct effects of the volcanic haze appear to be the best explanation for the disrupted 
climate signal. In the first 50% of the total ring width, the 1783 lumen area is higher than the control period aver-
age, as might be expected during a warm spring and the generally favorable growing conditions seen in historical 
records, but it then sharply declines at 60% through the annual ring (Figure 7a). This decrease in lumen area 
leads to a temporary increase in density, but reduced cell wall area ultimately leads to low density in the last 15% 
of the total ring width and the low MXD value in 1783 (Figure 7). Vejpustková et al. (2017) found that lumen 
width, cell wall thickness, and cell number all decreased following an industrial SO2 pollution event and Myśkow 
et  al.  (2019) found that earlywood cell width and lumen area decreased during intense pollutant deposition. 
Other studies have also shown that industrial sulfur pollution leads to reduced MXD and increased occurrence 
of IADFs compared to trees at nonpolluted sites (Evertsen et al., 1986; Kurczyńska et al., 1997; Wimmer, 2002). 
In 1783, the cell wall area in the Jämtland trees decreases below the noneruption year average at the same time 
as the lumen area declines but never recovers, which ultimately leads to the low MXD for the year (Figure 7b). 
Normally, we expect cell wall area to remain approximately fixed throughout the ring except for the very last cells 
that respond to climate conditions (Cuny et al., 2014), so the decrease in cell wall area and the other anatomical 
anomalies that we observe in 1783 indicates a disturbance of the normal wood formation process.

The wood anatomical anomalies we observe in 1783 should be considered exceptional, because events like the 
Laki eruption are relatively rare (Toohey et al., 2019) and its direct effects were exacerbated by atmospheric 
circulation patterns at the time (Zambri et al., 2019a). More generally, the proximal impacts of large eruptions 
on tree-ring formation will be limited geographically, and at hemispheric and global scales the climate signal of 
eruptions should still dominate in temperature-sensitive tree-ring chronologies. However, it is possible that other 
eruptions may have had similar effects. For instance, while the exact source of the extratropical volcanic eruption 
in 536 CE remains unknown (Helama et al., 2018; Sigl et al., 2015; Stothers & Rampino, 1983), records from 
across the Mediterranean (Stothers & Rampino, 1983) recall what would seem to be the impacts of an acid fog 
highly reminiscent of Laki period descriptions. Future work might focus on trees from regions where such records 
are prevalent and, where the source volcano is known, tested in any remaining forests in close proximity.

5. Conclusion
By using wood anatomical data in combination with stable carbon isotope data and historical observations, we 
identified the cause of the discrepancy between historical observations and traditional MXD chronologies fol-
lowing the 1783 Laki eruption. We found anomalous wood anatomy, a high prevalence of IADFs, and reduced 
lumen and cell wall area in the latewood of 1783, which we interpret to most likely be the consequence of damage 
to wood formation processes by volcanic acid deposition on wood formation processes. In contrast, 1784 shows 
the expected climatic response (cooling as a result of stratospheric sulfate)—lower MXD—in agreement with 
historical records. The decline in tree-ring width in 1784 and for several years afterward might also in part reflect 
the ongoing effects of the acid induced defoliation that occurred in 1783 (Axelson et al., 2014; Hartl et al., 2019).

The results of this study have implications for the interpretation of tree-ring records following proximal volcan-
ic eruptions. In the case of tree rings formed during the Laki eruption, we clearly demonstrate that the normal 
climate/MXD relationship is disrupted or obfuscated by the anatomical consequences of what is most likely the 
direct effects of acidic haze. Under normal circumstance, the high-resolution density estimates made possible 
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by quantitative wood anatomy can provide very precise estimates of past temperature trends and variability 
(Björklund et al., 2020), but the ability to vary the effective resolution of these measurements also suggests a 
potential approach for identifying anomalous years associated with rare disturbances or extreme environmental 
events. However, it is not yet clear that it is possible to recover the “true” temperature signature from rings where 
anatomical anomalies reflect a nonclimatic cause. Further work is necessary to determine how best to use aMXD 
records to analyze and quantify these extreme years, but our study already suggests that screening anatomical 
series for anomalies can lead to an evaluation of potentially confounding factors for climate reconstructions. In 
the case of the Laki eruption specifically, wood anatomy allows us to understand why existing tree-ring recon-
structions of summer temperature using MXD do not agree with historical records and observations. In addition 
to the previously established effects of the Laki eruption haze on human health, our study underlines the potential 
detrimental effect of acid volcanic haze on forest vegetation, underscoring the wide-ranging impact that such 
eruptions can have across a large region.

Data Availability Statement
The tree-ring data that support the findings of this study are available in the International Tree-Ring Data 
Bank (ITRDB) at the NOAA/World Data Service for Paleoclimatology archives (https://www.ncdc.noaa.gov/
paleo/study/35258). The data on which this article is based are available in Luterbacher et al. (2004), Seftigen 
et al. (2011), Luterbacher et al. (2016), Linderholm and Gunnarson (2019); Moberg (2020), and the Berkeley 
Earth compilation (Lawrimore et al., 2011; Menne et al., 2018; Rohde & Hausfather, 2020).
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