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This paper concerns first-order approximation of the
piecewise-differentiable flow generated by a class of non-
smooth vector fields. Specifically, we represent and com-
pute the Bouligand (or B-)derivative of the piecewise-
differentiable flow generated by a vector field with event-
selected discontinuities. Our results are remarkably efficient:
although there are factorially many “pieces” of the deriva-
tive, we provide an algorithm that evaluates its action on a
tangent vector using polynomial time and space, and verify
the algorithm’s correctness by deriving a representation for
the B-derivative that requires “only” exponential time and
space to construct. We apply our methods in two classes of
illustrative examples: piecewise-constant vector fields and
mechanical systems subject to unilateral constraints.

1 Introduction

First-order approximations — i.e. derivatives — are a
foundational tool for analysis and synthesis in smooth dy-
namical and control systems. For instance, derivatives play
a crucial rdle in: stability via spectral [1, Ch. 8.3] or Lya-
punov [2, Ch. 5] methods; controllability via lineariza-
tion [1, Ch. 8.7] or Frobenius/Chow [2, Ch. 8/Ch. 11] tech-
niques; optimality via stationarity [3, Ch. 1] or Pontryagin [4,
Ch. 1] principles; identifiability via adaptation [5, Ch. 2] or
Expectation-Maximization [6, Ch. 10] methods. These tools
all depend on the existence of a computationally-amenable
representation for the first-order approximation of smooth

*This material is based upon work supported by the U. S. Army Re-
search Laboratory and the U. S. Army Research Office under grant num-
ber WO1INF-16-1-0158 and by the U. S. National Science Foundation
Award #1836819 and #1924303.

system dynamics — namely, the Fréchet (or F-)derivative of
the system’s smooth flow [7, Ch. 5.6], which derivative is a
continuous linear function of tangent vectors.'

By definition, nonsmooth systems do not generally
enjoy existence (let alone computational amenability) of
first-order approximations. Restricting to the class of (so-
called [8, Def. 1, 2]) event-selected C" (EC") vector fields
that (i) are smooth except along a finite number of sur-
faces of discontinuity and (ii) preclude sliding [9, 10] or
branching [11, Def. 3.11] through a transversality condi-
tion, we obtain flows that are piecewise-differentiable [8,
Thm. 4] (specifically, piecewise-C"(PC") [12, Ch. 4.1]). By
virtue of their piecewise-differentiability, these flows admit
a first-order approximation, termed the Bouligand (or B-
)derivative, which derivative is a continuous piecewise-linear
function of tangent vectors [12, Ch. 3, 4]. This paper is con-
cerned with the efficient representation and computation of
this piecewise-linear first-order approximation.

Our contributions are twofold: (i) we construct a repre-
sentation for the B-derivative of the PC" flow generated by
an EC” vector field; (ii) we derive an algorithm that eval-
uates the B-derivative on a given tangent vector. Although
there are factorially many “pieces” of the derivative, we (i)
represent it using exponential time and space and (ii) com-
pute it using polynomial time and space. In an effort to make
our results as accessible and useful as possible, we provide
a concise summary of the algorithm in Sec. 2 and apply our
methods in Sec. 3 before rehearsing the technical background
in Sec. 4 needed to derive the representation in Sec. 5 and

'We emphasize both properties of the classical derivative since the gen-
eralized derivative we consider retains one while relaxing the other.
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verify the algorithm’s correctness in Sec. 6.

We emphasize that our methods are most useful when
there are more than two surfaces of discontinuity, as rep-
resentation and computation of first-order approximations
in the 1- and 2-surface cases have been investigated exten-
sively [13—18], and these cases do not benefit from the com-
plexity savings touted above. Previously, we established ex-
istence of the piecewise-linear first-order approximation of
the flow [8, Rem. 1] and provided an inefficient scheme to
evaluate each of its “pieces” [8, Sec. 7] in the presence of an
arbitrary number of surfaces of discontinuity. To the best of
our knowledge, the present paper contains the first represen-
tation for the B-derivative of the PC" flow of a general EC"
vector field and polynomial-time algorithm to compute it.

2 Algorithm

The goal of this paper is to obtain an algorithm that
efficiently computes the derivative of a class of nonsmooth
flows. This computational task and our solution are easy to
describe, yet verifying the algorithm’s correctness requires
significant technical overhead. Thus, the remainder of this
section will be devoted to specifying the algorithm and the
problem it solves using minimal notation and terminology.
Subsequent sections will provide technical details — which
may be of interest in their own right — that prove the algo-
rithm is correct.

2.1 Problem statement
Given a vector field F : R? — TR? and a trajectory x :
[0,00) — R satisfying?

t
VtZO:xt:xo—i-/F(xT)d‘c, )
0

our goal is to approximate how x; varies with respect to xg to
first order for a given ¢ > 0. Formally, with ¢ : [0,00) x R? —
R denoting the flow of F satisfying

Vi >0,x0 € RY: dr(x0) :x0+/0tF(¢T(xo)) dt, (2)

our goal is to evaluate the directional derivative D, (xo;dxp)
givent > 0, dxg € Y}ORd :

Do, (X(); 8)6()) ((Dt (X() +a 5x0) — o (X())) 3)

.1

= lim —
o—0+ O
Specifically, we seek to evaluate this derivative for vector
fields that are smooth everywhere except a finite collection
of surfaces where they are allowed to be discontinuous. We
will first recall how to obtain the derivative in the presence
of zero (Sec. 2.2) and one (Sec. 2.3) surfaces of discontinuity

2In this section (only), we will denote time dependence using subscripts
rather than parentheses to minimize the notational overhead.

before presenting our algorithm, which is applicable in the
presence of an arbitrary number of surfaces of discontinuity
(Sec. 2.4).

2.2 Continuously-differentiable vector field

If F is continuously differentiable on the trajectory x, the
derivative dx, = D, (xo; Oxp) satisfies the linear time-varying
variational equation [19, Appendix B]

t
Vi >0 8 = dxp+ / DF (xz) - 8xcd, )
0

whence Ox; = DO, (xo;0xp) can be approximated to any de-
sired precision in polynomial time by applying numerical
simulation algorithms [19, Ch. 4] to Eq. (1), Eq. (4).

2.3 Single surface of discontinuity

If F is continuously differentiable everywhere except a
smooth codimension-1 submanifold H C R that intersects
the trajectory x transversally at only one point x;, s € (0,1),
the continuous-time equation Eq. (4) is augmented by the
discrete-time update [13, Eq. (58)],

(Ff—F )’

ij = <1d+ T]T-F7

) Sxy =M-8x;,  (5)

where dxF = lim;_, ;= 8x; and F* = lim;_,,+ F (x;) denote
the limiting values of dx; and F (x¢) at s from the right (+)
and left (—) and n € R? is any vector orthogonal to sur-
face H at x;; M € R?*4 is termed the saltation matrix [17,
Eq. (2.76)], [20, Eq. (7.65)]. The desired derivative is

Do, (x030x0) = D;—g(x5) - M - Do (x0) - Ox0, (6)

where DO, _(x,),Ddy(x0) € R?*? can be approximated by
simulating Eq. (2), Eq. (4) since the flow is smooth away
from time s. Computing the saltation matrix M requires
0(d2) time and space, but evaluating its action on &x;
in Eq. (5) requires only O (d) time and space.

2.4 Multiple surfaces of discontinuity

If F is continuously differentiable everywhere except a
finite set of smooth codimension-1 submanifolds {H j}?:l
that intersect the trajectory x transversally at only one point
xs (see Fig. 1(a) for an illustration when n = 2), s € (0,7), we
showed in [8, Eq. (65)] that the discrete-time update Eq. (5)
is applied once for each surface. However, the order in which
the updates are applied, and the limiting values of the vector
field used to determine each update’s saltation matrix, de-
pend on dxg. If the surfaces intersect transversally, there
are n! different saltation matrices determined by 2" vector
field values, so considering all update orders requires facto-
rial time and space. To make these observations precise and
specify the notation employed in figs. 1 and 2, we formally
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(a) continuous-time variational dynamics (4)
&xr = DF (xz) - 8x¢

| Ferrn(e)

(b) discrete-time variational dynamics (8)
8x/ = 8p* = B(3p~) = B(3x;)

Fig. 1. Variational dynamics that determine B-derivative of planar EC” vector field's PC” flow (8). (a) Vector field F : R2 — TIR? is smooth
everywhere except smooth codimension-1 submanifolds Hy,H, C R? that intersect transversally at x; € Rz, generating a piecewise-
differentiable flow ¢ : [0,00) x R? — R? satisfying ¢r(x0) = x; for all T € [0,7], i.e. F is EC" and ¢ is PC” [8]. The B-derivative
D, (x0;0xp) = dx; is determined as in (10) by the continuous-time variational dynamics dx; = DF (xz) - Ox; and the discrete-time
variational dynamics dx;” = B(8x; ). The algorithms in Fig. 2 evaluate the piecewise-linear function B using the auxiliary system in (b)
determined by the tangent planes Hj, H and vector field limits Fj,(p) in (9) for b € {(—1, (+1,—1),(—1,41),+1} = {—1,4+1}*.

define the class of nonsmooth vector fields considered in this
paper [8, Defs. 1, 2].

Definition 1. (event-selected C" (EC") vector field) A vec-
tor field F : D — TD defined on an open domain D C R? is
event-selected C” with respect to h € C"(U,R") at p € R? if
U C D is an open neighborhood of p and:

1. (event functions) there exists f > 0 such that Dh(x) -
F(x)> fforallxeU;
2. (smooth extension) for all b € {—1,+1}" = B,,, with

Dy={xeU:b;(hj(x)=hj(p)) >0}, (7
F|mip, admits a C" extension Fy, : U — TU.
Our algorithms in Fig. 2 compute
dx; =08p" =B(8p~) = B(dx) (8)

given 8p~ = &x; € RY, normals {n; = Dh;j(p)}}_, C R4
at x, to surfaces {H; = hj_l(p) s
{—1,+1}" — R that evaluates limits of F at p = x;,

and a function I :

Vb e {—1,+1}":T(b) = Fy(p), C)

using the piecewise-constant dynamics illustrated
in Fig. 1(b), which are the discrete-time analog of the
continuous-time variational dynamics Eq. (4). Overall, the
desired derivative is

Dy (x0;0x0) = DO;—g(x5) - B(Dds(x0) - Oxp) , (10)

where B : Tde — Tde is the continuous piecewise-linear
function defined by our algorithms in Fig. 2. Our algorithms
require O (n?d) time and O (d) space to evaluate the direc-
tional derivative Eq. (3).

Assuming for the moment that these algorithms are cor-
rect, we emphasize that they achieve a dramatic reduction in
the computational complexity of evaluating the B-derivative
— from factorial to low-order polynomial — relative to naive
enumeration of all pieces of the B-derivative. However, de-
spite the apparent simplicity of our algorithms (computation-
ally and conceptually), verifying their correctness requires
significant technical effort; the bulk of the present paper is
devoted to this verification task.

3 Applications

To illustrate and validate our methods, we apply the al-
gorithm from the preceding section to piecewise-constant
vector fields in Sec. 3.1 and mechanical systems subject to
unilateral constraints in Sec. 3.2.

3.1 Piecewise-constant vector field
Consider the vector field F : R? — TR? defined by

x=F(x) =1+A(sign(x)) (11)

where A : B; — R?; so long as all components of all vectors
specified by A are larger than —1, i.e. minyep, [A(D)]; > —1,
F is event-selected C* with respect to the identity function
h:R? — RY defined by h(q) = q. We regard Eq. (11) as
a canonical form for piecewise-constant event-selected C*
vector fields that are discontinuous across d subspaces, since
any such vector field can be obtained by applying a linear
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Algorithm 1 3p™* + B(8p~,n,T)

1: &+ 0eR

2: Opt <« Jp~ e R4

3 b —1e{-1,+1}"

4: while b # +1 do

5: for je{1,...,n} do

6: T (n}-ﬁp*)/(n,TT(b))
7: JUargminjeqy {Tj 1bh; < 0}
8: Ot < Ot +1

9. dpt <+ dpt 41 -T(b)

10: bjr +— +1

11: return dp* — &t - T'(+1)

Algorithm 2 def B(dx,e,G):

1: dt = @

2: dx = np.array(dx)

3: b = -np.ones(len(e),dtype=np.int)

4: while np.any(b < @) :

5: tau = -np.dot(e,dx)/np.dot(e,G(b))
6: taulb > @] = np.inf

7 j = np.argmin(tau)

8 dt += taul[j]

9: dx += taul[j] * G(b)

10: b[j]1 = +1

11: return dx - dt = G(b) # b == [+1,...,+1]

Fig. 2. Algorithms that evaluate the B-derivative of an EC” vector field’s PC” flow written in pseudocode (left) and Python [21] sourcecode
(right; requires import numpy as np [22]). These algorithms apply at a point p € R? where a vector field F : RY — TR? is event-
selected C” with respect to n surfaces (see Fig. 1 for an illustration when d = n = 2), and assume the following data is given:

tangent direction, dp~ € TPR‘I,

surface normals at p,
vector field limits (9),

change-of-coordinates to Eq. (11). In what follows, we focus
on the trajectory that passes through the origin p = 0, which
lies at the intersection of d surfaces of discontinuity for F.
With p~ =p — 1F 4 (p), p* = p+ 3F;1(p), we note that
p~ flows to p* through p in 1 (one) unit of time.

Our goal is to compute D, ¢(1,p7;0p7) € Tp+Rd for a
given dp~ € Tprd. In the general case, the desired deriva-
tive is piecewise-linear with (up to) d! distinct pieces, pro-
viding a general test. In the special case where A(b) = —8-b
for all b € By, |8] < 1, the desired derivative is linear [8,
Eq. (86)],

s e 1-6 o _

providing a closed-form expression for comparison. Fig. 3
illustrates results from both cases with d = 2.

3.2 Mechanical systems subject to one-sided constraints

Consider a mechanical system whose configuration is
subject to unilateral (i.e. one-sided) constraints. The dy-
namics of such systems have been studied extensively us-
ing the formalisms of complementarity [23, Sec. 3], mea-
sure differential inclusions [24, Sec. 3], hybrid systems [25,
Sec. 2.4,2.5], and geometric mechanics [26, Sec. 3]. Regard-
less of the chosen formalism, in a coordinate chart Q C R
the dynamics governing g take the form

M(q)§ = f(q,4) subject to a(g) = 0 13)

n= {n.i}_y;:l CRY,
C:{-1,+1}" = R4,

dx —array, dx.shape == (d,);
e —array, e.shape == (n,d);
G —function, G(b) .shape == (d,).

where: M(q) € R specifies the kinetic energy metric;
f(gq,4) € R? specifies the internal, applied, and Coriolis
forces; a(q) € R" specifies the unilateral constraints (we in-
terpret a(g) > 0 componentwise); and we assume in what
follows that M, f, and a are smooth functions. Different
formalisms enforce the constraint a(q) > 0 in Eq. (13) dif-
ferently, so we consider several cases in the following sub-
sections.

3.2.1 Rigid constraints yield discontinuous flows

If constraints are enforced rigidly as in [23-25], mean-
ing that they must be satisfied exactly, then the velocity
must undergo impact (i.e. change discontinuously) whenever
g € T,Q is such that a;(¢) = 0 and Daj(q) - ¢ < 0 for some
j€{1,...,n} [23, Sec. 2] [25, Eq. (23)] [24, Eq. (23)]. Un-
fortunately for our purposes, these discontinuities in the state
vector x = (g,§) cannot be modeled using an event-selected
C”" vector field ¥ = F(x), and the flow of such systems is gen-
erally discontinuous (although we note that the flow can be
PC" at non-impact times if the constraint surfaces intersect
orthogonally [27], i.e. if the surface normals are orthogonal
with respect to the inverse of the kinetic energy metric [24,
Theorem 20]).

3.2.2 Soft conservative constraints yield Lipschitz-
continuous vector fields, C! flows

We now consider the formalism in [26] that “soft-

ens” (i.e. approximately enforces) rigid constraints a(g) > 0

by augmenting the potential energy with penalty functions

{v j}’;:1 that scale quadratically with the degree of constraint
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Fig. 3.
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B-derivative of planar instance of vector field from Sec. 3.1 in linear (left) and piecewise-linear (right) cases. The vector field F'

defined in Eq. (11) is piecewise-constant and discontinuous across the coordinate hyperplanes H1, H,, generating a piecewise-differentiable
flow ¢ with B-derivative B. (left) The B-derivative is linear in the special case defined by Eq. (12). (right) The B-derivative is continuous and
piecewise-linear in general, so a ball of initial conditions flows to a piecewise-ellipsoid (solid lines).

violation [26, Eq. (12)],

0, aj(q) >0

(14)
%Kj(l?(q), a](Q) <0

Vje{l,...,n}:vj(q):{

In essence, each rigid constraint a;(g) > 0 is replaced by a
spring with stiffness «;, leading to the unconstrained dynam-
ics [26, Eq. (14)].

M(q)§ = f(q.q,u)

-¥

Jj=1

ZDV]
{ (kjaj(q

As shown by [28, Thm. 3], trajectories of Eq. (15) con-
verge to those of Eq. (13) in the rigid limit (i.e. as stiffnesses
go to infinity). Importantly for our purposes, the dynam-
ics in Eq. (15) can be modeled using an event-selected vec-
tor field along trajectories that pass transversally through the
constraint surfaces, whence our algorithms can compute the
B-derivative of the flow. However, the vector field Eq. (15)
in this case is (locally Lipschitz) continuous, hence the B-
derivative is trivial (all non-identity terms in Eq. (57) are
zero), whence the flow is continuously-differentiable (C').

(15)

£(g.q.u ))-Da;(a)" s a;(q) <0}

3.2.3 Soft dissipative constraints yield EC” vector fields,
C' flows
We now augment the unconstrained dynamics Eq. (15)
with dissipation as in [26]:

: (16)
-X

:l{otjqq Da](q) ~llj(q)<0}

where a;(q,q) = xja;(q) +B;Daj(q) - ¢; in essence, each
constraint penalty is augmented by a spring-damper that is
only active when the constraint is violated as in studies in-
volving contact with complex geometry [29] or terrain [30].
The dynamics in Eq. (16) can be modeled using an event-
selected vector field along trajectories that pass transversally
through the constraint surfaces, and the vector field is dis-
continuous along the constraint surfaces. However, we can
show that the flow of Eq. (16) is continuously-differentiable
(C") along any trajectory that passes transversally through
constraint surfaces. Indeed, letting x = (¢,¢) denote the
state of the system so that X = (¢,¢) = F(x) is determined
by Eq. (16), the saltation matrix Eq. (5) associated with each
constraint a; has the form

1
Daj(q) -4

0

I+ [iaj(q’q)] [Daj(q) 0]

a7

where the sign in the column vector is determined by whether
the constraint is activating (—) or deactivating (+). Since
matrices of the form in Eq. (17) commute, the saltation ma-
trices associated with simultaneous activation and/or deacti-
vation of multiple constraints are all equal, whence the flow
of Eq. (16) is continuously-differentiable (C') along any tra-
jectory that passes transversally through constraint surfaces.

3.2.4 Example (vertical-plane biped)

To ground the preceding observations, we consider the
vertical-plane biped illustrated in Fig. 4(left) that falls un-
der the influence of gravity toward a substrate. The biped
body has mass m and moment-of-inertia J; we let (x,y) € R?
denote the position of its center-of-mass in the plane and
0 € S! denote its rotation. Two rigid massless limbs of length
{ protrude at an angle of Wy with respect to vertical from
the body’s center-of-mass above a smooth substrate whose
height is a quadratic function of horizontal position, yielding

5 Copyright © by ASME
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Vertical-plane biped, a 3-degree-of-freedom mechanical system subject to unilateral constraints (Sec. 3.2.4), consists of a planar

body with two rigid massless legs falling under the influence of gravity toward a substrate (left). The system’s flow can be c! (center) or

PC" (right) depending on how forces vary as limbs contact substrate.

unilateral constraints

a1(x,,8) = —y— (x-+ Leos (6 —y))" ~Lsin@— W), |
ar(x,y,0) = —y— (x4 Lcos (B+))? — £sin(0+ ).

We consider the smoothness of the system’s flow along a tra-
jectory that activates both constraints simultaneously. The
formalism in Eq. (16) yields continuously-differentiable flow
for this system as illustrated in Fig. 4(center).

To obtain a flow that is piecewise-differentiable but not
continuously-differentiable, we modify the damping coeffi-
cients in Eq. (16) using the following logic®: By = B, = %
if aj(q) < 0 or ax(q) > 0 (exclusive or); B; = P2 =1 if
a1(q) < 0 and ap(q) < 0. The saltation matrices obtained
from different sequences of constraint activations (left foot
reaches substrate before right foot or vice-versa) are distinct:

M (ieft right) — M (right left) =
0 0 0 000
0 0 0 000
0 0 0 000 (19)
0 0 0 000
—4Bcos(y) 0 —2B(sin(2y) +cos(y)) 0 0 0
0 0 0 000

The piecewise-linear B-derivative of the system’s flow is il-
lustrated in Fig. 4(right). Sourcecode for this example is pro-
vided in SM.

4 Background

To verify correctness of the algorithms specified
in Sec. 2, we utilize the representation of piecewise-affine
functions from [33], elements of the theory of piecewise-
differentiable functions from [12], and results about the class
of nonsmooth flows under consideration from [8]. In an ef-
fort to make this paper self-contained (i.e. to save the reader
from needing to cross-reference multiple citations to follow

3 Although we introduce this logic purely for illustrative purposes, we
note that non-trivial dependence of forcing on the set of active constraints
could be implemented physically using clutches [31] or actuators [32].

our derivations), we include a substantial amount of back-
ground details in this section. The expert reader may wish to
skim or skip this section, returning only if questions arise in
subsequent sections.

4.1 Polyhedral theory

We let 0; € R? denote the vector of zeros, 1, € R” the
vector of ones, and I; € R4*4 the identity matrix; when di-
mensions are clear from context, we suppress subscripts. The
vectorized signum function sign : R? — {—1,4+1}¢ is de-
fined forall x € R, j € {1,...,d} by

~1,
+1,

Xj<0;

20
XjZO. ( )

[sign(x)]; = sign(x;) = {

If A € RP™ and B € R™*" then A - B € RY" denotes matrix
multiplication. Given a subset S C RY, we let affS, cones,
convS denote the affine span, cone span, and convex hull
of S, respectively [12, Sec. 2.1.1]. The dimension of a con-
vex set S is defined to be the dimension of its affine span,
dim$ = dimaffS. A nonempty set S C R is called a polyhe-
dron [12, Sec. 2.1.2] if there exists A € R™*?_p € R™ such
that S = {x € RY: A-x < b}; note that S is closed and con-
vex. The linear subspace £ = {x € RY: A-x =0} is called
the lineality space of S.

4.2 Piecewise-affine functions

We will represent a piecewise-affine function using a
triangulation (Z~,Z",A) [33, Sec. 3.1] that consists of a
combinatorial simplicial complex A whose vertex set is in
1-to-1 correspondence with each of the finite sets of vec-
tors Z~ C RY, Zt c R¢. For our purposes,4 a combi-
natorial simplicial complex A is a collection of finite sets
A={Ap}peq such that S C A, = SeAforall we Q;
we call [JpeqAw the vertex set of A. We assume that, for

4There are more general definitions of ([complete] semi-)simplicial
complexes and the closely-related concept of A-complexes in the litera-
ture [34, Ch. 2.1], [33, App. A.3.1]. Since we employ these concepts pri-
marily in service of parameterizing piecewise-affine functions as in [33,
Sec. 3.1], we adopt the (relatively restrictive) definitions of combinatorial
and geometric simplicial complexes from [33, Sec. 2.2.1] in what follows.
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every ® € Q, the collections of vectors Zg C Z* deter-
mined by Ay are affinely independent [33, Sec. 2.1.1] so
that AS = convZ: are (#(Ap) — 1)-dimensional geometric
simplices [33, Claim 2.9] where Ay C RY, Af C R°. We
assume further that, for every ®,® € Q, the collections of
vectors Ziw, C Z* determined by Ay N Ay coincide with
ZENZy C ZF so that A* = {AS}, . are geometric sim-
plicial complexes [33, Sec. 2.2.1]. With these assumptions
in place, the correspondence between Z~ and Z* deter-
mined by the triangulation (Z7,Z%,A) uniquely defines a
piecewise-affine function P : |[A~| — |A™ | using the construc-
tion from [33, Sec. 3.1] where |[A™| = Ugpea Ag C RY, |AT| =
UwecaAg C R¢ are termed the carriers [12, Sec. 2.2.1] of the
geometric simplicial complexes A*.

4.3 Piecewise-linear functions

If a piecewise-affine function P : RY — R is positively
homogeneous, that is,

Yo > 0,v e R : P(a-v) = o- P(v), (21)

then P is piecewise-linear [12, Prop. 2.2.1]. In this case, P
admits a conical subdivision [12, Prop. 2.2.3], that is, there
exists a finite collection £ = {Xq},cq such that: (i) X, C R4
is a d-dimensional polyhedral cone for each € Q;° (ii) the
Yo’s cover R%:® and (iii) the intersection LN Y 1s either
empty or a proper face of both polyhedral cones for each
0,0 € Q.

4.4 Piecewise-differentiable (PC") functions

(This section is largely repeated from [8, Sec. 3.2].) The
notion of piecewise—differentiability we employ was origi-
nally introduced in [35]; since the monograph [12] provides a
more recent and comprehensive exposition, we adopt the no-
tational conventions therein. Let r € NU {e} and D C R be
open. A continuous function f : D — R€ is called piecewise-
C" if for every xo € D there exists an open set U C D contain-

ing xo and a finite collection {f;: U — Rc}j ., of C” func-

{fj }jej‘

The functions { f j}j ., are called selection functions for f|y,

tions such that for all x € U we have f(x)

and f is said to be a continuous selection of { fj}j ., on
U. A selection function f; is said to be active at x € U if
f(x) = fj(x). Welet PC"(D,R) denote the set of piecewise-
C” functions from D to R¢. Note that PC" is closed under
composition. The definition of piecewise-C"may at first ap-
pear unrelated to the intuition that a function ought to be
piecewise-differentiable precisely if its “domain can be par-
titioned locally into a finite number of regions relative to
which smoothness holds” [36, Sec. 1]. However, as shown

Sie. Ty = { i“z’l Ocjv;’»’ : {a/}§“:)1 C [O,oo)}, some {vj}i‘il CRY[12,
Thm. 2.1.1], and dimXy, = d

%e. Upeo Zo = RY ,

lie. To NIy = {52 )

() ol )
U 7S im U

some

o}t 0.},

in [36, Thm. 2], piecewise-C" functions are always piecewise-
differentiable in this intuitive sense.

Piecewise-differentiable functions possess a first—order
approximation D f : TD — TR€ called the Bouligand deriva-
tive (or B—derivative) [12, Ch. 3]; this is the content of [12,
Lemma 4.1.3]. Significantly, this B—derivative obeys gener-
alizations of many techniques familiar from calculus, includ-
ing the Chain Rule [12, Thm 3.1.1], Fundamental Theorem
of Calculus [12, Prop. 3.1.1], and Implicit Function Theo-
rem [37, Cor. 20]. We let Df(x;x) denote the B—derivative
of f evaluated on the tangent vector dx € T.D. The B-
derivative is positively homogeneous, i.e. Vox € T,D,A >0
Df(x;A8x) = ADf(x;8x), and coincides with the directional
derivative of f in the dx € T, D direction. In addition, the
B-derivative Df(x) : TuD — Ty(,)R¢ of f at x € D is a con-
tinuous selection of the derivatives of the selection functions
active at x [12, Prop. 4.1.3],

Vox € Ty:D : Df (x;0x) €

€ {Dfj(x)-dx} jel (22)

However, the function Df is generally not continuous at
(x,8x) € TD; if it is, then f is C' at x [12, Prop. 3.1.2].

4.5 Event-selected C" (EC") vector fields and PC" flows
Vector fields with discontinuous right-hand-sides and
their associated flows have been studied extensively [38].
In definition 1 [8, Defs. 1, 2], a special class of so-called
event-selected C" (EC") vector fields were defined which
are allowed to be discontinuous along a finite number of
codimension-1 submanifolds but do not exhibit sliding [10]
along these submanifolds, and are C” elsewhere. Impor-
tantly, as shown in [8, Thm. 5], an event-selected C” vec-
tor field F : R — TR? generates a piecewise-differentiable
flow, that is, there exists a function ¢ : F — R9 that is
piecewise-C" (¢ € PC") in the sense defined in [12, Sec. 4.1]
(summarized in Sec. 4.4) where ¥ C R x R? and

V(t,x) € F: 0(t,x) zx—&-/OtF(q)(s,x))ds. 23)

Since ¢ is PC”", it admits a first-order approximation D¢ :
TF — TR? termed the Bouligand (or B-)derivative [12,
Sec. 3.1], which is a continuous piecewise-linear function
of tangent vectors at every (¢,x) € F, that is, the direc-
tional derivative DO(t,x) : Tj; nF — Tq,(,’x)]Rd is continuous
and piecewise-linear for all (z,x) € F.

4.6 B-derivative of an EC" vector field’s PC" flow
Suppose F : R — TR? is an EC” vector field with PC"
flow ¢ : F — RY. Given a tangent vector (8¢, 8x) € T 0T, it
was shown in [8, Sec. 7.1.4] that the value of the B-derivative
DO(t,x;8t,0x) € Ty(q v R¢ can be obtained by solving a jump-
linear-time-varying differential equation [8, Eq. (70)], where
the “jump” arises from a matrix g determined by the se-
quence ® in which the perturbed initial state x + ot 8x crosses
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the surfaces of discontinuity of the vector field F for small
a > 0[8, Eq. (67)]. However, [8] did not provide a represen-
tation of the piecewise-linear operator D¢(z,x) (and, to the
best of our knowledge, neither has subsequent work). The
key theoretical contribution of this paper, obtained in Sec. 5,
is a representation of the B-derivative with respect to state,
D,0(t,x), using a friangulation of its domain and codomain
as defined in [33, Sec. 3.1] (and recalled in Sec. 4.2).

To inform the triangulation of the B-derivative D,¢(z,x),
we recall the values it takes on. Since the flow ¢ : 7 — R¢
is piecewise-C" (PC"), it is a continuous selection of a finite
collection of C” functions {9 : Fo — R} . near (z,x) €
F, where F, C F is an open set containing (7,x) for each
o € Q[12, Sec. 4.1], and the B-derivative D,¢(,x) is a con-
tinuous selection of the classical (Fréchet or F-)derivatives
{Dx0o(t,X)}yeq [12, Prop. 4.1.3], that is,

Vox € Wy C TRY : Doty (1,x;8x) = Dy0(£,x) - 8x,  (24)

where W, C T,R? is the subset of tangent vectors where
the selection function D,0q is essentially active [12,
Prop. 4.1.1]. If s, € R and x € RY are such that 0 < s <  and
the vector field F is C" on ¢([0,7] \ {s},x), i.e. the trajectory
initialized at x € R? encounters exactly one discontinuity of
F at p = ¢(s,x) on the time interval [0,¢], then D0 (#,x) has
the form

Dx¢0) (tv )C) =
0} (25)

qu)(t - s,p) : [F+]1(p) Id] gore |:Id:| 'qu)(sax)

where Fq is the C" extension of Flpp ¢ that exists by
virtue of condition 2 in Def. 1 and &, € R@+TDx(d+1) g
the matrix from [8, Eq. (67)] corresponding to the selection
function index w € Q. In what follows, we will work in cir-
cumstances where the selection functions are indexed by the
symmetric permutation group over n elements, i.e. Q =S,

and combine Eq. (24) and Eq. (25) as

Vox € Ws C TLRY : 26)
Dy§(t,x;8x) = Dy0(t —5,p) - Mg - Dr9(s,x) - &x

where the saltation matrix® Ms € R?*? corresponding to in-
dex ¢ is defined by

.
Mg = [Fia(p) la] - Zo- BZ] : @7

4.7 Local approximation of an EC” vector field
Suppose vector field F : RY — TR is event-selected C”
with respect to h € C"(U,R") atp € U C R?. For b € B, =

885 € RE+D>(@+1) jg referred to as a saltation matrix in [8, Sec. 7.1.4],
but this usage is inconsistent with the original definition in [13].

{=1,4+1}" let

Bb:{xeRd:b,Dh,(p)(x—p)zo} (28)

and consider piecewise-constant vector field F:RY— TRY
defined by

Vb € B, x € Dy : F(x) = Fy(p) (29)

where Fj, is the C” extension of F |y p, that exists by virtue of

condition 2 in Def. 1. Note that F is event-selected C” with
respect to the affine function % defined by

Vx € RY : h(x) = Dh(p)(x—p), (30)

whence it generates a piecewise-differentiable flow 6 F
RY where F = R x R?. In [8, Sec. 7.1.3], F was referred
to as the sampled vector field since it is obtained by “sam-
pling” the selection functions F;, that define F' near p, and it
was noted that the function ¢ is piecewise-affine and it ap-
proximates the original vector field’s flow ¢ near p. We will
leverage the algebraic properties of ¢ and its relationship to
¢ in what follows to obtain our results.

4.8 Time-to-impact for an EC” vector field and its local
approximation

Suppose vector field F : R? — TR is event-selected

C" with respect to h € C"(U,R") at p € U C R?, and let

0 € PC"(F,R?) be its piecewise-differentiable flow. Then [8,

Thm. 7] ensures there exists a piecewise-differentiable time-

to-impact function T € PC"(U,R") such that, Vx € U,j €

{1,...,n},

0(t(x),x) € Hy = h; ' (h;(p)), (31)

i.e. x flows to the surface H; in time 7;(x). Similarly, apply-
ing [8, Thm. 7] to the sampled vector field F:R? - TRY
and piecewise-affine flow 5 : F — R? associated with F at p
constructed in Sec. 4.7 ensures there exists a piecewise-affine
time-to-impact function T : R? — R” such that, Vx € RY, j €

{1,...,n},

0(Tj(x),x) € H; = p +ker Dhj(p), (32)

i.e. the point x flows to the affine subspace H ; in time T;(x).

5 Representation

Our main theoretical result is an explicit representa-
tion for the Bouligand (or B-)derivative of the piecewise-
differentiable flow generated by an event-selected C” vector
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field. To that end, let F : RY — TR? be an event-selected
C" vector field and ¢ : F — R? its piecewise-differentiable
flow. In what follows, we will assume that s,z € R and
x € R? are such that 0 < s < ¢ and the vector field F is C" on
0([0,£]\ {s},x). Although a general trajectory can encounter
more than one point of discontinuity for F, such points are
isolated [8, Lem. 6], so the Chain Rule for B-differentiable
functions [12, Thm. 3.1.1] can be applied to triangulate the
desired flow derivative by composing the triangulated flow
derivatives associated with each point. Thus, without loss of
generality, we restrict our attention to portions of trajecto-
ries that encounter one point of discontinuity for F, which
point lies at the intersection of n surfaces of discontinuity
for F. We assume n > 1 because at least two surfaces are
needed for our results to be useful: when n = 1 the desired
B-derivative is linear [13], so it may be represented and em-
ployed in computations as a matrix.

The B-derivative D,0(z,x) : T,RY — T¢<t_x)Rd we seek
is a continuous piecewise-linear function, so it can be parsi-
moniously represented using a triangulation [33, Sec. 3.1],
that is, a combinatorial simplicial complex (as defined
in Sec. 4.2) each of whose vertices are associated with a pair
of (tangent) vectors — one each in the domain and codomain
of D,(z,x). We will obtain this triangulation via an indirect
route: in Sec. 5.1, we triangulate the piecewise-affine flow 5
introduced in S~e0. 4.7; in Sec. 5.2, we differentiate our rep-
resentation of ¢ to obtain a triangulation of the B-derivative
D,¢; in Sec. 5.3, we show how the B-derivative D¢ can be
obtained from D,¢, providing a triangulation of the desired
derivative.

5.1 Triangulation

The goal of this subsection is to triangulate the
piecewise-affine flow ¢ introduced in Sec. 4.7. To that
end, let p = ¢(s,x) and suppose’ rankDh(p) = n so
{8p € T,R? : b = sign Dh(p) - 8p } has nonempty interior for
each b € {—1,+1}" = B,. Letting X = kerDh(p) C T,R?
denote the kernel of Dh(p) and K= its orthogonal com-
plement, for each b € B, there exists a unique'®!! ;, €
K+ +{p} such that

Dhy~o(p)(&p —p) = 0, Dhp<o(p)(Cp + Fi(p) —p) =0
(33)
where hp~q (respectively, hpo) denotes the function ob-
tained by selecting components /; of i for which b; = +1
(respectively, b; = —1). The vectors defined by Eq. (33)

have special significance for the piecewise-affine flow ¢ in-

9As observed in [8, Sec. 7.1.5], first-order approximations of an EC”
vector field’s PC" flow are not affected by flow between surfaces that are
tangent at p, so we assume such redundancy has been removed.

10Here and in what follows we mildly abuse notation via the natural
vector space isomorphism RY ~ Tde.

llranth(p) = n ensures uniqueness since (i) K+ is n-dimensional, (ii)
the rows of Dh(p) are linearly independent, and hence (iii) there are n inde-
pendent equations in the n unknowns needed to specify {;, in Eq. (33).

troduced in Sec. 4.7 (see Fig. 5(a)):

Vb E€By: 8y €Dy, 0(1,8) =G+ Fy(p) € Dy1, (34
that is, the point {, lies “before” all event surface tangent
planes and flows in 1 (one) unit of time to {, + F,(p) which
lies “after” all event surface tangent planes (neither “before”
nor “after” should be interpreted strictly). We denote the col-
lections of these vectors as follows:

Z" ={G}ep, Z" ={C +Fo(P)}pep, -  (35)

In what follows, it will be convenient to use an ele-
ment 6 € S, of the symmetric permutation group over n el-
ements to specify n+ 1 elements of b € B, as follows: for
eachk € {0,...,n},letc({0,...,k}) C {1,...,n} specify the
unique b € B, whose j-th component is +1 if and only if
j€0({0,...,k}). Note that this identification yields, with
some abuse of notation, 6({0}) = —1, 6({0,...,n}) = +1.
Finally, note that the following are linearly independent col-
lections of vectors:

(36a)
(36b)

n—1
{CG({O,...,/{}) - p}k=0
{Co({0. ) T Fo({0..a1(P) =P},

This fact is easily verified for Eq. (36a) in coordinates where
Dh(p) = [In 0, (4—n) | » whence the fact follows for Eq. (36b)
by Eq. (36a) and Eq. (34) via [8, Cor. 5(c)] (time-f flow of an
EC’" vector field is a homeomorphism of the state space).
Let A be the combinatorial simplicial complex over ver-
tices B,, with maximal n-simplices indexed by ¢ € §,, via

As ={0({0,....k})}i_p €A (37)
where we regard 6({0,...,k}) as an element of B, using
the same abuse of notation employed in Eq. (36). By asso-
ciating each vertex b € B, with the vector {, € Z~ C RY,
every n-simplex Ag determines an n-dimensional geomet-
ric simplex A; C RY, the dimensionality of which is en-
sured by Eq. (36a); similarly, Eq. (36b) ensures that asso-
ciating each b € B, with ({, + Fy(p)) € Z+ C RY determines
an n-dimensional geometric simplex A: C R¢ from each n-
simplex Ag. Refer to Fig. 5(b) for an illustration when n = 2.
The triple (Z~,Z*, A) parameterizes a continuous piecewise-
affine homeomorphism P : |A~| — |A™| using the construc-
tion from [33, Sec. 3.1] (summarized in Sec. 4.2), where
A% = Uges, As € R? denote the carriers of the geometric
simplicial complexes A*.

We now show that the piecewise-affine function P con-
structed above is the non-linear part of the time-1 flow of
the sampled system ¢ restricted to |A~|. For each ¢ € S,
we extend the n-dimensional geometric simplex Ag deter-
mined by the n-simplex Ag via direct sum with the (d — n)-
dimensional subspace K to obtain a d-dimensional polyhe-
dron X (see Fig. 5(c)), and let || = Ugeg, Zo. Note that K
is a subset of the lineality space of X for each 6 € §),.
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51 (C(+1.—|))

(a) flow of the sampled system

(b) triangulation of |A™|,|AT| (c) triangulation of |X|

Fig. 5. Triangulation of time-1 flow 51 of sampled system associated with planar EC" vector field. (a) For each b € {-1, +l}2, the point
), defined by (33) flows from D_1 to D1 in 1 (one) unit of time via the sampled system illustrated in Fig. 1(b) and defined in Sec. 4.7.
(b) The sets {C,H,CHL, C(H’,])}, {Q,H,C+1,C(,1’+])} indexed by (37) define geometric simplices A(_I,Z)’ A(_Z,l) that pass through

subspaces Hj, H; in the same order. (c) For each 6 € {(1,2),(2,1)}, the set X5 is a direct sum of A5 with subspace X.

Lemma 1. 51 ||g| is piecewise-affine and

Vze [AT],E €K : 41(z+E) = P(z) +E. (38)

Proof. This proof will proceed in two steps: (i) show that
91(z) = P(z) for all z € [A™[; (ii) show that ¢1(z+¢&) =
01(z) +&forall ze |A],E € K.

(i) Recall from Eq. (34) that ¢;|,- = P|,- where Z~
is the vertex set for the geometric simplicial complex A™.
For each 6 € S, let Zg = {{p}c A, denote the vertex set of
the n-dimensional geometric simplex A;. Then we claim
that each z € Ag passes through the same sequence of tran-
sition surfaces as each {, € Zs. To verify this claim, we
use the piecewise-affine time-to-impact function T : R? —R"
from Sec. 4.8. Note that {, impacts affine subspace H; at
time 1if b; = —1 and at time 0 if b; = +1, i.e.

(39)

Convex combination a{, + (1 — o)y, a € (0,1), b,b’ € A,
impacts H; at time T;(at{, + (1 — a){y) that is: 0 if b; =
b; =+1,1ifb; = b’j = —1, and between 0 and 1 otherwise.
More generally, any point z € Ag is a convex combination
of the vertices Zs, whence it impacts surfaces in the order
prescribed by o, so Vz € Ag:

0 <7T(1)(2) < To(2)(2) <+ < T (2) < 1. (40)

Thus, 0] a; is affine and agrees with P|,—. Since [A™[ =
Ucesn Ag, we have ¢ ‘\Afl —P.

(i) We now show that the piecewise-affine map 61 is
indifferent to every § € K = ker Dh(p), so forevery z € |A™|:

01(c+8) =01 (p+(+E~p)) (41a)
=1(p)+ D01 (piz+E—p)  (41b)

=01(p) +D01(p3z—p)+E  (4lo)

=41(2) +&. (41d)

Indeed: Eq. (4la) since z+& = p+ (z+ & —p);
Eq. (41b) since ¢; 1is affine on the segment

{p+a(z+&—p):ae[0,1]}; Eq. (41c) since each piece of
the continuous piecewise-linear B-derivative D$1 (p) is spec-
ified by a saltation matrix (as recalled in Sec. 4.4) that is the
product of matrices of the form (I;+g-Dh;(p)) [8, Eq. (60)1,
thus & € X = ker Dh(p) is transformed by I,; Eq. (41d) for
the same reason as Eq. (41b). U

5.2 B-derivative of ¢

The goal of this subsection is to differentiate the repre-
sentation of ¢ from Sec. 5.1 to obtain a triangulation of the
B-derivative Do : Tp,]Rd — Tp+ R¢ between the following
two points:

_ 1 ~ 1
P =p—3F1(p) p" =0(1,p") =p+5Fii(p). (42)
Lemma 2. B=D¢;(p ) : Tp,]Rd — Tp+Rd satisfies:
1. B specifies how ¢; varies relative to ¢1(p~),
Vxe [T 01(x) =01(p ) +Bx—p ) (43)
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2. B s piecewise-linear with conical subdivision

Y ={Z;=cone(Ts—p ) :0ES,}: (44)
3. By is linear for all 6 € S, and ¥3p € X5 :
B(8p) = M - Op; (45)

4. L=XK+spanF_1(p) is a (d —n+ 1)-dimensional lin-
eality space for Y andVo € S, :

, 1 n—1
X5 =L +cone {HL “(Co({0,...000) — P)} _ @0
where Hf is the orthogonal projection onto £+
5. Bl is linear and ¥3p € Ty~ RY :
B(®p)=B(ILc-8p)+B (I -3p) . (47)

where Il is the orthogonal projection onto L.

Proof. Each point follows from straightforward application
of results in [12]: (1.), (2.), and (3.) are conclusions (4.),
(3.), and (2.), respectively, of [12, Prop. 2.2.6]; (4.) follows
from the definitions of lineality space [12, Sec. 2.1.2] and the
C»’s Eq. (33); (5.) is a restatement of [12, Lem. 2.3.2]. O

5.3 B-derivative of ¢

The goal of this subsection is to show that the piecewise-
linear function B triangulated in Sec. 5.2 gives the non-linear
part of the desired B-derivative D, (¢,x) and'?

Wo = Dx¢(s,x)~" (Z5) € TLRY (48)

is the cone of tangent vectors where the saltation matrix M
is active in Eq. (26).

Theorem 1. Suppose vector field F : R — TR? is event-
selected C" with respect to h: R? - R" at p. Let ¢ : T —
R? be the PC” flow of F and s,t € R, x € R? be such that
0<s<tandFisC" on¢([0,1]\{s},x) CRY. Thenwithp =
0(s,x), the B-derivative of the flow ¢ with respect to state,
D,0(t,x) : TRY — Tq,(,’x)Rd, is given ¥ox € W C T,RY by

qu)(tv)C; 8)6) = qu)(t -, p) 'B(qu)(sax) : 6)(),
D0(t,x;8x) = Dx(t — 5,p) - Mo - Dx§(s,x) - 8x,

(492)
(49b)

where B is the continuous piecewise-linear function from
Lemma 2, Wy is the cone from Eq. (48), and Mg is the salta-
tion matrix from Eq. (27).

2Here and in what follows we mildly abuse notation via the natural
vector space isomorphisms R? ~ Tprd ~To+ RY ~ Tp]Rd .

Proof. Note that Eq. (49a) follows from Eq. (49b)
by Eq. (45), and the fact that “pieces” of the B-derivative
D,0(t,x) are determined by the collection of saltation ma-
trices {Mo}qcs, Was recalled in Sec. 4.4. Thus, to estab-
lish Eq. (49b) what remains to be shown is that M is the
active “piece” for all &x € W, i.e. that {Ws } ., is a conical
subdivision for the piecewise-linear operator D,¢(z,x), with
Ws as defined in Eq. (48).

Given dx € IntWs let 8p = D,0(s,x) - 8x € IntX(; so that

To(1)(P+0p) <T(2)(P+0p) < -+ <To(n)(P+3p) (50)

where 7 is the time-to-impact function for the sampled sys-
tem as defined in Eq. (32). Note that D,¢(z,x) is linear on
spanF(x),i.e. Va € R

Dy0(t,x;0x + OF (x)) = Dyd(2,x;0x) + F (0(2,x)), (51)

so without loss of generality we assume Op € IntD_y by
translating dx in the —F (x) direction. We claim for all o > 0
sufficiently small that ¢(¢,x + o.dx) passes through the event
surfaces with the same sequence as ¢(1,p + adp), i.e. that

To(1) (x—|— o dx) < T5(2) (x4+adx) <--- < Ts(n) (x—|— OCSX),
(52)
where 7 is the time-to-impact function defined in Eq. (31).
To see this, note that Vk € {1,...,n}:

To(k) (X + 018x) — To(x) () (53a)
= DT (x;008x) + O (a?) (53b)
= Do (p:adp) + 0 (o) (53¢)
=To) (P +08p) — Tos) (P) + O (%) (53d)

where: Eq. (53b) since T is PC"; Eq. (53c) since dp =
D, 0(s,x) - &x and Dt(x;8x), DT(p;dp) are are determined
by the same data, namely, Dh)(p) and F-1(p); Eq. (53d)
since 8p € X;. Combining the approximation Eq. (53)
with Eq. (50) yields Eq. (52) as desired.

We conclude that {Ws}scg is a conical subdivision
for the piecewise-linear operator D,¢(f,x), which veri-
fies Eq. (49) and completes the proof. g

Remark 1. The only non-classical part of the B-derivative
of the flow in Eq. (49a) is the piecewise-linear function B.
Although there are n! pieces of B in general, we explic-
itly represent all pieces using a triangulation of 2" sample
points defined in Eq. (35), achieving a substantial reduction
— from factorial to “merely” exponential — of the information
needed to represent the first-order approximation of the flow.
Note that B implicitly determines the transition sequence G
associated with the perturbation direction dx in Eq. (49a),
whereas this sequence must be explicitly specified to select
the appropriate saltation matrix Mg in Eq. (49b).
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6 Computation

We now attend to the complexity of the computational
tasks required to construct or evaluate the B-derivative rep-
resentation from the preceding section. To that end, let
F :R?Y — TR? be an event-selected C” vector field with re-
spect to & € C"(RY,R") and ¢ : F — R its piecewise-C”
flow, and assume s,7 € R and x € R4 are such that 0 < s < ¢,
p = 0(s,x), and the vector field F is C" on ¢([0,7] \ {s} ,x).

We seek to compute D.0(f,x;8x) given dx € T,R9.
Since Eq. (49a) from Theorem 1 yields

D, 0(2,x;0x) = D ¢(t —5,x) - B(D0(s,x) - Ox) (54)

where B : Tde — Tde , the crux of the computation is

3t =B(5p) (55

where 8p~ = Dyd(s,x) - Ox. In fact, Lemma 2 offers further
simplification via Eq. (47): since B=Boll; +BOH£ where
B oIl is the linear function

Boll, 5p7 =

Fi(p)'

I1:-6p~ (56)
i eF) e

(Id + (Fra(p) — F-1(p))

only the piecewise-linear function Bo Hi (equivalently, the
restriction B| 1) requires special consideration. In what fol-
lows, we will assume the following data, needed to construct
the sampled system illustrated in Fig. 1(b), is given: linearly-
independent normal vectors for the surfaces of discontinu-
ity, i.e. Dh(p) € R™“ with rank Dh(p) = n; limiting values
of the vector field at the point of intersection, i.e. Fy(p) €
Tp]Rd for each b € B,,; and F-derivatives of the continuously-

differentiable parts of the flow, i.e. D, (s,x),D:0(t —s,x) €
RdXd.

6.1 Constructing the B-derivative

Lemma 2 demonstrates that there are n! pieces of the
piecewise-linear function B, namely, the collection of salta-
tion matrices {Ms} . s, in Eq. (45) that are active on the cor-
responding polyhedral cones in the conical subdivision ¥/ =
{X6}oes, in Eq. (44). These polyhedral cones are generated
by the 2"~! points {{, : b € B, \ {—1,+1}} in Eq. (46). For
each b € B, the point {, € X+ + {p} where K = ker Dh(p)
can be determined by solving the n affine equations with
n unknowns in Eq. (33). Given ¢ € §,, the linear piece
B| 1y can be constructed using the saltation matrix [8,

Sec. 7.1.6] since B(8p~) = Mg -8p~ for all §p~ € L- N,

where!3

(e (FG(O'kH) (P) = Fs0:0) P))
Mo =11 \lat =75 : Dheo, 7
’ kl;!) (  Dhoon (p) Foon (p) ) (P)
(57)

or using barycentric coordinates [33, Eq. (3.1)] since
B(dp~) =2<-(z5)"-8p~ forall §p~ € L+ N, where

+ + + % (n—
Zs = |:Z6(0:1) Z5(02) ** Zo(0m—1) | € R&=1 0 (58)
Vb€ Ayiz, =Tz - (G —p), 7 =Blei(z), (59
Ay ={c({0,1,....k})}i): (60)

note that the pseudo-inverse (Z5 )T is injective on £+ NXL
by Eq. (36a) and Eq. (46). Although the matrices MG,ZJ .
(Zs )Jr € R?*4 define the same linear transformation on the
(n — 1)-dimensional cone £+ NZXL, they are generally not
the same matrix. We conclude by noting that constructing
the saltation matrix in Eq. (57) requires O (ndz) time and
o (dz) space, whereas constructing the Barycentric coordi-
nates in Eq. (58) requires O (n*d*) time and O (d*) space
(although evaluating the expression Zg - (Z5 )T -0p~ requires
only O (ndz) time given Z7).

6.2 Evaluating the B-derivative

One obvious strategy to evaluate B on dp~ € Tde is
to (i) determine © € S, such that 8p~ € XL then (ii) ap-
ply the corresponding saltation matrix or barycentric coor-
dinates calculation from the preceding section. The general
formulation of (i), termed the point location problem in the
computational geometry literature, is “essentially open” [39,
Sec. 6.5]. For an arrangement of m hyperplanes in R,
queries can be answered in O (dlogm) time at the expense
of O(m®) space [40]. In our context, the conical subdi-
vision ¥’ in Eq. (46) is determined by an arrangement of
m=0 (n!z) hyperplanes, so this general-purpose algorithm
has time complexity O (dlogn!) = O(dnlogn) and space
complexity O (n!).

The relationship established by Eq. (43) between the de-
sired B-derivative and the flow of the sampled system illus-
trated in Fig. 1(b) suggests a different strategy, summarized
in Fig. 2, with slightly worse O (nzd) time complexity but
dramatically superior O (d) space complexity. To understand
the strategy, interpret the tangent vector dp~ € Tp-Rd as a

perturbation away from the point p~ = p — 1F_1(p) that

13We mildly abuse notation as in Sec. 5.1 by using ¢ € S}, to specify n+ 1
elements of b € B,,: foreachk € {0,...,n}, welets(0:k) =c({0,...,k}) C
{1,...,n} specify the unique b € B, whose j-th component is +1 if and only
if jeo({0,...,k}).
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flows through p to p* = p+ JF 4 (p) in one unit of time
and observe that'4 8p™ = ¢ (p~ +8p~) —p™ = B(8p~) as
in Eq. (43). The flow of the sampled system 51 is piecewise-
affine, and can be evaluated on a given perturbation vector
Op~ by performing a sequence of n affine projections (one

for each of the affine subspaces {H j} - where F is dis-
j=

continuous) specified by the permutation ¢ € S, for which
8p~ € XL. Fortuitously, the sequence G can be determined
inductively as follows. First, define

oty =0,
dpr=9%p,
6(1)=argmin{—m:je{l,...,n}},
o Dhe(1)(p) - 8p1
' Dhggy () Fr(p) o

Then for k € {1,...,n— 1} inductively define

Oty = Oty + T,
Opsr1 = Opx + Tk - FG({O,...,kfl})(p)»
. Dhj(p) - 8ps+1
o(k+1)=ar mm{—
(bt 1) = arg Dhj(p) - Fsfo,...k1) (P)
e fl,..n\o({1,... kD)),
Dhg(i11)(P) - 8Pk+1
Th+1 = — .
Dhgies1)(P) - Fs({0,...k1) (P)
(62)

Finally, set 3p™ = 8p,, — (8t, +1,) - F11(p). By construction,
dp~ € X, and dpt = B(8p~). This strategy is succinctly
summarized in pseudocode and sourcecode in Fig. 2; its time
complexity is O (nzd ) since there are n steps in the induction
and each step requires O (n) dot products between d-vectors.
The space complexity is O (d) since each step in the induc-
tion requires O (d) storage and data from preceding steps can
be forgotten or overwritten.

We conclude by noting that, if a general-purpose algo-
rithm is employed to solve the point location problem in
O (dnlogn) time to obtain the sequence G € S,,, then the in-
duction described in the preceding paragraph can be simpli-
fied by skipping the steps that determine ¢(1) and o(k+ 1)
from Eq. (61) and Eq. (62). This simplification reduces
the time complexity of the induction to O (nd), so the over-
all algorithm retains the O (dnlogn) time complexity of the
general-purpose point-location algorithm (at the expense of
the superexponential O (n!d) space complexity of the point
location algorithm). We are pessimistic these asymptotic
complexities can be improved in general.

4 This equation only holds when [|3p~|| is small enough to ensure
p~+8~ €D_y and pt +8p+ € Dyq; since the B-derivative is positively-
homogeneous, we impose this restriction without loss of generality.

7 Conclusion

We constructed a representation for the Bouligand (or
B-)derivative of the piecewise-C" (PC") flow generated by an
event-selected C" (EC") vector field and applied the repre-
sentation to derive a polynomial-time algorithm to evaluate
the B-derivative on a given tangent vector. Our results pro-
vide a foundation that may support future work generalizing
classical analysis and synthesis techniques for smooth con-
trol systems to the class of nonsmooth systems considered
here. In particular, we envision applying our results to de-
sign and control the class of mechanical systems subject to
unilateral constraints that arise in models of robot locomo-
tion and manipulation.
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