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This paper concerns first-order approximation of the

piecewise-differentiable flow generated by a class of non-

smooth vector fields. Specifically, we represent and com-

pute the Bouligand (or B-)derivative of the piecewise-

differentiable flow generated by a vector field with event-

selected discontinuities. Our results are remarkably efficient:

although there are factorially many “pieces” of the deriva-

tive, we provide an algorithm that evaluates its action on a

tangent vector using polynomial time and space, and verify

the algorithm’s correctness by deriving a representation for

the B-derivative that requires “only” exponential time and

space to construct. We apply our methods in two classes of

illustrative examples: piecewise-constant vector fields and

mechanical systems subject to unilateral constraints.

1 Introduction

First-order approximations – i.e. derivatives – are a

foundational tool for analysis and synthesis in smooth dy-

namical and control systems. For instance, derivatives play

a crucial rôle in: stability via spectral [1, Ch. 8.3] or Lya-

punov [2, Ch. 5] methods; controllability via lineariza-

tion [1, Ch. 8.7] or Frobenius/Chow [2, Ch. 8/Ch. 11] tech-

niques; optimality via stationarity [3, Ch. 1] or Pontryagin [4,

Ch. 1] principles; identifiability via adaptation [5, Ch. 2] or

Expectation-Maximization [6, Ch. 10] methods. These tools

all depend on the existence of a computationally-amenable

representation for the first-order approximation of smooth
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search Laboratory and the U. S. Army Research Office under grant num-

ber W911NF-16-1-0158 and by the U. S. National Science Foundation
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system dynamics – namely, the Fréchet (or F-)derivative of

the system’s smooth flow [7, Ch. 5.6], which derivative is a

continuous linear function of tangent vectors.1

By definition, nonsmooth systems do not generally

enjoy existence (let alone computational amenability) of

first-order approximations. Restricting to the class of (so-

called [8, Def. 1, 2]) event-selected Cr (ECr) vector fields

that (i) are smooth except along a finite number of sur-

faces of discontinuity and (ii) preclude sliding [9, 10] or

branching [11, Def. 3.11] through a transversality condi-

tion, we obtain flows that are piecewise-differentiable [8,

Thm. 4] (specifically, piecewise-Cr(PCr) [12, Ch. 4.1]). By

virtue of their piecewise-differentiability, these flows admit

a first-order approximation, termed the Bouligand (or B-

)derivative, which derivative is a continuous piecewise-linear

function of tangent vectors [12, Ch. 3, 4]. This paper is con-

cerned with the efficient representation and computation of

this piecewise-linear first-order approximation.

Our contributions are twofold: (i) we construct a repre-

sentation for the B-derivative of the PCr flow generated by

an ECr vector field; (ii) we derive an algorithm that eval-

uates the B-derivative on a given tangent vector. Although

there are factorially many “pieces” of the derivative, we (i)

represent it using exponential time and space and (ii) com-

pute it using polynomial time and space. In an effort to make

our results as accessible and useful as possible, we provide

a concise summary of the algorithm in Sec. 2 and apply our

methods in Sec. 3 before rehearsing the technical background

in Sec. 4 needed to derive the representation in Sec. 5 and

1We emphasize both properties of the classical derivative since the gen-

eralized derivative we consider retains one while relaxing the other.
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verify the algorithm’s correctness in Sec. 6.

We emphasize that our methods are most useful when

there are more than two surfaces of discontinuity, as rep-

resentation and computation of first-order approximations

in the 1- and 2-surface cases have been investigated exten-

sively [13–18], and these cases do not benefit from the com-

plexity savings touted above. Previously, we established ex-

istence of the piecewise-linear first-order approximation of

the flow [8, Rem. 1] and provided an inefficient scheme to

evaluate each of its “pieces” [8, Sec. 7] in the presence of an

arbitrary number of surfaces of discontinuity. To the best of

our knowledge, the present paper contains the first represen-

tation for the B-derivative of the PCr flow of a general ECr

vector field and polynomial-time algorithm to compute it.

2 Algorithm

The goal of this paper is to obtain an algorithm that

efficiently computes the derivative of a class of nonsmooth

flows. This computational task and our solution are easy to

describe, yet verifying the algorithm’s correctness requires

significant technical overhead. Thus, the remainder of this

section will be devoted to specifying the algorithm and the

problem it solves using minimal notation and terminology.

Subsequent sections will provide technical details – which

may be of interest in their own right – that prove the algo-

rithm is correct.

2.1 Problem statement

Given a vector field F : Rd → TRd and a trajectory x :

[0,∞)→ R
d satisfying2

∀t ≥ 0 : xt = x0 +
∫ t

0
F(xτ)dτ, (1)

our goal is to approximate how xt varies with respect to x0 to

first order for a given t > 0. Formally, with φ : [0,∞)×R
d→

R
d denoting the flow of F satisfying

∀t ≥ 0,x0 ∈ R
d : φt(x0) = x0 +

∫ t

0
F (φτ(x0)) dτ, (2)

our goal is to evaluate the directional derivative Dφt (x0;δx0)
given t > 0, δx0 ∈ Tx0

R
d :

Dφt (x0;δx0) = lim
α→0+

1

α
(φt(x0 +α δx0)−φt(x0)) (3)

Specifically, we seek to evaluate this derivative for vector

fields that are smooth everywhere except a finite collection

of surfaces where they are allowed to be discontinuous. We

will first recall how to obtain the derivative in the presence

of zero (Sec. 2.2) and one (Sec. 2.3) surfaces of discontinuity

2In this section (only), we will denote time dependence using subscripts

rather than parentheses to minimize the notational overhead.

before presenting our algorithm, which is applicable in the

presence of an arbitrary number of surfaces of discontinuity

(Sec. 2.4).

2.2 Continuously-differentiable vector field

If F is continuously differentiable on the trajectory x, the

derivative δxt =Dφt (x0;δx0) satisfies the linear time-varying

variational equation [19, Appendix B]

∀t ≥ 0 : δxt = δx0 +
∫ t

0
DF(xτ) ·δxτ dτ, (4)

whence δxt = Dφt (x0;δx0) can be approximated to any de-

sired precision in polynomial time by applying numerical

simulation algorithms [19, Ch. 4] to Eq. (1), Eq. (4).

2.3 Single surface of discontinuity

If F is continuously differentiable everywhere except a

smooth codimension-1 submanifold H ⊂ R
d that intersects

the trajectory x transversally at only one point xs, s ∈ (0, t),
the continuous-time equation Eq. (4) is augmented by the

discrete-time update [13, Eq. (58)],

δx+s =

(
Id +

(F+−F−) ·η⊤

η⊤ ·F−

)
·δx−s = M ·δx−s , (5)

where δx±s = limτ→s± δxτ and F± = limτ→s± F (xτ) denote

the limiting values of δxτ and F (xτ) at s from the right (+)

and left (−) and η ∈ R
d is any vector orthogonal to sur-

face H at xs; M ∈ R
d×d is termed the saltation matrix [17,

Eq. (2.76)], [20, Eq. (7.65)]. The desired derivative is

Dφt(x0;δx0) = Dφt−s(xs) ·M ·Dφs(x0) ·δx0, (6)

where Dφt−s(xs),Dφs(x0) ∈ R
d×d can be approximated by

simulating Eq. (2), Eq. (4) since the flow is smooth away

from time s. Computing the saltation matrix M requires

O
(
d2
)

time and space, but evaluating its action on δx−s
in Eq. (5) requires only O(d) time and space.

2.4 Multiple surfaces of discontinuity

If F is continuously differentiable everywhere except a

finite set of smooth codimension-1 submanifolds
{

H j

}n

j=1

that intersect the trajectory x transversally at only one point

xs (see Fig. 1(a) for an illustration when n = 2), s ∈ (0, t), we

showed in [8, Eq. (65)] that the discrete-time update Eq. (5)

is applied once for each surface. However, the order in which

the updates are applied, and the limiting values of the vector

field used to determine each update’s saltation matrix, de-

pend on δx0. If the surfaces intersect transversally, there

are n! different saltation matrices determined by 2n vector

field values, so considering all update orders requires facto-

rial time and space. To make these observations precise and

specify the notation employed in figs. 1 and 2, we formally
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Algorithm 1 δρ+← B(δρ−,η,Γ)

1: δt← 0 ∈ R

2: δρ+← δρ− ∈ R
d

3: b←−1 ∈ {−1,+1}n

4: while b 6=+1 do

5: for j ∈ {1, . . . ,n} do

6: τ j←−
(

η⊤j ·δρ+
)
/
(

η⊤j ·Γ(b)
)

7: j∗← argmin j∈{1,...,n}

{
τ j : b j < 0

}

8: δt← δt + τ j∗

9: δρ+← δρ++ τ j∗ ·Γ(b)
10: b j∗ ←+1

11: return δρ+−δt ·Γ(+1)

Algorithm 2 def B(dx,e,G):

1: dt = 0

2: dx = np.array(dx)

3: b = -np.ones(len(e),dtype=np.int)

4: while np.any(b < 0) :

5: tau = -np.dot(e,dx)/np.dot(e,G(b))

6: tau[b > 0] = np.inf

7: j = np.argmin(tau)

8: dt += tau[j]

9: dx += tau[j] * G(b)

10: b[j] = +1

11: return dx - dt * G(b) # b == [+1,...,+1]

Fig. 2. Algorithms that evaluate the B-derivative of an ECr vector field’s PCr flow written in pseudocode (left) and Python [21] sourcecode

(right; requires import numpy as np [22]). These algorithms apply at a point ρ ∈ R
d where a vector field F : Rd → TRd is event-

selected Cr with respect to n surfaces (see Fig. 1 for an illustration when d = n = 2), and assume the following data is given:

tangent direction,

surface normals at ρ,

vector field limits (9),

δρ− ∈ TρR
d ,

η =
{

η j

}n

j=1
⊂ R

d ,

Γ : {−1,+1}n→ R
d ,

dx – array, dx.shape == (d,);

e – array, e.shape == (n,d);

G – function, G(b).shape == (d,).

change-of-coordinates to Eq. (11). In what follows, we focus

on the trajectory that passes through the origin ρ = 0, which

lies at the intersection of d surfaces of discontinuity for F .

With ρ− = ρ− 1
2
F−1(ρ), ρ+ = ρ+ 1

2
F+1(ρ), we note that

ρ− flows to ρ+ through ρ in 1 (one) unit of time.

Our goal is to compute Dxφ(1,ρ−;δρ−) ∈ Tρ+R
d for a

given δρ− ∈ Tρ−R
d . In the general case, the desired deriva-

tive is piecewise-linear with (up to) d! distinct pieces, pro-

viding a general test. In the special case where ∆(b) =−δ ·b
for all b ∈ Bd , |δ| < 1, the desired derivative is linear [8,

Eq. (86)],

Dxφ(1,ρ−;δρ−) =
1−δ

1+δ
·δρ−, (12)

providing a closed-form expression for comparison. Fig. 3

illustrates results from both cases with d = 2.

3.2 Mechanical systems subject to one-sided constraints

Consider a mechanical system whose configuration is

subject to unilateral (i.e. one-sided) constraints. The dy-

namics of such systems have been studied extensively us-

ing the formalisms of complementarity [23, Sec. 3], mea-

sure differential inclusions [24, Sec. 3], hybrid systems [25,

Sec. 2.4, 2.5], and geometric mechanics [26, Sec. 3]. Regard-

less of the chosen formalism, in a coordinate chart Q ⊂ R
d

the dynamics governing q take the form

M(q)q̈ = f (q, q̇) subject to a(q)≥ 0 (13)

where: M(q) ∈ R
d×d specifies the kinetic energy metric;

f (q, q̇) ∈ R
d specifies the internal, applied, and Coriolis

forces; a(q) ∈ R
n specifies the unilateral constraints (we in-

terpret a(q) ≥ 0 componentwise); and we assume in what

follows that M, f , and a are smooth functions. Different

formalisms enforce the constraint a(q) ≥ 0 in Eq. (13) dif-

ferently, so we consider several cases in the following sub-

sections.

3.2.1 Rigid constraints yield discontinuous flows

If constraints are enforced rigidly as in [23–25], mean-

ing that they must be satisfied exactly, then the velocity

must undergo impact (i.e. change discontinuously) whenever

q̇ ∈ TqQ is such that a j(q) = 0 and Da j(q) · q̇ < 0 for some

j ∈ {1, . . . ,n} [23, Sec. 2] [25, Eq. (23)] [24, Eq. (23)]. Un-

fortunately for our purposes, these discontinuities in the state

vector x = (q, q̇) cannot be modeled using an event-selected

Cr vector field ẋ = F(x), and the flow of such systems is gen-

erally discontinuous (although we note that the flow can be

PCr at non-impact times if the constraint surfaces intersect

orthogonally [27], i.e. if the surface normals are orthogonal

with respect to the inverse of the kinetic energy metric [24,

Theorem 20]).

3.2.2 Soft conservative constraints yield Lipschitz-

continuous vector fields, C1 flows

We now consider the formalism in [26] that “soft-

ens” (i.e. approximately enforces) rigid constraints a(q)≥ 0

by augmenting the potential energy with penalty functions{
v j

}n

j=1
that scale quadratically with the degree of constraint
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every ω ∈ Ω, the collections of vectors Z±ω ⊂ Z± deter-

mined by ∆ω are affinely independent [33, Sec. 2.1.1] so

that ∆±ω = convZ±ω are (#(∆ω)−1)-dimensional geometric

simplices [33, Claim 2.9] where ∆−ω ⊂ R
d , ∆+

ω ⊂ R
c. We

assume further that, for every ω,ω′ ∈ Ω, the collections of

vectors Z±ω,ω′ ⊂ Z± determined by ∆ω ∩ ∆ω′ coincide with

Z±ω ∩ Z±ω′ ⊂ Z± so that ∆± = {∆±ω}ω∈Ω are geometric sim-

plicial complexes [33, Sec. 2.2.1]. With these assumptions

in place, the correspondence between Z− and Z+ deter-

mined by the triangulation (Z−,Z+,∆) uniquely defines a

piecewise-affine function P : |∆−|→ |∆+| using the construc-

tion from [33, Sec. 3.1] where |∆−|=
⋃

ω∈Ω ∆−ω ⊂R
d , |∆+|=⋃

ω∈Ω ∆+
ω ⊂R

c are termed the carriers [12, Sec. 2.2.1] of the

geometric simplicial complexes ∆±.

4.3 Piecewise-linear functions

If a piecewise-affine function P : Rd → R
c is positively

homogeneous, that is,

∀α≥ 0,v ∈ R
d : P(α · v) = α ·P(v), (21)

then P is piecewise-linear [12, Prop. 2.2.1]. In this case, P

admits a conical subdivision [12, Prop. 2.2.3], that is, there

exists a finite collection Σ = {Σω}ω∈Ω such that: (i) Σω ⊂R
d

is a d-dimensional polyhedral cone for each ω ∈Ω;5 (ii) the

Σω’s cover Rd ;6 and (iii) the intersection Σω ∩Σω′ is either

empty or a proper face of both polyhedral cones for each

ω,ω′ ∈Ω.7

4.4 Piecewise-differentiable (PCr) functions

(This section is largely repeated from [8, Sec. 3.2].) The

notion of piecewise–differentiability we employ was origi-

nally introduced in [35]; since the monograph [12] provides a

more recent and comprehensive exposition, we adopt the no-

tational conventions therein. Let r ∈N∪{∞} and D⊂R
d be

open. A continuous function f : D→R
c is called piecewise-

Cr if for every x0 ∈D there exists an open set U ⊂D contain-

ing x0 and a finite collection
{

f j : U → R
c
}

j∈J
of Cr func-

tions such that for all x ∈ U we have f (x) ∈
{

f j(x)
}

j∈J
.

The functions
{

f j

}
j∈J

are called selection functions for f |U ,

and f is said to be a continuous selection of
{

f j

}
j∈J

on

U . A selection function f j is said to be active at x ∈ U if

f (x) = f j(x). We let PCr(D,Rc) denote the set of piecewise-

Cr functions from D to R
c. Note that PCr is closed under

composition. The definition of piecewise-Crmay at first ap-

pear unrelated to the intuition that a function ought to be

piecewise-differentiable precisely if its “domain can be par-

titioned locally into a finite number of regions relative to

which smoothness holds” [36, Sec. 1]. However, as shown

5i.e. Σω =
{

∑
ℓω
j=1 α jv

ω
j :
{

α j

}ℓω

j=1
⊂ [0,∞)

}
, some

{
v j

}ℓω

j=1
⊂ R

d [12,

Thm. 2.1.1], and dimΣω = d
6i.e.

⋃
ω∈Ω Σω = R

d

7i.e. Σω ∩ Σω′ =
{

∑
ℓω,ω′

j=1 α jv
ω,ω′

j :
{

α j

}ℓω,ω′

j=1 ⊂ [0,∞)
}

, some
{

v
ω,ω′

j

}ℓω,ω′

j=1
⊂
{

vω
j

}ℓω

j=1
∪
{

vω′

j

}ℓω′

j=1

in [36, Thm. 2], piecewise-Crfunctions are always piecewise-

differentiable in this intuitive sense.

Piecewise-differentiable functions possess a first–order

approximation D f : T D→ TRc called the Bouligand deriva-

tive (or B–derivative) [12, Ch. 3]; this is the content of [12,

Lemma 4.1.3]. Significantly, this B–derivative obeys gener-

alizations of many techniques familiar from calculus, includ-

ing the Chain Rule [12, Thm 3.1.1], Fundamental Theorem

of Calculus [12, Prop. 3.1.1], and Implicit Function Theo-

rem [37, Cor. 20]. We let D f (x;δx) denote the B–derivative

of f evaluated on the tangent vector δx ∈ TxD. The B-

derivative is positively homogeneous, i.e. ∀δx ∈ TxD,λ≥ 0 :

D f (x;λδx) = λD f (x;δx), and coincides with the directional

derivative of f in the δx ∈ TxD direction. In addition, the

B-derivative D f (x) : TxD→ Tf (x)R
c of f at x ∈ D is a con-

tinuous selection of the derivatives of the selection functions

active at x [12, Prop. 4.1.3],

∀δx ∈ TxD : D f (x;δx) ∈
{

D f j(x) ·δx
}

j∈J
. (22)

However, the function D f is generally not continuous at

(x,δx) ∈ T D; if it is, then f is C1 at x [12, Prop. 3.1.2].

4.5 Event-selected Cr (ECr) vector fields and PCr flows

Vector fields with discontinuous right-hand-sides and

their associated flows have been studied extensively [38].

In definition 1 [8, Defs. 1, 2], a special class of so-called

event-selected Cr (ECr) vector fields were defined which

are allowed to be discontinuous along a finite number of

codimension-1 submanifolds but do not exhibit sliding [10]

along these submanifolds, and are Cr elsewhere. Impor-

tantly, as shown in [8, Thm. 5], an event-selected Cr vec-

tor field F : Rd → TRd generates a piecewise-differentiable

flow, that is, there exists a function φ : F → R
d that is

piecewise-Cr (φ ∈ PCr) in the sense defined in [12, Sec. 4.1]

(summarized in Sec. 4.4) where F ⊂ R×R
d and

∀(t,x) ∈ F : φ(t,x) = x+
∫ t

0
F(φ(s,x))ds. (23)

Since φ is PCr, it admits a first-order approximation Dφ :

TF → TRd termed the Bouligand (or B-)derivative [12,

Sec. 3.1], which is a continuous piecewise-linear function

of tangent vectors at every (t,x) ∈ F, that is, the direc-

tional derivative Dφ(t,x) : T(t,x)F→ Tφ(t,x)R
d is continuous

and piecewise-linear for all (t,x) ∈ F.

4.6 B-derivative of an ECr vector field’s PCr flow

Suppose F : Rd → TRd is an ECr vector field with PCr

flow φ : F→ R
d . Given a tangent vector (δt,δx) ∈ T(t,x)F, it

was shown in [8, Sec. 7.1.4] that the value of the B-derivative

Dφ(t,x;δt,δx)∈ Tφ(t,x)R
d can be obtained by solving a jump-

linear-time-varying differential equation [8, Eq. (70)], where

the “jump” arises from a matrix Ξω determined by the se-

quence ω in which the perturbed initial state x+αδx crosses

7 Copyright © by ASME



the surfaces of discontinuity of the vector field F for small

α > 0 [8, Eq. (67)]. However, [8] did not provide a represen-

tation of the piecewise-linear operator Dφ(t,x) (and, to the

best of our knowledge, neither has subsequent work). The

key theoretical contribution of this paper, obtained in Sec. 5,

is a representation of the B-derivative with respect to state,

Dxφ(t,x), using a triangulation of its domain and codomain

as defined in [33, Sec. 3.1] (and recalled in Sec. 4.2).

To inform the triangulation of the B-derivative Dxφ(t,x),
we recall the values it takes on. Since the flow φ : F→ R

d

is piecewise-Cr (PCr), it is a continuous selection of a finite

collection of Cr functions
{

φω : Fω→ R
d
}

ω∈Ω
near (t,x) ∈

F, where Fω ⊂ F is an open set containing (t,x) for each

ω ∈Ω [12, Sec. 4.1], and the B-derivative Dxφ(t,x) is a con-

tinuous selection of the classical (Fréchet or F-)derivatives

{Dxφω(t,x)}ω∈Ω [12, Prop. 4.1.3], that is,

∀δx ∈Wω ⊂ TxR
d : Dxφ(t,x;δx) = Dxφω(t,x) ·δx, (24)

where Wω ⊂ TxR
d is the subset of tangent vectors where

the selection function Dxφω is essentially active [12,

Prop. 4.1.1]. If s, t ∈R and x∈Rd are such that 0 < s < t and

the vector field F is Cr on φ([0, t]\{s} ,x), i.e. the trajectory

initialized at x ∈ R
d encounters exactly one discontinuity of

F at ρ = φ(s,x) on the time interval [0, t], then Dxφω(t,x) has

the form

Dxφω(t,x) =

Dxφ(t− s,ρ) ·
[
F+1(ρ) Id

]
·Ξω ·

[
0⊤d
Id

]
·Dxφ(s,x)

(25)

where F+1 is the Cr extension of F |IntD+1
that exists by

virtue of condition 2 in Def. 1 and Ξω ∈ R
(d+1)×(d+1) is

the matrix from [8, Eq. (67)] corresponding to the selection

function index ω ∈ Ω. In what follows, we will work in cir-

cumstances where the selection functions are indexed by the

symmetric permutation group over n elements, i.e. Ω = Sn,

and combine Eq. (24) and Eq. (25) as

∀δx ∈Wσ ⊂ TxR
d :

Dxφ(t,x;δx) = Dxφ(t− s,ρ) ·Mσ ·Dxφ(s,x) ·δx
(26)

where the saltation matrix8 Mσ ∈ R
d×d corresponding to in-

dex σ is defined by

Mσ =
[
F+1(ρ) Id

]
·Ξσ ·

[
0⊤d
Id

]
. (27)

4.7 Local approximation of an ECr vector field

Suppose vector field F : Rd → TRd is event-selected Cr

with respect to h ∈Cr(U,Rn) at ρ ∈U ⊂ R
d . For b ∈ Bn =

8Ξσ ∈R
(d+1)×(d+1) is referred to as a saltation matrix in [8, Sec. 7.1.4],

but this usage is inconsistent with the original definition in [13].

{−1,+1}n
let

D̃b =
{

x ∈ R
d : b j Dh j(ρ)(x−ρ)≥ 0

}
(28)

and consider piecewise-constant vector field F̃ : Rd → TRd

defined by

∀b ∈ Bn, x ∈ D̃b : F̃(x) = Fb(ρ) (29)

where Fb is the Cr extension of F |IntDb
that exists by virtue of

condition 2 in Def. 1. Note that F̃ is event-selected Cr with

respect to the affine function h̃ defined by

∀x ∈ R
d : h̃(x) = Dh(ρ)(x−ρ), (30)

whence it generates a piecewise-differentiable flow φ̃ : F̃→

R
d where F̃ = R×R

d . In [8, Sec. 7.1.3], F̃ was referred

to as the sampled vector field since it is obtained by “sam-

pling” the selection functions Fb that define F near ρ, and it

was noted that the function φ̃ is piecewise-affine and it ap-

proximates the original vector field’s flow φ near ρ. We will

leverage the algebraic properties of φ̃ and its relationship to

φ in what follows to obtain our results.

4.8 Time-to-impact for an ECr vector field and its local

approximation

Suppose vector field F : Rd → TRd is event-selected

Cr with respect to h ∈ Cr(U,Rn) at ρ ∈ U ⊂ R
d , and let

φ∈ PCr(F,Rd) be its piecewise-differentiable flow. Then [8,

Thm. 7] ensures there exists a piecewise-differentiable time-

to-impact function τ ∈ PCr(U,Rn) such that, ∀x ∈ U, j ∈
{1, . . . ,n},

φ(τ j(x),x) ∈ H j = h−1
j (h j(ρ)), (31)

i.e. x flows to the surface H j in time τ j(x). Similarly, apply-

ing [8, Thm. 7] to the sampled vector field F̃ : Rd → TRd

and piecewise-affine flow φ̃ : F̃→ R
d associated with F at ρ

constructed in Sec. 4.7 ensures there exists a piecewise-affine

time-to-impact function τ̃ : Rd → R
n such that, ∀x ∈ R

d , j ∈
{1, . . . ,n},

φ̃(τ̃ j(x),x) ∈ H̃ j = ρ+kerDh j(ρ), (32)

i.e. the point x flows to the affine subspace H̃ j in time τ̃ j(x).

5 Representation

Our main theoretical result is an explicit representa-

tion for the Bouligand (or B-)derivative of the piecewise-

differentiable flow generated by an event-selected Cr vector
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field. To that end, let F : Rd → TRd be an event-selected

Cr vector field and φ : F → R
d its piecewise-differentiable

flow. In what follows, we will assume that s, t ∈ R and

x ∈ R
d are such that 0 < s < t and the vector field F is Cr on

φ([0, t]\{s} ,x). Although a general trajectory can encounter

more than one point of discontinuity for F , such points are

isolated [8, Lem. 6], so the Chain Rule for B-differentiable

functions [12, Thm. 3.1.1] can be applied to triangulate the

desired flow derivative by composing the triangulated flow

derivatives associated with each point. Thus, without loss of

generality, we restrict our attention to portions of trajecto-

ries that encounter one point of discontinuity for F , which

point lies at the intersection of n surfaces of discontinuity

for F . We assume n > 1 because at least two surfaces are

needed for our results to be useful: when n = 1 the desired

B-derivative is linear [13], so it may be represented and em-

ployed in computations as a matrix.

The B-derivative Dxφ(t,x) : TxR
d → Tφ(t,x)R

d we seek

is a continuous piecewise-linear function, so it can be parsi-

moniously represented using a triangulation [33, Sec. 3.1],

that is, a combinatorial simplicial complex (as defined

in Sec. 4.2) each of whose vertices are associated with a pair

of (tangent) vectors – one each in the domain and codomain

of Dxφ(t,x). We will obtain this triangulation via an indirect

route: in Sec. 5.1, we triangulate the piecewise-affine flow φ̃
introduced in Sec. 4.7; in Sec. 5.2, we differentiate our rep-

resentation of φ̃ to obtain a triangulation of the B-derivative

Dxφ̃; in Sec. 5.3, we show how the B-derivative Dxφ can be

obtained from Dxφ̃, providing a triangulation of the desired

derivative.

5.1 Triangulation

The goal of this subsection is to triangulate the

piecewise-affine flow φ̃ introduced in Sec. 4.7. To that

end, let ρ = φ(s,x) and suppose9 rankDh(ρ) = n so{
δρ ∈ TρR

d : b = signDh(ρ) ·δρ
}

has nonempty interior for

each b ∈ {−1,+1}n = Bn. Letting K = kerDh(ρ) ⊂ TρR
d

denote the kernel of Dh(ρ) and K
⊥ its orthogonal com-

plement, for each b ∈ Bn there exists a unique10,11 ζb ∈
K
⊥+{ρ} such that

Dhb>0(ρ)(ζb−ρ) = 0, Dhb<0(ρ)(ζb +Fb(ρ)−ρ) = 0

(33)

where hb>0 (respectively, hb<0) denotes the function ob-

tained by selecting components h j of h for which b j = +1

(respectively, b j = −1). The vectors defined by Eq. (33)

have special significance for the piecewise-affine flow φ̃ in-

9As observed in [8, Sec. 7.1.5], first-order approximations of an ECr

vector field’s PCr flow are not affected by flow between surfaces that are

tangent at ρ, so we assume such redundancy has been removed.
10Here and in what follows we mildly abuse notation via the natural

vector space isomorphism R
d ≃ TρR

d .
11rankDh(ρ) = n ensures uniqueness since (i) K⊥ is n-dimensional, (ii)

the rows of Dh(ρ) are linearly independent, and hence (iii) there are n inde-

pendent equations in the n unknowns needed to specify ζb in Eq. (33).

troduced in Sec. 4.7 (see Fig. 5(a)):

∀b ∈ Bn : ζb ∈ D̃−1, φ̃(1,ζb) = ζb +Fb(ρ) ∈ D̃+1, (34)

that is, the point ζb lies “before” all event surface tangent

planes and flows in 1 (one) unit of time to ζb +Fb(ρ) which

lies “after” all event surface tangent planes (neither “before”

nor “after” should be interpreted strictly). We denote the col-

lections of these vectors as follows:

Z− = {ζb}b∈Bn
, Z+ = {ζb +Fb(ρ)}b∈Bn

. (35)

In what follows, it will be convenient to use an ele-

ment σ ∈ Sn of the symmetric permutation group over n el-

ements to specify n+ 1 elements of b ∈ Bn as follows: for

each k ∈ {0, . . . ,n}, let σ({0, . . . ,k})⊂ {1, . . . ,n} specify the

unique b ∈ Bn whose j-th component is +1 if and only if

j ∈ σ({0, . . . ,k}). Note that this identification yields, with

some abuse of notation, σ({0}) = −1, σ({0, . . . ,n}) = +1.

Finally, note that the following are linearly independent col-

lections of vectors:

{
ζσ({0,...,k})−ρ

}n−1

k=0
(36a)

{
ζσ({0,...,k})+Fσ({0,...,k})(ρ)−ρ

}n

k=1
(36b)

This fact is easily verified for Eq. (36a) in coordinates where

Dh(ρ) =
[
In 0n×(d−n)

]
, whence the fact follows for Eq. (36b)

by Eq. (36a) and Eq. (34) via [8, Cor. 5(c)] (time-t flow of an

ECr vector field is a homeomorphism of the state space).

Let ∆ be the combinatorial simplicial complex over ver-

tices Bn with maximal n-simplices indexed by σ ∈ Sn via

∆σ = {σ({0, . . . ,k})}n
k=0 ∈ ∆ (37)

where we regard σ({0, . . . ,k}) as an element of Bn using

the same abuse of notation employed in Eq. (36). By asso-

ciating each vertex b ∈ Bn with the vector ζb ∈ Z− ⊂ R
d ,

every n-simplex ∆σ determines an n-dimensional geomet-

ric simplex ∆−σ ⊂ R
d , the dimensionality of which is en-

sured by Eq. (36a); similarly, Eq. (36b) ensures that asso-

ciating each b ∈ Bn with (ζb +Fb(ρ)) ∈ Z+ ⊂R
d determines

an n-dimensional geometric simplex ∆+
σ ⊂ R

d from each n-

simplex ∆σ. Refer to Fig. 5(b) for an illustration when n = 2.

The triple (Z−,Z+,∆) parameterizes a continuous piecewise-

affine homeomorphism P : |∆−| → |∆+| using the construc-

tion from [33, Sec. 3.1] (summarized in Sec. 4.2), where

|∆±| =
⋃

σ∈Sn
∆±σ ⊂ R

d denote the carriers of the geometric

simplicial complexes ∆±.

We now show that the piecewise-affine function P con-

structed above is the non-linear part of the time-1 flow of

the sampled system φ̃1 restricted to |∆−|. For each σ ∈ Sn

we extend the n-dimensional geometric simplex ∆−σ deter-

mined by the n-simplex ∆σ via direct sum with the (d− n)-
dimensional subspace K to obtain a d-dimensional polyhe-

dron Σσ (see Fig. 5(c)), and let |Σ| =
⋃

σ∈Sn
Σσ. Note that K

is a subset of the lineality space of Σσ for each σ ∈ Sn.
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2. B is piecewise-linear with conical subdivision

Σ′ =
{

Σ′σ = cone
(
Σσ−ρ−

)
: σ ∈ Sn

}
; (44)

3. B|Σ′σ is linear for all σ ∈ Sn and ∀δρ ∈ Σ′σ :

B(δρ) = Mσ ·δρ; (45)

4. L = K+ spanF−1(ρ) is a (d− n+ 1)-dimensional lin-

eality space for Σ′ and ∀σ ∈ Sn :

Σ′σ = L+ cone
{

Π⊥
L
· (ζσ({0,...,k})−ρ)

}n−1

k=1
, (46)

where Π⊥
L

is the orthogonal projection onto L
⊥;

5. B|L is linear and ∀δρ ∈ Tρ−R
d :

B(δρ) = B(ΠL ·δρ)+B
(

Π⊥
L
·δρ
)
, (47)

where ΠL is the orthogonal projection onto L.

Proof. Each point follows from straightforward application

of results in [12]: (1.), (2.), and (3.) are conclusions (4.),

(3.), and (2.), respectively, of [12, Prop. 2.2.6]; (4.) follows

from the definitions of lineality space [12, Sec. 2.1.2] and the

ζb’s Eq. (33); (5.) is a restatement of [12, Lem. 2.3.2]. �

5.3 B-derivative of φ
The goal of this subsection is to show that the piecewise-

linear function B triangulated in Sec. 5.2 gives the non-linear

part of the desired B-derivative Dxφ(t,x) and12

Wσ = Dxφ(s,x)−1
(
Σ′σ
)
⊂ TxR

d (48)

is the cone of tangent vectors where the saltation matrix Mσ

is active in Eq. (26).

Theorem 1. Suppose vector field F : Rd → TRd is event-

selected Cr with respect to h : Rd → R
n at ρ. Let φ : F→

R
d be the PCr flow of F and s, t ∈ R, x ∈ R

d be such that

0 < s < t and F is Cr on φ([0, t]\{s} ,x)⊂R
d . Then with ρ=

φ(s,x), the B-derivative of the flow φ with respect to state,

Dxφ(t,x) : TxR
d → Tφ(t,x)R

d , is given ∀δx ∈Wσ ⊂ TxR
d by

Dxφ(t,x;δx) = Dxφ(t− s,ρ) ·B(Dxφ(s,x) ·δx), (49a)

Dxφ(t,x;δx) = Dxφ(t− s,ρ) ·Mσ ·Dxφ(s,x) ·δx, (49b)

where B is the continuous piecewise-linear function from

Lemma 2, Wσ is the cone from Eq. (48), and Mσ is the salta-

tion matrix from Eq. (27).

12Here and in what follows we mildly abuse notation via the natural

vector space isomorphisms Rd ≃ Tρ−R
d ≃ Tρ+R

d ≃ TρR
d .

Proof. Note that Eq. (49a) follows from Eq. (49b)

by Eq. (45), and the fact that “pieces” of the B-derivative

Dxφ(t,x) are determined by the collection of saltation ma-

trices {Mσ}σ∈Sn
was recalled in Sec. 4.4. Thus, to estab-

lish Eq. (49b) what remains to be shown is that Mσ is the

active “piece” for all δx ∈Wσ, i.e. that {Wσ}σ∈Sn
is a conical

subdivision for the piecewise-linear operator Dxφ(t,x), with

Wσ as defined in Eq. (48).

Given δx ∈ IntWσ let δρ = Dxφ(s,x) ·δx ∈ IntΣ′σ so that

τ̃σ(1)(ρ+δρ)< τ̃σ(2)(ρ+δρ)< · · ·< τ̃σ(n)(ρ+δρ) (50)

where τ̃ is the time-to-impact function for the sampled sys-

tem as defined in Eq. (32). Note that Dxφ(t,x) is linear on

spanF(x), i.e. ∀α ∈ R

Dxφ(t,x;δx+αF(x)) = Dxφ(t,x;δx)+αF(φ(t,x)), (51)

so without loss of generality we assume δρ ∈ Int D̃−1 by

translating δx in the −F(x) direction. We claim for all α > 0

sufficiently small that φ(t,x+αδx) passes through the event

surfaces with the same sequence as φ̃(1,ρ+αδρ), i.e. that

τσ(1)(x+αδx)< τσ(2)(x+αδx)< · · ·< τσ(n)(x+αδx),
(52)

where τ is the time-to-impact function defined in Eq. (31).

To see this, note that ∀k ∈ {1, . . . ,n}:

τσ(k)(x+αδx)− τσ(k)(x) (53a)

= Dτσ(k)(x;αδx)+O
(
α2
)

(53b)

= Dτ̃σ(k)(ρ;αδρ)+O
(
α2
)

(53c)

= τ̃σ(k)(ρ+αδρ)− τ̃σ(k)(ρ)+O
(
α2
)

(53d)

where: Eq. (53b) since τ is PCr; Eq. (53c) since δρ =
Dxφ(s,x) · δx and Dτ(x;δx), Dτ̃(ρ;δρ) are are determined

by the same data, namely, Dhσ(k)(ρ) and F−1(ρ); Eq. (53d)

since δρ ∈ Σ′σ. Combining the approximation Eq. (53)

with Eq. (50) yields Eq. (52) as desired.

We conclude that {Wσ}σ∈Sn
is a conical subdivision

for the piecewise-linear operator Dxφ(t,x), which veri-

fies Eq. (49) and completes the proof. �

Remark 1. The only non-classical part of the B-derivative

of the flow in Eq. (49a) is the piecewise-linear function B.

Although there are n! pieces of B in general, we explic-

itly represent all pieces using a triangulation of 2n sample

points defined in Eq. (35), achieving a substantial reduction

– from factorial to “merely” exponential – of the information

needed to represent the first-order approximation of the flow.

Note that B implicitly determines the transition sequence σ
associated with the perturbation direction δx in Eq. (49a),

whereas this sequence must be explicitly specified to select

the appropriate saltation matrix Mσ in Eq. (49b).
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6 Computation

We now attend to the complexity of the computational

tasks required to construct or evaluate the B-derivative rep-

resentation from the preceding section. To that end, let

F : Rd → TRd be an event-selected Cr vector field with re-

spect to h ∈ Cr(Rd ,Rn) and φ : F → R
d its piecewise-Cr

flow, and assume s, t ∈ R and x ∈ R
d are such that 0 < s < t,

ρ = φ(s,x), and the vector field F is Cr on φ([0, t]\{s} ,x).

We seek to compute Dxφ(t,x;δx) given δx ∈ TxR
d .

Since Eq. (49a) from Theorem 1 yields

Dxφ(t,x;δx) = Dxφ(t− s,x) ·B(Dxφ(s,x) ·δx) (54)

where B : TρR
d → TρR

d , the crux of the computation is

δρ+ = B(δρ−) (55)

where δρ− = Dxφ(s,x) · δx. In fact, Lemma 2 offers further

simplification via Eq. (47): since B= B◦ΠL+B◦Π⊥
L

where

B◦ΠL is the linear function

B◦ΠL ·δρ− =
(

Id +(F+1(ρ)−F−1(ρ)) ·
F−1(ρ)

⊤

‖F−1(ρ)‖
2

)
·ΠL ·δρ−,

(56)

only the piecewise-linear function B ◦Π⊥
L

(equivalently, the

restriction B|
L⊥ ) requires special consideration. In what fol-

lows, we will assume the following data, needed to construct

the sampled system illustrated in Fig. 1(b), is given: linearly-

independent normal vectors for the surfaces of discontinu-

ity, i.e. Dh(ρ) ∈ R
n×d with rankDh(ρ) = n; limiting values

of the vector field at the point of intersection, i.e. Fb(ρ) ∈
TρR

d for each b ∈ Bn; and F-derivatives of the continuously-

differentiable parts of the flow, i.e. Dxφ(s,x),Dxφ(t− s,x) ∈
R

d×d .

6.1 Constructing the B-derivative

Lemma 2 demonstrates that there are n! pieces of the

piecewise-linear function B, namely, the collection of salta-

tion matrices {Mσ}σ∈Sn
in Eq. (45) that are active on the cor-

responding polyhedral cones in the conical subdivision Σ′ =
{Σ′σ}σ∈Sn

in Eq. (44). These polyhedral cones are generated

by the 2n−1 points {ζb : b ∈ Bn \{−1,+1}} in Eq. (46). For

each b ∈ Bn, the point ζb ∈K
⊥+{ρ} where K= kerDh(ρ)

can be determined by solving the n affine equations with

n unknowns in Eq. (33). Given σ ∈ Sn, the linear piece

B|
L⊥∩Σ′σ

can be constructed using the saltation matrix [8,

Sec. 7.1.6] since B(δρ−) = Mσ · δρ− for all δρ− ∈ L
⊥ ∩Σ′σ

where13

Mσ =
n−1

∏
k=0

(
Id +

(
Fσ(0:k+1)(ρ)−Fσ(0:k)(ρ)

)

Dhσ(0:k)(ρ) ·Fσ(0:k)(ρ)
·Dhσ(0:k)(ρ)

)
,

(57)

or using barycentric coordinates [33, Eq. (3.1)] since

B(δρ−) = Z+
σ · (Z

−
σ )† ·δρ− for all δρ− ∈ L

⊥∩Σ′σ where

Z±σ =
[

z±
σ(0:1) z±

σ(0:2) · · · z±
σ(0:n−1)

]
∈ R

d×(n−1), (58)

∀b ∈ ∆′σ : z−b = Π⊥
L
· (ζb−ρ), z+b = B|

L⊥(z
−
b ), (59)

∆′σ = {σ({0,1, . . . ,k})}n−1
k=1 ; (60)

note that the pseudo-inverse (Z−σ )
†

is injective on L
⊥ ∩Σ′σ

by Eq. (36a) and Eq. (46). Although the matrices Mσ,Z
+
σ ·

(Z−σ )
†
∈ R

d×d define the same linear transformation on the

(n− 1)-dimensional cone L
⊥ ∩ Σ′σ, they are generally not

the same matrix. We conclude by noting that constructing

the saltation matrix in Eq. (57) requires O
(
nd2
)

time and

O
(
d2
)

space, whereas constructing the Barycentric coordi-

nates in Eq. (58) requires O
(
n2d2

)
time and O

(
d2
)

space

(although evaluating the expression Z+
σ · (Z

−
σ )

†
·δρ− requires

only O
(
nd2
)

time given Z±σ ).

6.2 Evaluating the B-derivative

One obvious strategy to evaluate B on δρ− ∈ TρR
d is

to (i) determine σ ∈ Sn such that δρ− ∈ Σ′σ then (ii) ap-

ply the corresponding saltation matrix or barycentric coor-

dinates calculation from the preceding section. The general

formulation of (i), termed the point location problem in the

computational geometry literature, is “essentially open” [39,

Sec. 6.5]. For an arrangement of m hyperplanes in R
d ,

queries can be answered in O(d logm) time at the expense

of O
(
md
)

space [40]. In our context, the conical subdi-

vision Σ′ in Eq. (46) is determined by an arrangement of

m = O
(
n!2
)

hyperplanes, so this general-purpose algorithm

has time complexity O(d logn!) = O(d n logn) and space

complexity O
(
n!d
)
.

The relationship established by Eq. (43) between the de-

sired B-derivative and the flow of the sampled system illus-

trated in Fig. 1(b) suggests a different strategy, summarized

in Fig. 2, with slightly worse O
(
n2d
)

time complexity but

dramatically superior O(d) space complexity. To understand

the strategy, interpret the tangent vector δρ− ∈ Tρ−R
d as a

perturbation away from the point ρ− = ρ− 1
2
F−1(ρ) that

13We mildly abuse notation as in Sec. 5.1 by using σ∈ Sn to specify n+1

elements of b∈Bn: for each k∈ {0, . . . ,n}, we let σ(0 : k) =σ({0, . . . ,k})⊂
{1, . . . ,n} specify the unique b∈Bn whose j-th component is +1 if and only

if j ∈ σ({0, . . . ,k}).
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flows through ρ to ρ+ = ρ+ 1
2
F+1(ρ) in one unit of time

and observe that14 δρ+ = φ̃1(ρ
−+ δρ−)−ρ+ = B(δρ−) as

in Eq. (43). The flow of the sampled system φ̃1 is piecewise-

affine, and can be evaluated on a given perturbation vector

δρ− by performing a sequence of n affine projections (one

for each of the affine subspaces
{

H̃ j

}n

j=1
where F̃ is dis-

continuous) specified by the permutation σ ∈ Sn for which

δρ− ∈ Σ′σ. Fortuitously, the sequence σ can be determined

inductively as follows. First, define

δt1 = 0,

δρ1 = δρ−,

σ(1) = argmin

{
−

Dh j(ρ) ·δρ1

Dh j(ρ) ·F−1(ρ)
: j ∈ {1, . . . ,n}

}
,

τ1 =−
Dhσ(1)(ρ) ·δρ1

Dhσ(1)(ρ) ·F−1(ρ)
.

(61)

Then for k ∈ {1, . . . ,n−1} inductively define

δtk+1 = δtk + τk,

δρk+1 = δρk + τk ·Fσ({0,...,k−1})(ρ),

σ(k+1) = argmin

{
−

Dh j(ρ) ·δρk+1

Dh j(ρ) ·Fσ({0,...,k})(ρ)

: j ∈ {1, . . . ,n}\σ({1, . . . ,k})} ,

τk+1 =−
Dhσ(k+1)(ρ) ·δρk+1

Dhσ(k+1)(ρ) ·Fσ({0,...,k})(ρ)
.

(62)

Finally, set δρ+ = δρn−(δtn+τn) ·F+1(ρ). By construction,

δρ− ∈ Σ′σ and δρ+ = B(δρ−). This strategy is succinctly

summarized in pseudocode and sourcecode in Fig. 2; its time

complexity is O
(
n2d
)

since there are n steps in the induction

and each step requires O(n) dot products between d-vectors.

The space complexity is O(d) since each step in the induc-

tion requires O(d) storage and data from preceding steps can

be forgotten or overwritten.

We conclude by noting that, if a general-purpose algo-

rithm is employed to solve the point location problem in

O(d n logn) time to obtain the sequence σ ∈ Sn, then the in-

duction described in the preceding paragraph can be simpli-

fied by skipping the steps that determine σ(1) and σ(k+ 1)
from Eq. (61) and Eq. (62). This simplification reduces

the time complexity of the induction to O(nd), so the over-

all algorithm retains the O(d n logn) time complexity of the

general-purpose point-location algorithm (at the expense of

the superexponential O
(
n!d
)

space complexity of the point

location algorithm). We are pessimistic these asymptotic

complexities can be improved in general.

14This equation only holds when ‖δρ−‖ is small enough to ensure

ρ−+δρ− ∈ D̃−1 and ρ++δρ+ ∈ D̃+1; since the B-derivative is positively-

homogeneous, we impose this restriction without loss of generality.

7 Conclusion

We constructed a representation for the Bouligand (or

B-)derivative of the piecewise-Cr (PCr) flow generated by an

event-selected Cr (ECr) vector field and applied the repre-

sentation to derive a polynomial-time algorithm to evaluate

the B-derivative on a given tangent vector. Our results pro-

vide a foundation that may support future work generalizing

classical analysis and synthesis techniques for smooth con-

trol systems to the class of nonsmooth systems considered

here. In particular, we envision applying our results to de-

sign and control the class of mechanical systems subject to

unilateral constraints that arise in models of robot locomo-

tion and manipulation.
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