
A Graph-based Reinforcement Learning Framework for Urban
Air Mobility Fleet Scheduling

Steve Paul∗ and Souma Chowdhury†

University at Buffalo, Buffalo, NY, 14260

Optimal scheduling of the fleet of aircraft comprising an urban air mobility (UAM) network
is key to economically viable and sustainable integration of UAM networks within our existing
urban and suburban transportation ecosystems. To this end, this paper firstly formulates
the UAM fleet scheduling problem as a Markov Decision Process (MDP) over a graph space,
with the graph representing the network of vertiports (and their dynamic properties, e.g.,
demand) being served by these aircraft. A simulation environment that incorporates real-world
constraints associated with aircraft characteristics (e.g., max speed and battery capacity),
passenger transport demand and electricity pricing is developed and used to evaluate schedules
modeled by this MDP. The event-triggered action of each aircraft is determined in a decentralized
manner using a novel policy model embodied by a neural network comprising a Graph Neural
Network (GNN) based encoder and a Multi-head attention (MHA) based decoder. A policy
gradient based reinforcement learning (RL) method is used to train this model. Motivated by
the emerging work in learning to solve combinatorial optimization problems, this GNN-based
policy model is expected to capture the local and global structural information of the UAM
network, allowing the trained policies to generalize across demand and aircraft initialization
scenarios. Compared to a simple feasible randomized baseline and a typical multi-layer neural
network based policy, our method demonstrates a remarkable 25% better performance in terms
of the estimated average daily profit.

Keywords: Fleet scheduling, Graph neural network, Reinforcement learning, Urban Air Mobility (UAM)

I. Nomenclature

𝑁 = total number of vertiports/nodes in the UAM network
𝑉 = set of all vertiports/nodes
𝐸 = set of all vertiport connections/edges
𝐴 = connectivity matrix for the vertiports/nodes
𝐺 = (V,E,A) UAM network expressed as a graph
𝐾 = set of all eVTOLs
𝑁𝐾 = number of eVTOLs
𝑘 = index to denote eVTOLS in 𝐾
𝑥𝑘𝑡 = vertiport where eVTOL 𝑘 is at time 𝑡
𝐽𝑘 = set of all journey of eVTOL 𝑘 ∈ 𝐾
𝐿𝑜𝑐𝑘start (𝑗 𝑘) = set of start vertiports for eVTOL 𝑘 ∈ 𝐾 for a journey 𝑗 𝑘 ∈ 𝐽𝑘
𝐿𝑜𝑐𝑘end (𝑗 𝑘) = set of end vertiports for eVTOL 𝑘 ∈ 𝐾 for a journey 𝑗 𝑘 ∈ 𝐽𝑘
𝐶 = maximum passenger capacity for the eVTOLs
𝑇 = total time window for daily operation
𝑇 𝑘start (𝑗 𝑘) = start time of journey 𝑗 𝑘 ∈ 𝐽𝑘 for eVTOL 𝑘 ∈ 𝐾
𝑇 𝑘end (𝑗 𝑘) = end time of journey 𝑗 𝑘 ∈ 𝐽𝑘 for eVTOL 𝑘 ∈ 𝐾
𝑡wait = waiting time
𝛿𝑇𝐿 = time allocated for landing
𝑡 = representation of a time instant (t ∈ 𝑇)
𝑈𝑖max = eVTOL capacity of vertiport 𝑖

∗Graduate Student, Department of Mechanical and Aerospace Engineering, University at Buffalo, AIAA student member
†Associate Professor, Department of Mechanical and Aerospace Engineering, University at Buffalo, AIAA senior member

1

𝑈𝑖𝑡 = number of eVTOLS at vertiport 𝑖 at time instant 𝑡
𝐵𝑘max = maximum battery capacity of eVTOL 𝑘
𝐵𝑘𝑡 = battery charge of eVTOL 𝑘 at time instant 𝑡
𝐵𝑘start (𝑗 𝑘) = battery charge for eVTOL 𝑘 ∈ 𝐾 at the start of journey 𝑗 𝑘 ∈ 𝐽𝑘
𝐵𝑘end (𝑗 𝑘) = battery charge for eVTOL 𝑘 ∈ 𝐾 at the end of journey 𝑗 𝑘 ∈ 𝐽𝑘
𝛾 = eVTOL battery self discharge rate
𝑄 = forcasted demand model
𝑄(𝑖, 𝑗 , 𝑡) = forecasted demand from node 𝑖 to node 𝑗 at time 𝑡
𝑃𝑖 𝑗𝑡 = fare charged from passengers travelling from node 𝑖 to 𝑗 at time 𝑡
𝑅𝑖 𝑗 = cost of transporting 1 passenger from vertiport 𝑖 to node 𝑗
𝑁𝑃
𝑘
(𝑗 𝑘) = number of passengers transported by eVTOL 𝑘 on journey 𝑗 𝑘 ∈ 𝐽𝑘

𝑃max = maximum power transferred between an eVTOL and the power grid
𝐸𝑃 = locational marginal pricing model for electricity
𝐸𝑃𝑡 = price of electricity at time instant 𝑡
𝑔𝑖 𝑗𝑘 = charging/discharging rate of eVTOL 𝑘 from 𝑖 to 𝑗

II. Introduction
Traffic congestion has become a prominent issue in most parts of the world. This is further aggravated in larger

metropolitan cities such as New York, Los Angeles, London, Mumbai etc. The average commuting time has increased
from 25 minutes in the year of 2006 to 27.6 minutes in the year of 2019, which is a 10% increase as discussed in [1].
The monetary loss of this problem is about $87 billion annually [2]. Over the last few years, there has been a growing
interest on Urban Air Mobility (UAM) based on electric vertical take-off and landing (eVTOL) for mitigating such
traffic congestion. UAMs can be used for operations such as passenger transport, cargo delivery, and time-critical
operations such as medical evacuation and air-ambulance services. Various private stakeholders in UAM are planning
to begin their commercial services as early as 2024 [3], UAMs are projected to have a potential market size of $9.1
billion by the year 2030 [4]. In order to deploy a UAM network comprising a significant number of eVTOL aircraft
operating over a region and associated vertiports (and charging stations) to support that operation, there needs to be
an effective fleet scheduling framework similar to that used by commercial airlines and ride share services. Optimal
fleet scheduling in this context must adapt to demand, revenue goals, aircraft constraints (such as flight range) and
overall energy footprint and impact on the electricity grid. Such a scheduling application typically appears as a class
of combinatorial optimization (CO) problems [5]. These CO problems can be potentially solved using a variety of
classical optimization and learning-driven approaches as briefly described below.

.

A. Related Work
UAM fleet scheduling involves scheduling the journey of the eVTOLs in the UAM network at different time between

the vertiports of the network in such a way to minimize the cost of operation and to maximize the revenue generated. The
scheduling involves transportation of passengers between the vertiports and also for other aspects such as battery charging
for the eVTOL. The UAM fleet scheduling problem can be considered as a class of multi-agent CO problems that
shares characteristics with the well-known multi-Travelling Salesman Problems (mTSP) and more complex Multi-Robot
Task Allocation (MRTA) problems. A majority of these problems tend to be NP-hard [6] and cannot be solved with
polynomial time using traditional methods such as (Mixed) Integer (Non-)Linear Programming (ILP, MILP, MINLP
etc.) [7, 8], or metaheuristics such as Ant Colony Optimization [9, 10] and genetic algorithms ([11, 12]). Even though
some of these methods can generate local optimal solutions for small sized UAM fleet scheduling problems [13–15], the
computational expense becomes intractable in applications where online (near real-time) decisions are required.

In recent years, a rich body of work has emerged on using learning-based techniques to model solutions or intelligent
heuristics for CO problems over graphs [16–21]. A notable fraction of these methods formulates the CO problem as a
Markov Decision Process (MDP) and uses Reinforcement Learning (RL) to generate policies that can yield optimal
solutions across a reasonable range of problem instances [16–19, 22]. Such policies are often embodied by a trained
graph neural network or GNN. The main advantages of a learning approach over classical non-learning methods
include [6]: i) the ability to generalize across problem scenarios and uncertainties without tedious hand-crafting of the
heuristics, ii) orders of magnitude faster run-time execution, which is critical for online task allocation and planning

2

applications, and iii) the ability (at least in theory) to automatically learn the problem features of interest which may
not be readily evident even to human experts when applications involve complex cyber-physical systems. However,
the types of problems that have been typically considered in the above mentioned work (albeit with few exceptions
that we will discuss later) are simple CO problems such as vanilla versions of the Travelling Salesman Problem (TSP),
Vehicle Routing Problem (VRP), and Max-Cut problems [16, 19]. Up to a certain scale and specificity of planning and
scheduling applications, as opposed to being able to generalize across wide range of problem classes, the complexity
of the problems does not necessarily favor a learning based approach over non-learning based optimization, graph
matching and local search heuristics [23, 24]. Another major limitation of most existing learning-based methods is their
inability to readily apply a trained model on problem scenarios of greater complexity (e.g., multi-TSP instances with
more travellers and/or locations to visit) than that encountered in the scenarios or sample episodes used for training.
Retraining is usually required to currently address this issue, which can quickly become computationally prohibitive.

To address the above-stated issues, in this work we are particularly interested in exploring and advancing a class of
RL methods that train models to directly encode the policy over graph space. There has been a growing interest in
using sequence-to-sequence models, e.g., pointer networks and attention mechanism, to encode and learn policies for
combinatorial optimization problems in graph space [16, 19]. For example, [16] implemented a framework using an
encoder/decoder architecture based on attention mechanism and REINFORCE algorithm for solving a wide variety
of CO problem as graphs, with the main contribution being flexible of using the approach on multiple problems with
the same hyper parameters. This method has however been only applied to benchmark problems where the costs of
simulating episodes is rather insignificant, unlike simulating the operation of an UAM fleet.

While adopting some of the concepts presented by Kool et al. [16], here we develop fundamental extensions to
the AI architecture in order to both improve training performance and scalability, thereby making it more feasible
for application to the complex and expensive (to simulate) problem of UAM scheduling. Specifically, we design a
novel encoder-decoder policy network. Here, the encoder is based on Graph Capsule Convolutional Neural Networks
(GCAPCN) [25], which is hypothesized to uniquely incorporate local and global structural information of the network
under study (in this case the UAM network) with permutation invariance. The decoder is based on a Multi-head
Attention mechanism (MHA) [16, 26] which fuses the encoded information and problem-specific context using matrix
multiplication, in order to enable sequential decisions. Our overall learning architecture (also known as GCAPS-RL)
consists of a policy gradient RL algorithms and the GCAPCN-MHA based policy network.

B. Main Contributions
The main contributions of this paper can thus be summarized as: 1) Formulating the UAM fleet scheduling problem

as a Markov Decision Process or MDP over graphs, with the state of the UAM network vertiport computed as embeddings
of a Graph Neural Network (GNN); the states of the eVTOL aircraft in operation embedded as the context portion
of the policy model; and a Multi-head attention (MHA) based action decoder generating the fleet scheduling actions.
2) Exploring how a policy network comprising the above-stated encoder-decoder structure can be trained effectively
through RL working in tandem with a simulation environment for UAM operations. 3) Demonstrating this graph
learning framework’s ability to generalize across unseen scenarios.

Paper Outline: The next section provides a detailed description of the UAM fleet scheduling problem considered in
this paper, as well as its optimization and MDP formulations. Section IV explains the proposed solution, with adequate
details and equations for the state encoding (using the GNN and a feedforward network) and the MHA based action
decoding by the policy network. Section V discusses the training procedure as well as the test for generalizability and
performance comparison. Section VI provides concluding remarks as well as the future execution plan for generating
the results for this paper.

III. Problem Description and Formulation
In this work, we consider a UAM network problem inspired by [14], involving 𝑁 vertiports (also to be called “nodes"

here onward), and 𝑁𝐾 number of eVTOLs, with each eVTOL having a maximum passenger seating capacity of 𝐶. Let
𝑉 and 𝐾 be the set of all vertiports and eVTOLs respectively. Each vertiport 𝑖 ∈ 𝑉 has a maximum number (𝑈𝑖max)
of eVTOLs it can accommodate at a time. For computing the cost of transportation, we define 𝑅𝑖 𝑗 to be the cost of
transporting a passengers from vertiport 𝑖 to 𝑗 . Unlike in [14] which considers three cases, involving 1) scheduling and
pricing, 2) Scheduling, pricing, and frequency regulation, 3) Frequency regulation. In this paper, we are tackling just
fleet scheduling with constant pricing strategy, while planning to demonstrate the effectiveness of solving the problem
on larger UAM networks than what has been studied in the literature. We consider the following assumptions for this

3

problem:
• Every eVTOL can commute between any two vertiports
• Constant passenger pricing, which means the price of a journey for a passenger between one vertiport to the other

does not change with time or other factors. Therefore 𝑃𝑖 𝑗𝑡 is a constant.
• The resistive loss of the batteries are negligible.
The aim is to maximize the profit margin by maximizing the revenue from the passenger and minimizing the

operational cost and the cost of charging. This is achieved by smartly scheduling each eVTOL’s journey (between
vertiports to transport passengers) between the vertiports to satisfy the travel demand between each pair of vertiports.
During each decision-making instant 𝑡 ∈ 𝑇 , an eVTOL which requires a decision will be assigned a vertiport (based on
the demand, battery charge, operation cost etc.), or to wait. Below, we describe the decision making time perspectives,
the passenger demand model, the battery model, and the optimization formulation of the problem.

A. Time Horizon and Time instants
We consider an operating time horizon of 𝑇 (which will be considered as a normal daily operational hour). Here, a

journey or trip is defined as the commute of an eVTOL between two vertiports 𝑖 and 𝑗 . If 𝑖 = 𝑗 , it means the eVTOL
has to wait for a time 𝑡wait = 15𝑚𝑖𝑛𝑢𝑡𝑒𝑠. Each eVTOL can take off at any time within the time horizon 𝑇 . Here, we
consider the schedule for a single day operation, where the time operation is from 6:00 AM (𝑡start) until 6:00PM (𝑡end),
which mean the first takeoff time for any eVTOL can happen only happen from 𝑡start and the last takeoff time for any
eVTOL cannot be after 𝑡end, during daily operations. A specific time window (𝛿𝑇𝑇𝑂) has been allocated for the take off
operation itself. Similarly a specific time window (𝛿𝑇𝐿) has been allocated for landing as well. For this study, 𝛿𝑇𝑇𝑂 =
𝛿𝑇𝐿 = 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. For each eVTOL 𝑘 , we consider a set (𝐽𝑘) of all the journeys/trips made by the eVTOL within the
time horizon. Each journey 𝑗 𝑘 ∈ 𝐽𝑘 has a start time 𝑇 𝑘start (𝑗 𝑘) and an end time 𝑇 𝑘end (𝑗 𝑘), where 𝑇 𝑘start and 𝑇 𝑘end are the set
of starting time and ending time for all the journeys of eVTOL 𝑘 . Let 𝐿𝑜𝑐𝑘start (𝑗 𝑘) and 𝐿𝑜𝑐𝑘

𝑒𝑛𝑑
(𝑗 𝑘) be the start and end

location corresponding to journey 𝑗 𝑘 ∈ 𝐽𝑘 . Let 𝑇 𝑘journey (𝑖, 𝑗) be the journey time of eVTOL 𝑘 from vertiport 𝑖 to 𝑗 .

B. Passenger Fare Pricing Model
We consider a fixed pricing policy for each route depending on the operational cost and the forecast demand, similar

to [27]. Therefore, the passenger fare at a time instant 𝑡 between vertiport 𝑖 and 𝑗 , 𝑃𝑖 𝑗𝑡 will be a function of 𝑄(𝑖, 𝑗 , 𝑡)
and 𝑅𝑖, 𝑗 .

C. Demand Model
The passenger demand modeling will be used to stochastically generate the number of passenger request for travelling

between different vertiports. A forecasted request (𝑄) has been modeled based on the data from [28]. We assume that
the demand for each hour during the daily operations hours are known in prior. The demands for the trip are modeled
in such a way that it resembles a subway train demand in a major city, which has subset of all the stations to be busy
compared to the other stations, and generally resembles offices, work places etc. Similarly, here we consider a subset of
the available vertiports 𝑉𝐵 ⊂ 𝑉 to be high demand vertiports compared to the other vertiports. The demand between the
vertiports in 𝑉𝐵 are higher compared to vertiports in 𝑉 −𝑉𝐵. We consider two peak hours throughout the whole day
from 8 : 00 − 9 : 00𝐴𝑀 (𝑇peak1) and from 4 : 00 − 5 : 00𝑃𝑀 (𝑇peak2). The vertiports in 𝑉𝐵 will have both the peak
hours. The journey demands from vertiports 𝑉 −𝑉𝐵 to 𝑉𝐵 will have a peak at (𝑇peak1), which resembles the morning
rush hour for commute to workplace from home, while the journey demands from 𝑉𝐵 to 𝑉 − 𝑉𝐵 will have a peak at
𝑇peak2 , which resembles the rush hour for commute from workplace to home.

𝑄(𝑖, 𝑗 , 𝑡) =



N(100, 10) 𝑖 ∈ 𝑉𝐵, 𝑗 ∈ 𝑉𝐵𝑖 ≠ 𝑗 , 𝑡 = 𝑇peak1 𝑜𝑟 𝑡 = 𝑇peak2

N(100, 10) 𝑖 ∈ 𝑉 −𝑉𝐵, 𝑗 ∈ 𝑉𝐵𝑖 ≠ 𝑗 , 𝑡 = 𝑇peak1

N(100, 10) 𝑖 ∈ 𝑉𝐵, 𝑗 ∈ 𝑉 −𝑉𝐵𝑖 ≠ 𝑗 , 𝑡 = 𝑇peak2

N(50, 10) 𝑖 ∈ 𝑉𝐵, 𝑗 ∈ 𝑉𝐵𝑖 ≠ 𝑗 , 𝑡 ≠ 𝑇peak1 𝑎𝑛𝑑 𝑡 ≠ 𝑇peak2

N(30, 5) otherwise

(1)

where N(𝜇, 𝜎), represents a normal distribution with mean 𝜇 and standard deviation 𝜎.

4

D. eVTOL model
The eVTOL vehicle model considered here is the City Airbus eVTOL aircraft, with a maximum cruise speed of

74.5𝑚𝑝ℎ. This vehicle has a maximum passenger capacity of 4. The operating cost of the vehicle is about $0.64 per
mile [14].

E. Battery Model
We consider the battery model for this work is the same as that in [14], which consists of charging/discharging

rate (𝑔𝑖 𝑗 , between vertiports 𝑖 and 𝑗), and a self discharge rate 𝛾. If 𝐵𝑘𝑡 is the battery charge of eVTOL 𝑘 at time
instant 𝑡, and assuming the eVTOL travels from vertiport 𝑖 to 𝑗 , the battery charge after a time 𝛿𝑇 can be computed as
𝐵𝑘
𝑡+1 = (1− 𝛾)𝐵𝑘𝑡 − 𝑔𝑖 𝑗𝑘𝛿𝑇 . We consider the maximum capacity 𝐵𝑘max (𝑘 ∈ 𝐾) of the eVTOL battery to be 110𝑘𝑊ℎ, and

the maximum charging rate 𝑃max to be 150𝑘𝑊 . Let 𝐵𝑘start (𝑗 𝑘) and 𝐵𝑘end (𝑗 𝑘), be the battery charge of eVTOL 𝑘 during
the start and end of journey 𝑗 𝑘 ∈ 𝐽𝑘 . Here we consider that all the eVTOLs starts a new journey with full battery charge.

F. Electricity Pricing Model
The electricity pricing 𝐸𝑃 can be modeled based on the historical market price from PJM [29]. However, since the

main contribution of this work is mainly on the learning based approach on UAM fleet scheduling, we are relaxing the
electricity pricing model, by assuming the price to be constant. We consider the electricity price 𝐸𝑝 to be 20 𝑐𝑒𝑛𝑡𝑠/𝑘𝑊ℎ
[30].

G. Optimization formulation:
The objective function for the optimization is to maximize the profit generated (𝑧). The profit generated can be

calculated by subtracting operational cost 𝐶𝑂 and the cost of charging 𝐶𝐶 from the total revenue generated 𝑅𝑇 . The
total operational cost for the time horizon 𝑇 can be computed as in Eq. 2.

𝐶𝑂 =
∑︁
𝑗𝑘∈𝐽𝑘

∑︁
𝑘∈𝐾

𝑁𝑃𝑘 (𝑗 𝑘)𝑅𝑖 𝑗 , 𝑖 = 𝐿𝑜𝑐
𝑘
start (𝑗 𝑘), 𝑗 = 𝐿𝑜𝑐𝑘end (𝑗 𝑘) (2)

The cost of charging 𝐶𝐶 can be computed as:

𝐶𝐶 =
∑︁
𝑗𝑘∈𝐽𝑘

∑︁
𝑘∈𝐾

𝐸𝑃𝑡 𝑔𝑖 𝑗𝑘 , 𝑖 = 𝐿𝑜𝑐
𝑘
start (𝑗 𝑘), 𝑗 = 𝐿𝑜𝑐𝑘end (𝑗 𝑘) (3)

The total revenue generated during the time horizon 𝑇 can be computed as in Eq. 4

𝑅𝑇 =
∑︁
𝑗𝑘∈𝐽𝑘

∑︁
𝑘∈𝐾

𝑁𝑃𝑘 (𝑗 𝑘)𝑃𝑖 𝑗𝑡 , 𝑖 = 𝐿𝑜𝑐
𝑘
start (𝑗 𝑘), 𝑗 = 𝐿𝑜𝑐𝑘end (𝑗 𝑘) (4)

Therefore, the objective function can be formulated as:

max 𝑧 = 𝑅𝑇 − 𝐶𝑂 − 𝐶𝐶 (5)

Subject to:
𝑇 𝑘start (𝑗 𝑘) = 0 𝑗 𝑘 ∈ 𝐽𝑘 , 𝑖 𝑓 𝑡 = 𝑡start, 𝑘 ∈ 𝐾 (6)

𝑇 𝑘end (𝑗 𝑘) = 𝑇
𝑘
start (𝑗 𝑘) + 𝛿𝑇𝑇𝑂 + 𝑇 𝑘journey (𝐿𝑜𝑐

𝑘
start (𝑗 𝑘), 𝐿𝑜𝑐𝑘start (𝑗 𝑘)) + 𝛿𝑇𝐿

𝑖 𝑓 𝐿𝑜𝑐𝑘start (𝑗 𝑘) ≠ 𝐿𝑜𝑐𝑘end (𝑗 𝑘), 𝑘 ∈ 𝐾, 𝑗 𝑘 ∈ 𝐽𝑘
(7)

𝑇 𝑘end (𝑗 𝑘) = 𝑇
𝑘
start (𝑗 𝑘) + 𝑡𝑤𝑎𝑖𝑡 𝑖 𝑓 𝐿𝑜𝑐𝑘start (𝑗 𝑘) = 𝐿𝑜𝑐𝑘end (𝑗 𝑘), 𝑘 ∈ 𝐾, 𝑗 𝑘 ∈ 𝐽𝑘 (8)

𝑇 𝑘start (𝑗 𝑘) = 𝑇 𝑘end (𝑗 𝑘 − 1) + 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 𝑖 𝑓 𝐿𝑜𝑐𝑘start (𝑗 𝑘 − 1) ≠ 𝐿𝑜𝑐𝑘end (𝑗 𝑘 − 1), 𝑡 > 𝑡start, 𝑘 ∈ 𝐾, 𝑗 𝑘 ∈ 𝐽𝑘 (9)

𝑇 𝑘start (𝑗 𝑘) = 𝑇 𝑘end (𝑗 𝑘 − 1) 𝑖 𝑓 𝐿𝑜𝑐𝑘start (𝑗 𝑘) = 𝐿𝑜𝑐𝑘end (𝑗 𝑘), 𝑡 > 𝑡start, 𝑘 ∈ 𝐾, 𝑗 𝑘 ∈ 𝐽𝑘 (10)

𝑁𝑃𝑘 (𝑗 𝑘) ≤ 𝐶, 𝑗 𝑘 ∈ 𝐽𝑘 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (11)

0 ≤ 𝐵𝑘𝑡 ≤ 𝐵𝑘max, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (12)

5

𝐵𝑘end (𝑗 𝑘) = (1 − 𝛾)𝐵𝑘start (𝑗 𝑘) − 𝑔𝑖 𝑗𝑘 (𝑇 𝑘end (𝑗 𝑘) − 𝑇
𝑘
start (𝑗 𝑘)) 𝑘 ∈ 𝐾, 𝑗 𝑘 ∈ 𝐽𝑘 , 𝑗 𝑘 > 0 (13)

𝐵𝑘start (𝑗 𝑘) = 𝐵𝑘max 𝑘 ∈ 𝐾, 𝑗 𝑘 ∈ 𝐽𝑘 (14)

𝐵𝑘start (𝑗 𝑘) = 𝐵𝑘end (𝑗 𝑘 − 1) + 𝑇charge ∗ 𝑃𝑚𝑎𝑥 𝑘 ∈ 𝐾, 𝑗 𝑘 ∈ 𝐽𝑘 (15)

0 ≤ 𝑈𝑖𝑡 ≤ 𝑈𝑖max, 𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 (16)

0 ≤ 𝑔𝑖 𝑗𝑘 ≤ 𝑃max, 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (17)

H. MDP Formulation
In this work, we express the fleet scheduling as a MDP, which sequentially computes the action for each eVTOL

during a time instance 𝑡 ∈ 𝑇 . During a decision making time instance, an action will be assigned to each eVTOL (as
described in the introduction of this section), based on the current state of the network. The state should have all the
necessary information to assign the action. Figure 1 depicts, the how the trained policy network is being used for
sequential decision making. The state, action, reward formulation, and the transition are described below.

Vertiport
Graph

State

Greedy
PolicyVertiport

Graph

eVTOL-1

argm
ax(𝑎

!)

1
2
3
4

Peers

Time
𝑡!

2

Action:
Selected
Vertiport0.1

0.5
0.3
0.1

Greedy
Policy

eVTOL-2

Vertiport
state encoder

eVTOL state
encoder

argm
ax(𝑎

!)

Peers

Time
𝑡"

4

Action:
Selected
Vertiport0.3

0
0.2
0.5

(a)

(b)

Output: Prob. Of Selecting Task

State

Decoder
1
2
3
4

GCAPS-RL

GCAPS-RL

Vertiport
state encoder

eVTOL state
encoder

Decoder

Fig. 1 Sequential decision using the policy network trained by our approach. During each decision making
instance the information from the vertiport network and the eVTOLs are used to find which vertiport to visit (or
to wait) for an eVTOL taking a decision.

State Space: The state information which will be used for computing the action at a time instance 𝑡 consists of
the information at time instance 𝑡 which includes 1) the price for electricity (𝐸𝑃𝑡), 2) cost of transporting a passenger
(𝑅𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝑉), 3) number of eVTOLs at the vertiport (𝑈𝑖𝑡 ,∀ 𝑖 ∈ 𝑉), 4) forecasted demand (𝑄(𝑖, 𝑗 , 𝑡), ∀ 𝑖, 𝑗 ∈ 𝑉), 5)
charging/discharging rate of the eVTOLs (𝑔𝑖 𝑗𝑘 ,∀ 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾), 6) current location of the eVTOLs (𝑥𝑘𝑡 ,∀ 𝑘 ∈ 𝐾),
and 7) passenger fare (𝑃𝑖 𝑗𝑡 ,∀ 𝑖, 𝑗 ∈ 𝑉).

Since the natural state space is large, we represent the state information as a learned feature vector of fixed length.
To this end, we will represent all the information associated to the vertiports as a Graph and use a Graph Neural Network
(GNN) to compute the feature vector associated with the vertiports, while the information associated with the eVTOLs
will be represented as a feature vector using a simple feedforward network, which will be discussed in section IV.

Action Space: At each decision making time instance, each agent takes an action from the available action space.
The action space consists of all the available vertiports. Therefore the action space will be of size 𝑁𝐾 . During a decision
making step, if an agent chooses the vertiport at which it currently is, then it waits for 15 minutes in the vertiport, until it
makes a new decision.

Reward: We consider a delayed reward strategy, where the total reward at the end of the episode is the ratio of the
profit (as in Eq. 5) to the maximum total profit that can be obtained (

∑
𝑖∈𝑉, 𝑗∈𝑉,𝑡 ∈𝑇 (𝑄(𝑖, 𝑗 , 𝑡) × 𝑃𝑖 𝑗𝑡)) for that episode.

Each episode corresponds to one full day operation from 6 : 00 𝐴𝑀 until 6 : 00 𝑃𝑀 . Unlike [14], we do not consider a
fixed time for a journey, hence the number of decision-making steps per episode is not a constant.

Transition: Since demand and electricity pricing can vary from that of the forecasted values, the transition of the
states is considered to be stochastic.

6

The transition is an event-based trigger. An event is defined as the condition that an eVTOL is ready for takeoff. As
environmental uncertainties and communication issues (thus partial observation) are not considered in this paper, only
deterministic state transitions are allowed. The size of the different variables of the state space and the action space are
shown in table 1∗.

Table 1 State space and action space variables of the MDP formulation

Parameter Size

State space

1) Price of electricity
2) Transportation cost
3) Number of eVTOLs at the vertiport
4) Forecasted demand
5) Charge/discharge rate for the eVTOLs
6) Current location of the eVTOLs
7) Passenger fare

1
𝑁 × 𝑁
N
𝑁 × 𝑁 × 13
𝑁𝐾

𝑁𝐾

𝑁 × 𝑁
Action space Vertiport to be visited 1

IV. Proposed Learning-based Solution Approach
In this work, we propose a policy gradient RL based method to train a policy network, which will be used to assign

actions to the eVTOLs during each decision making time instance . The policy network takes in the state information
during each decision making time instance and output an action for each eVTOL. The policy network consists of GNN
based encoder, a context module, and a Multi-head attention (MHA) based decoder. The state information is being
encoded as learnable fixed length feature vectors by the encoder and the context module, and will be used by the decoder
to compute the action sequentially. Further information regarding the proposed state encoding and the action decoding
is being discussed in the following section.

A. State Encoding
The state information consists of the information of UAM vertiports as well as the information regarding the eVTOLs.

The vertiports information is formulated as a graph as described below in section IV.A.1. The feature vector for the
eVTOL state information is discussed in section IV.A.2.

1. Vertiport State Encoding
Graph Formulation for UAM Network: The UAM network can be expressed a graph 𝐺 = (𝑉, 𝐸, 𝐴), where 𝑉

represents the set of nodes or the set of vertiports in this case, 𝐸 represents the set of edges between the nodes, 𝐴
represents the adjacency matrix of the nodes. Since there are no restrictions on the eVTOLs for commuting between any
two vertiports, we assume 𝐺 to be undirected and fully connected. Each node 𝑖 ∈ 𝑉 has its time varying node properties
𝛿𝑡
𝑖
. Here the properties of each node 𝑖 ∈ 𝑉 at time instance 𝑡 are: 1) number of eVTOLs at 𝑖 (𝑈𝑖𝑡), 2) eVTOL capacity at

𝑖 (𝑈𝑖𝑚𝑎𝑥), 3) the predicted total number of passengers who wants to depart from 𝑖 (𝑑𝑡
𝑖
), 4) the predicted total number

of passengers who want to reach 𝑖 (𝑟 𝑡
𝑖
), 5) passenger fare from node 𝑖 to all the other vertiports (𝑃𝑖1𝑡 , . . . , 𝑃𝑖𝑁𝑡), 6)

cost of transporting a passenger from node 𝑖 to all the other vertiports at time instance 𝑡 (𝑅𝑖1, . . . , 𝑅𝑖𝑁). Therefore,
𝛿𝑡
𝑖
= [𝑈𝑖𝑡 ,𝑈𝑖𝑚𝑎𝑥 , 𝑑𝑡𝑖 , 𝑟 𝑡𝑖 , 𝑃𝑖1𝑡 , . . . 𝑃𝑖𝑁𝑡 , 𝑅𝑖1, . . . , 𝑅𝑖𝑁]. Therefore the size of 𝛿𝑡

𝑖
is R2𝑁+4.

The main purpose of the encoder, is to represent useful information related to a node/vertiport as a learnable
continuous vector or tensor, which can then be used by the learning algorithm. General solutions to combinatorial
optimization problems such as CVRP, MTSP and MRTA should be permutation invariant, which means that the order
by which each node is numbered (or indexed) should not affect the optimal solution. Hence the node encoding must
also be permutation invariant. In this work, we are exploring how a Graph Capsule Convolutional Neural Network
(GCAPCN) can be implemented for learning local and global structures with the node properties, with permutation
invariant node embedding. GCAPCN is a class of Graph Neural Networks (GNN), introduced in [25] to address the

∗𝑁 is the number of vertiports, and 𝑁𝐾 is the number of eVTOLs

7

Graph
Nodes

𝜹t𝟏 𝜹t𝟐

𝜹𝑡4

𝐅𝟎𝐢 𝐗, 𝐋 = 𝐋𝐢𝐧𝐞𝐚𝐫 𝜹t𝐢 , 𝐢 𝛆 𝟏, 𝐍
𝐅𝟎 𝐗, 𝐋 = [𝐅𝟎𝟏, 𝐅𝟎𝟐, … 𝐅𝟎𝐍]

𝐅𝐩 𝐗, 𝐋 𝐥 = [𝐟𝟏
𝐥 (𝐗, 𝐋) , 𝐟𝟐

𝐥 (𝐗, 𝐋), … 𝐟𝐏
𝐥 (𝐗, 𝐋)]

𝐁𝐚𝐭𝐜𝐡 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝐋𝐞 𝐥𝐚𝐲𝐞𝐫𝐬, 𝐥 ∈ [𝟏, 𝐋𝐞]

𝜹𝑡𝟑

𝐒𝐤𝐢𝐩 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧

𝐋𝐢𝐧𝐞𝐚𝐫()

𝐋𝐞𝐚𝐤𝐲𝐑𝐞𝐋𝐔()𝐌𝐇𝐀

𝐁𝐚𝐭𝐜𝐡 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝐁𝐚𝐭𝐜𝐡 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝐅𝐞𝐞𝐝𝐟𝐨𝐫𝐰𝐚𝐫𝐝

𝐋𝐢𝐧𝐞𝐚𝐫()

𝐒𝐨𝐟𝐭𝐦𝐚𝐱

1 2 3 4

Output:
Prob. of
Selecting
Nodes

Vertiport
state
encodingDecoder

eVTOL state encoding

….𝐋𝐢𝐧𝐞𝐚𝐫() 𝐋𝐢𝐧𝐞𝐚𝐫() 𝐋𝐢𝐧𝐞𝐚𝐫()
𝝍t

𝟏 𝝍t
𝟐 𝝍t

𝑁!

Fig. 2 Policy network architecture, which includes the vertiport state encoder, the eVTOLs state encoder, and
the action decoder
drawbacks (e.g., permutation invariance) of Graph Convolutional Neural Networks (GCN), and to enable the encoding
of global information based on capsule networks presented in [31]. The advantage of GCAPCN lies in capturing more
local and global structural information from the graph under study, compared to conventional aggregation operations
used in GNN such as summation or standard convolution operations.

Graph Capsule Convolutional Neural Networks: Let 𝑋 ∈ R𝑁×|𝛿𝑡
𝑖
| , be the node feature matrix, where |𝛿𝑡

𝑖
| is the

input dimension for each node 𝑖. The standard graph Laplacian is defined as 𝐿 = 𝐷 − 𝐴 ∈ R𝑁×𝑁 , where 𝐷 is the degree
matrix and 𝐴 is the adjacency matrix of the graph. A capsule vector is computed using a Graph Capsule function based
on different order of statistical moments, as shown in the equations later in this section.

We first compute a feature vector 𝐹0𝑖 for each node by linear transformation of the node properties 𝛿𝑡
𝑖
, as

𝐹0𝑖 = 𝛿
𝑡
𝑖
.𝑊0 + 𝑏0 for all 𝑖 ∈ [1, 𝑁], where𝑊0 𝜀 R

ℎ0×|𝛿𝑖 | , 𝑏0 𝜀 R
ℎ0×1, and ℎ0 is the length of the feature vector.

Each feature vector 𝐹0𝑖 , 𝑖 ∈ [1, 𝑁] is then passed through a series of Graph capsule layers, where the output from
the previous layers is used to compute a matrix 𝑓

(𝑙)
𝑝 (𝑋, 𝐿) using a graph convolutional filter of polynomial form as

given by:
𝑓
(𝑙)
𝑝 (𝑋, 𝐿) = 𝜎(

𝛼∑︁
𝑎=0

𝐿𝑎 (𝐹(𝑙−1) (𝑋, 𝐿)◦𝑝)𝑊 (𝑙)
𝑝𝑎) (18)

Here 𝐿 is the graph Laplacian, 𝑝 is the order of the statistical moment, 𝛼 is the degree of the convolutional
filter, 𝐹(𝑙−1) (𝑋, 𝐿) is the output from layer 𝑙 − 1, 𝐹(𝑙−1) (𝑋, 𝐿)◦𝑝 represents 𝑝 times element-wise multiplication of
𝐹(𝑙−1) (𝑋, 𝐿). Here, 𝐹(𝑙−1) (𝑋, 𝐿) ∈ R𝑁×ℎ𝑙−1 𝑝, 𝑊 (𝑙)

𝑝𝑎 ∈ Rℎ𝑙−1 𝑝×ℎ𝑙 . The variable 𝑓 (𝑙)𝑝 (𝑋, 𝐿) ∈ R𝑁×ℎ𝑙 is a matrix where
each row is an intermediate feature vector for each node 𝑖 ∈ [1, 𝑁], infusing nodal information from 𝐿𝑒 × 𝛼 hop
neighbors, for a value of 𝑝. The output of layer 𝑙 is obtained by concatenating all 𝑓 (𝑙)𝑝 (𝑋, 𝐿), as given by:

𝐹𝑙 (𝑋, 𝐿) = [𝑓 (𝑙)1 (𝑋, 𝐿), 𝑓 (𝑙)2 (𝑋, 𝐿), ... 𝑓 (𝑙)
𝑃

(𝑋, 𝐿)] (19)

Here 𝑃 is the highest order of statistical moment, and ℎ𝑙 is the node embedding length of layer 𝑙. We consider all
the values of ℎ𝑙 (where 𝑙 ∈ [0, 𝐿𝑒]) to be the same for this paper. Equations 18 and 19 were computed for 𝐿𝑒 layers,
where each layer uses the output from the previous layer (𝐹𝑙−1 (𝑋, 𝐿)). Adding more layers helps in learning the global
structure, however, this can affect the performance by increasing the number of learnable parameters (compared to the
size of the problem), leading to over-fitting. The output from the final layer is then passed through a feed-forward layer
so that the final feature vector has the right dimension (ℎ𝑙) to be fed into the decoder as shown in Fig. 2

8

2. eVTOL State Information Encoding
The state information corresponding to the eVTOLS at time instance 𝑡 consists of 1) the current electricity price

(𝐸𝑃𝑡), 2) the current location of the eVTOL (𝑥𝑘𝑡 , 𝑘 ∈ 𝐾), 3) the current battery charge of the eVTOL (𝐵𝑘𝑡 , 𝑘 ∈ 𝐾), 4)
the discharge rate of the eVTOL from its current vertiport to all the other vertiports (𝑔𝑥𝑘𝑡1𝑘 , . . . , 𝑔𝑥𝑘𝑡𝑁𝑘 , 𝑘 ∈ 𝐾). The
eVTOL information state properties can be represented as 𝜓𝑡

𝑘
= [𝐸𝑃𝑡 , 𝑥𝑘𝑡 , 𝐵𝑘𝑡 , 𝑔𝑥𝑘𝑡1𝑘 . . . , 𝑔𝑥𝑘𝑡𝑁𝑘], where 𝑘 ∈ 𝐾 .

B. Action Decoding
The main objective of the decoder is to use the information from the vertiport graph encoding and the eVTOL

information encoding as context or query, and thereof choose the best vertiport by calculating the probability value
of getting selected for each (vertiport) node. In this case, the first step is to feed the embedding for each node (from
the encoder) as key-values (K, V). The key K and value V for each node is computed by two separate linear
transformations of the node embedding obtained from the encoder. The next step is to compute a vector by a linear
transformation of also known as the context Q is computed a linear transformation of 𝜓𝑘 .

Now the attention mechanism can be described as mapping the query (Q) to a set of key-value (K,V) pairs. The
inputs, which are the query (Q) is a vector, while K and V are matrices of size 𝑑𝑒𝑚𝑏𝑒𝑑 × 𝑁 (since there are 𝑁 nodes).
The output is a weighted sum of the values V, with the weight vector computed using the compatibility function
expressed as:

Attention(K,V,Q) = softmax(𝑄𝑇K/
√︁
𝑑𝑒𝑚𝑏𝑒𝑑)V𝑇 (20)

Here ℎ𝑙 is the dimension of the key of any node 𝑖 (𝑘𝑖 ∈ K). In this work, we implement a multi-head attention (MHA)
layer in order to determine the compatibility of Q with K and V. The MHA implemented in this work is similar to the
decoder implemented in [16] and [26]. As shown in [26] the MHA layer can be defined as:

MHA(K,V,Q) = Linear(Concat(head1 . . . headℎ𝑒)) (21)
Here head𝑖 = Attention(K,V,Q) and ℎ𝑒 (taken as 8 here) is the number of heads. The feed-forward layer is

implemented to further process the mapping that results from the MHA layer, and transform it to a dimension that is
coherent with the number of nodes in the task-graph (𝑁). The interjecting batch normalization layers serve to bound
values of a specific batch using the mean and variance of the batch. The final softmax layer outputs the probability
values for all the nodes. Here, the next task to be done is then chosen based on a greedy approach, which means that the
node with the highest probability will be chosen.

C. Simulation Environment
The simulation environment has been implemented in Python, following the Open AI Gym environment interface.

The environment was created following the MDP formulation in section III.H and the constraints specified in section III
are explicitly enforced in the simulation environment.

V. Experimental Evaluation

A. Training details
Scenario Description: We considered a hypothetical location of 50 x 50 sq. miles area, and consisting of 8 vertiport

locations. Out of the 8 vertiports, 3 of them are considered to be high traffic vertiports, which means the trips demand
between these 3 vertiports are high compared to the other trips. For every training scenario, we consider the veritport
location to be the same. The hourly demand values 𝑄(𝑖, 𝑗 , 𝑡) changes for each episode as described in section III.C. The
initial locations of the eVTOLs during each episode will be different. The "Python" 3.7 and the 64-bit distribution
of "Anaconda 2020.02" are used to implement the MRTA approaches. The environment, training algorithm, and the
evaluation of the trained model, are all implemented in Pytorch-1.5. The training, based on Pytorch, is deployed on two
GPUs (NVIDIA Tesla V100) with 16GB RAM.

Training Algorithm In order to train the policy network, we implemented a policy gradient RL method, Proximal
Policy Optimization [32]. The policy gradient RL algorithm is implemented using the off-the-shelf algorithm available
from stable-baselines3 †. The relevant settings used for the training can be found in table 2, and the settings for the
policy network during training can be found in table 3.

†https://stable-baselines3.readthedocs.io/en/master/guide/algos.html

9

Table 2 Settings for model training

Details Values

Algorithm PPO
Total steps 2,000,000
Rollout buffer size 20000
Batch size 10000
Optimizer Adam
Learning step size 0.000001
Entropy coefficient 0.01
Value function coefficient 0.5
Epochs 100

Table 3 Settings for the policy network

Details Values

Embedding length (ℎ) 256
Highest order of statistical moment (𝑃) 2
Degree of convolutional filter (𝐾) 2
Number of layers (𝐿𝑒) 1
Number of attention heads in the decoder (ℎ𝑒) 8

B. Performance testing
We design and execute a set of numerical experiments, to investigate the performance of our proposed learning-based

algorithm over graph space (GCAPS-RL) and compare it with 1) another learning based method with a Multi-layered
perceptron as the policy network (MLP-RL); 2) a myopic baseline called Feasibility-preserving Random-Walk (Feas-
RND) that takes randomized but feasible actions (avoiding conflicts and satisfying other problem constraints). The
Feas-RND method provides a baseline that GCAPS-RL should clearly surpass in performance (total reward), in order to
demonstrate that meaningful = policies are being learnt as opposed to simply mapping random feasible actions.

1. Generalizabilty
Generalizability refers to the ability of the learned model to display similar performance on unseen scenarios

compared to the scenarios on which it was trained for. In order to compare the convergence of the proposed GCAPS-RL
method with that of the MLP-RL approach, we run both methods with similar settings and plot their learning curve
(convergence history), as shown in Fig. 3. As seen from this figure, the GCAP-RL converged to a larger total reward
(0.042). compared to MLP-RL (0.034). It can be seen that for both the methods, during the initial phase of training
(<500000 steps), the average total reward fluctuates, and then later on the fluctuation decreases significantly as the
training progresses. This is because we set an entropy coefficient of 0.01, which forces both the models to explore.

Test cases scenarios: We generated 100 different testing scenarios drawn from the same distribution as that for
training (as explained in section III), and implemented the GCAPS-RL and the two baseline methods for performance
comparison.

Figure 4 shows the comparison of the total reward per scenario for all the three methods, as boxplots. GCAPS-RL
clearly demonstrates superior performance compared to both the baseline methods. In order to test for the significance
of this performance superiority, we performed a statistical pairwise t-test. Here, the null hypothesis is that the difference
between the values of the two sets has a mean equal to 0. Considering a 5% significance level. The p-value from the
T-test for both the tests (GCAPS-RL vs Feas-RND, and GCAPS-RL vs MLP-RL) was found to be less than 0.05, which
indicates the rejection of the null hypothesis – GCAPs-RL’s performance on the test cases is thus significantly better

10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps 1e6

0.020

0.025

0.030

0.035

0.040

0.045

M
ea

n
re

wa
rd

 p
er

 e
pi

so
de

GCAPS-RL
MLP-RL

Fig. 3 Convergence plot for GCAPS-RL and MLP-RL over 2 million steps of training.

Feas-RND MLP-RL GCAPS-RL0.01

0.02

0.03

0.04

0.05

0.06

To
ta

l r
ew

ar
d

pe
r e

pi
so

de

Fig. 4 Comparison of GCAPS-RL with the two baselines on average episodic reward.

than of the baselines.
Figure 5 shows the comparison of the total profit generated per day for all the three methods. The GCAPS-RL was

able to generate an average daily profit of $28747 with a standard deviation of $2457, while the average daily profit for
MLP-RL was $22799 with standard deviation of $3690, and for Feas-RND it was $15874 with a standard deviation of
$2070. On an average, GCAPS-RL generated 26% more profit compared to MLP-RL, and 81% more profit compared
to Feas-RND. The average total number of trips (excluding waiting) was found to be 350, 365, and 337, for GCAPS-RL,
MLP-RL, and Feas-RND, respectively. Even though GCAPS-RL has lesser number of trips made compared MLP-RL,
GCAPS-RL demonstrated superior performance. This is because GCAPS-RL was able to learn policies such that a
larger number of eVTOLS are able to operate on routes with peak hours. The main reason for the superior performance
of GCAPS-RL can be credited to the policy network. By formulating the vertiport network as a graph as described in
section III.H, the GCAPCN has the ability to capture both the graph nodal properties as well ass the higher dimensional
structural information which are beneficial for decision-making. A simple network such as MLP is not able to explicitly
capture this information, and the only way to include this information is by the implicitly making the MLP network to
learn. In order to learn this non-Euclidean data structural information, the MLP requires more learnable weights in the
form of hidden layers, and as a result, this can lead to slower learning. The comparison with Feas-RND shows how the
learning method is markedly better than random feasible myopic decisions, thereby indicating that meaningful policies
have been learnt here, as opposed to producing random feasible solution by virtue of the masked policy network design.

VI. Conclusion
In this paper, we proposed a RL based architecture with a GNN called GCAPS-RL, to learn policies for UAM fleet

scheduling problems. This new architecture incorporates an encoder based on capsule networks for vertiport state
encoding, a linear encoder for eVTOLs state encoding, and a decoder based on the attention mechanism. To learn the

11

Feas-RND MLP-RL GCAPS-RL
10K

15K

20K

25K

30K

To
ta

l p
ro

fit
 p

er
 d

ay
 ($

)

Fig. 5 Comparison of GCAPS-RL with the two baselines on average daily profit generated

features of both the encoders and decoder, the problem has been posed as an RL problem and solved using the policy
gradient algorithm, Proximal Policy Optimization (PPO). In addition, the proposed architecture is found to provide
effective policies over unseen scenarios. The new GCAPS-RL architecture demonstrated better performance compared
to two other baselines, which include both a learning based method (MLP-RL) and a non-learning based methods
Feasibility preserving Random walk (Feas-RND). The GCAPS-RL architecture with its capsule based node embedding
showed that learning local and global structural information of the task graph results in better generalizability over
unseen test cases, as observed from comparing its performance with MLP-RL (that uses a different node embedding).

Future directions: Firstly, to enable transition of our methods to application, in the future we should consider
dynamic hourly demand, dynamic electricity pricing, environment uncertainties, and partially observable state spaces
within the GCAPS-RL architecture. Another direction involves enabling the trained model to scale to larger scenarios
which involves larger number of vertiports and eVTOLs, than the for which a model is trained.

Acknowledgments
This work was supported by the Office of Naval Research (ONR) award N00014-21-1-2530 and National Science

Foundation (NSF) award CMMI 2048020. Any opinions, findings, conclusions, or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of the ONR or the NSF.

The authors of this paper would also like to thank Prajit Krisshnakumar (University at Buffalo), and Wenyuan Li
(University at Buffalo) for their valuable contribution to this work.

References
[1] “Travel Time to Work in the United States: 2019,” , 2021. URL https://www.census.gov/library/publications/
2021/acs/acs-47.html.

[2] Reed, T., “Inrix global traffic scorecard,” 2019.

[3] III, W. B., “Evtol investments will continue billion dollar trend in 2021,” , ???? URL http://interactive.aviationtoday.
com/avionicsmagazine/february-march-2021/evtol-investments-will-continue-billion-dollar-trend-
in-2021/.

[4] Markets, and Markets, “Urban Air Mobility Market Size Global Forecast to 2030,” , 2021. URL https://www.
marketsandmarkets.com/Market-Reports/urban-air-mobility-market-251142860.html.

[5] Hwang, S. I., and Cheng, S. T., “Combinatorial Optimization in Real-Time Scheduling: Theory and Algorithms,” Journal of
Combinatorial Optimization, 2001. https://doi.org/10.1023/A:1011449311477.

[6] Peng, Y., Choi, B., and Xu, J., “Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art,” Data Science
and Engineering, 2021, pp. 1–23.

[7] Miller, C. E., Tucker, A. W., and Zemlin, R. A., “Integer programming formulation of traveling salesman problems,” Journal of
the ACM (JACM), Vol. 7, No. 4, 1960, pp. 326–329.

12

https://www.census.gov/library/publications/2021/acs/acs-47.html
https://www.census.gov/library/publications/2021/acs/acs-47.html
http://interactive.aviationtoday.com/avionicsmagazine/february-march-2021/evtol-investments-will-continue-billion-dollar-trend-in-2021/
http://interactive.aviationtoday.com/avionicsmagazine/february-march-2021/evtol-investments-will-continue-billion-dollar-trend-in-2021/
http://interactive.aviationtoday.com/avionicsmagazine/february-march-2021/evtol-investments-will-continue-billion-dollar-trend-in-2021/
https://www.marketsandmarkets.com/Market-Reports/urban-air-mobility-market-251142860.html
https://www.marketsandmarkets.com/Market-Reports/urban-air-mobility-market-251142860.html
https://doi.org/10.1023/A:1011449311477

[8] Kamra, N., and Ayanian, N., “A mixed integer programming model for timed deliveries in multirobot systems,” 2015 IEEE
International Conference on Automation Science and Engineering (CASE), IEEE, 2015, pp. 612–617.

[9] Rizzoli, A. E., Montemanni, R., Lucibello, E., and Gambardella, L. M., “Ant colony optimization for real-world vehicle
routing problems,” Swarm Intelligence, Vol. 1, No. 2, 2007, pp. 135–151. https://doi.org/10.1007/s11721-007-0005-x, URL
https://doi.org/10.1007/s11721-007-0005-x.

[10] Wang, X., Choi, T.-M., Liu, H., and Yue, X., “Novel Ant Colony Optimization Methods for Simplifying Solution Construction
in Vehicle Routing Problems,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 11, 2016, pp. 3132–3141.
https://doi.org/10.1109/TITS.2016.2542264.

[11] Zhang, T., Gruver, W., and Smith, M. H., “Team scheduling by genetic search,” Intelligent Processing and Manufacturing of
Materials, 1999. IPMM’99. Proceedings of the Second International Conference on, Vol. 2, IEEE, 1999, pp. 839–844.

[12] Mühlenbein, H., “Parallel genetic algorithms, population genetics and combinatorial optimization,” Parallelism, Learning,
Evolution, edited by J. D. Becker, I. Eisele, and F. W. Mündemann, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp.
398–406.

[13] Pradeep, P., and Wei, P., “Heuristic Approach for Arrival Sequencing and Scheduling for eVTOL Aircraft in On-Demand Urban
Air Mobility,” 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 2018, pp. 1–7. https://doi.org/10.1109/
DASC.2018.8569225.

[14] Shihab, S. A. M., Wei, P., Shi, J., and Yu, N., “Optimal eVTOL Fleet Dispatch for Urban Air Mobility and Power Grid Services,”
AIAA AVIATION 2020 FORUM, 2020.

[15] Kim, S. H., “Receding Horizon Scheduling of On-Demand Urban Air Mobility With Heterogeneous Fleet,” IEEE Transactions
on Aerospace and Electronic Systems, Vol. 56, No. 4, 2020, pp. 2751–2761. https://doi.org/10.1109/TAES.2019.2953417.

[16] Kool, W., Van Hoof, H., and Welling, M., “Attention, learn to solve routing problems!” 7th International Conference on
Learning Representations, ICLR 2019, 2019.

[17] Barrett, T. D., Clements, W. R., Foerster, J. N., and Lvovsky, A. I., “Exploratory combinatorial optimization with reinforcement
learning,” arXiv preprint arXiv:1909.04063, 2019.

[18] Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L., “Learning combinatorial optimization algorithms over graphs,”
Advances in Neural Information Processing Systems, 2017, pp. 6348–6358.

[19] Kaempfer, Y., and Wolf, L., “Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Networks,”
ArXiv, Vol. abs/1803.09621, 2018.

[20] Li, Z., Chen, Q., and Koltun, V., “Combinatorial optimization with graph convolutional networks and guided tree search,”
Advances in Neural Information Processing Systems, 2018, pp. 539–548.

[21] Nowak, A., Villar, S., Bandeira, A. S., and Bruna, J., “A note on learning algorithms for quadratic assignment with graph neural
networks,” stat, Vol. 1050, 2017, p. 22.

[22] Jacob, R. A., Paul, S., Li, W., Chowdhury, S., Gel, Y. R., and Zhang, J., “Reconfiguring Unbalanced Distribution Networks
using Reinforcement Learning over Graphs,” 2022 IEEE Texas Power and Energy Conference (TPEC), 2022, pp. 1–6.
https://doi.org/10.1109/TPEC54980.2022.9750805.

[23] Jose, K., and Pratihar, D. K., “Task allocation and collision-free path planning of centralized multi-robots system for industrial
plant inspection using heuristic methods,” Robotics and Autonomous Systems, Vol. 80, 2016, pp. 34–42.

[24] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., and Van Oudheusden, D., “Iterated local search for the team orienteering
problem with time windows,” Computers & Operations Research, Vol. 36, No. 12, 2009, pp. 3281–3290. https://doi.org/
https://doi.org/10.1016/j.cor.2009.03.008, URL https://www.sciencedirect.com/science/article/pii/S030505480900080X, new
developments on hub location.

[25] Verma, S., and Zhang, Z. L., “Graph capsule convolutional neural networks,” , 2018.

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I., “Attention Is All
You Need,” CoRR, Vol. abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

[27] “How uber’s dynamic pricing model works,” , Nov 2021. URL https://www.uber.com/en-GB/blog/uber-dynamic-pricing/.

13

https://doi.org/10.1007/s11721-007-0005-x
https://doi.org/10.1007/s11721-007-0005-x
https://doi.org/10.1109/TITS.2016.2542264
https://doi.org/10.1109/DASC.2018.8569225
https://doi.org/10.1109/DASC.2018.8569225
https://doi.org/10.1109/TAES.2019.2953417
https://doi.org/10.1109/TPEC54980.2022.9750805
https://doi.org/https://doi.org/10.1016/j.cor.2009.03.008
https://doi.org/https://doi.org/10.1016/j.cor.2009.03.008
https://www.sciencedirect.com/science/article/pii/S030505480900080X
http://arxiv.org/abs/1706.03762
https://www.uber.com/en-GB/blog/uber-dynamic-pricing/

[28] “Our Nation’s Highways 2010,” , No. FHWA-PL-10-023, 2010. URL https://rosap.ntl.bts.gov/view/dot/904.

[29] “Data miner,” , ????. URL https://www.pjm.com/markets-and-operations/etools/data-miner-2.aspx.

[30] “See electric rates available to your home/business (updated today):,” , ????. URL https://www.electricchoice.com/electricity-
prices-by-state/.

[31] Hinton, G. E., Krizhevsky, A., and Wang, S. D., “Transforming Auto-Encoders,” Artificial Neural Networks and Machine
Learning – ICANN 2011, edited by T. Honkela, W. Duch, M. Girolami, and S. Kaski, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, pp. 44–51.

[32] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., “Proximal Policy Optimization Algorithms,” , 2017.

14

https://rosap.ntl.bts.gov/view/dot/904
https://www.pjm.com/markets-and-operations/etools/data-miner-2.aspx
https://www.electricchoice.com/electricity-prices-by-state/
https://www.electricchoice.com/electricity-prices-by-state/

	Nomenclature
	Introduction
	Related Work
	Main Contributions

	Problem Description and Formulation
	Time Horizon and Time instants
	Passenger Fare Pricing Model
	Demand Model
	eVTOL model
	Battery Model
	Electricity Pricing Model
	Optimization formulation:
	MDP Formulation

	Proposed Learning-based Solution Approach
	State Encoding
	Vertiport State Encoding
	eVTOL State Information Encoding

	Action Decoding
	Simulation Environment

	Experimental Evaluation
	Training details
	Performance testing
	Generalizabilty

	Conclusion

