
Learning Scalable Policies over Graphs for Multi-Robot Task Allocation
using Capsule Attention Networks

Steve Paul1, Payam Ghassemi2, and Souma Chowdhury3,†

Abstract— This paper presents a novel graph reinforcement
learning (RL) architecture to solve multi-robot task alloca-
tion (MRTA) problems that involve tasks with deadlines and
workload, and robot constraints such as work capacity. While
drawing motivation from recent graph learning methods that
learn to solve combinatorial optimization (CO) problems such
as multi-Traveling Salesman and Vehicle Routing Problems
using RL, this paper seeks to provide better performance
(compared to non-learning methods) and important scalability
(compared to existing learning architectures) for the stated class
of MRTA problems. The proposed neural architecture, called
Capsule Attention-based Mechanism or CapAM acts as the
policy network, and includes three main components: 1) an
encoder: a Capsule Network based node embedding model to
represent each task as a learnable feature vector; 2) a decoder:
an attention-based model to facilitate a sequential output; and
3) context: that encodes the states of the mission and the robots.
To train the CapAM model, the policy-gradient method based
on REINFORCE is used. When evaluated over unseen scenar-
ios, CapAM demonstrates better task completion performance
and >10 times faster decision-making compared to standard
non-learning based online MRTA methods. CapAM’s advantage
in generalizability, and scalability to test problems of size larger
than those used in training, are also successfully demonstrated
in comparison to a popular approach for learning to solve CO
problems, namely the purely attention mechanism.

I. INTRODUCTION

Multi-Robot Task Allocation (MRTA) involves coordinat-
ing a set of tasks among a team of cooperative robotic
systems such that the decisions are free of conflict and
optimize a quantity of interest [1]. The potential real-world
applications of such MRTA problems are immense consid-
ering that multi-robotics is one of key emerging directions
of robotics research and development, and task allocation is
fundamental to most multi-robotic or swarm-robotic opera-
tions. Examples include disaster response [2], last-mile deliv-
ery [3], environment monitoring [4], and reconnaissance [5].
We specifically focus on a class of MRTA problems that
falls into the Single-task Robots, Single-robot Tasks, and
Time-extended Assignment (SR-ST-TA) class defined in [1],
[6], that include characteristics such as tasks with time
deadlines and workload, and robots with constrained work
capacity. Based on iTax taxonomy as defined in [1], these

Authors 1,2 ,3 are with the department of Mechanical and Aerospace
Engineering, University at Buffalo, Buffalo, NY, USA {stevepau,
payamgha, soumacho}@buffalo.edu

† Corresponding Author, soumacho@buffalo.edu
This work was supported by the Office of Naval Research (ONR)

award N00014-21-1-2530 and National Science Foundation (NSF) award
CMMI 2048020. Any opinions, findings, conclusions, or recommendations
expressed in this paper are those of the authors and do not necessarily reflect
the views of the ONR or the NSF.

problems fall into the In-schedule Dependencies (ID) cate-
gory. The MRTA problems considered here involves mildly-
heterogeneous robots (with different task completion rates),
and where the task selections are assumed to take place in
a decentralized manner, under full observability of the task
environment and peers’ decisions.

There exists a notable body of work (mostly non-learning
approaches) in solving MRTA problems related to these
applications, e.g., graph-based methods [2], integer-linear
programming (ILP) approaches [7], [8], and auction-based
methods [9]. However, critical challenges continue to persist,
especially regarding the scalability with number of robots
and tasks, and the ability to adapt to complex problem
characteristics without tedious hand-crafting of underlying
heuristics. Existing solutions to multi-Traveling Salesman
Problem (mTSP) and Vehicle Routing Problem (VRP) in the
literature [10], [11] have addressed analogical problem char-
acteristics of interest to MRTA, albeit in a disparate manner;
these characteristics include tasks with time deadlines, and
multiple tours per vehicle, with applications in the operations
research and logistics communities [12], [13]. Integer linear
programming or ILP based mTSP-type formulations and
solution methods have also been extended to task allocation
problems in the multi-robotics domain [14]. Although the
ILP-based approaches can in theory provide optimal so-
lutions, they are characterized by exploding computational
effort as the number of robots and tasks increases [8], [15].
For example, for the studied SR-ST problem, the cost of
solving the exact ILP formulation of the problem, even with
a linear cost function (thus an ILP), scales with O(n3m2h2),
where n, m, and h represent the number of tasks, the number
of robots, and the maximum number of tours per robot,
respectively [16]. As a result, most online MRTA methods,
e.g., auction-based methods [9], [17], [18], metaheuristic
methods [19], [20], and bi-graph matching methods [16],
[21], [22], use some sort of heuristics, and often report the
optimality gap at least for smaller test cases compared to the
exact ILP solutions.

In recent years, learning approaches based on Graph Neu-
ral Networks or GNN (which can model non-Euclidean data)
are being increasingly used to solve planning problems with
a Combinatorial Optimization (CO) formulation, e.g., TSP,
VRP, Max-Cut, Min-Vertex, and MRTA [23]–[33]. These
existing studies are however limited in three key aspects: 1)
They address simplified problems that often exclude common
real-world factors such as resource and capacity constraints
[23], [25], [26], [31]). 2) They are mostly focused on smaller
sized problems (≤ 100 tasks) [30], [32], [34], [35], with

their scalability remaining unclear. 3) They rarely provide
evidence of generalizing to problem scenarios that are larger
in size than those used for training. This latter capability
is particularly critical since real-world MRTA problems
often involve simulating episodes whose costs scale with
the number of tasks and robots, making re-training efforts
burdensome. Moreover the time-sensitive nature of many
real-world applications of MRTA [36], such as in disaster
response [22], call for a near real-time performance, while
involving a large-sized decision space [37]. Therefore, near
real-time computable good feasible solutions are of essence.

Along with the need to address scalability, we posit that
a sequential decision-making approach is favored consid-
ering environmental and communication uncertainties and
the possibility of new tasks to emerge during the operation
[38], [39]. Therefore, we formulate the MRTA problem
such that the decision taken by the robots on visiting the
next node is performed in a sequential, decentralized, and
asynchronous manner. To enable scalable policies, we de-
sign a novel encoder-decoder policy network, where the
encoder is based on Graph Capsule Convolutional Neu-
ral Networks (GCAPCN) [40], which is hypothesized to
incorporate local and global structural information with
permutation invariance. The decoder is based on a Multi-
head Attention mechanism (MHA) [23], [41] which fuses
the encoded information and problem-specific context us-
ing matrix multiplication, in order to enable decentralized
sequential decisions. The proposed network architecture is
named Capsule Attention Mechanism or CapAM.

Contributions: The main contributions of this paper can
be summarized as 1) Formulate the general SR-ST class of
MRTA problems as a Markov Decision Process or MDP over
graphs with the multi-robot system’s state embedded as the
context portion of the policy model, such that the task alloca-
tion policy can be learned using an RL approach. 2) Explore
how a policy network that learns the structural information of
task-graphs results in better decision-making. 3) Demonstrate
this learning framework’s ability to generalize to larger-sized
problems without the need to retrain.

Paper outline: The next section provides a brief overview
of MRTA and it’s MDP formulation. Section III then de-
scribes our proposed new graph learning architecture that
operates over this MDP. Section IV presents the settings and
outcomes of numerical experiments on a large number of
task allocation problems with time and capacity constraints
[19], which are used to evaluate this new approach to MRTA.
This evaluation study includes comparative analysis w.r.t.
non-learning methods as well as a well-known attention
mechanism based reinforcement learning method, and further
parametric and scalability analysis. Finally, Section V pro-
vides concluding remarks and discusses the potential future
extensions for our new graph learning-based approach to
MRTA. Throughout this paper, tasks are also referred by
the terms “nodes” or “vertices”.

Task Graph
State

Greedy
PolicyTask Graph

Robot-1

Encoder

Context
Decoder

argm
ax(𝑎

!)

1
2
3
4

Peers

Time
𝑡!

2

Action:
Selected

Task0.1
0.5
0.3
0.1

Greedy
Policy

Robot-2

Encoder

Context

argm
ax(𝑎

!)

Peers

Time
𝑡"

4

Action:
Selected

Task0.3
0
0.2
0.5

(a)

(b)

Output: Prob. Of Selecting Task

State

Decoder
1
2
3
4

CapAM

CapAM

Fig. 1. Deployment of an MRTA policy based on the CapAM architecture.
a) Robot-1 at t0. b) Robot-2 at t1; here, the output for previously selected
task (e.g., task 2 in (b)) is set at 0.

II. MRTA: PROBLEM DEFINITION AND FORMULATION

MRTA problems can be formulated as Integer Linear or
Non-Linear Programming (ILP or INLP) problems. When
tasks are defined in terms of location, the MRTA problem
becomes analogical to the Multi-Traveling Salesmen Prob-
lem (mTSP) [42] and its generalized version, the Vehicle
Route Planning (VRP) problem [43], albeit with additional
constraints and operation-specific objective function.
A. MRTA problem description and formulation

The exact solution of the MRTA problem can be obtained
by formulating it as the following INLP problem:

min fcost =

N∑
i=1

ri,

{
ri =

tfi
di
, if tfi > di

0, otherwise
(1)

subject to

si ∈ S ∀ i ∈ [1..N] (2)
si 6= sj ∀ i 6= j (3)

Here tfi is the time at which task i was completed, di is
the time deadline of task i, and S = [s1, s2, ...sN] is the
sequence of all the tasks/nodes that were visited, and N is
the number of tasks available. The minimum cost function
that can be achieved using Eq. 1 is 0, which corresponds
to the case where all the tasks are successfully completed.
A detailed formulation of the exact ILP constraints that
describe the MRTA problem can be found in this recent
work on MRTA [19]. Note that, in our paper, we use
a slightly different objective/cost function as compared to
[19], but the intention of the objective function of both of
these works remains the same, which is to maximize the
number of successfully completed tasks (thereby allowing
fair comparison with methods reported in the literature).
Here, we craft the objective function (Eq. (1)) such that
only missed tasks (tfi > di) contribute to the cost func-
tion. This objective function can be tailored according to
user/application preferences, without affecting the proposed
learning framework. The constraints in Eqs. 2 and 3 are such
that each task must be visited exactly once by any robot.

B. An “MDP over Graph” Representation of MRTA

The task space of an MRTA problem can be represented as
a complete un-directed graph G = (V,E,A), which contains
a set of nodes/vertices (V), a set of edges (E) that connect

the vertices to each other, and the weighted adjacency matrix
A that gives the extent to which two nodes are connected.
Each node is a task, and each edge connects a pair of nodes.
For MRTA with N tasks, the number of vertices and the
number of edges are N and N(N−1)/2, respectively. Node
i is assigned a 3-dimensional feature vector denoting the
task location and time deadline, i.e., δi = [xi, yi, di]. Here
we consider a weighted adjacency matrix without self-loop
(αii = 0, αi,j ∈ A, where i and j ∈ [1, N]). The weights
in the adjacency matrix αij = 1/(1 + |δi − δj |) take a real
value between 0 and 1, in a manner such that if the features
of two nodes i and j are relatively closer to each other, then
αij is higher. Since we formulate MRTA as an undirected
graph, the adjacency matrix A is symmetric. In this paper,
the elements of A (αi,j , i 6= j) are computed as the inverse
of the normalized Euclidean distance of the node properties.

The MDP can be defined in a decentralized manner to cap-
ture the myopic task-assignment process of each individual
robot, which can be expressed as a tuple < S,A,Pa,R >.
Figure 1 shows how this MDP is executed to perform the se-
quential task selection by each robot. As evident from Fig. 1,
the components of the MDP can then be defined as follows:
State Space (S): A robot at any decision-making instance
uses a state s ∈ S, which contains the following information:
1) elapsed mission time, 2) robot’s current location, 3)
constraints of this robot such as its work capacity, 4) the
planned tasks of its peers, and 5) the constraints of its peers.
The state space also includes the environment, defined by
the location and time deadline of tasks, which are expressed
here as node features in the graph. Here we assume that each
robot can broadcast its information, which includes the task
it is currently engaged in and its work capacity, to its peers
without the need for a centralized system for communication;
this is well aligned with modern communication capabilities
[32]. Action Space (A): The set of actions is represented as
A, where each action a ∈ A is defined as the index of the
selected task, {1, . . . , N}. In MRTA problems that include
a depot, task 0 can be considered as the depot. The task
status, i.e., active, completed, and missed (i.e., deadline is
passed), is used to properly decode the actions generated
by the policy model, with the latter being in the form of
probability of selecting each available task. Note that even
under full observability, as the action space of a single robot
includes only its own degree of affinity for selecting each
available task, the decentralized decision-making formulation
differs from an ideal centralized formulation, and remains
readily scalable. Transition (Pa): The transition is an event-
based trigger. An event is defined as the condition that
a robot reaches its selected task or visits the depot. As
environmental uncertainties and communication issues (thus
partial observation) are not considered in this paper, only
deterministic state transitions are allowed. Reward (R): A
delayed reward is considered here, estimated at the end of
the multi-robot simulation, i.e, when there are no more active
tasks. The actual reward function is typically application-
dependent. For example, in some MRTA problems, task
completion is more important, while in another, decreasing

Graph
Nodes

𝜹𝟏 𝜹𝟐

𝜹4

𝐅𝟎𝐢 𝐗, 𝐋 = 𝐋𝐢𝐧𝐞𝐚𝐫 𝜹𝐢 , 𝐢 𝛆 𝟏, 𝐍
𝐅𝟎 𝐗, 𝐋 = [𝐅𝟎𝟏, 𝐅𝟎𝟐, … 𝐅𝟎𝐍]

𝐅𝐩 𝐗, 𝐋 𝐥 = [𝐟𝟏
𝐥 (𝐗, 𝐋) , 𝐟𝟐

𝐥 (𝐗, 𝐋), … 𝐟𝐏
𝐥 (𝐗, 𝐋)]

𝐁𝐚𝐭𝐜𝐡 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝐋𝐞 𝐥𝐚𝐲𝐞𝐫𝐬, 𝐥 ∈ [𝟏, 𝐋𝐞]

𝜹𝟑

𝐒𝐤𝐢𝐩 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧

𝐋𝐢𝐧𝐞𝐚𝐫()

𝐋𝐞𝐚𝐤𝐲𝐑𝐞𝐋𝐔()𝐌𝐇𝐀 𝐌𝐚𝐬𝐤𝐞𝐝 , 𝐋𝐝 𝐥𝐚𝐲𝐞𝐫𝐬

𝐁𝐚𝐭𝐜𝐡 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝐁𝐚𝐭𝐜𝐡 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝐅𝐞𝐞𝐝𝐟𝐨𝐫𝐰𝐚𝐫𝐝

𝐋𝐢𝐧𝐞𝐚𝐫()

𝐒𝐨𝐟𝐭𝐦𝐚𝐱

1 2 3 4

Output:
Prob. of
Selecting
Nodes

EncoderDecoder

PeersRobot-r

𝐂𝐨𝐧𝐜𝐚𝐭 []
Context

𝐄𝐥𝐚𝐩𝐬𝐞𝐝𝐦𝐢𝐬𝐬𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 𝐋𝐢𝐧𝐞𝐚𝐫 x𝐫, 𝐲𝐫, 𝐜𝐫 ∑𝐢"𝟏𝐍𝐫 𝐋𝐢𝐧𝐞𝐚𝐫 x𝐢, 𝐲𝐢, 𝐜𝐢 , 𝐢 ≠ 𝐫)]

Fig. 2. CapAM architecture including context, encoder & decoder.

the total effort (e.g., distance traveled) by robots is more
important, which can then be estimated using the weight
matrix.

III. LEARNING FRAMEWORK
In this work, we implement an RL algorithm on an

encoder-decoder architecture to learn the optimal MRTA
policies over the graph formulation described earlier. An il-
lustration of this architecture is shown in Fig. 2. The encoder
represents each node as a continuous vector infusing both
its own properties as well as its local and global structural
properties within the graph representation of the task space.
The decoder sequentially computes output probabilities for
all the available tasks/nodes using the information from the
encoder and the current state (context), by applying the
MHA (as shown in left part of Fig. 2). The sequentially
computed output probabilities for each node indicate the
relative goodness of selecting that node as the next one to
be visited by the concerned robot. A detailed description of
the architecture of the encoder and decoder is discussed in
the following sections using the representative SR-ST type
MRTA problem described in section II-B.

A. Graph Capsule Convolutional Network based Encoder

The main purpose of the encoder is to represent useful
information related to a node/task as a learnable continuous
vector or tensor, which can then be used by the learning
algorithm. For a graph node, the information includes the
properties of the node itself (e.g., the coordinates and time
deadline of the node), the local neighborhood information
for the node, and also the global structural information.
General solutions to CO problems such as CVRP, MTSP and
MRTA should be permutation invariant, which means that
the order by which each node is numbered should not affect
the optimal solution. Hence the node encoding must also be
permutation invariant. In this work, we are exploring how
a Graph Capsule Convolutional Neural Network (GCAPCN)
can be implemented for learning local and global structures
with the node properties, with permutation invariant node
embedding. GCAPCN is a class of Graph Neural Net-
works (GNN), introduced in [40] to address the drawbacks
(e.g., permutation invariance) of Graph Convolutional Neural

Networks (GCN), and to enable the encoding of global
information based on capsule networks presented in [44].
The advantage of GCAPCN lies in capturing more local and
global information, compared to conventional aggregation
operations used in GNN such as summation or standard
convolution operations.

1) Graph Capsule Convolutional Neural Networks: Let
X ∈ RN×|δi|, be the node feature matrix, where |δi| is
the input dimension for each node i. The standard graph
Laplacian is defined as L = D−A ∈ RN×N , where D is the
degree matrix and A is the adjacency matrix of the graph. A
capsule vector is computed using a Graph Capsule function
based on different order of statistical moments, as shown in
the equations later in this section. We first compute a feature
vector F0i for each node by linear transformation of the node
properties δi, as F0i = δi.W0 + b0 for all i ∈ [1, N], where
W0 ε Rh0×|δi|, b0 ε Rh0×1, and h0 is the length of the
feature vector. For an MRTA problem with time constraints,
δi = [xi, yi, di], where xi, yi, and di are the x coordinate,
y coordinate, and the time deadline of location/node i. Note
that this method for encoding is not limited to a specific
MRTA problem, and can also be extended or modified for
MRTA problems with nodes having other features such
as workload. Each feature vector F0i, i ∈ [1, N] is then
passed through a series of Graph capsule layers, where the
output from the previous layers is used to compute a matrix
f
(l)
p (X,L) using a graph convolutional filter of polynomial

form as given by:

f (l)p (X,L) = σ(

K∑
k=0

Lk(F(l−1)(X,L)
◦p)W

(l)
pk) (4)

Here L is the graph Laplacian, p is the order of the
statistical moment, K is the degree of the convolu-
tional filter, F(l−1)(X,L) is the output from layer l − 1,
F(l−1)(X,L)

◦p represents p times element-wise multipli-
cation of F(l−1)(X,L). Here, F(l−1)(X,L) ∈ RN×hl−1p,
W

(l)
pk ∈ Rhl−1p×hl . The variable f

(l)
p (X,L) ∈ RN×hl is

a matrix where each row is an intermediate feature vector
for each node i ∈ [1, N], infusing nodal information from
Le×K hop neighbors, for a value of p. The output of layer
l is obtained by concatenating all f (l)p (X,L), as given by:

Fl(X,L) = [f
(l)
1 (X,L), f

(l)
2 (X,L), ...f

(l)
P (X,L)] (5)

Here P is the highest order of statistical moment, and hl is
the node embedding length of layer l. We consider all the
values of hl (where l ∈ [0, Le]) to be the same for this paper.
Equations 4 and 5 were computed for Le layers, where each
layer uses the output from the previous layer (Fl−1(X,L)).
Adding more layers helps in learning the global structure,
however, this can affect the performance by increasing the
number of learnable parameters (compared to the size of the
problem), leading to over-fitting. The output from the final
layer is then passed through a feed-forward layer so that the
final feature vector has the right dimension (hl) to be fed
into the decoder as shown in Fig. 2.
B. Attention-based Decoder and Context

The main objective of the MHA-based decoder is to
use the information from the encoder and the current state

as context or query, and thereof choose the best task by
calculating the probability value of getting selected for
each (task) node. In this case, the first step is to feed the
embedding for each node (from the encoder) as key-values
(K, V), since inputs for MHA are key-value pairs [45].
The key K and value V for each node is computed by
two separate linear transformations of the node embedding
obtained from the encoder. The next step is to compute
a vector representing the current state, also known as the
context (as shown in bottom left of Fig. 2). In our case
studies, the context for the multi-head attention or MHA
layer in the decoder consists of the following five features:
1) elapsed mission time; 2) work capacity of the robot taking
decision; 3) current location of the robot taking decision; 4)
current destination of robot’s peers; and 5) work capacity of
peer; all concatenated to a single vector of length hq , which
then undergoes a linear transformation to get a vector of
length hl also called the query Q. It is important to note that
the context can be modified to account for other features
such as remaining ferry-range and payloads of robots, thus
promoting the flexibility to apply this architecture to a wider
range of MRTA problems than those specifically studied in
this paper. Figure 2 illustrates the structure of the decoder.

Now the attention mechanism can be described as mapping
the query (Q) to a set of key-value (K, V) pairs. The inputs,
which are the query (Q) is a vector, while K and V are
matrices of size hl×N (since there are N nodes). The output
is a weighted sum of the values V , with the weight vector
computed using the compatibility function expressed as:

Attention(Q,K, V) = softmax(QTK/
√
hl)V

T (6)

Here hl is the dimension of the key of any node i (ki ∈
K). In this work, we implement a MHA layer in order
to determine the compatibility of Q with K and V . The
MHA implemented in this work is similar to the decoder
implemented in [23] and [45]. As shown in [45] the MHA
layer can be defined as:

MHA(Q,K, V) = Linear(Concat(head1 . . . headhe
)) (7)

Here headi = Attention(Q,K, V) and he (taken as 8
here) is the number of heads. The feed-forward layer is
implemented to further process the mapping that results from
the MHA layer, and transform it to a dimension that is
coherent with the number of nodes in the task-graph (N).
The interjecting batch normalization layers serve to bound
values of a specific batch using the mean and variance of
the batch. The final softmax layer outputs the probability
values for all the nodes. Here, the next task to be done is
then chosen based on a greedy approach, which means that
the node with the highest probability will be chosen. The
nodes which are already visited will be masked (by setting
their probability as 0) so that these nodes are not available
for selection in the future time steps of the simulation of the
multi-robot operation.
C. Training Algorithm

The training algorithm used here is REINFORCE. Other
relevant details for training are shown in Table I. This
training process can readily be further advanced in the future

through the adoption of advanced state-of-the-art policy
gradient algorithms such as Proximal Policy Optimization
[46] and the Actor-Critic method [47]. For each epoch of
the training, two sets of data (MRTA operation scenarios) are
used, which are the training set and the validation set. The
training data set is used to train the model (θCapAM) while the
validation set is used to update the baseline model (θBLCapAM).
Both the training data and validation data generated from the
distribution of MRTA scenarios are explained later in section
IV-A.1. The size of the training data and the validation data
used in this paper is mentioned in Table I.

IV. EXPERIMENTAL EVALUATION
A. Comparison with baselines

TABLE I
SETTINGS FOR MODEL TRAINING IN

CAPAM AND AM-RL

DETAILS VALUES

Algorithm REINFORCE
Baseline Rollout
Epochs 100
Training samples 500,000
Validation samples 10,000
Optimizer Adam
Learning step size 0.0001
Training frequency 500 SAMPLES

1) Details on dataset
for training and test-
ing: We consider the
(NP-hard) MRTA prob-
lem with time and ca-
pacity constraints also
known as Task Alloca-
tion Problem with Time
and Capacity (TAPTC),
as described in [19].
Each training sample has 100 tasks, and are located randomly
within a 100 × 100 grid map. Each task i has a time deadline
50 ≤ di ≤ 600, and a workload 10 ≤ wi ≤ 30. Each
sample has nr number of robots where 2 ≤ nr ≤ 7. The
initial positions of the robots in a sample is also chosen
randomly within the grids. Each robot j has a work capacity
of cj where 1 ≤ cj ≤ 3. All the robots move at a speed
of 1 unit. A task i is considered to be completed only if a
robot j visits node i and spends a time of wi/cj . All the
training samples are generated such that all the associated
variables (mentioned above) follow a uniform distribution
within their respective bounds. The average training time per
epoch for CapAM is ∼10 mins. In order to evaluate and
compare the generalizability of CapAM-trained models with
that of baselines, we used the dataset in [19] (found in [48]).
This dataset, which has a similar distribution of scenarios
as used in training CapAM, consists of 96 test cases with
100 tasks and a varying number of robots (2, 3, 5, 7 robots),
and the speed of every robot is considered to be the same
(1 unit/s). The 96 cases are divided into ones with tight
and slack deadlines. Each category can be further divided
into 4 sub-categories based on the fraction of tasks (25%,
50%, 75%, and 100%) that have normally distributed tasks
deadlines. For example, 25% indicates that there are 25 tasks
with deadlines normally distributed between the limits dlow
and dhigh, while the remaining 75 tasks have a deadline of
dhigh. For group 1 (tight deadline), the value of dhigh is half
of that for group 2 (slack deadline). Further description of
the test cases can be found in [19].

2) Test for Generalizability: We compare our method with
the following four baseline methods over the stated test cases:

i) Iterated Local Search (ILS): This is an online meta-
heuristic iterated search algorithm [20], where the output of

TABLE III
COMPARISON OF COMPUTING TIME TO GENERATE ENTIRE SOLUTION

SEQUENCE, AVERAGED OVER 96 CASES

METHOD TIME (SEC)

ILS 1.342
EILS 0.992
BiG-MRTA 0.301
CapAM 0.085

one iteration is partially used as the input to the next iteration.
During each iteration, the best solution is improved by a
perturbation step, followed by a local search.

ii) Enhanced Iterated Local Search (EILS): EILS is also
an online metaheuristic iterated search method [19], with an
improved perturbation step as compared to [20].

iii) Bi-Graph MRTA (BiG-MRTA): BiG-MRTA [16] is
an online method based on the construction and matching
of a bipartite graph. In this method, a bipartite graph is
constructed to connect robots to tasks, with the weights
of connecting edges determined by an incentive model as
a function of the tasks’ features and robots’ states. This
decomposes the problem and yield a measure of robot-task
pairing suitability. A maximum weighted matching problem
is then solved by each robot to identify the optimal task
assignments that maximize a net incentive for the team.

iv) Attention Mechanism based RL (AM-RL): The AM-
RL method [23] consists of an encoder-decoder architecture
purely based on attention mechanism. To implement this
method for our problem, it is adapted to a multi-robot
setting by making the following changes: 1) The node
properties defined in Section II-B are used here; 2) The
context for the MHA in the decoder is modified to be the
same as that in CapAM; and 3) The cost function used for
training is changed to that in Eq. (1). We set the parameters
which correspond to the best performing model for a CVRP
with 100 locations. This AM-RL model is trained using
the same sample distribution and settings as respectively
described in Sections IV-A.1. The average training time per
epoch is found to be ∼11 mins for AM. The architectural
difference between AM-RL and CapAM is mainly in the
encoder, with their performance comparison intended to
show the impact of better encoding for learning over graphs.

TABLE II
COMPARISON OF COMPUTING

TIME TO GENERATE ENTIRE

SOLUTION SEQUENCE,
AVERAGED OVER 96 CASES

METHOD TIME (SEC)

ILS 1.342
EILS 0.992
BiG-MRTA 0.301
AM-RL 0.086
CapAM 0.085

The computation time to gen-
erate the entire sequence of task
assignments, as required by the
non-learning baselines and the
learnt policies of CapAM and
AM, are compared in Table II
– reported as an average over the 96 test cases. The real-
time performance advantage of the learnt models, which
are >10 times faster than the non-learning online methods
(ILS/EILS/BiG-MRTA) is readily evident here. Figure 3
shows the box plots for task completion performance over
the 96 test cases divided into 4 categories (each with 24
cases) based on the number of robots (2,3,5, and 7). As seen

Fig. 3. Comparison of the performance (on test cases) of CapAM with
other baseline methods. Here CapAM has K = 2, P = 3, and Le = 1.

from Fig. 3, CapAM obtains a better performance compared
to the baseline methods. To provide statistical evidence of
the advantage of CapAM over the baseline methods, we
performed a pairwise T-test of CapAM vs each baseline on
the 24 cases in each category, with results summarized in
Table IV; here, the null hypothesis is that the difference
between the values of the two sets has a mean equal to 0.
Considering a 5% significance level, Table IV shows that the
p-value from the T-test is generally less than 0.05, which
indicates the rejection of the null hypothesis – CapAM’s
performance on the test cases is thus significantly better than
of the baselines.

TABLE IV
P-VALUE FOR PAIRWISE (CAPAM VS. BASELINES) T-TEST

CORRESPONDING TO FIG. 3.

robots CapAM vs
ILS EILS BiG-MRTA AM-RL

2 2.03e-4 0.002 0.003 1.6e-11
3 0.0307 0.079 0.038 2.4e-8
5 0.024 0.163 8.8e-4 0.42
7 0.025 0.049 0.003 0.031

B. Parametric and Scalability Analysis
Here, parametric analyses is performed w.r.t. the key

parameters of P and Le in the encoder of CapAM. Higher
values of P promotes greater information infusion for a
given neighborhood; with increasing Le or K (and fixed P),
information from (great number of) Le×K hop neighbours
is considered in the node embeddings. Increasing K, P and
Le however increases the number of learnable parameters,
which can lead to over-fitting and deteriorating performance
for unseen cases. Our numerical experiments with higher
values of K and Le corroborated this expectation, and hence
we fixed K = 2 and Le = 1. Hence this section focuses on
the impact of P , particularly in generalizing, and scaling to
larger-sized problems beyond training – both of which are
premised as major advantages of learning local structural
information. To this end, we train 3 different models on the
100-task problem, with varying P from 1 to 3, and fixed
K and Le. Then the CapAM (and for comparison AM-RL)
models that are trained for 100 tasks and 2-7 robots are
implemented on two sets of unseen problems – one with
the same size as in training, and another with numbers of
tasks and robots scaled up by a factor of 2 (training/testing
tasks are drawn from the same distribution).

Table V shows the effect of P on scalability of CapAM,
which is also compared to AM-RL. Results are reported in
terms of task completion % averaged over 24 samples in

each category (based on # tasks and robots). It can be seen
that all CapAM models with any P perform significantly
better than AM-RL. For the problems of the same size as
training (100-task cases), the task completion % gap between
CapAM and AM-RL is between 3% and 13.5%. For the
problems of double the size as training (200-task cases),
the task completion % gap between CapAM and AM-RL
is between 1.9% and 17.6%. In both cases, the gap (CapAM
vs. AM-RL) is the highest when task-to-robot ratios are high.
These observations directly demonstrate the effectiveness
of the novel encoder used in CapAM, which is designed
to capture local structural information much better than in
attention mechanisms. On comparing the CapAM models
with different P (in Table V), it can be seen that ones with
P = 1 perform slightly poorer compared to corresponding
ones with P = 2 and P = 3, with the difference between
the latter two being marginal. Thus increasing P beyond 2
may not provide further performance improvements.

TABLE V
PERFORMANCE OF CAPAM (IN TERMS OF % OF TASK COMPLETED)
WITH P = 1, 2, 3 FOR UNSEEN PROBLEM SETS WITH THE SAME AND

TWICE THE NUMBER OF TASKS AND ROBOTS AS IN TRAINING.
tasks # robots CapAM(P=3) CapAM(P=2) CapAM(P=1) AM-RL

100

2 34.6 36.2 32.6 22.7
3 51.1 50.3 49.4 38.0
5 74.9 74.9 73.2 70.2
7 94.8 94.1 91.2 85.6

200

4 28.2 27.1 24.4 10.7
6 46.7 47.0 45.2 29.4
10 67.8 68.6 66.5 61.4
14 77.8 77.5 76.2 74.3

V. CONCLUSION
In this paper, we proposed a new graph neural network

architecture called CapAM, to learn policies for MRTA
problems involving tasks with time deadlines and robots
with work capacity. This new architecture incorporates an
encoder based on capsule networks and a decoder based on
the attention mechanism, along with a context module to
feed the state of the robots and the environment. To learn
the features of the encoder and decoder, the problem has
been posed as an RL problem and solved using the policy
gradient algorithm, REINFORCE. In addition, the proposed
architecture is found to provide effective MRTA policies over
varying task size and robot-team size. The new CapAM
architecture demonstrated better performance compared to
other state-of-the-art baselines, which include both a learning
based method (AM-RL) and non-learning based methods
(ILS, EILS, BiG-MRTA). The CapAM architecture with its
capsule based node embedding showed that learning local
and global structural information of the task graph results
in better generalizability over unseen test cases, as observed
from comparing its performance with AM-RL (that uses a
different node embedding). The computational cost analysis
showed that the trained CapAM model takes only a few
milliseconds to yield a task-assignment decision, making
it highly suited for operations that require time-sensitive
online decisions. The advantage of using local neighborhood
information was also empirically evident from the scalability
analysis on the defined MRTA problem, where CapAM
demonstrated superior performance when applied to graphs

with a larger number of tasks/nodes and robots in the team.
Future directions: Firstly, computational analysis of

training feasibility when episodes must be simulated over
more realistic virtual robotics environment remains a open
direction of research across all learning-based approaches.
Further, to enable transition of these MRTA methods to
application, in the future we should consider dynamic tasks,
environment uncertainties, and partially observable state
spaces within the CapAM architecture.

REFERENCES

[1] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[2] P. Ghassemi and S. Chowdhury, “Decentralized Task Allocation in
Multi-Robot Systems via Bipartite Graph Matching Augmented With
Fuzzy Clustering,” in Volume 2A: 44th Design Automation Confer-
ence. American Society of Mechanical Engineers, aug 2018, p.
V02AT03A014.

[3] J.-P. Aurambout, K. Gkoumas, and B. Ciuffo, “Last mile delivery by
drones: An estimation of viable market potential and access to citizens
across european cities,” European Transport Research Review, vol. 11,
no. 1, p. 30, 2019.

[4] M. V. Espina, R. Grech, D. De Jager, P. Remagnino, L. Iocchi,
L. Marchetti, D. Nardi, D. Monekosso, M. Nicolescu, and C. King,
“Multi-robot teams for environmental monitoring,” in Innovations in
Defence Support Systems–3. Springer, 2011, pp. 183–209.

[5] E. Olson, J. Strom, R. Morton, A. Richardson, P. Ranganathan,
R. Goeddel, M. Bulic, J. Crossman, and B. Marinier, “Progress toward
multi-robot reconnaissance and the magic 2010 competition,” Journal
of Field Robotics, vol. 29, no. 5, pp. 762–792, 2012.

[6] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics
and Autonomous Systems, vol. 90, pp. 55–70, 2017.

[7] R. Nallusamy, K. Duraiswamy, R. Dhanalaksmi, and P. Parthiban,
“Optimization of non-linear multiple traveling salesman problem us-
ing k-means clustering, shrink wrap algorithm and meta-heuristics,”
International Journal of Nonlinear Science, vol. 8, no. 4, pp. 480–
487, 2009.

[8] P. Toth and D. Vigo, Vehicle routing: problems, methods, and appli-
cations. SIAM, 2014.

[9] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257–1270, 2006.

[10] T. Bektas, “The multiple traveling salesman problem: an overview
of formulations and solution procedures,” Omega, vol. 34, no. 3, pp.
209–219, 2006.

[11] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle
routing problem: State of the art classification and review,” Computers
& Industrial Engineering, vol. 99, pp. 300–313, 2016.

[12] N. Azi, M. Gendreau, and J.-Y. Potvin, “An exact algorithm for
a vehicle routing problem with time windows and multiple use of
vehicles,” European Journal of Operational Research, vol. 202, no. 3,
pp. 756–763, 2010.

[13] D. Wang, M. Hu, and Y. Gao, “Multi-criteria mission planning for
a solar-powered multi-robot system,” in ASME 2018 International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference. American Society of Mechanical
Engineers Digital Collection, 2018.

[14] K. Jose and D. K. Pratihar, “Task allocation and collision-free path
planning of centralized multi-robots system for industrial plant in-
spection using heuristic methods,” Robotics and Autonomous Systems,
vol. 80, pp. 34–42, 2016.

[15] D. Cattaruzza, N. Absi, and D. Feillet, “Vehicle routing problems with
multiple trips,” 4OR, vol. 14, no. 3, pp. 223–259, 2016.

[16] P. Ghassemi, D. DePauw, and S. Chowdhury, “Decentralized
Dynamic Task Allocation in Swarm Robotic Systems for Disaster
Response: Extended Abstract,” in 2019 International Symposium
on Multi-Robot and Multi-Agent Systems (MRS). New Brunswick,
NJ: IEEE, aug 2019, pp. 83–85. [Online]. Available: https:
//ieeexplore.ieee.org/document/8901062/

[17] E. Schneider, E. I. Sklar, S. Parsons, and A. T. Özgelen, “Auction-
based task allocation for multi-robot teams in dynamic environments,”
in Conference Towards Autonomous Robotic Systems. Springer, 2015,
pp. 246–257.

[18] M. Otte, M. J. Kuhlman, and D. Sofge, “Auctions for multi-robot
task allocation in communication limited environments,” Autonomous
Robots, vol. 44, no. 3, pp. 547–584, 2020.

[19] H. Mitiche, D. Boughaci, and M. Gini, “Iterated local search for time-
extended multi-robot task allocation with spatio-temporal and capacity
constraints,” Journal of Intelligent Systems, 2019.

[20] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van
Oudheusden, “Iterated local search for the team orienteering problem
with time windows,” Computers & Operations Research, vol. 36,
no. 12, pp. 3281–3290, 2009, new developments on hub location.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S030505480900080X

[21] S. Ismail and L. Sun, “Decentralized hungarian-based approach for
fast and scalable task allocation,” in 2017 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE, 2017, pp. 23–28.

[22] P. Ghassemi and S. Chowdhury, “Multi-robot task allocation in
disaster response: Addressing dynamic tasks with deadlines and
robots with range and payload constraints,” Robotics and Autonomous
Systems, vol. 147, p. 103905, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889021001901

[23] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” in 7th International Conference on Learning
Representations, ICLR 2019, 2019.

[24] T. D. Barrett, W. R. Clements, J. N. Foerster, and A. I. Lvovsky,
“Exploratory combinatorial optimization with reinforcement learning,”
arXiv preprint arXiv:1909.04063, 2019.

[25] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, 2017, pp. 6348–6358.

[26] Y. Kaempfer and L. Wolf, “Learning the multiple traveling salesmen
problem with permutation invariant pooling networks,” ArXiv, vol.
abs/1803.09621, 2018.

[27] A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu, and
A. Singh, “Learning heuristics over large graphs via deep reinforce-
ment learning,” arXiv preprint arXiv:1903.03332, 2019.

[28] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Advances in Neural
Information Processing Systems, 2018, pp. 539–548.

[29] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “A note on learning
algorithms for quadratic assignment with graph neural networks,” stat,
vol. 1050, p. 22, 2017.

[30] Z. Wang and M. Gombolay, “Learning scheduling policies for multi-
robot coordination with graph attention networks,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4509–4516, 2020.

[31] E. V. Tolstaya, J. Paulos, V. R. Kumar, and A. Ribeiro, “Multi-robot
coverage and exploration using spatial graph neural networks,” ArXiv,
vol. abs/2011.01119, 2020.

[32] Q. Sykora, M. Ren, and R. Urtasun, “Multi-agent routing value
iteration network,” in 37th International Conference on Machine
Learning, ICML 2020, 2020.

[33] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, 2017.

[34] R. Paleja, A. Silva, L. Chen, and M. Gombolay, “Interpretable and per-
sonalized apprenticeship scheduling: Learning interpretable scheduling
policies from heterogeneous user demonstrations,” in Advances in
Neural Information Processing Systems, 2020.

[35] M. Strens and N. Windelinckx, “Combining planning with reinforce-
ment learning for multi-robot task allocation,” in Adaptive Agents and
Multi-Agent Systems II, D. Kudenko, D. Kazakov, and E. Alonso, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 260–274.

[36] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 1774–1783.

[37] K. S. Shetye, T. J. Overbye, H. Li, J. Thekkemathiote, and H. Scribner,
“Considerations for interconnection of large power grid networks,” in
2021 IEEE Power and Energy Conference at Illinois (PECI), 2021,
pp. 1–8.

[38] M. Liu, K. Sivakumar, S. Omidshafiei, C. Amato, and J. P. How,
“Learning for multi-robot cooperation in partially observable stochas-

https://ieeexplore.ieee.org/document/8901062/
https://ieeexplore.ieee.org/document/8901062/
https://www.sciencedirect.com/science/article/pii/S030505480900080X
https://www.sciencedirect.com/science/article/pii/S030505480900080X
https://www.sciencedirect.com/science/article/pii/S0921889021001901
https://www.sciencedirect.com/science/article/pii/S0921889021001901

tic environments with macro-actions,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1853–
1860.

[39] K.-C. Chen, S.-C. Lin, J.-H. Hsiao, C.-H. Liu, A. F. Molisch, and G. P.
Fettweis, “Wireless networked multirobot systems in smart factories,”
Proceedings of the IEEE, vol. 109, no. 4, pp. 468–494, 2021.

[40] S. Verma and Z. L. Zhang, “Graph capsule convolutional neural
networks,” 2018.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[42] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation:
A review of the state-of-the-art,” in Cooperative Robots and Sensor
Networks 2015. Springer, 2015, pp. 31–51.

[43] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[44] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in Artificial Neural Networks and Machine Learning –
ICANN 2011, T. Honkela, W. Duch, M. Girolami, and S. Kaski, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 44–51.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[47] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, A. Courville, R. L. J. Pineau,
and Y. Bengio, “An actor-critic algorithm for sequence prediction,” in
5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings, 2017.

[48] http://tinyurl.com/taptc15in.

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://tinyurl.com/taptc15in

	Introduction
	MRTA: Problem definition and formulation
	MRTA problem description and formulation
	An ``MDP over Graph" Representation of MRTA

	Learning framework
	Graph Capsule Convolutional Network based Encoder
	Graph Capsule Convolutional Neural Networks

	Attention-based Decoder and Context
	Training Algorithm

	Experimental evaluation
	Comparison with baselines
	Details on dataset for training and testing
	Test for Generalizability

	Parametric and Scalability Analysis

	Conclusion
	References

