TrackerSift:
Untangling Mixed Tracking and Functional Web Resources

Abdul Haddi Amjad Danial Saleem Muhammad Ali Gulzar
hadiamjad@vt.edu 1174115@lhr.nu.edu gulzar@cs.vt.edu
Virginia Tech FAST-NUCES Virginia Tech
USA Pakistan USA
Zubair Shafiq Fareed Zaffar
zubair@ucdavis.edu fareed.zaffar@lums.edu.pk
University of California, Davis LUMS
USA Pakistan

ABSTRACT

Trackers have recently started to mix tracking and functional re-
sources to circumvent privacy-enhancing content blocking tools.
Such mixed web resources put content blockers in a bind: risk break-
ing legitimate functionality if they act and risk missing privacy-
invasive advertising and tracking if they do not. In this paper, we
propose TRACKERSIFT to progressively classify and untangle mixed
web resources (that combine tracking and legitimate functionality)
at multiple granularities of analysis (domain, hostname, script, and
method). Using TRACKERSIFT, we conduct a large-scale measure-
ment study of such mixed resources on 100K websites. We find that
more than 17% domains, 48% hostnames, 6% scripts, and 9% methods
observed in our crawls combine tracking and legitimate functional-
ity. While mixed web resources are prevalent across all granularities,
TRACKERSIFT is able to attribute 98% of the script-initiated network
requests to either tracking or functional resources at the finest
method-level granularity. Our analysis shows that mixed resources
at different granularities are typically served from CDNs or as in-
lined and bundled scripts, and that blocking them indeed results in
breakage of legitimate functionality. Our results highlight opportu-
nities for finer-grained content blocking to remove mixed resources
without breaking legitimate functionality.

CCS CONCEPTS

« Security and privacy — Web application security; Browser
security; - Software and its engineering — Software defect anal-
ysis.

ACM Reference Format:

Abdul Haddi Amjad, Danial Saleem, Muhammad Ali Gulzar, Zubair Shafiq,
and Fareed Zaffar. 2021. TrackerSift: Untangling Mixed Tracking and Func-
tional Web Resources. In ACM Internet Measurement Conference (IMC °21),
November 2—4, 2021, Virtual Event, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3487552.3487855

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMC ’21, November 2—4, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9129-0/21/11...$15.00
https://doi.org/10.1145/3487552.3487855

569

1 INTRODUCTION

Background & Motivation. Privacy-enhancing content blocking
tools such as AdBlock Plus [2], uBlock Origin [1], and Brave [4] are
widely used to block online advertising and/or tracking [26, 37, 39].
Trackers have engaged in the arms race with content blockers
via counter-blocking [40, 42] and circumvention [17, 36]. In the
counter-blocking arms race, trackers attempt to detect users of con-
tent blocking tools and give them an ultimatum to disable content
blocking. In the circumvention arms race, trackers attempt to evade
filter lists (e.g., EasyList [6], EasyPrivacy [7]) used to block ads and
trackers, thus rendering content blocking ineffective. While both
arms races persist to date, trackers are increasingly employing cir-
cumvention because counter-blocking efforts have not successfully
persuaded users to disable content blocking tools [21, 44, 47].
Limitations of Prior Work. Trackers have been using increas-
ingly sophisticated techniques to circumvent content blocking
[17, 19, 36]. At a high level, circumvention techniques can be clas-
sified into two categories. One type of circumvention is achieved
by frequently changing the network location (e.g., domain or URL)
of advertising and tracking resources. Content blocking tools at-
tempt to address this type of circumvention by updating filter lists
promptly and more frequently [28, 29, 48, 49, 52]. The second type
of circumvention is achieved by mixing up tracking resources with
functional resources, such as serving both from the same network
endpoint (e.g., first-party or Content Delivery Network (CDN))
[17, 20, 23]. Content blocking tools have struggled against this
type of circumvention because they are in a no-win situation: they
risk breaking legitimate functionality as collateral damage if they
act and risk missing privacy-invasive advertising and tracking if
they do not. While there is anecdotal evidence, the prevalence and
modus operandi of this type of circumvention has not been studied
in prior literature.

Measurement & Analysis. This paper aims to study the preva-
lence of mixed resources, which combine tracking and functionality,
on the web. We present TRACKERSIFT to conduct a large-scale mea-
surement study of mixed resources at different granularities starting
from network-level (e.g., domain and hostname) to code-level (e.g.,
script and method). TRACKERSIFT’s hierarchical analysis sheds light
on how tracking and functional web resources can be progressively
untangled at increasing levels of finer granularity. It uses a localiza-
tion approach to untangle mixed resources beyond the script-level
granularity of state-of-the-art content blocking tools. We show how

IMC 21, November 2-4, 2021, Virtual Event, USA

ads.com ‘

google.com ‘

news.com ‘

Domain

ad.google.com

H cdn.google.com ﬂ maps.google.com ’

Hostname

cdn.google.com/ads cdn.google.com/ads-1
Initiated by sdk.js cdn.google.com/nonads-1 ...
Script Initiated by clone.js

cdn.google.com/logo.png
Initiated by stack.js

I cdn.google.com/nonads-1
Initiated by clone.js@m3()

cdn.google.com/ads-1
Initiated by clone.js@m1()

cdn.google.com/ads-2
cdn.google.com/nonads-2

Method Initiated by clone.js@m2()

Figure 1: TRACKERSIFT progressively classifies tracking (red) and
functional (green) resources. For mixed resources (yellow), it pro-
ceeds to a finer granularity for further classification.

to classify methods in mixed scripts, which combine tracking and
functionality, to localize the code responsible for tracking behavior.
A key challenge in adapting software fault localization approaches
to our problem is to find a rigorous suite of test cases (i.e., inputs
labeled with their expected outputs) [32]. We address this chal-
lenge by using filter lists [6, 7] to label tracking and functional
behaviors during a web page load. By pinpointing the genesis of a
tracking behavior even when it is mixed with functional behavior
(e.g., method in a bundled script), TRACKERSIFT paves the way to-
wards finer-grained content blocking that is more resilient against
circumvention than state-of-the-art content blocking tools.
Results. Using TRACKERSIFT, our measurements of 100K websites
show that 17% of the 69.3K observed domains are classified as mixed.
The requests belonging to mixed domains are served from a total of
26.0K hostnames. TRACKERSIFT classifies 48% of these hostnames
as mixed. The requests belonging to mixed hostnames are served
from a total of 350.1K (initiator) scripts. TRACKERSIFT classifies 6%
of these scripts as mixed. The requests belonging to mixed scripts
are initiated from a total of 64.0K script methods. TRACKERSIFT
classifies 9% of these script methods as mixed. Our analysis shows
that the web resources classified as mixed by TRACKERSIFT are typ-
ically served from CDNs or as inlined and bundled scripts, and that
blocking them indeed results in breakage of legitimate functionality.
While mixed web resources are prevalent across all granularities,
TRACKERSIFT is able to attribute 98% of the script-initiated network
requests to either tracking or functional resources at the finest
method-level granularity.
Our key contributions include:

e a large-scale measurement and analysis of the preva-
lence of mixed web resources; and

e a hierarchical localization approach to untangle mixed
web resources.

2 TRACKERSIFT

In this section, we describe the design of TRACKERSIFT to untangle
mixed web resources. TRACKERSIFT conducts a hierarchical analy-
sis of web resources to progressively localize tracking resources at
increasingly finer granularities if they cannot be separated as func-
tional or tracking at a given granularity. TRACKERSIFT needs a test
oracle capable of identifying whether a web page’s behavior (e.g.,
network requests) is tracking or functional. TRACKERSIFT relies on
filter lists, EasyList [6] and EasyPrivacy [7], to distinguish between

Amjad et al.

/ Browser \
example.co

resource

HTTP
request

HTTP
response

Labeled
| requests ® Script-initiated

- — labeled
Q requests
N 5 —l 1 T 1 T 1 type: script
Events: EasyLifl
requestWillBeSent—> \\ EasyPrivacy /
responseReceived
Labeling
Database

Crawling

Figure 2: TRACKERSIFT’s web crawling and labeling

tracking and functional behavior. As also illustrated in Figure 1, we
next describe TRACKERSIFT’s hierarchical analysis at increasingly
finer granularities of domain, hostname, script, and method.
Domain classification. As a webpage loads, multiple network
requests are typically initiated by scripts on the page to gather
content from various network locations addressed by their URLs.
We capture such script-initiated requests’ URLs and apply filter
lists to label them as tracking or functional. We then extract the
domain names from request URLs and pass the label from URLs to
domain names. For each domain, we maintain a tracking count and
functional count. All the domains that are classified as tracking or
functional are set aside at this level. The rest representing mixed
domains serving both tracking and functional requests are further
examined at a finer granularity. For instance, in Figure 1, the domain
ads. com and news. com serve solely tracking and solely functional
content, respectively. The domain google . com serves both and thus
needs analysis at a finer granularity.

Hostname classification. At the domain level, we find the re-
quests served by mixed domains and extract their hostnames. We
increment the tracking and functional count for each hostname
within mixed domains based on the corresponding request’s label.
The hostnames serving both tracking and functional requests are
further analyzed at a finer granularity, while the rest are classified
as either tracking or functional. In Figure 1, google. com was pre-
viously classified as mixed and therefore, all hostnames belonging
to google. com need to be examined. We classify ad. google.com
and maps . google. com as tracking and functional, respectively. In
contrast, cdn.google. com is mixed and thus needs analysis at a
finer granularity.

Script classification. We locate the script initiating the request
to a mixed hostname and label it as either functional or tracking,
reflecting the type of request they initiate. Like other levels, we
measure the count of tracking and functional requests launched
from each script and redistribute those into functional, tracking,
and mixed scripts, where mixed scripts will be further analyzed at a
finer granularity. In Figure 1, sdk. js, clone. js, and stack. js all
initiate requests to the mixed hostname cdn. google.com. We clas-
sify sdk. js and stack. js as tracking and functional, respectively.
Since clone. js requests both tracking and functional resources, it
needs analysis at a finer granularity.

Method classification. We analyze the corresponding requests
for each mixed script and locate the initiator JavaScript methods
of each request. We then measure the number of tracking and
functional requests initiated by each of the isolated methods. In
the final step, we classify the methods into functional, tracking,

TrackerSift: Untangling Mixed Tracking and Functional Web Resources

Table 1: Classification of requests at different granularities

IMC 21, November 2-4, 2021, Virtual Event, USA

Table 2: Classification of resources at different granularities

Granularity Tracking Functional Mixed Separation Cumulative Granularity Tracking Functional Mixed Separation
(Count) (Count) (Count) Factor Separation (Count) (Count) (Count) Factor

(%) Factor (%) (%)

Domain 755,784 566,810 1,129,109 54% 54% Domain 6,493 50,938 11,861 83%
Hostname 161,604 106,542 860,963 24% 65% Hostname 4,429 9,248 12,383 52%
Script 235,157 490,295 135,511 84% 94% Script 194,156 134,726 21,168 94%
Method 23,819 74,223 37,469 72% 98% Method 17,940 40,500 5,579 91%

and mixed. In Figure 1, for the mixed script clone. js, we classify
m1() as tracking and m3() as functional. Since m2() requests both
tracking and functional resources, it is classified as mixed.

3 DATA

In this section, we describe TRACKERSIFT’ s browser instrumenta-
tion that crawls websites and labels the collected data. Note that
TRACKERSIFT’s hierarchical analysis is post hoc and offline. Thus,
it does not incur any significant overhead during page load other
than the browser instrumentation and bookkeeping for labeling.
Crawling. We used Selenium [12] with Chrome 79.0.3945.79 to
automatically crawl the landing pages of 100K websites that are
randomly sampled from the Tranco top-million list [46] in April
2021. Our crawling infrastructure, based on a campus network
in North America, comprised of a 13-node cluster with 112 cores
at 3.10GHz, 52TB storage, and 832GB memory. Each node uses a
Docker container to crawl a subset of 100K webpages. The average
page load time (until onLoad event is fired) for a web page was
about 10 seconds. Our crawler waits an additional 10 seconds before
moving on to the next website. Note that the crawling is stateless,
i.e., we clear all cookies and other local browser states between
consecutive crawls.

As shown in Figure 2, our crawler was implemented as a purpose-
built Chrome extension that used DevTools [8] API to collect the
data during crawling. Specifically, it relies on two network events:
requestWillBeSent and responseReceived for capturing rele-
vant information for script-initiated network requests during the
page load. The former event provides detailed information for
each HTTP request such as a unique identifier for the request
(request_id), the web page’s URL (top_level_url), the URL of
the document this request is loaded for (frame_url), requested
resource type (resource_type), request header, request timestamp,
and a call_stack object containing the initiator information and
the stack trace for script-initiated HTTP requests. The latter event
provides detailed information for each HTTP response, such as
response headers and response body containing the payload.
Labeling. We gather an authoritative source labels by applying
filter lists to the crawled websites. Filter lists are not perfect (e.g.,
they are slow to update [49] and are prone to mistakes [17]) but they
are the best available source of labels. We use two widely used filter
lists that target advertising (EasyList [6]) and tracking (EasyPrivacy
[7]). These filter lists mainly build of regular expressions that match
advertising and/or tracking network requests. As shown in Figure 2,
network requests that match EasyList or EasyPrivacy are classified
as tracking, otherwise they are classified as functional. Note that we
maintain the call stack that contains the ancestral scripts that in turn
triggered a script-initiated network request (e.g., XMLHTTPRequest
fetches). For asynchronous JavaScript, the stack track that preceded

571

the request is prepended in the stack. Thus, for script-initiated
network requests, we ensure that if a request is classified as tracking
or functional, its ancestral scripts in the stack are also classified as
such. Since network requests that are not script-initiated can not
be trivially classified as tracking or functional, we exclude them
from our analysis.

4 RESULTS

Classifying Mixed Resources. We compute the logarithmic ratio
of the number of tracking to functional network requests to quantify
the mixing of tracking and functional resources.

of tracking requests

1)

At each granularity, we classify resources with the common log-
arithmic ratio less than -2 as functional because they triggered
100x more functional requests than tracking requests. Similarly, we
classify resources with the common logarithmic ratio of more than
2 as tracking because they triggered 100X more tracking requests
than functional requests. The resources with the common logarith-
mic ratio between -2 and 2 are classified as mixed. We analyze the
suitability of the selected classification threshold using sensitivity
analysis later in Section 5.

Results Summary. Table 1 summarizes the results of our crawls
of the landing pages of 100K websites. Using the aforementioned
classification, we are able to attribute 54% of the 2.43 million script-
initiated network requests to tracking or functional domains. The
remaining 46% (1129K) of the 2.43 million requests attribute to
mixed domains that are further analyzed at the hostname-level. We
are able to attribute 24% of the requests from mixed domains to
tracking or functional hostnames. The remaining 76% (860K) of the
requests attribute to mixed hostnames that are further analyzed at
the script URL-level. We are able to attribute 84% of the requests
from mixed hostnames to tracking or functional script URLs. The
remaining 16% (135K) of the requests attribute to mixed script URLs
that are further analyzed at the script method-level. We are able to
attribute 72% of the requests from mixed script URLSs to tracking or
functional script methods. This leaves us with less than 2% (37K)
requests that cannot be attributed by TRACKERSIFT to tracking or
functional web resources and require further analysis.

Next, we analyze the distribution of the ratio of tracking to
functional requests by web resources at different granularities of
domain, hostname, script URL, and script method in Figure 3. Table
2 shows the breakdown of web resources classified as tracking,
functional, and mixed at different granularities.

Domain classification. 2451K requests in our dataset are served
from a total of 69,292 domains (eTLD+1). Figure 3a shows three dis-
tinct peaks: [2, 0o) serve tracking requests, (-co, -2] serve functional

ratio = lo
Bl¥ of functional requests

IMC 21, November 2-4, 2021, Virtual Event, USA

7000
6000
5000

4000

Count

3000
2000

1000

-6 -4 -2 0 2 4 6

Ratio Ratio

(a) domain (b) hostname

Count

Amjad et al.

40000

120000 35000

100000 30000

80000 25000

20000

Count

60000
15000

40000
10000

20000 5000

o 0
%6 -4 -2 0 2 4 6 -4 -2 0 2 4 6
Ratio Ratio
(c) script URL (d) script method

Figure 3: Distribution of resources at increasingly finer granularities. Y-axis shows the count of unique (a) domains, (b) hostnames, (c) scripts,
and (d) script methods. X-axis represents the common logarithmic ratio of the number of tracking to functional requests. Interval (-co,-2] is
classified as functional (green), (-2,2) is classified as mixed (yellow), and [2,00) is classified as tracking (red).

requests, and (-2, 2) serve both tracking and functional requests. We
can filter 31% of the requests by classifying 6,493 domains that lie
in the [2, oo) interval as tracking. Notable tracking domains include
google-analytics.com, doubleclick.net, and googleadservices.com,
bing.com. We can filter 23% of the requests by classifying 50,938
domains that lie in the (-oo, -2] interval as functional. Notable func-
tional domains include CDN and other content hosting domains
twimg.com, zychr.com, fbcdn.ne, w.org, and parastorage.com. How-
ever, 46% of requests are served by 11,861 mixed domains that lie in
the (-2, 2) interval. These mixed domains cannot be safely filtered
due to the risk of breaking legitimate functionality, and not filtering
them results in allowing tracking. Notable mixed domains include
gstatic.com, google.com, facebook.com, facebook.net, and wp.com.
Hostname classification. 1129K requests belonging to mixed do-
mains are served from a total of 26,060 hostnames. Figure 3b shows
three distinct peaks representing hostnames that serve tracking,
functional, or both tracking and functional requests. We can fil-
ter 14% of the requests by classifying 4,429 hostnames that lie in
the [2,) interval as tracking. We can filter 9% of the requests
by classifying 9,248 hostnames that lie in the (-o0, -2] interval as
functional. However, 76% of the requests are served by 12,383 host-
names that lie in the (-2, 2) interval are classified as mixed. Again,
these mixed hostnames cannot be safely filtered due to the risk
of breaking legitimate functionality, and not filtering them results
in allowing tracking. Take the example of hostnames of a popu-
lar mixed domain wp.com. The requests from wp.com are served
from tracking hostnames such as pixel.wp.com and stats.wp.com,
functional hostnames such as widgets.wp.com and c0.wp.com, and
mixed hostnames such as i0.wp.com and il.wp.com.

Script classification. 860K requests belonging to mixed hostnames
are served from a total of 350,050 initiator scripts. Figure 3c again
shows three distinct peaks representing scripts that serve tracking,
functional, or both tracking and functional requests. We can filter
27% of the requests by classifying 194,156 scripts that lie in the 2, o)
interval as tracking. We can filter 57% of the requests by classifying
134,726 scripts that lie in the (-o0, -2] interval as functional. However,
16% of the requests are served by 21,168 scripts that lie in the (-2, 2)
interval are classified as mixed. These mixed scripts cannot be safely
filtered due to the risk of breaking legitimate functionality, and not
filtering them results in allowing tracking. For example, let’s analyze

572

the initiator scripts of a mixed hostname i1.wp.com. The requests to
this hostname are the result of different initiator scripts on the web-
page www.ibn24.tv. Specifically, a tracking request to il.wp.com is
initiated by the script show_ads_impl_fy2019.js and a functional
request to il.wp.com is initiated by the script jquery.min.js. As an-
other example, on the webpage somosinvictos.com, both tracking
and functional requests to il.wp.com are initiated by the mixed
script lazysizes.min.js. Note that the scripts classified as tracking
initiate requests to well-known advertising and tracking domains.
For example, script uc.js served by consent.cookiebot.com initiated
requests to googleadservices.com, doubleclick.net, and amazon-
adsystem.com.

Method classification. 135K requests belonging to mixed scripts
are served from a total of 64,019 script methods. Figure 3d again
shows three distinct peaks representing methods that serve track-
ing, functional, or both tracking and functional requests. We can
filter 17% of the requests by classifying 17,940 methods that lie in the
[2, 00) interval as tracking. We can filter 55% of the requests by clas-
sifying 40,500 methods that lie in the (-co, -2] interval as functional.
However, 28% of the requests are served by 5,579 methods that lie
in the (-2, 2) interval are classified as mixed. These mixed methods
cannot be safely filtered due to the risk of breaking legitimate func-
tionality, and not filtering them results in allowing tracking. For
example, let’s analyze script methods for a mixed script tfa.js on
the webpage hubblecontacts.com. While both tracking and func-
tional requests are initiated by the script, the tracking request was
initiated by get method, and the functional request was initiated by
X method. As another example, let’s analyze script methods for a
mixed script app.js on the webpage radioshack.com.mx. In this case,
both tracking and functional requests are initiated by the mixed
script method Pa.xhrRequest.

5 DISCUSSION

In this section, we discuss some case studies, opportunities for
future work, and limitations.
Circumvention strategies. There are two common techniques
for mixing tracking and functional resources.

(1) Script inlining: Despite potential security risks, publishers are
willing to inline external JavaScript code snippets (as opposed to
including external scripts using the src attribute) for performance

TrackerSift: Untangling Mixed Tracking and Functional Web Resources

% Mixed Scripts

T Y
HrEH NN FTD OSSN0 AAN AN FHD OIS0 M
o I i NSNS
Classification Threshold
Figure 4: Sensitivity analysis of the classification threshold (default
is -2 and 2) by studying the proportion of mixed scripts as a function

of varying thresholds. The X-axis represents the threshold buckets.
For example, 1.5 represents (-1.5, 1.5).

reasons as well as for circumvention [35, 41]. For example, we find
that the Facebook pixel [9] is inlined on a large number of websites
to assist with targeting Facebook ad campaigns and conversion
tracking.

(2) Script Bundling: Publishers also bundle multiple external
scripts from different organizations with intertwined dependencies
for simplicity and performance reasons. JavaScript bundlers, such
as webpack [14] and browserify [5], use dependency analysis to
bundle multiple scripts into one or a handful of bundled scripts. For
example, pressl.co serves a script app.9115af433836{d824ec7.js that
is bundled using the webpack [14]. This bundled script includes
the aforementioned Facebook pixel and code to load functional
resources from a first-party hostname. Existing content blocking
tools struggle to block inlined and bundled tracking scripts with-
out the risk of breaking legitimate site functionality. Finer-grained
detection by TRACKERSIFT presents an opportunity to handle such
scripts by localizing the methods that implement tracking.
Threshold sensitivity analysis. We set the classification thresh-
old to a symmetric value of (-2,2) for classifying mixed resources in
Equation 1. To assess our choice of the threshold, we analyze the
sensitivity of script classification results in Figure 4. Similar trends
are observed for domain, hostname, and method classification. The
plot shows the percentage of scripts classified as mixed as we vary
the threshold from 1 to 3 in increments of 0.1 Note that the curve
plateaus around our selected threshold of 2. Thus, we conclude
that our choice of the threshold is stable and reasonably separates
mixed resources from tracking and functional resources.
Breakage analysis. We conducted manual analysis to assess whether
blocking mixed resources results in breakage of legitimate function-
ality. To assess functionality breakage, we load a random sample
of websites with (treatment) and without (control) blocking mixed
scripts as classified by TRACKERSIFT. We label breakage as: major if
the core functionality such as search bar, menu, images, and page
navigation is broken in treatment but not in control; minor: if the
secondary functionality such as comment/review sections, media
widgets, video player, and icons is broken in treatment but not in
control; and none: if the core and secondary functionalities of the
website are same in treatment and control. Note that we consider
missing ads as no breakage. Table 3 shows our breakage analysis
on a representative sample of 10 websites. We note major or mi-
nor breakage in all except one case. Thus, we conclude that mixed
web resources indeed cannot be safely blocked by existing content
blocking tools.

573

IMC 21, November 2-4, 2021, Virtual Event, USA

Table 3: Manual analysis of breakage caused by blocking mixed
scripts on randomly selected 10 websites.

Website Mixed Script Breakage Comment
caremanagem- jquery.min.js Minor scroll bar and two
entmatters.co.uk widgets missing
gratis.com main.js Major page did not load
forevernew.com.au require.js Major multiple page ban-
ners missing
flamesnation.ca player.js Minor video pop missing
biba.in M]_Static-Built.js Major page did not load
ecomarket.ru 2.0c9c64b2.chunk.js Major page did not load
peachjohn.co.jp jquery-1.11.2.min.js Major navigation and
scroll bar missing
shoobs.com widgets.js None no visible function-
ality breakage
editorajusp- jquery.js Major navigation and
odivm.com.br scroll bar missing
resourceworld.com jquery.min.js Major navigation bar and

images missing

Blocking mixed scripts. When TRACKERSIFT classifies a mixed
script with different tracking and functional methods, we can sim-
ply remove tracking methods to generate a surrogate script that can
then be used to shim the mixed script at runtime. Existing content
blockers such as NoScript, uBlock Origin, AdGuard, and Firefox
SmartBlock use surrogate scripts to block tracking by mixed scripts
while avoiding breakage [3, 10, 13, 38]. However, these surrogate
scripts are currently manually designed [11]. TRACKERSIFT can help
scale up the process of generating surrogate scripts by automati-
cally detecting and removing tracking methods in mixed scripts.
Note that removing tracking methods is tricky because simply re-
moving them risks functionality breakage due to potential coverage
issues of dynamic analysis. To mitigate this concern, we plan to ex-
plore a more conservative approach using a guard—a predicate that
blocks tracking execution but allows functional execution. Such
a predicate has a similar structure to that of an assertion. We
envision using classic invariant inference techniques [25, 43] on a
tracking method’s calling context, scope, and arguments to gener-
ate a program invariant that holds across all tracking invocations. If
an online invocation satisfies the invariant, the guard will block the
execution. A key challenge in this approach is collecting the con-
text information, e.g., program scope, method arguments, and stack
trace, for each request initiated by the mixed method at runtime.
We plan to address these challenges in leveraging TRACKERSIFT for
generating safe surrogate scripts in our future work.

Blocking mixed methods. Our analysis shows that TRACKER-
SIFT’s separation factor is 91% even at the finest granularity. This
leaves 5.6K mixed methods that cannot be safely blocked. One pos-
sible direction is to apply TRACKERSIFT in the context of a mixed
method initiating a request. We can define context as calling context,
program scope, or parameters to the mixed method. In the case of
calling context, we can perform a call stack analysis that takes a
snapshot of a mixed method’s stack trace when the method initi-
ates a tracking or functional request. We hope to see distinct stack
traces from tracking and functional requests by a mixed method.
We can consolidate the stack traces of a mixed method and locate
the point of divergence, i.e., a method in the stack trace that only
participates in tracking requests. We hypothesize that removing
such a method will break the chain of methods needed to invoke a
tracking behavior, thus removing the tracking behavior.

IMC 21, November 2-4, 2021, Virtual Event, USA

Amjad et al.

cdn.google.com/nonads-2

type : script
call stack:

test.com/clone.js m2

cdn.google.com/ads-2 P S T AR
t

test.com/user.s k type : script
test.com/get.is a call stack: *

test.com/clone.js m2
ads.com/track.js f

test.com/clone.js
m2

Call Stack Analysis

I
test.com/get.js
a

test.com/clone.js

Call Graph
+ P

Functional test.com/get.js
Tracking a

‘ > ads.com./track.js test.com/user.js
t k
k

test.com/clone.js
m2

m2

/

Figure 5: Call stack analysis for the requests ads-2 and nonads-2 that can not be separated at method level i.e. m2. Call stack is analyzed to
identify the first point of divergence i.e track.js t and it could be removed to block the tracking request.

Figure 5 illustrates our proposed call stack analysis. It shows the
snapshot of stack traces of requests nonads-2 and ads-2. These
requests are initiated by a mixed method m2() on the webpage. The
two stack traces are merged to form a call graph where each node
represents a unique script and method, and an edge represents a
caller-callee relationship. The yellow color indicates that a node
participates in invoking both tracking and functional requests. t in
track.js is the point of divergence since it only participates in the
tracking trace. Therefore, t is most likely to originate a tracking
behavior which makes it a good candidate for removal.
Limitations. We briefly acknowledge a few limitations our mea-
surement and analysis. First, our web crawls do not provide full
coverage of the events triggered by user interactions (e.g., scroll,
click). This is a general limitation of dynamic analysis and can
be mitigated by using a forced execution framework to execute
other possible paths [33]. Second, our method-level analysis does
not distinguish between different anonymous functions in a script
and treats them as part of the same method. This limitation can
be addressed by using the line and column number information
available for each method invocation in the call stack. Finally, our
web crawls are limited to the landing pages and the results might
vary for internal pages [18]. As part of our future work, we plan to
deploy TRACKERSIFT on internal pages as well.

6 RELATED WORK

We summarize closely related work documenting anecdotal evi-
dence of circumvention by mixing up tracking and functional re-
sources. Most notably, Alrizah et al. [17] and Chen et al. [20] showed
how first-party hosting and script inlining or bundling is being used
by trackers to circumvent filter lists used by content blockers. Al-
rizah et al. [17] documented a variety of attacks on content blocking
tools, including both counter-blocking and circumvention attacks.
Among other things, they showed that some websites circumvent
filter lists by mixing tracking and functional resources through
techniques such as script inlining. These websites essentially have
a “self-defacement” strategy, where content blockers risk breaking
legitimate functionality as collateral damage if they act and risk
missing privacy-invasive advertising and tracking if they do not.
Chen et al. [20] leveraged their JavaScript signature approach to
document about 500 false negative cases where tracking scripts
were inlined or bundled for successful circumvention. Relatedly,
trackers have started to exploit techniques such as CDN proxies
(i.e., serve functional and tracking resources from the same CDN
server) [36] and CNAME cloaking (i.e., masquerade third-party

574

tracking resources from first-party using a minor change in DNS
records) [22, 23] to assist with implementing these circumvention
techniques.

The problem of localizing tracking-inducing code shares similar-
ities with prior research on fault-inducing code localization. For ex-
ample, spectra-based fault localization (SBFL) [16, 24, 31, 32, 45, 50]
collect statement coverage profiles of each test, passing or fail-
ing, to localize the lines of code that are most likely to induce a
test failure. Bela et al. [51] and Laghari et al. [34] presented a call
frequency-based SBFL technique. Instead of coverage information,
they use the frequency of method occurrence in the call stack of
failing test cases. A method that appears more in the failing call
stack of failing test cases is more likely to be faulty. In TRACKER-
SIFT, methods responsible for more frequently initiating tracking
requests than functional requests is classified as tracking. Abreu et
al. [15] studied how accurate these SBFL techniques are, and their
accuracy is independent of the quality of test design. Jiang et al.
[30] used call stack to localize the null pointer exception, and Gong
et al. [27] generated call stack traces to successfully identify 65%
of the root cause of the crashing faults. One common limitation
across most fault-localization approaches is that they require an
extensive test suite capable of exercising faulty behavior, along
with an instrumented runtime to collect statement-level coverage.
TRACKERSIFT overcomes these limitations by using filter lists as
test oracle during page load time and uses an instrumented browser
to capture fine-grained coverage.

7 CONCLUSION

We presented TRACKERSIFT, a hierarchical approach to progres-
sively untangle mixed resources at increasing levels of finer gran-
ularity from network-level (e.g., domain and hostname) to code-
level (e.g., script and method). We deployed TRACKERSIFT on 100K
websites to study the prevalence of mixed web resources across
different granularities. TRACKERSIFT classified more than 17% do-
mains, 48% hostnames, 6% scripts, and 9% methods as mixed. Overall,
TRACKERSIFT was able to attribute 98% of all requests to tracking or
functional resources by the finest level of granularity. Our results
highlighted opportunities for finer-grained content blocking to
remove mixed resources without breaking legitimate site function-
ality. TRACKERSIFT can be used to automatically generate surrogate
scripts to shim mixed web resources.

TrackerSift: Untangling Mixed Tracking and Functional Web Resources

ACKNOWLEDGEMENTS

This work is supported in part by the National Science Founda-
tion under grant numbers 2051592, 2102347, 2103038, 2103439, and
2106420. We would like to thank our shepherd, Paul Barford, and
the anonymous IMC reviewers, for their constructive feedback. We
would also like to thank Haris Amjad for his valuable input to help
improve the quality of visualizations in the paper.

REFERENCES

[19]

[20]

[21]

[22

[23

[24

[25

[26

[27

[28

2020. gorhill/uBlock: uBlock Origin - An efficient blocker for Chromium and
Firefox. Fast and lean. https://github.com/gorhill/uBlock.
2021. Adblock Plus. https://adblockplus.org/.

2021. AdGuard Scriptlets and Redirect resources.
AdguardTeam/Scriptlets.

2021. Brave Browser. https://brave.com/.

2021. Browserify. https://browserify.org/

2021. EasyList. https://easylist.to/easylist/easylist.txt.
2021. EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt.

2021. Extending DevTools. https://developer.chrome.com/docs/extensions/mv3/
devtools/

2021. Facebook Pixel: Implementation. https://developers.facebook.com/docs/
facebook-pixel/implementation/

2021. Firefox 87 introduces SmartBlock for Private Browsing.
mozilla.org/security/2021/03/23/introducing-smartblock/

2021. Security/TrackingProtectionBreakage. https://wiki.mozilla.org/Security/
TrackingProtectionBreakage#Trivial_shim_needed_to_avoid_breakage.3B_no_
yellowlisting_required

2021. Selenium. http://docs.seleniumhgq.org/. http://docs.seleniumhgq.org/
2021. uBO-Scriptlets: A custom arsenal of scriptlets to be used for injecting
userscripts via uBlock Origin. https://github.com/uBlock-user/uBO-Scriptlets,.
2021. webpack. https://webpack.js.org/.

Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007).
Pragya Agarwal and Arun Prakash Agrawal. 2014. Fault-Localization Techniques
for Software Systems: A Literature Review. SIGSOFT Softw. Eng. Notes (2014).
Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. 2019. Errors,
Misunderstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-
blocking Systems. In ACM Internet Measurement Conference (IMC).

Wagqar Aqeel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M.
Maggs. 2020. On Landing and Internal Web Pages: The Strange Case of Jekyll
and Hyde in Web Performance Measurement. In Proceedings of the ACM Internet
Measurement Conference.

Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, and
Christo Wilson. 2018. How Tracking Companies Circumvented Ad Blockers
Using WebSockets. In Proceedings of the Internet Measurement Conference (IMC).
Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. 2021. Detect-
ing Filter List Evasion With Event-Loop-Turn Granularity JavaScript Signatures.
In IEEE Symposium on Security and Privacy.

Yuyu Chen. 2016. Tough sell: Why publisher ’turn-off-your-ad-blocker’ messages
are so polite - Digiday. https://digiday.com/media/tough-sell-publisher-turn-off-
ad-blocker-messages-polite/.

Romain Cointepas. 2019. CNAME Cloaking, the dangerous disguise of third-party
trackers. https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-
of-third- party-trackers-195205dc522a.

Ha Dao, Johan Mazel, and Kensuke Fukuda. 2020. Characterizing CNAME
Cloaking-Based Tracking on the Web. IEEE/IFIP TMA’20 (2020), 1-9.

Marwa El-Wahab, Amal Aboutabl, and Wessam El-Behaidy. 2018. Graph Mining
for Software Fault Localization: An Edge Ranking based Approach. Journal of
Communications Software and Systems 13 (01 2018), 178-188. https://doi.org/10.
24138/jcomss.v13i4.402

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 21st International Conference on Software Engineering
(Los Angeles, California, USA) (ICSE ’99). Association for Computing Machinery,
New York, NY, USA, 213-224. https://doi.org/10.1145/302405.302467

Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. 2017. Ad-Blocking:
A Study on Performance, Privacy and Counter-Measures. In Proceedings of the
2017 ACM on Web Science Conference.

Liang Gong, Hongyu Zhang, Hyunmin Seo, and Sunghun Kim. 2014. Locating
Crashing Faults based on Crash Stack Traces. In arXiv:1404.4100.

Umar Igbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retrospective
Measurement and Analysis of Anti-Adblock Filter Lists. In IMC.

https://github.com/

https://blog.

575

[29

[30

(31]

[33

(34

@
i

[36

[37

[38

[39

[41

[42

[43

[44

[45

[46

[47

[50]

[51

IMC 21, November 2-4, 2021, Virtual Event, USA

Umar Igbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. AdGraph: A Graph-Based Approach to Ad and Tracker
Blocking. In Proceedings of the IEEE Symposium on Security & Privacy.

Shujuan Jiang, Wei Li, Haiyang Li, Yanmei Zhang, Hongchang Zhang, and Yinggqi
Liu. 2012. Fault Localization for Null Pointer Exception Based on Stack Trace
and Program Slicing. In 2012 12th International Conference on Quality Software.
James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (Long Beach, CA,
USA) (ASE ’05). Association for Computing Machinery, New York, NY, USA,
273-282. https://doi.org/10.1145/1101908.1101949

James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering (Orlando, Florida) (ICSE '02). Association for
Computing Machinery, New York, NY, USA, 467-477. https://doi.org/10.1145/
581339.581397

Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-force: Forced execution on javascript.
In Proceedings of the 26th international conference on World Wide Web. 897-906.
Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. 2015. Localising Faults
in Test Execution Traces. In Proceedings of the 14th International Workshop on
Principles of Software Evolution (Bergamo, Italy) (IWPSE 2015). Association for
Computing Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/2804360.
2804361

Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In Network and Distributed
System Security Symposium (NDSS).

Hieu Le, Athina Markopoulou, and Zubair Shafiq. 2021. CV-Inspector: Towards
Automating Detection of Adblock Circumvention. In Network and Distributed
System Security Symposium (NDSS).

Matthew Malloy, Mark McNamara, Aaron Cahn, and Paul Barford. 2016. Ad
Blockers: Global Prevalence and Impact. In ACM Internet Measurement Conference
(IMC).

Giorgio Maone. [n.d.]. Surrogate Scripts vs Google Analytics. https://hackademix.
net/2009/01/25/surrogate- scripts-vs-google-analytics/.

Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar R. Weippl. 2017. Block Me If You Can:
A Large-Scale Study of Tracker-Blocking Tools. In IEEE European Symposium on
Security and Privacy.

Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting
Anti Ad-blockers in the Wild . In Privacy Enhancing Technologies Symposium
(PETS).

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You Are What You Include: Large-scale Evaluation of Remote JavaScript Inclu-
sions. In ACM Conference on Computer and Communications Security (CCS).
Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,
Marjan Falahrastegar, Julia E. Powles, Emiliano De Cristofaro, Hamed Haddadi,
and Steven J. Murdoch. 2016. Adblocking and Counter-Blocking: A Slice of
the Arms Race. In USENIX Workshop on Free and Open Communications on the
Internet.

Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition
Inference with Learned Features. SIGPLAN Not. 51, 6 (June 2016), 42-56. https:
//doi.org/10.1145/2980983.2908099

Page Fair. 2017. The State of the Blocked Web. https://pagefair.com/downloads/
2017/01/PageFair-2017- Adblock-Report.pdf.

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). 609-620. https://doi.org/10.1109/ICSE.2017.62

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czynski, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint arXiv:1806.01156 (2018).

Kaleigh Rogers. 2018. Why Doesn’t My Ad Blocker Block ‘Please Turn Off Your Ad
Blocker’ Popups? - VICE. https://www.vice.com/en_us/article/j5zk8y/why-your-
ad-blocker-doesnt-block-those- please-turn- off-your-ad-blocker-popups.
Sandra Siby, Umar Igbal, Steven Englehardt, Zubair Shafiq, and Carmela Troncoso.
2021. WebGraph: Capturing Advertising and Tracking Information Flows for
Robust Blocking. arXiv preprint arXiv:2107.11309 (2021).

Alexander Sjosten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos, and
Benjamin Livshits. 2020. Filter List Generation for Underserved Regions. In The
Web Conference.

H. A. D. Souza, M. L. Chaim, and Fabio Kon. 2016. Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and Challenges. ArXiv
abs/1607.04347 (2016).

Béla Vancsics, Ferenc Horvath, Attila Szatmari, and Arpad Beszédes. [n.d.]. Call
Frequency-Based Fault Localization. ([n. d.]).

IMC 21, November 2-4, 2021, Virtual Event, USA Amjad et al.

[52] Antoine Vastel, Peter Snyder, and Benjamin Livshits. 2020. Who Filters the AdBlocking. In ACM SIGMETRICS/Performance.
Filters: Understanding the Growth, Usefulness and Efficiency of Crowdsourced

576

	Abstract
	1 Introduction
	2 TrackerSift
	3 Data
	4 Results
	5 Discussion
	6 Related Work
	7 Conclusion
	References

