
TrackerSift:
Untangling Mixed Tracking and Functional Web Resources

Abdul Haddi Amjad
hadiamjad@vt.edu

Virginia Tech
USA

Danial Saleem
l174115@lhr.nu.edu

FAST-NUCES
Pakistan

Muhammad Ali Gulzar
gulzar@cs.vt.edu
Virginia Tech

USA

Zubair Shafiq
zubair@ucdavis.edu

University of California, Davis
USA

Fareed Zaffar
fareed.zaffar@lums.edu.pk

LUMS
Pakistan

ABSTRACT

Trackers have recently started to mix tracking and functional re-

sources to circumvent privacy-enhancing content blocking tools.

Such mixed web resources put content blockers in a bind: risk break-

ing legitimate functionality if they act and risk missing privacy-

invasive advertising and tracking if they do not. In this paper, we

propose TrackerSift to progressively classify and untangle mixed

web resources (that combine tracking and legitimate functionality)

at multiple granularities of analysis (domain, hostname, script, and

method). Using TrackerSift, we conduct a large-scale measure-

ment study of such mixed resources on 100K websites. We find that

more than 17% domains, 48% hostnames, 6% scripts, and 9%methods

observed in our crawls combine tracking and legitimate functional-

ity.While mixedweb resources are prevalent across all granularities,

TrackerSift is able to attribute 98% of the script-initiated network

requests to either tracking or functional resources at the finest

method-level granularity. Our analysis shows that mixed resources

at different granularities are typically served from CDNs or as in-

lined and bundled scripts, and that blocking them indeed results in

breakage of legitimate functionality. Our results highlight opportu-

nities for finer-grained content blocking to remove mixed resources

without breaking legitimate functionality.

CCS CONCEPTS

· Security and privacy→Web application security; Browser

security; · Software and its engineering→ Software defect anal-

ysis.

ACM Reference Format:

Abdul Haddi Amjad, Danial Saleem, Muhammad Ali Gulzar, Zubair Shafiq,

and Fareed Zaffar. 2021. TrackerSift: Untangling Mixed Tracking and Func-

tional Web Resources. In ACM Internet Measurement Conference (IMC ’21),

November 2ś4, 2021, Virtual Event, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3487552.3487855

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMC ’21, November 2ś4, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9129-0/21/11. . . $15.00
https://doi.org/10.1145/3487552.3487855

1 INTRODUCTION

Background & Motivation. Privacy-enhancing content blocking

tools such as AdBlock Plus [2], uBlock Origin [1], and Brave [4] are

widely used to block online advertising and/or tracking [26, 37, 39].

Trackers have engaged in the arms race with content blockers

via counter-blocking [40, 42] and circumvention [17, 36]. In the

counter-blocking arms race, trackers attempt to detect users of con-

tent blocking tools and give them an ultimatum to disable content

blocking. In the circumvention arms race, trackers attempt to evade

filter lists (e.g., EasyList [6], EasyPrivacy [7]) used to block ads and

trackers, thus rendering content blocking ineffective. While both

arms races persist to date, trackers are increasingly employing cir-

cumvention because counter-blocking efforts have not successfully

persuaded users to disable content blocking tools [21, 44, 47].

Limitations of Prior Work. Trackers have been using increas-

ingly sophisticated techniques to circumvent content blocking

[17, 19, 36]. At a high level, circumvention techniques can be clas-

sified into two categories. One type of circumvention is achieved

by frequently changing the network location (e.g., domain or URL)

of advertising and tracking resources. Content blocking tools at-

tempt to address this type of circumvention by updating filter lists

promptly and more frequently [28, 29, 48, 49, 52]. The second type

of circumvention is achieved by mixing up tracking resources with

functional resources, such as serving both from the same network

endpoint (e.g., first-party or Content Delivery Network (CDN))

[17, 20, 23]. Content blocking tools have struggled against this

type of circumvention because they are in a no-win situation: they

risk breaking legitimate functionality as collateral damage if they

act and risk missing privacy-invasive advertising and tracking if

they do not. While there is anecdotal evidence, the prevalence and

modus operandi of this type of circumvention has not been studied

in prior literature.

Measurement & Analysis. This paper aims to study the preva-

lence of mixed resources, which combine tracking and functionality,

on the web. We present TrackerSift to conduct a large-scale mea-

surement study of mixed resources at different granularities starting

from network-level (e.g., domain and hostname) to code-level (e.g.,

script and method). TrackerSift’s hierarchical analysis sheds light

on how tracking and functional web resources can be progressively

untangled at increasing levels of finer granularity. It uses a localiza-

tion approach to untangle mixed resources beyond the script-level

granularity of state-of-the-art content blocking tools. We show how

569

TrackerSift: Untangling Mixed Tracking and Functional Web Resources IMC ’21, November 2ś4, 2021, Virtual Event, USA

Table 1: Classification of requests at different granularities

Granularity Tracking Functional Mixed Separation Cumulative
(Count) (Count) (Count) Factor Separation

(%) Factor (%)

Domain 755,784 566,810 1,129,109 54% 54%
Hostname 161,604 106,542 860,963 24% 65%
Script 235,157 490,295 135,511 84% 94%
Method 23,819 74,223 37,469 72% 98%

and mixed. In Figure 1, for the mixed script clone.js, we classify

m1() as tracking and m3() as functional. Since m2() requests both

tracking and functional resources, it is classified as mixed.

3 DATA

In this section, we describe TrackerSift’s browser instrumenta-

tion that crawls websites and labels the collected data. Note that

TrackerSift’s hierarchical analysis is post hoc and offline. Thus,

it does not incur any significant overhead during page load other

than the browser instrumentation and bookkeeping for labeling.

Crawling. We used Selenium [12] with Chrome 79.0.3945.79 to

automatically crawl the landing pages of 100K websites that are

randomly sampled from the Tranco top-million list [46] in April

2021. Our crawling infrastructure, based on a campus network

in North America, comprised of a 13-node cluster with 112 cores

at 3.10GHz, 52TB storage, and 832GB memory. Each node uses a

Docker container to crawl a subset of 100K webpages. The average

page load time (until onLoad event is fired) for a web page was

about 10 seconds. Our crawler waits an additional 10 seconds before

moving on to the next website. Note that the crawling is stateless,

i.e., we clear all cookies and other local browser states between

consecutive crawls.

As shown in Figure 2, our crawler was implemented as a purpose-

built Chrome extension that used DevTools [8] API to collect the

data during crawling. Specifically, it relies on two network events:

requestWillBeSent and responseReceived for capturing rele-

vant information for script-initiated network requests during the

page load. The former event provides detailed information for

each HTTP request such as a unique identifier for the request

(request_id), the web page’s URL (top_level_url), the URL of

the document this request is loaded for (frame_url), requested

resource type (resource_type), request header, request timestamp,

and a call_stack object containing the initiator information and

the stack trace for script-initiated HTTP requests. The latter event

provides detailed information for each HTTP response, such as

response headers and response body containing the payload.

Labeling. We gather an authoritative source labels by applying

filter lists to the crawled websites. Filter lists are not perfect (e.g.,

they are slow to update [49] and are prone to mistakes [17]) but they

are the best available source of labels. We use two widely used filter

lists that target advertising (EasyList [6]) and tracking (EasyPrivacy

[7]). These filter lists mainly build of regular expressions that match

advertising and/or tracking network requests. As shown in Figure 2,

network requests that match EasyList or EasyPrivacy are classified

as tracking, otherwise they are classified as functional. Note that we

maintain the call stack that contains the ancestral scripts that in turn

triggered a script-initiated network request (e.g., XMLHTTPRequest

fetches). For asynchronous JavaScript, the stack track that preceded

Table 2: Classification of resources at different granularities

Granularity Tracking Functional Mixed Separation
(Count) (Count) (Count) Factor

(%)

Domain 6,493 50,938 11,861 83%
Hostname 4,429 9,248 12,383 52%
Script 194,156 134,726 21,168 94%
Method 17,940 40,500 5,579 91%

the request is prepended in the stack. Thus, for script-initiated

network requests, we ensure that if a request is classified as tracking

or functional, its ancestral scripts in the stack are also classified as

such. Since network requests that are not script-initiated can not

be trivially classified as tracking or functional, we exclude them

from our analysis.

4 RESULTS

Classifying Mixed Resources.We compute the logarithmic ratio

of the number of tracking to functional network requests to quantify

the mixing of tracking and functional resources.

𝑟𝑎𝑡𝑖𝑜 = log

(

𝑜 𝑓 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑜 𝑓 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

)

(1)

At each granularity, we classify resources with the common log-

arithmic ratio less than -2 as functional because they triggered

100×more functional requests than tracking requests. Similarly, we

classify resources with the common logarithmic ratio of more than

2 as tracking because they triggered 100× more tracking requests

than functional requests. The resources with the common logarith-

mic ratio between -2 and 2 are classified as mixed. We analyze the

suitability of the selected classification threshold using sensitivity

analysis later in Section 5.

Results Summary. Table 1 summarizes the results of our crawls

of the landing pages of 100K websites. Using the aforementioned

classification, we are able to attribute 54% of the 2.43 million script-

initiated network requests to tracking or functional domains. The

remaining 46% (1129K) of the 2.43 million requests attribute to

mixed domains that are further analyzed at the hostname-level. We

are able to attribute 24% of the requests from mixed domains to

tracking or functional hostnames. The remaining 76% (860K) of the

requests attribute to mixed hostnames that are further analyzed at

the script URL-level. We are able to attribute 84% of the requests

from mixed hostnames to tracking or functional script URLs. The

remaining 16% (135K) of the requests attribute to mixed script URLs

that are further analyzed at the script method-level. We are able to

attribute 72% of the requests from mixed script URLs to tracking or

functional script methods. This leaves us with less than 2% (37K)

requests that cannot be attributed by TrackerSift to tracking or

functional web resources and require further analysis.

Next, we analyze the distribution of the ratio of tracking to

functional requests by web resources at different granularities of

domain, hostname, script URL, and script method in Figure 3. Table

2 shows the breakdown of web resources classified as tracking,

functional, and mixed at different granularities.

Domain classification. 2451K requests in our dataset are served

from a total of 69,292 domains (eTLD+1). Figure 3a shows three dis-

tinct peaks: [2,∞) serve tracking requests, (-∞, -2] serve functional

571

TrackerSift: Untangling Mixed Tracking and Functional Web Resources IMC ’21, November 2ś4, 2021, Virtual Event, USA

1
1
.1
1
.2
1
.3
1
.4
1
.5
1
.6
1
.7
1
.8
1
.9 2
2
.1
2
.2
2
.3
2
.4
2
.5
2
.6
2
.7
2
.8
2
.9 3

5.7
5.75
5.8
5.85
5.9
5.95

6
6.05
6.1

Classification Threshold

%
M
ix
ed

Sc
ri
p
ts

Figure 4: Sensitivity analysis of the classification threshold (default

is -2 and 2) by studying the proportion ofmixed scripts as a function

of varying thresholds. The X-axis represents the threshold buckets.

For example, 1.5 represents (-1.5, 1.5).

reasons as well as for circumvention [35, 41]. For example, we find

that the Facebook pixel [9] is inlined on a large number of websites

to assist with targeting Facebook ad campaigns and conversion

tracking.

(2) Script Bundling: Publishers also bundle multiple external

scripts from different organizations with intertwined dependencies

for simplicity and performance reasons. JavaScript bundlers, such

as webpack [14] and browserify [5], use dependency analysis to

bundle multiple scripts into one or a handful of bundled scripts. For

example, pressl.co serves a script app.9115af433836fd824ec7.js that

is bundled using the webpack [14]. This bundled script includes

the aforementioned Facebook pixel and code to load functional

resources from a first-party hostname. Existing content blocking

tools struggle to block inlined and bundled tracking scripts with-

out the risk of breaking legitimate site functionality. Finer-grained

detection by TrackerSift presents an opportunity to handle such

scripts by localizing the methods that implement tracking.

Threshold sensitivity analysis. We set the classification thresh-

old to a symmetric value of (-2,2) for classifying mixed resources in

Equation 1. To assess our choice of the threshold, we analyze the

sensitivity of script classification results in Figure 4. Similar trends

are observed for domain, hostname, and method classification. The

plot shows the percentage of scripts classified as mixed as we vary

the threshold from 1 to 3 in increments of 0.1 Note that the curve

plateaus around our selected threshold of 2. Thus, we conclude

that our choice of the threshold is stable and reasonably separates

mixed resources from tracking and functional resources.

Breakage analysis.We conductedmanual analysis to assesswhether

blocking mixed resources results in breakage of legitimate function-

ality. To assess functionality breakage, we load a random sample

of websites with (treatment) and without (control) blocking mixed

scripts as classified by TrackerSift. We label breakage as: major if

the core functionality such as search bar, menu, images, and page

navigation is broken in treatment but not in control; minor: if the

secondary functionality such as comment/review sections, media

widgets, video player, and icons is broken in treatment but not in

control; and none: if the core and secondary functionalities of the

website are same in treatment and control. Note that we consider

missing ads as no breakage. Table 3 shows our breakage analysis

on a representative sample of 10 websites. We note major or mi-

nor breakage in all except one case. Thus, we conclude that mixed

web resources indeed cannot be safely blocked by existing content

blocking tools.

Table 3: Manual analysis of breakage caused by blocking mixed

scripts on randomly selected 10 websites.

Website Mixed Script Breakage Comment

caremanagem-
entmatters.co.uk

jquery.min.js Minor scroll bar and two
widgets missing

gratis.com main.js Major page did not load
forevernew.com.au require.js Major multiple page ban-

ners missing
flamesnation.ca player.js Minor video pop missing
biba.in MJ_Static-Built.js Major page did not load
ecomarket.ru 2.0c9c64b2.chunk.js Major page did not load
peachjohn.co.jp jquery-1.11.2.min.js Major navigation and

scroll bar missing
shoobs.com widgets.js None no visible function-

ality breakage
editorajusp-
odivm.com.br

jquery.js Major navigation and
scroll bar missing

resourceworld.com jquery.min.js Major navigation bar and
images missing

Blocking mixed scripts. When TrackerSift classifies a mixed

script with different tracking and functional methods, we can sim-

ply remove tracking methods to generate a surrogate script that can

then be used to shim the mixed script at runtime. Existing content

blockers such as NoScript, uBlock Origin, AdGuard, and Firefox

SmartBlock use surrogate scripts to block tracking by mixed scripts

while avoiding breakage [3, 10, 13, 38]. However, these surrogate

scripts are currently manually designed [11]. TrackerSift can help

scale up the process of generating surrogate scripts by automati-

cally detecting and removing tracking methods in mixed scripts.

Note that removing tracking methods is tricky because simply re-

moving them risks functionality breakage due to potential coverage

issues of dynamic analysis. To mitigate this concern, we plan to ex-

plore a more conservative approach using a guardÐa predicate that

blocks tracking execution but allows functional execution. Such

a predicate has a similar structure to that of an assertion. We

envision using classic invariant inference techniques [25, 43] on a

tracking method’s calling context, scope, and arguments to gener-

ate a program invariant that holds across all tracking invocations. If

an online invocation satisfies the invariant, the guard will block the

execution. A key challenge in this approach is collecting the con-

text information, e.g., program scope, method arguments, and stack

trace, for each request initiated by the mixed method at runtime.

We plan to address these challenges in leveraging TrackerSift for

generating safe surrogate scripts in our future work.

Blocking mixed methods. Our analysis shows that Tracker-

Sift’s separation factor is 91% even at the finest granularity. This

leaves 5.6K mixed methods that cannot be safely blocked. One pos-

sible direction is to apply TrackerSift in the context of a mixed

method initiating a request. We can define context as calling context,

program scope, or parameters to the mixed method. In the case of

calling context, we can perform a call stack analysis that takes a

snapshot of a mixed method’s stack trace when the method initi-

ates a tracking or functional request. We hope to see distinct stack

traces from tracking and functional requests by a mixed method.

We can consolidate the stack traces of a mixed method and locate

the point of divergence, i.e., a method in the stack trace that only

participates in tracking requests. We hypothesize that removing

such a method will break the chain of methods needed to invoke a

tracking behavior, thus removing the tracking behavior.

573

TrackerSift: Untangling Mixed Tracking and Functional Web Resources IMC ’21, November 2ś4, 2021, Virtual Event, USA

ACKNOWLEDGEMENTS

This work is supported in part by the National Science Founda-

tion under grant numbers 2051592, 2102347, 2103038, 2103439, and

2106420. We would like to thank our shepherd, Paul Barford, and

the anonymous IMC reviewers, for their constructive feedback. We

would also like to thank Haris Amjad for his valuable input to help

improve the quality of visualizations in the paper.

REFERENCES
[1] 2020. gorhill/uBlock: uBlock Origin - An efficient blocker for Chromium and

Firefox. Fast and lean. https://github.com/gorhill/uBlock.
[2] 2021. Adblock Plus. https://adblockplus.org/.
[3] 2021. AdGuard Scriptlets and Redirect resources. https://github.com/

AdguardTeam/Scriptlets.
[4] 2021. Brave Browser. https://brave.com/.
[5] 2021. Browserify. https://browserify.org/
[6] 2021. EasyList. https://easylist.to/easylist/easylist.txt.
[7] 2021. EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt.
[8] 2021. Extending DevTools. https://developer.chrome.com/docs/extensions/mv3/

devtools/
[9] 2021. Facebook Pixel: Implementation. https://developers.facebook.com/docs/

facebook-pixel/implementation/
[10] 2021. Firefox 87 introduces SmartBlock for Private Browsing. https://blog.

mozilla.org/security/2021/03/23/introducing-smartblock/
[11] 2021. Security/TrackingProtectionBreakage. https://wiki.mozilla.org/Security/

TrackingProtectionBreakage#Trivial_shim_needed_to_avoid_breakage.3B_no_
yellowlisting_required

[12] 2021. Selenium. http://docs.seleniumhq.org/. http://docs.seleniumhq.org/
[13] 2021. uBO-Scriptlets: A custom arsenal of scriptlets to be used for injecting

userscripts via uBlock Origin. https://github.com/uBlock-user/uBO-Scriptlets,.
[14] 2021. webpack. https://webpack.js.org/.
[15] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2007. On the Accuracy of

Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007).

[16] Pragya Agarwal and Arun Prakash Agrawal. 2014. Fault-Localization Techniques
for Software Systems: A Literature Review. SIGSOFT Softw. Eng. Notes (2014).

[17] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. 2019. Errors,
Misunderstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-
blocking Systems. In ACM Internet Measurement Conference (IMC).

[18] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M.
Maggs. 2020. On Landing and Internal Web Pages: The Strange Case of Jekyll
and Hyde in Web Performance Measurement. In Proceedings of the ACM Internet
Measurement Conference.

[19] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, and
Christo Wilson. 2018. How Tracking Companies Circumvented Ad Blockers
Using WebSockets. In Proceedings of the Internet Measurement Conference (IMC).

[20] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. 2021. Detect-
ing Filter List Evasion With Event-Loop-Turn Granularity JavaScript Signatures.
In IEEE Symposium on Security and Privacy.

[21] Yuyu Chen. 2016. Tough sell: Why publisher ’turn-off-your-ad-blocker’ messages
are so polite - Digiday. https://digiday.com/media/tough-sell-publisher-turn-off-
ad-blocker-messages-polite/.

[22] Romain Cointepas. 2019. CNAME Cloaking, the dangerous disguise of third-party
trackers. https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-
of-third-party-trackers-195205dc522a.

[23] Ha Dao, Johan Mazel, and Kensuke Fukuda. 2020. Characterizing CNAME
Cloaking-Based Tracking on the Web. IEEE/IFIP TMA’20 (2020), 1ś9.

[24] Marwa El-Wahab, Amal Aboutabl, and Wessam El-Behaidy. 2018. Graph Mining
for Software Fault Localization: An Edge Ranking based Approach. Journal of
Communications Software and Systems 13 (01 2018), 178ś188. https://doi.org/10.
24138/jcomss.v13i4.402

[25] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 21st International Conference on Software Engineering
(Los Angeles, California, USA) (ICSE ’99). Association for Computing Machinery,
New York, NY, USA, 213ś224. https://doi.org/10.1145/302405.302467

[26] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. 2017. Ad-Blocking:
A Study on Performance, Privacy and Counter-Measures. In Proceedings of the
2017 ACM on Web Science Conference.

[27] Liang Gong, Hongyu Zhang, Hyunmin Seo, and Sunghun Kim. 2014. Locating
Crashing Faults based on Crash Stack Traces. In arXiv:1404.4100.

[28] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retrospective
Measurement and Analysis of Anti-Adblock Filter Lists. In IMC.

[29] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. AdGraph: A Graph-Based Approach to Ad and Tracker
Blocking. In Proceedings of the IEEE Symposium on Security & Privacy.

[30] Shujuan Jiang, Wei Li, Haiyang Li, Yanmei Zhang, Hongchang Zhang, and Yingqi
Liu. 2012. Fault Localization for Null Pointer Exception Based on Stack Trace
and Program Slicing. In 2012 12th International Conference on Quality Software.

[31] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (Long Beach, CA,
USA) (ASE ’05). Association for Computing Machinery, New York, NY, USA,
273ś282. https://doi.org/10.1145/1101908.1101949

[32] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering (Orlando, Florida) (ICSE ’02). Association for
Computing Machinery, New York, NY, USA, 467ś477. https://doi.org/10.1145/
581339.581397

[33] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-force: Forced execution on javascript.
In Proceedings of the 26th international conference on World Wide Web. 897ś906.

[34] Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. 2015. Localising Faults
in Test Execution Traces. In Proceedings of the 14th International Workshop on
Principles of Software Evolution (Bergamo, Italy) (IWPSE 2015). Association for
ComputingMachinery, New York, NY, USA, 1ś8. https://doi.org/10.1145/2804360.
2804361

[35] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In Network and Distributed
System Security Symposium (NDSS).

[36] Hieu Le, Athina Markopoulou, and Zubair Shafiq. 2021. CV-Inspector: Towards
Automating Detection of Adblock Circumvention. In Network and Distributed
System Security Symposium (NDSS).

[37] Matthew Malloy, Mark McNamara, Aaron Cahn, and Paul Barford. 2016. Ad
Blockers: Global Prevalence and Impact. In ACM Internet Measurement Conference
(IMC).

[38] Giorgio Maone. [n.d.]. Surrogate Scripts vs Google Analytics. https://hackademix.
net/2009/01/25/surrogate-scripts-vs-google-analytics/.

[39] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar R. Weippl. 2017. Block Me If You Can:
A Large-Scale Study of Tracker-Blocking Tools. In IEEE European Symposium on
Security and Privacy.

[40] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting
Anti Ad-blockers in the Wild . In Privacy Enhancing Technologies Symposium
(PETS).

[41] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You Are What You Include: Large-scale Evaluation of Remote JavaScript Inclu-
sions. In ACM Conference on Computer and Communications Security (CCS).

[42] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,
Marjan Falahrastegar, Julia E. Powles, Emiliano De Cristofaro, Hamed Haddadi,
and Steven J. Murdoch. 2016. Adblocking and Counter-Blocking: A Slice of
the Arms Race. In USENIX Workshop on Free and Open Communications on the
Internet.

[43] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition
Inference with Learned Features. SIGPLAN Not. 51, 6 (June 2016), 42ś56. https:
//doi.org/10.1145/2980983.2908099

[44] Page Fair. 2017. The State of the Blocked Web. https://pagefair.com/downloads/
2017/01/PageFair-2017-Adblock-Report.pdf.

[45] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). 609ś620. https://doi.org/10.1109/ICSE.2017.62

[46] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint arXiv:1806.01156 (2018).

[47] Kaleigh Rogers. 2018. WhyDoesn’tMyAd Blocker Block ‘Please TurnOff Your Ad
Blocker’ Popups? - VICE. https://www.vice.com/en_us/article/j5zk8y/why-your-
ad-blocker-doesnt-block-those-please-turn-off-your-ad-blocker-popups.

[48] Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and Carmela Troncoso.
2021. WebGraph: Capturing Advertising and Tracking Information Flows for
Robust Blocking. arXiv preprint arXiv:2107.11309 (2021).

[49] Alexander Sjosten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos, and
Benjamin Livshits. 2020. Filter List Generation for Underserved Regions. In The
Web Conference.

[50] H. A. D. Souza, M. L. Chaim, and Fabio Kon. 2016. Spectrum-based Software
Fault Localization: A Survey of Techniques, Advances, and Challenges. ArXiv
abs/1607.04347 (2016).

[51] Béla Vancsics, Ferenc Horváth, Attila Szatmári, and Arpád Beszédes. [n.d.]. Call
Frequency-Based Fault Localization. ([n. d.]).

575

IMC ’21, November 2ś4, 2021, Virtual Event, USA Amjad et al.

[52] Antoine Vastel, Peter Snyder, and Benjamin Livshits. 2020. Who Filters the
Filters: Understanding the Growth, Usefulness and Efficiency of Crowdsourced

AdBlocking. In ACM SIGMETRICS/Performance.

576

	Abstract
	1 Introduction
	2 TrackerSift
	3 Data
	4 Results
	5 Discussion
	6 Related Work
	7 Conclusion
	References

