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ABSTRACT

Trackers have recently started to mix tracking and functional re-

sources to circumvent privacy-enhancing content blocking tools.

Such mixed web resources put content blockers in a bind: risk break-

ing legitimate functionality if they act and risk missing privacy-

invasive advertising and tracking if they do not. In this paper, we

propose TrackerSift to progressively classify and untangle mixed

web resources (that combine tracking and legitimate functionality)

at multiple granularities of analysis (domain, hostname, script, and

method). Using TrackerSift, we conduct a large-scale measure-

ment study of such mixed resources on 100K websites. We find that

more than 17% domains, 48% hostnames, 6% scripts, and 9%methods

observed in our crawls combine tracking and legitimate functional-

ity.While mixedweb resources are prevalent across all granularities,

TrackerSift is able to attribute 98% of the script-initiated network

requests to either tracking or functional resources at the finest

method-level granularity. Our analysis shows that mixed resources

at different granularities are typically served from CDNs or as in-

lined and bundled scripts, and that blocking them indeed results in

breakage of legitimate functionality. Our results highlight opportu-

nities for finer-grained content blocking to remove mixed resources

without breaking legitimate functionality.

CCS CONCEPTS

· Security and privacy→Web application security; Browser

security; · Software and its engineering→ Software defect anal-

ysis.
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1 INTRODUCTION

Background & Motivation. Privacy-enhancing content blocking

tools such as AdBlock Plus [2], uBlock Origin [1], and Brave [4] are

widely used to block online advertising and/or tracking [26, 37, 39].

Trackers have engaged in the arms race with content blockers

via counter-blocking [40, 42] and circumvention [17, 36]. In the

counter-blocking arms race, trackers attempt to detect users of con-

tent blocking tools and give them an ultimatum to disable content

blocking. In the circumvention arms race, trackers attempt to evade

filter lists (e.g., EasyList [6], EasyPrivacy [7]) used to block ads and

trackers, thus rendering content blocking ineffective. While both

arms races persist to date, trackers are increasingly employing cir-

cumvention because counter-blocking efforts have not successfully

persuaded users to disable content blocking tools [21, 44, 47].

Limitations of Prior Work. Trackers have been using increas-

ingly sophisticated techniques to circumvent content blocking

[17, 19, 36]. At a high level, circumvention techniques can be clas-

sified into two categories. One type of circumvention is achieved

by frequently changing the network location (e.g., domain or URL)

of advertising and tracking resources. Content blocking tools at-

tempt to address this type of circumvention by updating filter lists

promptly and more frequently [28, 29, 48, 49, 52]. The second type

of circumvention is achieved by mixing up tracking resources with

functional resources, such as serving both from the same network

endpoint (e.g., first-party or Content Delivery Network (CDN))

[17, 20, 23]. Content blocking tools have struggled against this

type of circumvention because they are in a no-win situation: they

risk breaking legitimate functionality as collateral damage if they

act and risk missing privacy-invasive advertising and tracking if

they do not. While there is anecdotal evidence, the prevalence and

modus operandi of this type of circumvention has not been studied

in prior literature.

Measurement & Analysis. This paper aims to study the preva-

lence of mixed resources, which combine tracking and functionality,

on the web. We present TrackerSift to conduct a large-scale mea-

surement study of mixed resources at different granularities starting

from network-level (e.g., domain and hostname) to code-level (e.g.,

script and method). TrackerSift’s hierarchical analysis sheds light

on how tracking and functional web resources can be progressively

untangled at increasing levels of finer granularity. It uses a localiza-

tion approach to untangle mixed resources beyond the script-level

granularity of state-of-the-art content blocking tools. We show how
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Table 1: Classification of requests at different granularities

Granularity Tracking Functional Mixed Separation Cumulative
(Count) (Count) (Count) Factor Separation

(%) Factor (%)

Domain 755,784 566,810 1,129,109 54% 54%
Hostname 161,604 106,542 860,963 24% 65%
Script 235,157 490,295 135,511 84% 94%
Method 23,819 74,223 37,469 72% 98%

and mixed. In Figure 1, for the mixed script clone.js, we classify

m1() as tracking and m3() as functional. Since m2() requests both

tracking and functional resources, it is classified as mixed.

3 DATA

In this section, we describe TrackerSift’s browser instrumenta-

tion that crawls websites and labels the collected data. Note that

TrackerSift’s hierarchical analysis is post hoc and offline. Thus,

it does not incur any significant overhead during page load other

than the browser instrumentation and bookkeeping for labeling.

Crawling. We used Selenium [12] with Chrome 79.0.3945.79 to

automatically crawl the landing pages of 100K websites that are

randomly sampled from the Tranco top-million list [46] in April

2021. Our crawling infrastructure, based on a campus network

in North America, comprised of a 13-node cluster with 112 cores

at 3.10GHz, 52TB storage, and 832GB memory. Each node uses a

Docker container to crawl a subset of 100K webpages. The average

page load time (until onLoad event is fired) for a web page was

about 10 seconds. Our crawler waits an additional 10 seconds before

moving on to the next website. Note that the crawling is stateless,

i.e., we clear all cookies and other local browser states between

consecutive crawls.

As shown in Figure 2, our crawler was implemented as a purpose-

built Chrome extension that used DevTools [8] API to collect the

data during crawling. Specifically, it relies on two network events:

requestWillBeSent and responseReceived for capturing rele-

vant information for script-initiated network requests during the

page load. The former event provides detailed information for

each HTTP request such as a unique identifier for the request

(request_id), the web page’s URL (top_level_url), the URL of

the document this request is loaded for (frame_url), requested

resource type (resource_type), request header, request timestamp,

and a call_stack object containing the initiator information and

the stack trace for script-initiated HTTP requests. The latter event

provides detailed information for each HTTP response, such as

response headers and response body containing the payload.

Labeling. We gather an authoritative source labels by applying

filter lists to the crawled websites. Filter lists are not perfect (e.g.,

they are slow to update [49] and are prone to mistakes [17]) but they

are the best available source of labels. We use two widely used filter

lists that target advertising (EasyList [6]) and tracking (EasyPrivacy

[7]). These filter lists mainly build of regular expressions that match

advertising and/or tracking network requests. As shown in Figure 2,

network requests that match EasyList or EasyPrivacy are classified

as tracking, otherwise they are classified as functional. Note that we

maintain the call stack that contains the ancestral scripts that in turn

triggered a script-initiated network request (e.g., XMLHTTPRequest

fetches). For asynchronous JavaScript, the stack track that preceded

Table 2: Classification of resources at different granularities

Granularity Tracking Functional Mixed Separation
(Count) (Count) (Count) Factor

(%)

Domain 6,493 50,938 11,861 83%
Hostname 4,429 9,248 12,383 52%
Script 194,156 134,726 21,168 94%
Method 17,940 40,500 5,579 91%

the request is prepended in the stack. Thus, for script-initiated

network requests, we ensure that if a request is classified as tracking

or functional, its ancestral scripts in the stack are also classified as

such. Since network requests that are not script-initiated can not

be trivially classified as tracking or functional, we exclude them

from our analysis.

4 RESULTS

Classifying Mixed Resources.We compute the logarithmic ratio

of the number of tracking to functional network requests to quantify

the mixing of tracking and functional resources.

𝑟𝑎𝑡𝑖𝑜 = log

(

# 𝑜 𝑓 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

# 𝑜 𝑓 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

)

(1)

At each granularity, we classify resources with the common log-

arithmic ratio less than -2 as functional because they triggered

100×more functional requests than tracking requests. Similarly, we

classify resources with the common logarithmic ratio of more than

2 as tracking because they triggered 100× more tracking requests

than functional requests. The resources with the common logarith-

mic ratio between -2 and 2 are classified as mixed. We analyze the

suitability of the selected classification threshold using sensitivity

analysis later in Section 5.

Results Summary. Table 1 summarizes the results of our crawls

of the landing pages of 100K websites. Using the aforementioned

classification, we are able to attribute 54% of the 2.43 million script-

initiated network requests to tracking or functional domains. The

remaining 46% (1129K) of the 2.43 million requests attribute to

mixed domains that are further analyzed at the hostname-level. We

are able to attribute 24% of the requests from mixed domains to

tracking or functional hostnames. The remaining 76% (860K) of the

requests attribute to mixed hostnames that are further analyzed at

the script URL-level. We are able to attribute 84% of the requests

from mixed hostnames to tracking or functional script URLs. The

remaining 16% (135K) of the requests attribute to mixed script URLs

that are further analyzed at the script method-level. We are able to

attribute 72% of the requests from mixed script URLs to tracking or

functional script methods. This leaves us with less than 2% (37K)

requests that cannot be attributed by TrackerSift to tracking or

functional web resources and require further analysis.

Next, we analyze the distribution of the ratio of tracking to

functional requests by web resources at different granularities of

domain, hostname, script URL, and script method in Figure 3. Table

2 shows the breakdown of web resources classified as tracking,

functional, and mixed at different granularities.

Domain classification. 2451K requests in our dataset are served

from a total of 69,292 domains (eTLD+1). Figure 3a shows three dis-

tinct peaks: [2,∞) serve tracking requests, (-∞, -2] serve functional
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Figure 4: Sensitivity analysis of the classification threshold (default

is -2 and 2) by studying the proportion ofmixed scripts as a function

of varying thresholds. The X-axis represents the threshold buckets.

For example, 1.5 represents (-1.5, 1.5).

reasons as well as for circumvention [35, 41]. For example, we find

that the Facebook pixel [9] is inlined on a large number of websites

to assist with targeting Facebook ad campaigns and conversion

tracking.

(2) Script Bundling: Publishers also bundle multiple external

scripts from different organizations with intertwined dependencies

for simplicity and performance reasons. JavaScript bundlers, such

as webpack [14] and browserify [5], use dependency analysis to

bundle multiple scripts into one or a handful of bundled scripts. For

example, pressl.co serves a script app.9115af433836fd824ec7.js that

is bundled using the webpack [14]. This bundled script includes

the aforementioned Facebook pixel and code to load functional

resources from a first-party hostname. Existing content blocking

tools struggle to block inlined and bundled tracking scripts with-

out the risk of breaking legitimate site functionality. Finer-grained

detection by TrackerSift presents an opportunity to handle such

scripts by localizing the methods that implement tracking.

Threshold sensitivity analysis. We set the classification thresh-

old to a symmetric value of (-2,2) for classifying mixed resources in

Equation 1. To assess our choice of the threshold, we analyze the

sensitivity of script classification results in Figure 4. Similar trends

are observed for domain, hostname, and method classification. The

plot shows the percentage of scripts classified as mixed as we vary

the threshold from 1 to 3 in increments of 0.1 Note that the curve

plateaus around our selected threshold of 2. Thus, we conclude

that our choice of the threshold is stable and reasonably separates

mixed resources from tracking and functional resources.

Breakage analysis.We conductedmanual analysis to assesswhether

blocking mixed resources results in breakage of legitimate function-

ality. To assess functionality breakage, we load a random sample

of websites with (treatment) and without (control) blocking mixed

scripts as classified by TrackerSift. We label breakage as: major if

the core functionality such as search bar, menu, images, and page

navigation is broken in treatment but not in control; minor: if the

secondary functionality such as comment/review sections, media

widgets, video player, and icons is broken in treatment but not in

control; and none: if the core and secondary functionalities of the

website are same in treatment and control. Note that we consider

missing ads as no breakage. Table 3 shows our breakage analysis

on a representative sample of 10 websites. We note major or mi-

nor breakage in all except one case. Thus, we conclude that mixed

web resources indeed cannot be safely blocked by existing content

blocking tools.

Table 3: Manual analysis of breakage caused by blocking mixed

scripts on randomly selected 10 websites.

Website Mixed Script Breakage Comment

caremanagem-
entmatters.co.uk

jquery.min.js Minor scroll bar and two
widgets missing

gratis.com main.js Major page did not load
forevernew.com.au require.js Major multiple page ban-

ners missing
flamesnation.ca player.js Minor video pop missing
biba.in MJ_Static-Built.js Major page did not load
ecomarket.ru 2.0c9c64b2.chunk.js Major page did not load
peachjohn.co.jp jquery-1.11.2.min.js Major navigation and

scroll bar missing
shoobs.com widgets.js None no visible function-

ality breakage
editorajusp-
odivm.com.br

jquery.js Major navigation and
scroll bar missing

resourceworld.com jquery.min.js Major navigation bar and
images missing

Blocking mixed scripts. When TrackerSift classifies a mixed

script with different tracking and functional methods, we can sim-

ply remove tracking methods to generate a surrogate script that can

then be used to shim the mixed script at runtime. Existing content

blockers such as NoScript, uBlock Origin, AdGuard, and Firefox

SmartBlock use surrogate scripts to block tracking by mixed scripts

while avoiding breakage [3, 10, 13, 38]. However, these surrogate

scripts are currently manually designed [11]. TrackerSift can help

scale up the process of generating surrogate scripts by automati-

cally detecting and removing tracking methods in mixed scripts.

Note that removing tracking methods is tricky because simply re-

moving them risks functionality breakage due to potential coverage

issues of dynamic analysis. To mitigate this concern, we plan to ex-

plore a more conservative approach using a guardÐa predicate that

blocks tracking execution but allows functional execution. Such

a predicate has a similar structure to that of an assertion. We

envision using classic invariant inference techniques [25, 43] on a

tracking method’s calling context, scope, and arguments to gener-

ate a program invariant that holds across all tracking invocations. If

an online invocation satisfies the invariant, the guard will block the

execution. A key challenge in this approach is collecting the con-

text information, e.g., program scope, method arguments, and stack

trace, for each request initiated by the mixed method at runtime.

We plan to address these challenges in leveraging TrackerSift for

generating safe surrogate scripts in our future work.

Blocking mixed methods. Our analysis shows that Tracker-

Sift’s separation factor is 91% even at the finest granularity. This

leaves 5.6K mixed methods that cannot be safely blocked. One pos-

sible direction is to apply TrackerSift in the context of a mixed

method initiating a request. We can define context as calling context,

program scope, or parameters to the mixed method. In the case of

calling context, we can perform a call stack analysis that takes a

snapshot of a mixed method’s stack trace when the method initi-

ates a tracking or functional request. We hope to see distinct stack

traces from tracking and functional requests by a mixed method.

We can consolidate the stack traces of a mixed method and locate

the point of divergence, i.e., a method in the stack trace that only

participates in tracking requests. We hypothesize that removing

such a method will break the chain of methods needed to invoke a

tracking behavior, thus removing the tracking behavior.
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