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Abstract—Interactive panoramic scene delivery not only con-
sumes 4 ∼ 6× more bandwidth than traditional video streaming
of the same resolution but also requires timely displaying the
delivered content to ensure smooth interaction. Since users can
only see roughly 20% of the entire scene at a time (called the
viewport), it is sufficient to deliver the relevant portion of the
panoramic scene if we can accurately predict the user’s motion.
It is customary to deliver a portion larger than the viewport
to tolerate inaccurate predictions. Intuitively, the larger the
delivered portion, the higher the prediction accuracy and lower
the wireless transmission success probability. The goal is to select
an appropriate delivery portion to maximize system throughput.
We formulate this problem as a multi-armed bandit problem and
use the classical Kullback-Leibler Upper Confidence Bound (KL-
UCB) algorithm for the portion selection. We further develop a
novel variant of the KL-UCB algorithm that effectively leverages
two-level feedback (i.e., both prediction and transmission out-
comes) after each decision on the selected portion and show its
asymptotical optimality, which may be of independent interest by
itself. We demonstrate the superior performance of our proposed
algorithms over existing heuristic methods using both synthetic
simulations and real experimental evaluations.

I. INTRODUCTION

Panoramic videos and virtual reality (VR) provide an in-
teractive and immersive experience in a virtual 3D world
and has received great attention from both academia and
different industries in recent years. One major challenge in
high-resolution panoramic video streaming and virtual reality
is that they demand 4 ∼ 6× the bandwidth compared to a
regular video with the same resolution (see [1]). However, a
user may just need to see roughly 20% of the entire panoramic
scene without affecting her/his visual perception depending on
their perspective. This small and relevant portion of the entire
panoramic scene is known as the user’s viewport. For instance,
in the case of a panoramic roller coaster video, a user can see
either the front views or back views at any given time. There-
fore, if a user’s motion is accurately predicted, it is sufficient to
deliver just 20% of the 360° scenes surrounding them, thereby
significantly reducing network bandwidth consumption.

Unfortunately, it is impossible to achieve zero error in
predicting a user’s motion. As a result, a portion of the
panoramic scene larger than the viewport is usually delivered.
As long as the delivered portion covers the user’s viewport,
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the user will successfully view the content. Although a larger
delivery portion can tolerate a larger prediction error and thus
yield a higher probability of prediction (viewport coverage),
it can result in transmission failure since a larger portion of
the panoramic scene may exceed the maximum transmission
rate at the current wireless channel state. Noting that the
interactive panoramic scene delivery requires timely displaying
the delivered content, a central question is how to select an
appropriate delivery portion at each time to maximize system
throughput or some other metric of the user’s quality of
experience at the same time. Note that increasing or decreasing
the delivery portion increases or decreases, respectively, the
transmission data rate over the wireless channel. However,
this rate selection problem is quite different from traditional
rate selection problems in wireless networks where the main
goal of rate selection is to adapt to the quality of the wireless
channel [2], [3]; in particular, there are no viewport prediction
considerations in earlier works on rate selection.

Recent works (e.g., [1], [4], [5], [6], [7], [8], [9]) have
explored various efficient user motion prediction algorithms
and have incorporated them to reduce the wireless band-
width requirement of panoramic scene delivery. These papers
typically require collecting head motion traces from many
users for different video content, and subsequently train a
motion prediction model based on the collected data. How-
ever, for determining the corresponding delivery portion, they
use heuristic methods. Moreover, they do not explore fast-
changing wireless environments. To this end, in this paper, we
formulate the delivery portion selection problem as a stochastic
multi-armed bandit (MAB) problem, where different delivery
portions of the panoramic scene correspond to different arms
and the goal is to minimize the regret (i.e., the gap between the
optimal cumulative throughput and the cumulative throughput
under an algorithm) over a finite time horizon. The considered
setup has two-level feedback, i.e., after each arm is played, we
receive both the prediction and transmission outcomes and the
reward is determined by the product of these two independent
pieces of information.

The MAB problem is well-studied and has a wide array of
practical applications (see [10] for reference). In the traditional
stochastic MAB setting, at each time slot, an agent plays an
arm (from a set of arms) and receives a random reward drawn
(independently across time) from the reward distribution of the
arm it played. The goal of the agent is to minimize its regret
over a certain time horizon (defined as the loss in expected
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reward incurred by the agent as compared to an oracle which
knows the optimal arm) by taking sequential decisions which
strike a delicate balance between exploiting the information
that the agent already has and exploring different arms in order
to gain more information. The fundamental difference between
our problem and the standard stochastic MAB problem is that
our reward is determined by the product of two independent
pieces of random information instead of simply one net
reward feedback. Although we can consider the product of
the two levels of feedback as the net reward and formulate the
problem as the standard stochastic MAB problem, we wish to
exploit the potentially higher level of information that the two
independent levels of feedback can provide compared to their
product.

In their seminal work [11], the authors proved a funda-
mental lower bound on the regret that can be achieved by
any uniformly good algorithm for the traditional stochastic
MAB problem. Since then, a number of popular and easy to
implement algorithms have been designed which asymptoti-
cally achieve this fundamental lower bound (e.g., KL-UCB
[12] and Thompson sampling [13]). Some recent works (e.g.,
[14], [15]) have considered the bandit problem with multiple-
level feedback; however, their model is very different and is
motivated by advertising applications where a user might click
on an ad and then purchase the product advertised in the ad.
In the ad model, one gets feedback about whether the user
purchased the product or not only if they click the ad. In
our problem, we get two pieces of information, one about the
wireless transmission and one about the prediction, and both
are available in each time slot. To the best of our knowledge,
the ad model results cannot be used in our context. Our main
contributions in this paper are as follows:

1) We formulate the problem of maximizing the system
throughput in panoramic video delivery as a stochas-
tic multi-armed bandit (MAB) problem with two-level
feedback. This non-standard formulation of the stochastic
MAB problem can be more generally useful in other
MAB application domains where two levels of feedback
are available (see Section II).

2) We develop a novel variant of KL-UCB algorithm to effi-
ciently solve the stochastic MAB problem with two-level
feedback. We show that this algorithm asymptotically
minimizes the regret in the sense that the upper bound
on the regret of this algorithm asymptotically matches
the lower bound (see Section III). This analysis is non-
trivial due to the two-level feedback and is presented in
Section V.

3) In order to establish the practical utility of our algorithm,
we conduct both synthetic simulation and real experi-
mental evaluations for both panoramic video and VR
applications. We conclusively establish that our bandit
algorithms outperform existing heuristic methods and
the KL-UCB algorithm with two-level feedback further
improves the system performance (see Section IV).

II. PROBLEM FORMULATION

We consider a single user with VR headset exploring inter-
active and panoramic scenes that are delivered from an access
point (AP) over a wireless channel, as shown in Fig. 1. The
user can rotate its head in three different axes (yaw, pitch, roll)
for watching interactive panoramic videos or freely explore
panoramic VR scenes with 6-Degrees-of-Freedom (DoF) (3
DoF for user’s virtual position and the other 3 DoF for user’s
head orientation). We assume that there is no playback buffer
at user’s device to ensure timely and smooth interactions. We
also assume that the system operates in slotted time with
normalized time slots t ∈ {1, 2, . . . , n}. For example, the
time slot duration is set to 33ms and 16ms for panoramic
videos and VR applications, respectively. This guarantees the
desired quality of experience for panoramic videos and VR
applications that require at least 30 and 60 frames-per-second
(FPS), respectively.

In each time slot t, only a portion (typically 20%) of the
whole panoramic scene can be seen by a user, namely the
viewport. If we can accurately predict a user’s head movement,
then it is sufficient to deliver just 20% of the whole scenes,
which consumes only 1/5 of the originally required wireless
bandwidth. Unfortunately, a user typically randomly moves
his/her head depending on his/her interest in the panoramic
content. Hence, it is unavoidable to incur errors in head motion
prediction. To mitigate this, we usually deliver a portion of the
panoramic scene larger than the viewport.

Fig. 1: Wireless panoramic scene delivery.
We note that each panoramic scene can be split into a fixed

number of tiles (see Fig. 2) and a tile is the minimum delivery
unit required for image encoding and decoding. In each
time slot, a subset of tiles can be selected for transmission.
Since there are a finite number of subsets of tiles in each
panoramic scene, we assume that there are K different rates
corresponding to different portions of the panoramic scene:
0 < r1 < r2 < · · · < rK , where r1 refers to the rate
when only the predicted viewport is selected for transmission
and rK refers to the rate when the whole panoramic scene
is selected. We use Xi(t) = 1 to denote that user’s viewport
is covered by the delivered portion in time slot t when rate
ri is used (Xi(t) = 0 otherwise). As shown in Fig. 2, if
we choose the rate corresponding to the delivery portion A,
i.e., the green area, the viewport prediction will fail. On the
other hand, if we deliver the portion B, i.e., the red area plus
the green area, the viewport prediction will be successful. Let
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αi , Pr{Xi(t) = 1} be the prediction probability. Obviously,
the prediction probability is dependent on both the viewport
prediction algorithm and the chosen rate. Here, we consider
a general case for all of the efficient viewport prediction
algorithms and we will use the linear regression (LR) model
to predict the user’s motion in experimental evaluations (cf.
Section IV-B). Note that the AP gets to know the user’s exact
viewport after each transmission, even if the transmission fails,
since the user’s device automatically records the user’s current
motion orientation and sends that information back to the AP.
Hence, if rate ri was used in time slot t for transmission, the
AP always knows the outcome of Xi(t).

Fig. 2: A panoramic scene with 32 tiles.
We assume that the user’s channel rate is independently and

identically distributed (i.i.d.) over time. We assume that the
channel rate is unknown at the beginning of each time slot1.
Since we do not buffer panoramic content on the client, we
need to deliver the tiles within a time slot to display them on
time (e.g., 30 frames per second for panoramic videos or 60
frames per second for VR). As such, if the selected rate is less
than or equal to the channel rate, then the wireless transmission
will succeed. Otherwise, the transmission will fail. We use
Yi(t) = 1 to denote a successful transmission when the rate
ri is used in time slot t (Yi(t) = 0 if the transmission fails).
Let βi , Pr{Yi(t) = 1} be the transmission probability. We
use Zi(t) = 1 to denote that the user can successfully view
the desired content when the rate ri is used in time slot t
(Zi(t) = 0 otherwise). Note that Zi(t) = 1 happens when both
the prediction and the transmission are successful and thus we
have Zi(t) = Xi(t)Yi(t). Let i(t) ∈ {1, 2, ...,K} denote the
index of the rate used for wireless transmission at time slot t.
Then the user’s throughput in time slot t is Zi(t)(t)2.

In this paper, the AP needs to make a decision on the
selected rate in order to maximize the system throughput.
If both the user’s prediction and transmission probabilities
(i.e., {αi, βi, i = 1, 2, . . . ,K}) are known, then the optimal
throughput can be achieved by solving the following optimiza-
tion problem: i∗ ∈ arg maxi=1,2,...,K αiβi. However, both the
prediction and transmission probabilities are unknown, since
they rely on many factors such as the wireless environment, the
panoramic content, and the user’s personal behavior. Thus, the

1While the channel rate can be estimated, it is typically inaccurate,
especially when the user frequently rotates his/her headset.

2Our model can also be extended to other panoramic image coding schemes,
where the portion containing the viewport is encoded with a high resolution
and the rest of the scenes are encoded with a lower resolution. In such a
regime, the rate ri can be viewed as a measure of the user’s image quality,
and transmission is considered to fail if the intended quality is not delivered to
the user. As such, the user’s throughput in time slot t is ri(t)Xi(t)(t)Yi(t)(t).

algorithm not only needs to learn these statistics (also known
as (a.k.a.) exploration) but also to select the best rate so far
(a.k.a. exploitation). Our goal is to design a learning algorithm
that achieves the maximum system throughput within n time
slots, where n is some positive integer. This is equivalent to
minimizing the regret, which is the gap between the expected
accumulated throughput and the optimal throughput, i.e.,

R(n) , nαi∗βi∗ − E

[
n∑
t=1

Xi(t)(t)Yi(t)(t)

]
=
∑
k 6=i∗

E [Tk(n)∆k] ,
(1)

where ∆k = αi∗βi∗−αkβk and Tk(n) denotes the number of
times the transmission rate rk was used until the end of time
slot n.

Existing heuristics (e.g., [16]) such as minimum scene
delivery correspond to fixing a particular rate in our problem
and thus suffer from linear regret. Different from the tradi-
tional multi-armed bandit problem (where only the product
Xi(t)(t)Yi(t)(t) is available as feedback), both prediction and
transmission outcomes (i.e., Xi(t)(t) and Yi(t)(t)) are available
to us after each decision on the selected rate. This additional
level of feedback information can be leveraged to reduce the
regret compared with the single feedback counterpart.

III. ALGORITHM DESIGN

In this section, we first describe the classic Kullback-
Leibler Upper Confidence Bound (KL-UCB) algorithm for
the rate selection based on the single feedback information,
i.e., whether the user can successfully see the desired con-
tent. Then, we develop a variant of KL-UCB algorithm that
efficiently leverages two-level feedback information, i.e., both
viewport prediction and wireless transmission outcomes, and
show that it asymptotically achieves the minimum regret,
which is shown to be not greater than that achieved by the
single feedback counterpart.

We first present the classic KL-UCB algorithm (see Algo-
rithm 1), which motivates the design for the KL-UCB with
two-level feedback information. Let i(I)(t) denotes the index
of the rate selected for transmission at time slot t under the
classic KL-UCB algorithm and T (I)

i (t) denote the number of
times that rate ri is selected, until time slot t. Let S(I)

i (t) ,∑t
τ=1 Zi(I)(τ)(τ)1{i(I)(τ) = i} denote the number of times

that the user successfully sees the desired content when rate ri
is selected until time slot t, where 1{A} = 1 if event A is true
and 0 otherwise. Let d(a, b) , a log a

b +(1−a) log 1−a
1−b denote

the KL-divergence between two Bernoulli random variables
with mean a ∈ (0, 1) and b ∈ (0, 1), respectively. The
classic KL-UCB algorithm uses KL-divergence to indirectly
incorporate the uncertainty term in the weight of each rate.
In particular, the weight is the largest value such that its KL-
divergence away from the sample mean is smaller than some
small-term, which is the logarithmic function of the time t.
Then, we select the rate with the largest weight.
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Algorithm 1: KL-UCB with single-level feedback
• Choose each rate once.
• Subsequently, in each time slot t, select the rate
index i(I)(t) satisfying

i(I)(t) ∈ arg max
i=1,2,...,K

max

{
p ∈ [0, 1] :

d

(
S

(I)
i (t)

T
(I)
i (t)

, p

)
≤ log(1 + t log2 t)

T
(I)
i (t)

}
.

In our considered setup, both viewport prediction and wire-
less transmission outcomes are available after each decision
on the selected rate. As such, we develop a variant of KL-
UCB (see Algorithm 2) that efficiently leverages these two
pieces of information. To describe our algorithm, we will
define the following quantities. Let i(II)(t) denote the index
of the rate selected for transmission at time slot t under
the KL-UCB with two-level feedback and T

(II)
i (t) denote

the number of times that rate ri is selected, until time slot
t. Let S(II)

i,1 (t) ,
∑t
τ=1Xi(II)(τ)(τ)1{i(II)(τ) = i} and

S
(II)
i,2 (t) ,

∑t
τ=1 Yi(II)(τ)(τ)1{i(II)(τ) = i} respectively

denote the number of times that the prediction is successful
and the number of times that the wireless transmission is
successful when rate ri is selected until time slot t.

Algorithm 2: KL-UCB with two-level feedback
• Choose each rate once.
• Subsequently, in each time slot t, select the rate
index i(II)(t) satisfying

i(II)(t) ∈ arg max
i=1,2,...,K

max

{
pq :

d

(
S

(II)
i,1 (t)

T
(II)
i (t)

, p

)
+ d

(
S

(II)
i,2 (t)

T
(II)
i (t)

, q

)
≤ log(1 + t log2 t)

T
(II)
i (t)

;

S
(II)
i,1 (t)

T
(II)
i (t)

≤ p ≤ 1;
S

(II)
i,2 (t)

T
(II)
i (t)

≤ q ≤ 1

}
.

Intuitively, in Algorithm 2, we maintain a pair of counters
(i.e., S(II)

i,1 (t) and S
(II)
i,2 (t)) to track prediction and transmis-

sion outcomes when rate ri is used, and use these counters to
obtain the corresponding estimated probabilities for successful
prediction and transmission. Different from the classic KL-
UCB with single feedback (cf. Algorithm 1), we jointly
consider the uncertainties in the estimated probabilities for
successful prediction and transmission. It turns out that such
a design asymptotically achieves the minimum regret, which
is shown to be not greater than that achieved by the single
feedback counterpart.

Theorem 1. The KL-UCB with two-level feedback (cf. Algo-
rithm 2) asymptotically minimizes the regret in the sense that

the achieved regret asymptotically matches that achieved by
any uniformly good algorithm (i.e., as n → ∞, its achieved
regret (for any valid problem instance) belongs to the set
o(nδ)3, for any δ ∈ (0, 1).), and its regret R(II)(n) satisfies:

lim
n→∞

R(II)(n)

log n
=
∑
k 6=i∗

∆k

min 0≤x,y≤1
xy≥αi∗βi∗

d(αk, x) + d(βk, y)
,

where we recall that i∗ ∈ arg maxi=1,2,...,K αiβi.

Proof: We first characterize the fundamental lower bound
on the regret (as defined in (1)) achieved by any uniformly
good algorithm if two-level feedback is available, i.e., for
the stochastic multi-armed bandit problem with two-level
feedback, the following result holds for the regret achieved
by any uniformly good algorithm ψ:

lim inf
n→∞

R(n)

log n
≥
∑
k 6=i∗

∆k

min
0≤x,y≤1
xy≥αi∗βi∗

d(αk, x) + d(βk, y)
. (2)

This derivation is along line of the analysis in [11], and is
omitted due to the space limit. Then, we analyze the regret
performance of the KL-UCB with two-level feedback and
show that it is asymptotically optimal. The intuition behind
the regret analysis is along similar lines as the intuition behind
the analysis of the classic KL-UCB algorithm (see [10] for
more details). From the definition of regret in (1), we note
that in order to prove an upper bound on the regret achieved
by Algorithm 2, we simply need to upper bound the number
of times the algorithm transmits at a sub-optimal rate. To this
end, we split the analysis into the following steps:

1) Let τ be defined as the time after which, for a small ε >
0, the optimal rate’s index (as computed by Algorithm
2) will always be strictly greater than (αi∗ − ε)(βi∗ −
ε). Intuitively, after time τ , the optimal rate’s index will
be close to its true value. We will upper bound E[τ ] in
Lemma 2 in Section V.

2) We bound the expected number of times the index of a
sub-optimal rate will be greater than αiβi+ε, for a small
ε > 0 (see Lemma 3). After time τ , a sub-optimal rate
will be transmitted only if its index exceeds its true index
substantially, since the optimal rate’s index will be close
to its true index. Therefore, Lemma 3 in Section V allows
us to upper bound the number of times a sub-optimal rate
will be transmitted after the time τ .

3) We combine the above two results to bound the expected
number of times a sub-optimal rate is transmitted and
subsequently get the bound on regret.

The detailed proof is available in Section V.

It has been shown that the classic KL-UCB algorithm
asymptotically minimizes the regret in the presence of single-

3f(n) ∈ o(g(n)) if for all c > 0, there exists some k > 0 such that
0 ≤ f(n) < cg(n), ∀n ≥ k
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feedback information and its regret R(I)(n) (see [10]) satisfies:

lim
n→∞

R(I)(n)

log n
=
∑
k 6=i∗

∆k

min
0≤x,y≤1
xy≥αi∗βi∗

d(αkβk, xy)
.

Next, we show that the achieved regret under the KL-UCB
with two-level feedback is less than or equal to that with single
feedback information (treating the product as the feedback)
asymptotically.

Theorem 2. The achieved regret under the KL-UCB with
two-level feedback is not greater than that under the single
feedback counterpart in the asymptotic regime, i.e.,∑

k 6=i∗

∆k

min
0≤x,y≤1
xy≥αi∗βi∗

d(αk, x) + d(βk, y)

≤
∑
k 6=i∗

∆k

min
0≤x,y≤1
xy≥αi∗βi∗

d(αkβk, xy)
. (3)

Proof: It suffices to show that

d(αk, x) + d(βk, y) ≥ d(αkβk, xy), ∀x, y ∈ (0, 1). (4)

We consider four independent Bernoulli random variables
X1 ∼ Ber(αk), Y1 ∼ Ber(βk), X2 ∼ Ber(x), and
Y2 ∼ Ber(y). By considering the two random vectors Z1 =
(X1, Y1) and Z2 = (X2, Y2), from the additive property of the
KL-divergence (see [17] for details) for independent random
variables, we get

KL(Z1||Z2) = KL(X1||X2) +KL(Y1||Y2)

= d(αk, x) + d(βk, y),
(5)

where we have used the notation KL to denote the KL-
divergence between the distributions of random vectors or
random variables and d(a, b) is the KL-divergence between
two Bernoulli random variables with means a and b. Next,
consider a channel which takes two Bernoulli random variables
X,Y as input and produces the output XY. Suppose we
give Z1 = (X1, Y1) and Z2 = (X2, Y2) as inputs to this
channel, the KL-divergence between the outputs will be less
than or equal to the KL-divergence between the corresponding
inputs, a property known as the data processing inequality in
information theory [17]. Thus, we have

KL(Z1||Z2) ≥ KL(X1Y1||X2Y2) = d(αkβk, xy). (6)

By combining (5) and (6), we have the desired result.

Remark 1. We would like to point out that depending on the
values of {αi, βi; i = 1, 2, ...,K}, the difference between the
regret in the two-level feedback case and that in the traditional
single feedback case can be significant.

IV. PERFORMANCE EVALUATION

In this section, we first perform synthetic simulations to
compare the regret performance between our proposed KL-
UCB algorithm with two-level feedback and single feedback

αn βn
r1 0.1 0.99
r2 0.3 0.6
r3 0.5 0.4
r4 0.65 0.2
r5 0.9 0.05

(a) Simulation parameters (b) Regret performance

Fig. 3: Synthetic simulation

counterpart. Then, we implement KL-UCB algorithms with
both single and two-level feedback in a real system, and
demonstrate their superior performance over existing heuristic
methods.

A. Synthetic Simulation

In this subsection, we consider a synthetic experiment with
both the prediction and transmission outcomes being directly
generated by Bernoulli random variables with means αi and
βi, respectively, when rate ri is used. In such a case, we
consider the simulation setup with five different selected rates,
as listed in Fig. 3a. In the simulation setup, we run 5000
experiments to get the average results and each experiment’s
time horizon is set to 104 time slots. We plot the mean
and 1.96 standard deviation (95% confidence interval) of the
regret in Fig. 3b. We can observe from Fig. 3b that KL-UCB
algorithm with two-level feedback outperforms its counterpart
with single feedback information, which coincides with our
theoretical analysis in Section III.

B. Real-World Experiments

In this subsection, we design a system for the interac-
tive panoramic scene delivery, where a client requests the
panoramic scene from a server via WiFi and displays it in real-
time. We use a commercial off-the-shelf smartphone (Google
Pixel 4XL) as the client and a Lambda workstation with Intel
Core i9-9920X CPU @ 3.50GHz × 24, NVIDIA GeForce
RTX 2080 Ti Graphics Card × 4, 128 GB memory, 2 TB
disk, and Ubuntu 18.04 as the edge server. A Netgear R6700
router is responsible for the wireless communication between
the client and the server. We compare KL-UCB algorithms
with both single and two-level feedback with the existing
heuristic methods (e.g. [16], [6], [18]) such as minimum scene
delivery (i.e. delivering tiles that are overlapped with the user’s
predicted viewport) and whole scene delivery. We record a
3 DoF (orientation only) motion trace for a free educational
panoramic video (see [19]) and a 6 DoF (3 DoF for position
and 3 DoF for orientation) motion trace for a commercial VR
scene (see [20]), respectively. Notice that the VR scene is
displayed in 60 FPS, while the panoramic video plays in 30
FPS which matches the frame rate of the original video.

Client Design. The client is built on Android Studio using
Android SDK and Java. The motion thread on the client sends
its current trace and the transmission result of the last time slot
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to the server in each time slot (the slot duration is determined
by the target frame rate, 33 ms for 30 FPS, 16 ms for 60 FPS).
The other thread is responsible for receiving the tiles from the
server and passing it to the decoders. If the packet loss is
detected or the tiles cannot be delivered within a time slot,
the transmission will be regarded as a failure. Note that the
client will not buffer the panoramic scene for the interactive
applications. Android Media Codec accelerates the decoding
of the received tiles with multiple hardware decoders working
in parallel. The number of the decoders is set to 15 in our
experiments. We use Open GL ES to do the reprojection from
the equirectangular map to the panoramic view to display the
received tiles. The viewport of the client is set to a typical
value of 100°× 90° (see [6], [16]). We display tiles that have
an overlap with the current viewport.

Server Design. The server is developed on Eclipse by Java.
Once the server receives the motion trace from the client,
it predicts the pose in the next time slot using the linear
regression model. To be specific, we use motion trajectories
in previous three time slots to train a LR model and drop it
after the prediction. Based on the prediction and transmission
results of the last time slot, the server updates the KL-UCB
algorithms. Then, the server delivers the tiles overlapped with
the predicted viewport plus a margin area whose size is
determined by the selected rate. In our experiments, we have
set five arms corresponding to different portions: 100° × 90°
(minimum viewport), 102° × 91°, 108° × 94°, 120° × 100°,
and 360°× 180° (whole 360° scene).

Offline Preparation. To focus on the communication part
of the system, all the tiles are generated offline based on
the original video and the VR scene by FFmpeg [21] in 4K
resolution with default Constant Rate Factor (CRF) of 23. We
split each equirectangular map of the panoramic frame into
4 × 6 tiles to save more bandwidth. We assume that all tiles
are stored on the memory before the transmission such that
the processing time of tiles is negligible during the runtime.

Communication Methodology. To avoid the influence of
the TCP rate control algorithm on the performance of the
communication, we use real-time transport protocol (RTP),
which is built over UDP and accepted by state-of-the-art real-
time video streaming systems (see [22], [23]). Since RTP
is unreliable, we may lose some of the contents during the
transmission, which matches the assumption on the unreliable
wireless transmission in our problem formulation (cf. Section
II). We limit the maximal bandwidth of the communication to
100 Mbps by Linux TC [24] to avoid trivial portion selection.

Performance Comparison. We repeat fifty times of exper-
iments for each algorithm and get the average result to reduce
the randomness. The evaluation results for the panoramic
video are shown in Fig. 4. Fig. 4a shows the required network
bandwidth of different algorithms compared with the whole
panoramic scene delivery. We can observe that both KL-UCB
algorithms with single and two-level feedback save up to
50% of the network bandwidth. Fig. 4b shows the throughput
improvement of different algorithms compared with the heuris-
tic minimum scene delivery. We can see that both KL-UCB

algorithms reaches a 10% performance improvement. We also
compare the cumulative regret between the KL-UCB with two-
level feedback and single feedback counterpart compared with
the best fixed-arm policy, as shown in Fig. 4c. Notice that the
tile size varies in each time slot due to the different panoramic
scenes, which means the transmission probability varies even
under the same network condition. Therefore, the optimal arm
keeps changing. As such, we run experiments for each fixed
arm and choose the arm with the best average throughput
over the whole time horizon. We can observe from Fig. 4c
that KL-UCB with two-level feedback outperforms single
feedback counterpart. We can observe similar phenomena
in the VR application, as shown in Fig. 5. However, the
performance improvement between the KL-UCB with two-
level feedback and single feedback counterpart is smaller than
that for the panoramic video application. This is because that
the motion prediction errors in VR applications are not only
contributed by head orientation prediction (as in panoramic
video applications) but also the virtual location prediction.

V. PERFORMANCE ANALYSIS OF KL-UCB WITH
TWO-LEVEL FEEDBACK

In this section, we analyze the regret achieved by the KL-
UCB with two-level feedback (cf. Algorithm 2). First, we
present and prove an important lemma that quantifies the effect
that small perturbations in the constraints of the optimization
problem in the denominator of the lower bound (cf. (2)) have
on its solution. This lemma is extremely critical in our analysis
for establishing an upper bound on the regret achieved by
Algorithm 2, and is also useful in the proof of the lower bound.

Lemma 1. For 0 ≤ x, y < 1 and a constant c such that
xy < c ≤ 1, consider the following optimization problems:(

p∗(x, y), q∗(x, y)
)

= arg min
0≤p,q≤1; pq≥c

d(x, p) + d(y, q)(
p∗−ε(x, y), q∗−ε(x, y)

)
= arg min

0≤p,q≤1; pq≥c−ε
d(x, p) + d(y, q)

For 0 ≤ x, y < 1 and a constant c such that xy < c < 1,
consider the following optimization problem:(
p∗+ε(x, y), q∗+ε(x, y)

)
= arg min

0≤p,q≤1; pq≥c+ε
d(x, p) + d(y, q)

The following results hold for the solutions to the above three
optimization problems:

1) p∗(x, y) > x and q∗(x, y) > y.
2) Let hc(x, y) ,

√
(x− y)2 + 4c(1− x)(1− y). The fol-

lowing results hold:

(a) For ε < min{h
2
c(x,y)

8 , c−xy
1+x+y}:

min
α,β∈[x−ε,x+ε]

×[y−ε,y+ε]

p∗(α, β) ≥ p∗(x, y)−
1 + 4

hc(x,y)

1− y
ε

min
α,β∈[x−ε,x+ε]

×[y−ε,y+ε]

q∗(α, β) ≥ q∗(x, y)−
1 + 4

hc(x,y)

1− x
ε
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(a) Required network bandwidth w.r.t whole
panoramic scene delivery

(b) Throughput improvement over heuristic mini-
mum scene delivery

(c) Comparison between two-level and single-
level KL-UCB

Fig. 4: Real-world evaluation results for the panoramic video with 30 FPS

(a) Required network bandwidth w.r.t whole
panoramic scene delivery

(b) Throughput improvement over heuristic mini-
mum scene delivery

(c) Comparison between two-level and single-
level KL-UCB

Fig. 5: Real-world evaluation results for the VR scene with 60 FPS

(b) For ε < min{h
2
c(x,y)

8 , c− xy}:

p∗−ε(x, y) ≥ p∗(x, y)− 2(1− x)

hc(x, y)
ε

and q∗−ε(x, y) ≥ q∗(x, y)− 2(1− y)

hc(x, y)
ε,

(c) For ε < min{h
2
c(x,y)

8 , 1− c}:

p∗+ε(x, y) ≥ p∗(x, y) +
1− x

2hc(x, y)
ε

and q∗+ε(x, y) ≥ q∗(x, y) +
1− y

2hc(x, y)
ε,

Additionally, the following bounds quantify the impact of
perturbations on the KL-divergence between two Bernoulli
random variables.

3) Let β > α.

a) For ε1 ∈ [0, 1−α
2 ] and ε2 ∈ [0, 1−β] such that ε1+ε2 <

β − α, the following result holds:

d(α+ ε1, β − ε2) ≥ d(α, β)− c1ε1 − c2ε2,

where c1 = log β(1−α)
α(1−β) + 2 and c2 = 1−α

1−β .
b) For ε1 ∈ [0,min{α2 ,

1−α
2 }] and ε2 ∈

[0,min{β2 ,
1−β

2 }], the following result holds:

d(α− ε1, β + ε2) ≤ d(α, β) + c′1ε1 + c′2ε2,

where c′1 = log β(1−α)
α(1−β) + 4 and c′2 = 2(1−α)

(1−β) .

The proof follows tedious but straightforward calcu-
lus/algebra and thus is omitted here due to the space limit.

Theorem 3. The regret achieved by Algorithm 2 for the
stochastic multi-armed bandit problem with two-level feedback
satisfies the following:

lim sup
n→∞

R(n)

log n
≤
∑
k 6=i∗

∆k

min 0≤x,y≤1
xy≥αi∗βi∗

d(αk, x) + d(βk, y)
.

The proof of Theorem 3 needs to upper bound the number
of times the algorithm transmits at a sub-optimal rate. Hence,
we need to first establish the following two lemmas.

Lemma 2. (Underestimating the optimal arm) Let
X1, X2, ..., Xn and Y1, Y2, ..., Yn be independent and
identically distributed Bernoulli random variables with
mean α and β, respectively. Let α̂s = 1

s

∑s
j=1Xj and

β̂s = 1
s

∑s
j=1 Yj . Let ε > 0, d+(x, y) = d(x, y)I(x ≤ y),

f(t) = 1 + t log2 t and

τ = min
{
t : max

1≤s≤n
d+(α̂s, α− ε)−

log f(t)

s
≤ 0 and

max
1≤s≤n

d+(β̂s, β − ε)−
log f(t)

s
≤ 0
}

Then, E[τ ] ≤ 4
ε2 .

1805
Authorized licensed use limited to: University of Illinois. Downloaded on August 01,2022 at 16:41:36 UTC from IEEE Xplore.  Restrictions apply. 



Proof.

P(τ > t) ≤P({∃1 ≤ s ≤ n : d+(α̂s, α− ε)−
log f(t)

s
> 0} or

{∃1 ≤ s ≤ n : d+(β̂s, β − ε)−
log f(t)

s
> 0})

≤P({∃1 ≤ s ≤ n : d+(α̂s, α− ε)−
log f(t)

s
> 0})

+P({∃1 ≤ s ≤ n : d+(β̂s, β − ε)−
log f(t)

s
> 0}),

(7)

where the last inequality follows from the union bound. Let
us consider the first term on the right-hand side of the above
inequality (the second term can be analysed similarly). Note
that the proof is similar to the proof of in [10, Lemma 10.7].

P({∃1 ≤ s ≤ n : d+(α̂s, α− ε)−
log f(t)

s
> 0})

≤
n∑
s=1

P(d+(α̂s, α− ε)−
log f(t)

s
> 0)

(a)
=

n∑
s=1

P(d(α̂s, α− ε)−
log f(t)

s
> 0, α̂s < α− ε)

(b)

≤
n∑
s=1

P(d(α̂s, α) >
log f(t)

s
+ 2ε2, α̂s < α)

(c)

≤
n∑
s=1

exp(−s( log f(t)

s
+ 2ε2))

=
1

f(t)

n∑
s=1

exp(−2ε2s) ≤ 1

2f(t)ε2
, (8)

where (a) follows from the definition of d+(x, y), (b) follows
from [10, Lemma 10.2], (c) follows from [10, Corollary 10.4].
A similar analysis can be done for the second term on the
right-hand side of Equation (7) to obtain:

P({∃1 ≤ s ≤ n : d+(β̂s, β − ε)−
log f(t)

s
> 0}) ≤ 1

2f(t)ε2
.

Combining the above inequality with Equations (7)-(8):

E[τ ] =

∫ ∞
0

P(τ ≥ t)dt ≤
∫ ∞

0

1

f(t)ε2
dt ≤ 4

ε2
, (9)

where the last inequality follows from the fact that∫∞
0

dt
log(1+t log2 t)

≤ 4.

Lemma 3. (Overestimating a sub-optimal arm) Let
X1, X2, ..., Xn and Y1, Y2, ..., Yn be independent and
identically distributed Bernoulli random variables with
mean α and β, respectively. Assume that αβ < 1. Let
α̂s = 1

s

∑s
j=1Xj and β̂s = 1

s

∑s
j=1 Yj . Let hc(x, y) be as

defined in Lemma 1. Let ∆ > 0, such that αβ + ∆ < 1. Let

a > 0 and

p∗, q∗ = arg min
0≤p,q≤1
pq≥αβ+∆

d(α, p) + d(β, q)

κ =
n∑
s=1

I
{

min
0≤x,y≤1
xy≥αβ+∆

d(α̂s, x) + d(β̂s, y) ≤ a

s

}

1) If 0 ≤ α, β < 1, then

E[κ] ≤ inf
ε∈(0,Γα,β,∆)

( a

Mα,β,∆,ε
+

2

ε2
)
,

where

Mα,β,∆,ε ,d(α+ ε, p∗ −
1 + 4

hαβ+∆(α,β)

1− β
ε)

+ d(β + ε, q∗ −
1 + 4

hαβ+∆(α,β)

1− α
ε),

and

Γα,β,∆ , min{
h2
αβ+∆(α, β)

8
,

∆

1 + α+ β
,

(p∗ − α)(1− β)

2− β + 4
hαβ+∆(α,β)

,
(q∗ − β)(1− α)

2− α+ 4
hαβ+∆(α,β)

}.

2) If α = 1 or β = 1, then

E[κ] ≤ inf
ε∈(0,∆)

( a

d(γ + ε, γ + ∆)
+

3

2ε2
)
,

where γ , min{α, β}.

Proof. Let ε ∈ (0,∆) and ξ = a
Mα,β,∆,ε

. Let

Ls,ε ,
{
{Xi, Yi}si=1 : |α̂s − α| > ε or |β̂s − β| > ε

}
.

We have

E[κ] =
n∑
s=1

P
(

min
0≤x,y≤1;
xy≥αβ+∆

d(α̂s, x) + d(β̂s, y) ≤ a

s

)
≤

n∑
s=1

P(Ls,ε)

+
n∑
s=1

P
(

min
0≤x,y≤1;
xy≥αβ+∆

d(α̂s, x) + d(β̂s, y) ≤ a

s

∣∣∣∣LCs,ε)
(a)

≤
n∑
s=1

P(Ls,ε) +
n∑
s=1

P
(
Mα,β,∆,ε ≤

a

s

∣∣∣∣LCs,ε)
(b)

≤
n∑
s=1

P(Ls,ε) + ξ

≤
n∑
s=1

P(|α̂s − α| > ε) +
n∑
s=1

P(|β̂s − β| > ε) + ξ

(c)

≤
∞∑
s=1

(
exp

(
− sd(α+ ε, α)

)
+ exp

(
− sd(α− ε, α)

))
+

∞∑
s=1

(
exp

(
− sd(β + ε, β)

)
+ exp

(
− sd(β − ε, β)

))
+ ξ
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≤ 1

d(α+ ε, α)
+

1

d(α− ε, α)
+

1

d(β + ε, β)
+

+
1

d(β − ε, β)
+ ξ

(d)

≤ 2

ε2
+

a

Mα,β,∆,ε
,

where (a) follows from the result 2(a) in Lemma 1, (b) follows
from the definition of ξ, (c) follows from Chernoff’s bound,
and (d) follows from Pinsker’s inequality. The result follows
from taking the infimum over ε to obtain the tightest bound.

Let us consider the case when either α = 1 or β = 1 (both
can not be equal to one due to the assumption that αβ < 1).
Without loss of generality, let us assume that α = 1 and β < 1.
It can be readily seen that p∗ = 1 and q∗ = αβ+ ∆ = β+ ∆
(similar to proof of Lemma 1). With the above observation,
the result can be proved similar to the proof for the previous
case (when 0 ≤ α, β < 1).

Proof of Theorem 3:
Equipped with the three lemmas we have, we now prove the
main result. Consider a sub-optimal rate ri, i.e., i 6= i∗. Recall
that Ti(n) denotes the number of times that the rate ri is
used for transmission until the end of time slot n. We will
bound E[Ti(n)] and eventually bound the overall regret using
(1). Let (p∗i∗ , q

∗
i∗) = arg min

0≤p,q≤1
pq≥αi∗βi∗

d(αi∗ , p) + d(βi∗ , q) and

f(t) = 1 + t log2 t. We will split the analysis into two cases:
(i) 0 ≤ αi, βi < 1, (ii) either αi = 1 or βi = 1.

Case 1: 0 ≤ αi, βi < 1.
Choose ε1 > 0 such that ε1(αi∗ + βi∗) < αi∗βi∗ − αiβi.

Also, let:

τ = min

{
t : max

1≤s≤n
d+(α̂i∗,s, αi∗ − ε1)− log f(t)

s
≤ 0

and max
1≤s≤n

d+(β̂i∗,s, βi∗ − ε1)− log f(t)

s
≤ 0

}

κ =
n∑
s=1

I
{

min
0≤x,y≤1;
xy≥Υi,ε1

d(α̂i,s, x) + d(β̂i,s, y) ≤ log f(n)

s

}
,

where Υi,ε1 , αi∗βi∗ − ε1(αi∗ + βi∗).
We have:

E[Ti(n)] = E
[ n∑
t=1

I{At = i}
]

≤E[τ ] + E
[ n∑
t=τ+1

I{At = i}
]

(a)

≤E[τ ] + E
[ n∑
t=1

I{At = i and

min
0≤x,y≤1;
xy≥Υi,ε1

d(α̂i,s, x) + d(β̂i,s, y) ≤ log f(t)

Ti(t− 1)
}
]

(b)

≤E[τ ] + E[κ],

where (a) follows from Algorithm 2 and the definition of τ ,
and (b) follows from the definition of κ. Combining the above

inequality with different lemmas proved previously:

E[Ti(n)] ≤ 4

ε21
+ inf
ε2∈(0,Γαi,βi,∆i,ε1

)

(
log(1 + t log2 t)

Mαi,βi,∆i,ε1 ,ε2

+
2

ε22

)
≤ 4

ε21
+ inf
ε2∈(0,Γαi,βi,∆i,ε1

)

(
log(1 + t log2 t)

M ′αi,βi,∆i,ε1 ,ε2

+
2

ε22

)
,

(10)

where the first inequality follows from Lemmas 2 and 3 with

∆i,ε1 = αi∗βi∗ − αiβi − ε1(αi∗ + βi∗)

and Mαi,βi,∆i,ε1
,ε2 and Γαi,βi,∆i,ε1

as defined in Lemma 3.
The second inequality follows from Lemma 1 with

M ′αi,βi,∆i,ε1
,ε2 = d(αi + ε2, p

∗
i − k1ε1 − k2ε2)

+ d(βi + ε2, q
∗
i − k3ε1 − k4ε2),

where

p∗i , q
∗
i = arg min

0≤p,q≤1;
pq≥αi∗βi∗

d(αi, p) + d(βi, q),

k1 =
2(1− αi)(αi∗ + βi∗)

hαi∗βi∗ (αi, βi)
, k2 =

1 + 4
hαiβi+∆i,ε1

(αi,βi)

1− βi
,

k3 =
2(1− βi)(αi∗ + βi∗)

hαi∗βi∗ (αi, βi)
, k4 =

1 + 4
hαiβi+∆i,ε1

(αi,βi)

1− αi
.

Case 2: either αi = 1 or βi = 1. In this case, we can use
Lemma 3 and proceed as we did in the previous case to get:

E[Ti(n)] ≤ 4

ε21
+ inf
ε2∈(0,∆i,ε1

)

( log(1 + t log2 t)

d(γ + ε2, γ + ∆i,ε1)
+

3

2ε22

)
,

(11)

where ε1 ∈ (0, αi∗βi∗−αiβiαi∗+βi∗
), γ = min{α, β} and ∆i,ε1 as

defined in the previous case.
The final result can be obtained by combining (10)–(11),

using results 2 and 3 from Lemma 1 and taking limit superior
(see [10, Chapter 8] for more details).

VI. CONCLUSION

In this paper, we considered a multi-armed bandit problem
with an application to interactive panoramic scene delivery
over wireless, where each arm corresponds to a delivery
portion of the panoramic scene (or a rate). The larger the
delivery portion, the higher the viewport prediction probability
and lower the wireless transmission success probability. We
proposed KL-UCB algorithms with both single and two-level
feedback for the rate selection, and showed that the KL-UCB
algorithm with two-level feedback asymptotically minimizes
the regret and its achieved regret is not greater than that
with single-feedback counterpart. We perform both synthetic
simulations and real experimental evaluations to demonstrate
the superior performance of bandit algorithms over existing
heuristic methods.
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