
Mathematics and Financial Economics (2022) 16:481–508
https://doi.org/10.1007/s11579-022-00314-8

Climate change adaptation under heterogeneous beliefs

Marcel Nutz1 · Florian Stebegg2

Received: 20 January 2021 / Accepted: 22 February 2022 / Published online: 23 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We study strategic interactions between firmswith heterogeneous beliefs about future climate
impacts. To that end, we propose a Cournot-type equilibrium model where firms choose mit-
igation efforts and production quantities such as to maximize the expected profits under their
subjective beliefs. It is shown that optimal mitigation efforts are increased by the presence
of uncertainty and act as substitutes; i.e., one firm’s lack of mitigation incentivizes others to
act more decidedly, and vice versa.

Keywords Climate change adaption · Heterogeneous beliefs · Cournot equilibrium
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1 Introduction

There is broad consensus among scientists that anthropogenic emissions of greenhouse gases
are themain driving factor for climate change. Nevertheless, there is considerable uncertainty
about the magnitude of future climate change and its impacts.1 Firms making long-term
investments, such as electric utilities planning power plants, face uncertainty about the future
regulatory environment. For instance, a utility anticipating carbon taxes may opt for a sus-
tainable technology even if it is more expensive at the time of planning.2 Emissions-related
tax rates are endogenous because firms’ decisions impact the magnitude of climate change

1 See [12, 27, 28], among others.
2The Economist [23] stresses the risk that plants become uneconomic: “In April, Indiana’s utility commission
rejected a proposal for a gas plant by Vectren ... for just that reason. If America one day sets a price on carbon
emissions, customers could be left paying for utilities’ bad bets on fossil fuels.” BlackRock CEO Fink [10]
warns clients that “coal is ... highly exposed to regulation because of its environmental impacts.”

Research supported by an Alfred P. Sloan Fellowship and NSF Grants DMS-1812661, DMS-2106056. MN
is grateful to Harrison Hong and José Scheinkman for helpful comments and encouragement.

B Marcel Nutz
mnutz@columbia.edu

Florian Stebegg
florian.stebegg@columbia.edu

1 Departments of Statistics and Mathematics, Columbia University, New York, USA

2 Department of Statistics, Columbia University, New York, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11579-022-00314-8&domain=pdf
http://orcid.org/0000-0003-2936-2315


482 Mathematics and Financial Economics (2022) 16:481–508

as well as public scrutiny, which in turn influence regulatory decisions. 3 The importance of
uncertainty in climate change economics has been emphasized in the recent literature; see for
instance [7, 11] for recent surveys with numerous references. There are also various works
on game-theoretic aspects of climate change mitigation—mostly focusing on whether, or
under which circumstances, sufficient mitigation can be achieved.4 This literature generally
assumes that agents are homogeneous; two exceptions are [6]5 and [15]6. Clearly the pres-
ence of uncertainty is an important reason for the co-existence of heterogeneous beliefs.7 In
this paper we take a first step towards studying strategic interactions between firms that differ
in their beliefs about future climate impacts. We formulate a tractable Cournot-type equilib-
riummodel where firms make irreversible decisions about production and emissions with the
aim of maximizing expected profits. Products are subject to taxes which are endogenous and
uncertain at the time of planning. While the model is very stylized, it highlights a strategic
aspect of climate change mitigation and allows us to analyze how firms’ beliefs about future
taxes influence their own and their competitors’ choices, as well as total emissions. One
finding is that environmental choices act as substitutes: one firm’s lack of action in climate
change mitigation incentivizes others to increase their efforts.

For concreteness, we summarize the state of the climate by the global mean near-surface
temperature and a firm’s emissions by its carbon dioxide output. As in classical Cournot
competitions, one can think of the model as having two periods.8 In the first, n firms make
an irreversible decision about the quantity of good to be produced, say the number and
size of power plants. In addition, firms choose a technology: hydroelectrical, coal, etc. We
assume that by combining technologies this choice boils down to a continuous parameter
r which represents the amount of carbon emitted per unit of good: r = 0 stands for a
zero-emission technology and r = 1 stands for the “business-as-usual” technology with the
largest emissions.9 The production cost is determined by the technology choice and saving
emissions is costly. Firms maximize the profits that will be realized when markets settle in
the second period as detailed below. The products per se, say electrical power, are considered
undifferentiated and are perfect substitutes from the consumers’ point of view. As a result, the
price paid by consumers is determined by inverse demand as in standard Cournotmodels. The
only reason for differentiation among firms is that firms have heterogeneous beliefs about the

3 A similar argument could be made for reputational risks, consumer demand, etc. In the spirit of Barnett et
al. [3], we use taxes as the single target variable in our highly stylized model.
4 See, for instance, [4].
5 Bréchet et al. [6] consider a variation of Nordhaus’ DICE-2007 model with co-existing agents in the frame-
work of model predictive control. The population consists of two agents of equal size, a business-as-usual
agent not taking into account their own impacts and an agent solving the full optimization problem. In a
numerical simulation, the authors conclude that there exists a strong incentive to play business-as-usual and
that total emissions are close to a model with only business-as-usual agents.
6 Kiseleva [15] formulates a model with evolutionary dynamics and three types of agents, distinguished
by whether they believe in anthropogenic climate change (“weak/strong skeptics”) and the possibility of a
climate catastrophe (“science-based”). The impact of adaptation and pollution costs is described as well as
the evolutionary type dynamics, with a focus on whether climate catastrophe can be prevented in the absence
of science-based types, the latter being answered positively.
7 Poortinga et al. [21] conduct an empirical study on public skepticism about climate change in the British
population and find that a majority is uncertain what the effects of climate change will be. The authors argue
that another reason is that “climate change is perceptually a distant issue.” Di Giuli and Kostovetsky [9] show
that Democratic-leaning firms spend more on corporate social responsibility, including environmental, than
Republican-leaning firms.
8 See [24] for background on Cournot models.
9 Technology r = 0 is the “backstop technology” in the terminology of Nordhaus [20].
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tax rate (per unit of carbon) thatwill prevail in the second period. 10 Taxes are paid by the firms
and distributed to consumers lump-sum.We think of the twoperiods as substantially separated
in time, reflecting the long planning horizon e.g. for large hydroelectrical or nuclear power
plants. Thus, net profits will be modeled as random variables and firms maximize expected
profits at the time of planning. We treat the determination of prices, taxes and production
as occurring at a single point in time, with these quantities representing averages during the
planning period. As pointed out by a referee, this static modeling is inappropriate for a rapid
and large climate event; e.g., if consequences of climate change increase dramatically at a
threshold in temperature. Following such an event, the firms’ available set of actions and
their profit maximization would need to be adapted dynamically.

The specific form of taxes in our model is motivated by two stylized facts that we describe
next. Climate science tries to predict the anomaly (temperature change) over a period of
time as a function of an emissions scenario (carbon emissions for each year). While it is a
high-confidence statement that additional carbon emissions cause temperature to increase,
there is significant uncertainty about the precise magnitude: different state-of-the-art models
produce significantly different projections even for the same emissions scenario.11 To obtain
a tractable model, we use that the increase T in temperature over a time interval is approxi-
mately proportional to the cumulative carbon emissions K over that interval: T = αK .12 The
constant of proportionality α is called transient climate response (TCRE). While the approx-
imate linearity of the carbon–climate response function is robust across a range of models,
the value of α is subject to model uncertainty; indeed, Fig. 1 suggests that a broad range of
values are reasonable parameters for the models tested. This motivates that we incorporate
heterogeneous beliefs about climate change in our model through α: firms agree-to-disagree
about the TCRE. Climate change “believers” assume that the TCRE has a relatively higher
value whereas climate change “skeptics” assume that the value is lower, with a value of zero
representing the view that carbon has no impact on temperature. More precisely, firms may
acknowledge uncertainty about the correct value of the TCRE and use a probability distribu-
tion for α. Level and uncertainty are then represented by the mean and the variance of that
subjective distribution.13

10 See for instance [8] for arguments that unregulated markets are not able to mitigate climate change. While
our description assumed for simplicity that differentiation is exclusively due to taxes, the latter may also stand
in for consumers’ potential willingness to pay a premium for green technology. Like the taxes, the magnitude
of this premium is endogenous and uncertain.
11 See [12] for a broad survey, Figure 11.25(a) of [14] for temperature predictions made by various climate
models for four standardized scenarios, and [22] for a survey of climate models. Reasons for the difficulty to
forecast temperature include nonlinear dynamics (e.g., laws of convection, saturation of oceans, thawing of
ice), size and heterogeneity of the planet, length of the required time horizon, random shocks (e.g., volcano
eruptions), and others.
12 See [2, 19]. This linearity is the approximate combined result of several nonlinear effects, and valid for
regimes of moderate emissions. MacDougall and Friedlingstein [17] explain the phenomenon analytically by
the diminishing radiative forcing from CO2 per unit mass being compensated for by the diminishing ability of
the ocean to take up heat and carbon. As pointed out by a referee, these models may allow for the temperature
to revert to a lower level if the world reduced total emissions, as implied by the proportionality of the change
of temperature. Because such a scenario seems unlikely and the time horizon would presumably be greater
than the horizon of the model, we do not consider temperature decreases further.
13 In particular, the main influencing factor for firms’ decisions is the subjective belief about what will happen
whenmarkets settle andonly incorporates temperature change through carbon emissions. This is highly stylized
but allows us to mathematically solve the model. As pointed out by a referee, more realistic models of climate
change would also include random shocks. We omit this feature as adding a second family of distributions
would complicate the analysis and we would expect the economic conclusions to be largely equivalent.
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Fig. 1 Histogram of numerical values of TCRE found from 150 model variants, in ◦C per trillion tonnes of
carbon. The 5th to 95th percentile range is [0.9, 2.5]. Figure 3a of [18], reproduced with permission

Fig. 2 Impacts and risks for selected natural, managed and human systems, ranging from “undetectable” to
“very high” (coloring) and confidence levels for the indicated transitions (Low, Medium, High, Very High).
Figure SPM.2 of [12]

Next, we describe how warming affects profits. Impacts of global warming are manifold
and admittedly difficult to quantify. Figure 2 illustrates past and expected future impacts on
a variety of systems. While the global warming of approximately 1◦C between 1750 and the
present has only had limited effect on most of these systems, the next 0.5◦C are expected to
have a much more significant impact, and the following 0.5◦C even more so—the marginal
impact is increasing.14 This is consistent with the quantitative estimates of climate impact
on welfare in the literature. Figure 1 in [25] compares 27 such estimates and suggests that
welfare-equivalent income is a concave function of temperature.15

Our model postulates an emissions tax introduced by a regulator. This stylized mechanism
more generally stands in for potential adverse impacts on firms with larger emissions, such

14 See [12] for a survey on climate impacts. Coral reefs, for example, are expected to decline by >99%
at 2◦C warming. The nonlinearity of climate impacts is reinforced by tipping events; i.e., relatively abrupt
macroscopic changes in the climate system that are expected at increased temperatures, such as melting of the
West Antarctic ice sheet ormethane release from thawing permafrost. See [16] for a list of nine different tipping
events. As pointed out by a referee, our focus is on temperature increases even though a large negative change
in temperature would also have substantial negative impacts. The general idea that pre-industrial temperature
is “optimal” is likely less a consequence of the specific temperature than the fact that nature and humans have
adapted to it over a long period of time.
15 Tol [25] emphasizes the uncertainty in these estimates while highlighting that “impacts of climate change
are typically found to be more than linear” and that the uncertainty is skewed towards negative surprises.
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as costs due to additional environmental rules or reputational and legal risks that affect firms
in the long run.16 Specifically, the tax per unit of good produced with technology r is bTαr ;
here αr is the marginal increase in temperature caused by the good (after choosing units
appropriately) and the tax rate bT is proportional to the total temperature anomaly.17

The taxes on the total production then internalize society’s disutility from warming if we
postulate that the latter is quadratic and separable—the simplest form consistent with increas-
ing marginal disutility.18 The tax rate is endogenous as it is proportional to the temperature
increase T , and uncertainty about the TCRE α implies uncertainty about taxes. Alternately,
as warming affects firms only via taxes, we may think of firms as having uncertainty about
future regulation per se rather than climate. Our modeling of uncertainty and impacts is
inspired by [3], but is even more simplified in order to yield a tractable framework for an
equilibrium model.

While closed-form solutions for the equilibrium are available in special cases (see Sect. 3),
thismodel is sufficiently tractable to allow for a detailed analysis of the equilibrium properties
in all cases. We are particularly interested in comparative statics for firms’ choices and
aggregate emissions. As production quantity and carbon interact with the constraints of the
model, we find it useful to form buckets of firms with comparable equilibrium technology
choices: green firms emit no carbon (r = 0), red firms make no effort to reduce emissions
(r = 1), and orange firms are intermediate. This color is endogenous, but conditionally on
the color, closed-form feedback expressions for the optimal choices are readily available.
The optimal production quantity and emissions are substitutes; that is, any firms’ optimal
choices are decreasing in the total quantity and carbon produced by the other firms. However,
if the total quantity and carbon are varied in opposite directions, the reaction of the firm
is ambiguous, with the direction depending on its color. Remarkably, the equilibrium is
nevertheless unique; this is shown by an analysis of the interactions between the buckets.
Key features of the equilibrium are:

1. Uncertainty is equivalent to higher expected impact. As far as equilibrium outcomes are
concerned, the second moment α2

i := Ei [α2] is a sufficient statistic for firm i’s belief
about climate impacts (or about taxes). A firm acknowledging variance of carbon impact
takes the same optimal decisions as one that assumes a known but increased impact.1920

16 We phrase the cost of carbon as a tax since this leads to straightforward mechanics in the model. A carbon
certificate market where the supply of certificates is controlled by the regulator would lead to similar results:
if the firms start with no certificates and need to purchase certificates proportional to the carbon output they
committed to in the first period, they are price takers in the certificate market. The clearing price is an inverse
function of certificate supply and can thus be set indirectly by the regulator.
17 The linear schedule in our setup does not necessarily represent an “optimal” choice from the regulator’s
point of view, but rather a concrete formulation for an expectation of the firms’ disutility that makes our model
mathematically analyzable. A real regulator would also face a complex decision problem under uncertainty
with various trade-offs. In particular, the regulator will want to reduce carbon emissions effectively but also
retain flexibility to react to unforeseen developments, as emphasized in [13].
18 The constant b could, in principle, be calibrated to the social cost of warming. However, our stylized
model is built to highlight the mechanics of heterogeneous beliefs and not expected to yield good quantitative
predictions.
19 This behavior is consistent with the finding that the presence of uncertainty warrants a higher level of
climate change mitigation in various contexts; see, e.g., [5, 7, 20].
20 We could replace the fixed parameter bwith a firm-dependent risk-aversion parameter bi in our model. This
would be redundant in terms of outcomes as α2i is already firm-dependent and only enters the equilibrium in

the form βi = bα2i (which would be modified to βi = biα
2
i ). We therefore choose to use the fixed parameter

b to make the interpretation of taxes as a tool to internalize society’s disutility more straightforward.
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2. Higher expected impact implies higher mitigation effort. For a given firm i , the equi-
librium technology choice ri is monotone decreasing in α2

i , if other firms’ beliefs are
fixed.

3. Mitigation efforts act as strategic substitutes. For a given firm i with fixed α2
i , the equi-

librium technology choice ri is monotone increasing in α2
j for all j �= i . That is, firm i’s

mitigation efforts increase if other firms’ efforts decrease, and vice versa.

The aggregate carbon emissions are decreasing with respect to the climate beliefs α2
i of

all firms, as one would expect, but other comparative statics reveal the richer interactions
between emissions, production and constraints, both for individual firms and in the aggregate.
Strategic substitutes are consistent with the mechanics of a standard Cournot model without
technology choice, where one firm’s decrease of emissions and production would entail an
increase of emissions and production for the other firms. In the present model, technology
choice gives an alternate way to control emissions. For instance, Example 3.2 shows that if
firms all have moderate beliefs, firms adapt to changes in beliefs by changing technology
while holding production quantities constant. In general, the equilibrium production quantity
of a given company depends ambiguously on the beliefs in the economy: If a red firm j
grows more concerned about climate impacts, j reduces its emissions and hence, a fortiori,
its production quantity. Other firms then face less competition and increase their quantity.
If j is orange, however, it reduces emissions by changing technology rather than quantity.
Red firms then increase their production since the marginal cost of carbon has decreased, but
green and orange firms decrease their production as a reaction to the competition from red
firms. A detailed discussion of all comparative statics can be found in the main text.

We also study an iterated version of the game where the total carbon in the environment
accumulates and firms can update their beliefs about the TCRE. In an example where firms
asymptotically learn (and agree on) the true value of the TCRE, the total temperature change
converges to the quotient of the extra cost d for the green technology and the tax rate bα.

The remainder of this paper is organized as follows. Section 2 develops the model and
its equilibrium. In Sect. 3 we discuss special cases with closed-form solutions, giving first
insights. Section 4presents the qualitative comparative statics. The repeated game is discussed
in Sects. 5, and 6 concludes. Appendix A contains the proofs for Sect. 2 and a more detailed
mathematical description of the equilibrium. Appendix B elaborates on the examples of
Sect. 3. In Appendix C we derive quantitative comparative statics which imply, in particular,
the qualitative comparative statics summarized in Sect. 4. Appendix D contains the proofs
for Sect. 5. Finally, Appendix E discusses more general utility functions for consumers.

2 Equilibrium

Let ri ∈ [0, 1] be the technology and qi ∈ R+ the production quantity chosen by firm i . The
corresponding carbon emission is ki = ri qi where we choose units so that the business-as-
usual technology r = 1 corresponds to one unit of carbon per unit of good. Note that given
qi , we may equivalently specify ri or ki .21 In addition to the emissions of the firms, we also
include an exogenous amount Kex of carbon which may account for emitters outside the
economy or pre-existing emissions. Thus, the total carbon is K = Kex +∑n

j=1 r j q j and the
total supply is Q = ∑n

j=1 q j .
To analyze the equilibrium, we first derive the optimality conditions for a fixed firm i

given the quantity and carbon from sources other than firm i , denoted Q−i = Q − qi and

21 The convention that ri = 0 when qi = 0 is used for the boundary case.
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K−i = K − ki . As mentioned in the Introduction, the net unit price (i.e., the revenue per unit
of good net of taxes) for firm i is

pi = u′(Q) − bTαri

were u : R+ → R is a utility function, α is the TCRE and T = αK is the temperature
increase. We assume that the choice r = 1 with the highest emission has a unit cost of c > 0
whereas the zero-emission technology bears a premium of d > 0. The total production cost
for a quantity q at technology r ∈ [0, 1] is C(r , q) = [c+ (1− r)d]q. In summary, the profit
for the choices (ri , qi ) is

πi (ri , qi ) = piqi − C(qi , ri ) = u′(Q)qi − bαTriqi − [c + (1 − ri )d]qi .
Each firm i has a belief about the distribution of α. We denote by

α2
i = Ei [α2]

the second moment of α under firm i’s belief. In most of the paper we endow consumers
with the quadratic utility u(x) = − 1

2 (A − x)2 for x ∈ [0, A], where A > 0 (and u(x) = 0
for x > A); see Appendix E for more general utility functions. In other words, the inverse
demand u′(x) = (A − x)+ is affine and the expected profit of firm i under its subjective
belief takes the form

Ei [πi (ri , qi )] = (A − qi − Q−i )qi − bα2
i (ri qi + K−i )ri qi − (c + d − dri )qi (2.1)

as long as qi + Q−i ∈ [0, A]. A (Nash) equilibrium is defined as a profile (r j , q j )1≤ j≤n

such that (ri , qi ) maximizes firm i’s expected profit (2.1) given Q−i = ∑
j �=i q j and K−i =

Kex + ∑
j �=i r j q j , for every 1 ≤ i ≤ n.

Remark 2.1 As the beliefs only affect the equilibrium through the expected profits (2.1), the
second moment α2

i = Ei [α2] is a sufficient statistic for firm i’s views about α. The relation
Ei [α2] = Vari (α) + Ei [α]2 shows that an increase in variance affects the equilibrium in the
same manner as if the firm had a larger expected value: acknowledging uncertainty about α
is equivalent to expecting a larger TCRE.

In this spirit, one may replace b by a firm-dependent constant bi which can be interpreted
as a risk-aversion parameter, similarly as in Markowitz’ problem. Setting βi = biα2

i instead
of βi = bα2

i in (2.2) below, the formulas in our results then continue to hold as stated.

Given exogenous quantity Q−i and carbon K−i , firm i has a unique optimal choice (ri , qi )
which, however, is somewhat complicated to state because the choice is two-dimensional and
subject to several constraints. We provide a detailed description in Appendix A and confine
ourselves to an informal version in the main text, highlighting some of the key features. To
facilitate the exposition we introduce the following color-coding. Firm i is called white if
it does not produce (qi = 0). For the case of a positive production, we distinguish three
cases: firm i is green if it produces exclusively with the emission-free technology (ri = 0
and qi > 0), red if it produces exclusively with the business-as-usual technology (ri = 1),
and orange if uses an intermediate technology (0 < ri < 1). The color captures which of
the constraints (nonnegative production, technology between 0 and 1) are binding. The color
itself depends on the belief, Q−i and K−i , but once the color is determined, the optimal
choice has a simple expression as stated below. The following definitions will be useful to
obtain concise expressions, here and in the rest of the paper:

βi = bα2
i , ai = d

βi
, z = A − c − d. (2.2)
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Indeed, the secondmoment α2
i of firm i’s belief on the TCRE can only occur via its product βi

with the constant b in the tax rate; cf. (2.1). For green and orange firms, choices are tradeoffs
between the extra cost d of the green technology and βi , which suggests the definition of ai .
A large value of ai corresponds to the view that taxes will be low or that mitigation is costly,
so that firms with higher ai will make smaller mitigation efforts. Finally, the difference z
between the maximal demand A and the unit cost c + d of the green technology is clearly
an important quantity for the mitigation efforts.

Proposition 2.2 Given exogenous quantity Q−i and carbon K−i , the color of firm i is
uniquely determined and the optimal choices are as follows. If firm i is

(i) white, then qi = 0 and ki = 0.
(ii) green, then qi = 1

2 (z − Q−i ) and ki = 0.
(iii) orange, then qi = 1

2 (z − Q−i ) and ki = 1
2 (ai − K−i ).

(iv) red, then qi = ki = 1
2

1
1+βi

[A − c − Q−i − βi K−i ].

For all colors, qi and ki are weakly decreasing functions of Q−i and K−i ; that is, quantity
and emissions act as substitutes. For white, green and orange firms, qi depends only on Q−i

and ki depends only on K−i . Whereas for red firms, qi and ki depend jointly on Q−i and
K−i , and moreover the precise coupling between the two depends on the specific belief of
the firm in question. (In addition, the color of a firm depends on both Q−i and K−i and the
firm’s belief; cf. Appendix A.)

Theorem 2.3 There exists a unique equilibrium.

The proof of existence in Appendix A applies Brouwer’s fixed point theorem in a fairly
direct manner. Uniqueness is less obvious and the proof may be of interest on its own.
While strategic substitutes generally imply uniqueness in the case of a one-dimensional
control variable, this is not necessarily the case in a problem with two interacting controls—
a priori, it may be possible to have an alternative equilibrium with smaller quantity but larger
emissions. One key step in our proof is to exhibit a transversality relation between the color
buckets (Lemma A.4): if green and red firms increase their production quantity, the orange
firms would react by partially, but not fully, compensating that increase. Conversely, a change
caused by orange firms would be over-compensated by the other firms.

Not all color combinations can arise in equilibrium: green and orange firms cannot co-exist
with white ones; i.e., an equilibrium consist either of green, orange and red firms; or of white
and red firms. (Some of these buckets may be empty; for instance, all firms can be orange.)
As is intuitive, these colors are ordered in terms of climate beliefs: In the green-orange-red
case, the green firms are the ones expecting the highest climate impacts (the highest taxes)
and the red ones expect to lowest. In the white-red case, the white firms expect the higher
impacts. See Appendix A for more details.

3 Examples

In this section we exhibit special cases with closed-form solutions that give more insight into
themechanics of the equilibrium. The proofs boil down to verifying the optimality conditions
for all firms; this is straightforward (and omitted) for Sect. 3.1, whereas for Sect. 3.2 we report
proofs in Appendix B.
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Fig. 3 Regimes for the equilibrium with n = 2 firms. Coloring represents the colors of the two firms in the
respective regime

3.1 Two firms

The case of two firms (n = 2) is particularly simple as only two of the color buckets can be
populated. For simplicity, we also assume that Kex = 0 and z > d—the latter eliminates
the possibility of white firms; see Appendix B for a more complete analysis.22 Without loss
of generality, we label the firms such that 0 ≤ a1 ≤ a2. Depending on the parameters a1
and a2, the equilibrium is in one of the six regimes listed below. These regimes are shown
in Fig. 3 above the diagonal (a1 = a2), whereas the symmetric cases below the diagonal
correspond to a1 ≥ a2. For instance, starting at the center of the diamond and moving north
corresponds to fixing firm 1 and increasing a2, meaning that firm 2 becomes more skeptical
about climate impacts. As the heterogeneity increases, firm 2 reduces mitigation efforts and
eventually abandons them (becomes red), but continues to increase emissions by increasing
the production quantity. As a reaction, firm 1 increases mitigation efforts and eventually
becomes green.

(a) Orange-orange. Suppose that a1 > a2/2 and a2 < (z + a1)/2. Then both firms are
orange,

Q = 2z

3
, K = a1 + a2

3
, q1 = q2 = z

3
, k1 = 2a1 − a2

3
, k2 = 2a2 − a1

3
.

This regime is “interior” in that no constraint is binding. It arises when the coefficients
a1 and a2 are neither too small nor too large and moreover the heterogeneity (i.e., the
fraction a2/a1) is not too large.

22 The case z ≤ d gives rise to an additional regime (white-red) when one firm believes in high climate
impacts and the other is very skeptical, and some additional restrictions in the other regimes.
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(b) Green-orange. Suppose that a1 ≤ a2/2 and a2 < 2z/3. Then firm 1 is green and firm 2
is orange. We have

Q = 2z

3
, K = a2

2
, q1 = q2 = z

3
, k1 = 0, k2 = a2

2
.

This equilibrium is similar to the previous one but firm 1 expects climate impacts so
large that it only uses emission-free technology. The quantities q j remain identical and
all expressions remain affine.

(c) Red-red. Suppose that a1 ≥ z. Then both firms are red and

Q = K = A − c

3

( 1

1 + β1
+ 1

1 + β2

)
, q1 = k1 = A − c

3

( 2

1 + β1
− 1

1 + β2

)

and symmetrically q2 = k2 = A−c
3

( 2
1+β2

− 1
1+β1

)
. In this regime neither firm is suffi-

ciently incentivized to use mitigate emissions. Individual as well as aggregate quantities
depend explicitly on the beliefs of both firms.

(d) Green-red. Suppose that a1 ≤ (z+2d)a2
3a2+4d and a2 ≥ 2z/3. Then firm 1 is green and firm 2

is red. We have k1 = 0 and

Q = 2(1 + β2)z + d

3 + 4β2
, K = z + 2d

3 + 4β2
= q2 = k2, q1 = (1 + 2β2)z − d

3 + 4β2
.

This is the regime of extreme disagreement, firm 1 is emission-free whereas firm 2makes
no effort to reduce carbon. The formulas depend on the belief of the red firm (firm 2).
For any given value of a1, Firm 1 will be green if Firm 2 is sufficiently skeptical.

(e) Orange-red. Suppose that (z+2d)a2
3a2+4d < a1 < z and a2 ≥ (z+a1)/2. Then firm 1 is orange

and firm 2 is red. We have

Q= A − c − d a1
2a2

− z/2

3(1 + β2)
+ z

2
, K =Q+ a1 − z

2
, q1 = z − Q, q2 = k2 = 2Q − z

and k1 = a1+z
2 − Q. This a regime of intermediate disagreement where firm 1 makes

some effort but firm 2 makes no effort to reduce carbon. The formulas depend on the
beliefs of both firms.

(f) Green-green.The corner equilibrium a1 = a2 = 0 corresponds to the limiting casewhere
both firms fear infinite climate impacts. Both firms emit zero carbon while producing
the common quantity q1 = q2 = z/3. This regime would occur for a larger range of
coefficients if we had allowed for exogenous carbon, Kex > 0.

Remark 3.1 As visualized in Fig. 3, equilibria exist in different regimes depending on the
parameter values. Each regime is a subsets of Rn and its boundary is a piecewise smooth
hypersurface of codimension 1. For our results on equilibria, it does notmatter if the boundary
between two regimes is seen as part of one or the other regime. For instance, if the given
parameters (a1, a2) are on the boundary between the orange-orange and the green-orange
regime, we may see the equilibrium as part of either regime—the formulas stated in those
regimes give the same result for such (a1, a2). Mathematically, the statements about the
regimes are continuous and hence remain valid on the closure. This holds true for general
equilibria with any number of firms.

3.2 Moderate disagreement

The following examples discuss n-player equilibria which are particularly tractable because
either all firms make some effort to reduce carbon or no firm does. These cases exhibit at
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most moderate heterogeneity between the firms. The complexity of the equilibrium increases
substantially if the constraint r ≤ 1 is binding for some (but not all) firms, as can already be
seen in the above case of two firms—cf. the green-red and orange-red regimes.

The simplest n-player equilibrium arises when none of the constraints is binding; i.e., all
firms are orange. Then, firms adjust for their belief through the technology choice but produce
a common quantity independent of the belief. This situation occurs when the heterogeneity
is sufficiently small and the coefficients are neither too small nor large. We also assume
Kex = 0 to further simplify the expressions; this is not crucial.

Example 3.2 (Orange) Let z > 0 and a1 ≤ · · · ≤ an and Kex = 0. Suppose that

a1 ≥ avg{0, a2, ..., an} and an ≤ avg{z, a1, ..., an−1}. (3.1)

Then the equilibrium satisfies

Q = nz

n + 1
, K = 1

n + 1

n∑

j=1

a j , qi = z

n + 1
, ri = 1

z

(

nai −
∑

j �=i

a j

)

for all 1 ≤ i ≤ n. A sufficient condition for (3.1) is that a1 ≥ n−1
n an and an ≤ z

n + n−1
n a1.

Example 3.2 is a special case of the following situation where the constraint r ≥ 0 may
be binding but r ≤ 1 is not. This arises when none of the firms is much more skeptical about
climate change than the others, and preserves the crucial feature of Example 3.2; namely, that
firms adjust their technology ri to account for carbon whereas the quantities qi are unaffected
by carbon emissions and beliefs. In the subsequent example, there are n0 green firms and
m = n − n0 orange firms, and the number n0 is determined analytically from the beliefs.

Example 3.3 (Green-orange) Let z > 0 and a1 ≤ · · · ≤ an and Kex ≥ 0. Define23

n0 = max

{

i : ai < Kex +
n∑

j=i+1

(a j − ai )

}

, m = n − n0, Am =
n∑

j=n0+1

a j .

Moreover, suppose that

an ≤ z

n + 1
+ Am + Kex

m + 1
. (3.2)

Then the equilibrium satisfies24

Q = nz

n + 1
, K = Am + Kex

m + 1
, qi = z

n + 1
, 1 ≤ i ≤ n

as well as ri = 0 for 1 ≤ i ≤ n0 and ri = n+1
z

(
ai − Am+Kex

m+1

)
for n0 < i ≤ n. A sufficient

condition for (3.2) is that an ≤ 2z
n+1 + Kex .

Equilibria are more complicated when the constraint r ≤ 1 is binding for at least one firm:
while the green and orange firms continue to produce a common quantity, that quantity is now
influenced by the views of the red firms, and each red firmmay have a different quantity. This
precludes simple closed-form solutions in most cases. An exception arises when all firms are
sufficiently skeptical: in the following example, the number n0 of white firms (which cease
production completely) is determined analytically from the beliefs.

23 For the definition of n0 we use the convention max ∅ = 0.
24 In fact, (3.2) is not only sufficient but also necessary for absence of red firms.
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Example 3.4 (White-red) Let A > c and a1 ≤ · · · ≤ an and Kex ≥ 0. Define25

ξ j = A − c − bα2
j Kex

1 + bα2
j

, n0 = max

{

i : ξi <

n∑

j=i+1

(ξ j − ξi )

}

, n1 = n − n0.

Suppose that a1 ≥ z + Kex . Then the equilibrium satisfies Q = 1
n1+1

∑
j>n0 ξ j and

K = Q + Kex , as well as qi = ki = 0 for i ≤ n0 and qi = ki = n1
n1+1ξi − 1

n1+1

∑
i �= j>n0 ξ j

for i > n0.

4 Comparative statics

In this section we analyze how a change in a firm’s view impacts the firm’s decisions, its
competitors and the overall economy. The subjective second moment α2

j = E j [α2] of the
TCRE is called the climate belief (or simply belief) of firm j ; cf. Remark 2.1. An increase in
belief corresponds to higher expected climate impacts/taxes whereas a decrease corresponds
to the firm becoming more skeptical. For simplicity of exposition we assume that there are no
firms with zero production quantity (white firms)—in any event, such firms do not directly
affect the rest of the economy. Moreover, no firm is infinitely skeptical (i.e., α2

j > 0 for
all j). Thus, firms are green (produce exclusively with zero-emission technology), orange
(emit carbonwith some effort to reduce emissions) or red (business-as-usual). The statements
below are valid for perturbations of the climate belief that keep the equilibrium in the same
regime; that is, firms do not change color during the perturbation. This is always true if
the perturbation is sufficiently small.26 The three theorems below summarize most of the
qualitative insights; they are corollaries of the more detailed, quantitative results reported in
Appendix C. We start with the comparative statics for the overall economy.

Theorem 4.1 The total carbon emission K is weakly decreasing in the climate beliefs of all
firms:

(i) K is unaffected by the beliefs of green firms.
(ii) K is strictly decreasing in the beliefs of all other firms.

The dependence of the total production quantity Q is ambiguous:

(i) Q is unaffected by the beliefs of green firms.
(ii) Q is strictly decreasing in the beliefs of red firms.
(iii) Q is strictly increasing in the beliefs of orange firms—except if there are no red firms

in the economy, in which case Q is unaffected by the beliefs of orange firms.

The sensitivities for the total carbon are intuitive: if some firm emits carbon and becomes
more concerned about climate impacts, it will reduce its emissions. As we will see below,
other firms may increase their emissions in response, but the overall effect is still a reduction.

For the production quantity the situation is more complex. If a red firm becomes more
concerned about climate impacts, it will reduce its emissions—and hence its quantity, as these
are equal for red firms. Other firms may react with an increased production (see below), but
again the overall effect is a reduction. If an orangefirmbecomesmore concerned about climate

25 Footnote 23 applies.
26 If the initial equilibrium is on the boundary between two regimes, we use the flexibility mentioned in
Remark 3.1 and define the boundary as part of a regime which is preserved by the perturbation. Due to the
differentiability of the boundaries, this is always possible.
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impacts, then initially (more precisely, neglecting feedback effects from equilibrium) it would
reduce its emissions by changing to a greener technology but keep its quantity constant.While
other orange firms react by slightly increasing their emissions, the collection of all orange
firms would still emit less in total, and leave the quantity unchanged. Red firms, however,
now face an environment with lowered carbon and similar quantities from their competitors,
thus increase their production, and consequently emissions. This increase is large enough to
over-compensate the reduction in quantity from the orange firms (whereas the overall carbon
is still reduced, as seen above). The exception arises when there are no red firms present to
carry out this mechanism.27

Next, we turn to the dependence of a firm’s choice on its own belief and the beliefs of
other firms. A clear-cut result holds for the technology choices which behave like strategic
substitutes, with a strict monotonicity unless the firm is subject to binding constraints.

Theorem 4.2 Consider the equilibrium technology choice ri of any firm i.

(i) ri is weakly decreasing in i’s own belief. The decrease is strict iff i is orange.28

(ii) ri is weakly increasing in the belief of any other firm j �= i . The increase is strict iff i is
orange and j emits carbon (i.e., j is not green).

In the preceding result, binding constraints cause little complication because the tech-
nology choice remains constant at those boundaries. This is not the case for the production
quantities and carbon emissions, whose comparative statics depend on the type of firm.

Theorem 4.3 (a) Consider the equilibrium carbon emission ki and production quantity qi
of any firm i.

(i) ki is weakly decreasing in firm i’s own belief. The decrease is strict unless i is green.
(ii) qi is weakly decreasing in firm i’s own belief. The decrease is strict as long as i is

not green and red firms exist in the economy.

(b) Consider a second firm j �= i .

(i) If firm j is green, its belief does not affect other firms.
(ii) If firm j is orange and firm i is red, ki and qi depend ambiguously on j’s belief. The

direction depends on the other firms (see Remark C.2).

In the remaining cases,

(iii) ki is weakly increasing in j’s belief, and strictly increasing unless i is green,
(iv) qi is strictly increasing in j’s belief if j is red, but weakly decreasing if j is orange.

The decrease is strict unless there are no red firms.

The results on ki are mostly intuitive. If a firm j grows more concerned about climate
impacts, it reduces its emissions. As a consequence, the marginal cost of carbon decreases
and other firms increase their emissions. The case where i is red and j is orange is more
complex, in part because the carbon is coupled with the production quantity for red firms.
The direction of change then depends on the characteristics of other red firms (if any) and
the ranking of the beliefs among the red firms; cf. Remark C.2 for details.

The observations about qi can be understood as in the discussion after Theorem 4.1.
If j is red and grows more concerned about climate impacts, it reduces its emissions and

27 The same happens if all red firms are infinitely skeptical and thus completely unaffected by emissions, a
situation that was excluded in this section.
28 Here “iff” stands for “if and only if.”
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hence, a fortiori, its production quantity. Other firms then face less competition and increase
their quantity. If j is orange, however, it reduces emissions by changing technology rather
than quantity. Red firms then increase their production since the marginal cost of carbon
has decreased, but green and orange firms decrease their production as a reaction to the
competition from red firms. Again, the case (ii) is discussed in Remark C.2.

5 Repeated game and cumulative temperature change

In this section we consider a repeated version of the Cournot game. Suppose that after the
carbon has been emitted and all goods have been sold, firms start a new planning phase similar
to the first one. The emitted carbon, zero before the first round, accumulates and becomes
external carbon for the next round. The goods from the previous rounds are considered
consumed, so that the demand is determined by the same utility function in each round.
We assume that firms are myopic in their planning, but firms’ views on climate change can
evolve from one round to the next: the coefficients in them-th round are denoted a(m)

j . Under
specific conditions, we will see below that the long-run limitm → ∞ allows for closed-form
expressions for the accumulated carbon and temperature increase.

The scenario we have in mind is that the “true” value of the TCRE is approximately
constant over time and firms learn this value as time progresses, so that all a(m)

j converge to
the same value asm → ∞. Such a scenario is more likely when total emissions remain small.
If the TCRE increases substantially over time or the observed climate changes dramatically
so that firms’ optimization problems are altered fundamentally (e.g., a climate tipping event
is observed and triggers changes in regulation and firms’ available actions), the modeling as
a repeated game as well as the technical condition below do not hold.

The following results show that the total carbon in the repeated game stabilizes at a level
that is determined by the most skeptical firm in the long run; i.e., the minimal parameter α2

i
or equivalently the maximal ai . In our next result, firms increasingly use green technology
and the total carbon stabilizes at the level of the largest limit point

a := lim sup
m→∞

max{a(m)
1 , ..., a(m)

n } ∈ [0,∞].

The result assumes that a(m)
j ≤ a for allm and j . This is clearly satisfied if the sequences a(m)

j
are increasing inm, as would be the case e.g. if the variance of the TCRE under the subjective
views decreases over time while the mean is constant. Importantly, the assumption excludes
a scenario where some coefficients a(m)

j are high at an intermediate time but all coefficients
eventually become small. Then, carbon at the intermediate time may exceed a even though
it accumulated in a relatively shorter time—after the intermediate period all firms become so
concerned about climate impacts that they use the zero-emissions technology. An obvious
example is when a = 0 and a(1) > 0. For instance, suppose that in the first rounds, some
firms believe that a tipping event will happen and others do not. If at some point the tipping
event indeed happens and all firms use the zero-emissions technology going forward, the
total carbon would remain at the threshold level of the event rather than corresponding to a
long run belief.

Proposition 5.1 Suppose that c+d < A and a(m)
j ≤ a for all m and j . Then the accumulated

carbon emissions converge to a as m → ∞.
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Suppose that the limit a corresponds to the true (deterministic) TCRE α. If K = a
denotes the limiting total carbon and T = αK = αa the corresponding temperature increase,
Proposition 5.1 shows that

T = d

bα
.

Recall the tax interpretation of the price function: bα is the tax rate, per unit of carbon emitted
and temperature increase. Thus, the limiting temperature change T is succinctly described
as the quotient of the extra cost d for the green technology and the tax rate.

The assumption that c + d < A is essential in Proposition 5.2 because it allows firms
to use green technology to reduce carbon emissions while keeping the quantity produced
above a threshold. If A ≤ c + d , consumers will not pay for the green technology and the
limit is different: the total carbon now stabilizes because the production tends to zero and the
economy comes to a standstill. We also assume that c < A; otherwise no goods are produced
and the result is trivial.

Proposition 5.2 Suppose that c < A ≤ c + d and β
(m)
j ≥ β for all m and j , where

β = lim infm→∞ min{β(m)
1 , ..., β

(m)
n } ∈ [0,∞]. Then the accumulated carbon emissions

converge to (A − c)/β.

6 Conclusion

We formulate a partial equilibriummodel where firms make irreversible decisions about pro-
duction and emissions with the aim ofmaximizing expected future profits. Profits are reduced
by carbon taxes at a rate that depends on future climate change, hence is endogenous and
uncertain at the time of planning. Taxes are imposed by an outside regulator and incentivize
firms to mitigate emissions. Firms agree-to-disagree about the climate impact of carbon and
therefore about the tax rate. The framework of agreeing to disagree seems adequate given
that the equilibrium depends only on the second moments of the beliefs and actions (e.g.,
starting to build a nuclear plant) are mostly observable. This argument does not extend to the
regulator, who is not part of the partial equilibrium. It may be interesting to study a model
where the role of signaling for the regulator can be investigated. In the present model, the
regulator has already put in place an adjustment policy to a single source of uncertainty,
the change of temperature. In reality, the regulator is concerned with the “cost” of climate
change—which is itself uncertain and whose estimate changes with scientific advances and
public opinion, creating an intricate and time-inconsistent decision problem e.g., [13, 26].

Our model allows us to study how a firm would position itself in an economy where
competitors differ in their expectations about the future cost of carbon. More generally, this
may inform our thinking regarding changes in consumer preferences or other climate-related
risks. In this model, mitigation efforts act as substitutes and are increasing in the variance of
the subjective belief on the carbon-climate response. That is, for a given firm, having skeptical
competitors and large uncertainty leads to higher mitigation efforts. This is consistent with a
standard Cournot model without technology choice and taxes, yet a more detailed analysis
of the comparative statics reveals that reactions in terms of production and carbon quantity
depend on the relative position of the firm in the economy. Indeed, the technology choice
decouples production and emissions and hence allows firms to react differently to the prices of
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the good and carbon. In several equilibrium regimes, carbon taxes reduce emissions without
lowering the production quantity.

Funding Funding was provided by National Science Foundation (Grant No. DMS-1812661), Alfred P. Sloan
Foundation (US) (Grant No. FG-2016-6282) and Directorate for Mathematical and Physical Sciences (Grant
No. DMS-2106056).

Appendix A

Existence, uniqueness, characterization of equilibrium

The following result states the optimality conditions for a given firm. In particular, these
formulas apply in any equilibrium. The sets I q0 , I r0 , Iint , I1 in the proposition correspond to
the color coding white, green, orange, red used in the body of the text.We recall the quantities
introduced in (2.2).

Proposition A.1 Let A, c, d, α2
i > 0 and K−i ≥ 0 and 0 ≤ Q−i ≤ A. Set z = A − c − d

and βi = bα2
i and ai = d/β j .29 Define the sets

I q0 = {i : z − Q−i + βi (ai − K−i ) ≤ 0 and Q−i ≥ z},
I r0 = {i : K−i ≥ ai and Q−i < z},
Iint = {i : K−i < ai and Q−i − K−i < z − ai },
I1 = {i : z − Q−i + βi (ai − K−i ) > 0 and Q−i − K−i ≥ z − ai }.

These sets form a partition of {1, ..., n}.
Fix a firm i and suppose the quantity Q−i of the good and K−i carbon are supplied

exogenously. Then there exists a response (ri , qi ) ∈ [0, 1] × [0, A − Q−i ] which maximizes
the expected profit (2.1) of firm i, and (ri , qi ) is unique with the convention that ri = 0 when
qi = 0.

Denoting Q = Q−i + qi and K = K−i + ri qi , we also have

I q0 = {i : z − Q + βi (ai − K ) ≤ 0 and Q ≥ z},
I r0 = {i : K ≥ ai and Q < z},
Iint = {i : K < ai and Q − K < z − ai },
I1 = {i : z − Q + βi (ai − K ) > 0 and Q − K ≥ z − ai }.

Moreover, with ki = ri qi , the following hold.

(i) i ∈ I q0 if and only if qi = 0. Then, ki = 0 and ri = 0.
(ii) i ∈ I r0 if and only if ri = 0 and qi > 0. Then, qi = 1

2 (z − Q−i ) = z − Q and ki = 0.
(iii) i ∈ Iint if and only if ri ∈ (0, 1) and qi > 0. Then,

qi = 1

2
(z − Q−i ) = z − Q, ki = 1

2
(ai − K−i ) = ai − K ,

ri = ai − K−i

z − Q−i
= ai − K

z − Q
.

(iv) i ∈ I1 if and only if ri = 1 and qi > 0. Then, ki = qi and

qi = 1

2

1

1 + bα2
i

[A − c − Q−i − bα2
i K−i ] = 1

1 + bα2
i

[A − c − Q − bα2
i K ].

29 In the case α2i = 0 the statements need to be read with βi = 0, ai = ∞ and βi ai = d.
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Proof We derive the assertions referring to K−i and Q−i . Once these are established, the
assertions referring to K and Q are a direct consequence. One verifies that I q0 , I

r
0 , Iint and

I1 are disjoint and that their union is {1, ..., n}, by using the inequalities in their definitions.
We first assume that α2

i > 0.
Recall from (2.1) that for an arbitrary choice (r , q) ∈ [0, 1] × [0, A − Q−i ], firm i’s

expected profit is

Ei [πi (r , q)] = (A − q − Q−i )q − bα2
i (rq + K−i )rq − (c + d − dr)q.

We may express this in terms of q and k = rq as

(A − q − Q−i )q − bα2
i k

2 − bα2
i K−i k − (c + d)q − dk.

This continuous function is jointly strictly concave on the compact simplex 0 ≤ k ≤ q ≤
A−Q−i ; therefore, it admits a uniquemaximizer. In viewof our convention that ri = 0 as soon
as qi = 0, it follows that Ei [πi (r , q)] has a uniquemaximizer (qi , ri ) ∈ [0, 1]×[0, A−Q−i ].
In fact, as q �→ Ei [πi (r , q)] is strictly decreasing for q ≥ A − Q−i , we see that (ri , qi ) is
also the unique maximizer in [0, 1] × R+. It will be convenient to rearrange the terms,

Ei [πi (r , q)] = [z − Q−i + βi (ai − K−i )r ]q − (1 + βi r
2)q2.

Next, we analyze the first-order conditions for interior maxima as well as the potentially
binding constraints q ≥ 0 and r ≥ 0 and r ≤ 1.

Case 1: Suppose that qi = 0. Then Ei [πi (ri , qi )] = 0 = Ei [πi (r , qi )] for all r ∈ [0, 1]
and it follows that

0 ≥ ∂q Ei [πi (r , q)]|q=0 = z − Q−i + βi (ai − K−i )r

for all r ∈ [0, 1], as otherwise (ri , qi )would not be amaximizer. The above holds in particular
for r = 0 and r = 1; that is, z − Q−i ≤ 0 and z − Q−i + βi (ai − K−i ) ≤ 0, or equivalently
i ∈ I q0 . We have ri = 0 by our convention and ki = 0 is clear.

For the remaining cases, suppose that qi > 0. Then qi is an interior maximum and
∂q Ei [πi (ri , qi )] = 0 which yields that qi = qi (ri ) for qi (r) = 1

2
1

1+βi r2
[z − Q−i + βi (ai −

K−i )r ].
Moreover, for any r ∈ [0, 1], we have Ei [πi (r , qi (r))] = [z−Q−i+βi (ai−K−i )r ]2

4(1+βi r2)
and

∂r Ei [πi (r , qi (r))] = z − Q−i + βi (ai − K−i )r

2(1 + βi r2)2

× {
βi (ai − K−i )(1 + βi r

2) − [z − Q−i + βi (ai − K−i )r ]βi r
}

= βi [z − Q−i + βi (ai − K−i )r ]
2(1 + βi r2)2

{ai − K−i − (z − Q−i )r} .

Case 2: Suppose that ri = 0 and qi > 0. Then 0 < qi = qi (0) = 1
2 (z − Q−i ) and

in particular Q−i < z. Moreover, we must have 0 ≥ ∂r Ei [πi (r , qi (r))]|r=0 = 1
2 (z −

Q−i )βi (ai − K−i ) which then yields ai ≤ K−i . Thus, i ∈ I r0 .
Case 3: Suppose that ri ∈ (0, 1) and qi > 0. Then

0 < qi = qi (ri ) = 1

2

1

1 + βi r2i
[z − Q−i + βi (ai − K−i )ri ],

so that z−Q−i+βi (ai−K−i )ri > 0 and at least one of the terms z−Q−i and ai−K−i must be
strictly positive. Now ∂r Ei [πi (ri , qi (ri ))] = 0 yields ai − K−i = (z− Q−i )ri and it follows
both terms are positive. Moreover, ri = ai−K−i

z−Q−i
∈ (0, 1) shows that 0 < ai −K−i < z−Q−i

123



498 Mathematics and Financial Economics (2022) 16:481–508

or equivalently i ∈ Iint , and finally using the same formula for ri in the general expression
for qi (r) also yields qi = qi (ri ) = 1

2 (z − Q−i ).
Case 4: Suppose that ri = 1 and qi > 0. Then

0 ≤ ∂r Ei [πi (r , qi (r))]|r=1

= f racβi [z − Q−i + βi (ai − K−i )]2(1 + βi )
2 {ai − K−i − z + Q−i }

where once again z − Q−i + βi (ai − K−i ) > 0 by the above formula for qi (r) and the
assumption that qi > 0, so it follows that ai − K−i ≥ z − Q−i and i ∈ I1. Moreover,

qi (1) = 1

2

1

1 + βi
[z − Q−i + βi (ai − K−i )] = 1

2

1

1 + βi
[A − c − Q−i − βi K−i )]

after recalling that z = A − c − d and βi ai = d .
Finally, note that in view of the partition property and the fact that we have discussed

all possible cases for ri and qi , the above implications show a one-to-one correspondence
between Cases 1–4 and the sets I q0 , I

r
0 , Iint and I1.

It remains to discuss the limiting case α2
i = 0. Here the expected profit is independent of

K−i and there is no incentive to produce with ri < 1. We readily see that either A−c ≤ Q−i

and qi = 0—that is, i ∈ I q0 —or A − c > Q−i and qi = 1
2 (A − c − Q−i ) > 0; i.e., i ∈ I1.

With the conventions βi = 0, ai = ∞ and βi ai = d , these are indeed the statements of the
proposition in this case. �


The following will be helpful to prove the existence of an equilibrium.

Remark A.2 (a) The optimal quantity qi is continuous in (Q−i , K−i ) ∈ [0, A]×R+. Indeed,
in each of the four cases of Proposition A.1, qi is expressed as a continuous function
qi = ϕi (Q−i , K−i ). Each case is specified as a region in terms of (Q−i , K−i ) and
the union of these regions is the whole space [0, A] × R+. It remains to note that the
functions ϕi connect continuously at the boundaries. Similarly, qi can be represented as
a continuous function of (Q, K ), and the same is true for ki instead of qi .

(b) The optimal quantity qi satisfies qi ≤ (A − c)/2.

Remark A.3 In a given equilibrium, at most one of the following can occur: (i) some firm
produces zero quantity (i.e., I q0 �= ∅), or (ii) some firmmakes effort to reduce emissions (i.e.,
I r0 ∪ Iint �= ∅). Indeed, Proposition A.1 shows that (i) implies Q < z whereas (ii) implies
Q ≥ z. Of course, it is possible that neither (i) nor (ii) hold, meaning that all firms belong to
I1.

To understand this exclusion economically, note that Q ≥ z implies Q−i ≥ z = A−c−d
for any firm i , in which case firm i would certainly not want to produce at a cost of c + d
per unit. More generally, opting for ri ∈ (0, 1) would be equivalent to producing part of the
quantity at price c and the rest at price c + d , and the latter again cannot be optimal. Thus,
only ri = 0 is possible.

Case (ii) is clearly the more relevant for our model. We can note that in this case, the
definitions simplify to I q0 = ∅, I r0 = {i : K ≥ ai }, Iint = {i : K < ai and Q − K <

z − ai }, I1 = {i : K < ai and Q− ≥ z − ai }.
The remainder of this section establishes existence and uniqueness of the equilibrium.We

start with the straightforward part.

Proof of Theorem 2.3—Existence of Equilibrium Fix a firm i and consider arbitrary choices
(q j , k j ) j �=i for the other firms, where (q j , k j ) ∈ D := [0, (A − c)/2]2, as well as external
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carbon Kex ≥ 0. (Whilewe can equivalently use (q j , r j ) or (q j , k j ) to characterize a strategy,
we opt for the latter in this proof because k j ’s continuity properties are more obvious.) Set
Q−i = min{∑ j �=i q j , A} and K−i = Kex + ∑

j �=i k j . As mentioned in Remark A.2 (a),
there exists an optimal response (qi , ki ) which depends continuously on (Q−i , K−i ) and
hence is also continuous if seen as a function of (q j , k j ) j �=i :

(qi , ki ) = �i ((q j , k j ) j �=i ).

Moreover, �i maps into D by Remark A.2 (b). Forming a
vector� from the functions�1, ..., �n yields amap from Dn into itself with the following

property: if (q j , k j )1≤ j≤n is a fixed point of� such that Q := ∑
j q j ≤ A, then (q j , k j )1≤ j≤n

is a Nash equilibrium. Indeed, the latter condition on Q ensures that Q−i = ∑
j �=i q j and

then (qi , ki ) is the optimal response to the other firm’s choices (q j , k j ) j �=i . Since � is
continuous and ∅ �= Dn ⊆ R

2n is compact and convex, Brouwer’s fixed point theorem
[1,Corollary 17.56, p. 583] implies that � has at least one fixed point.

Let (q j , k j )1≤ j≤n be any fixed point and suppose for contradiction that Q ≥ A. As A > 0,
there is at least one firm i with qi > 0. We see from Proposition A.1 that Q−i = A implies
qi = 0, so we must have Q−i < A. But all cases in Proposition A.1 yield that qi < A− Q−i

as soon as Q−i < A, and hence Q = qi + Q−i < A. As a result, any fixed point of �

satisfies
∑

j q j < A and is a Nash equilibrium. This completes the proof of existence. �


A.1 Proof of Uniqueness

Throughout this proof we consider one equilibrium denoted as above with (q j , r j )1≤ j≤n ,
k j = r j q j , Q = ∑

j q j , K = Kex + ∑
j k j , etc., and a second equilibrium for the same

parameters whose quantities are denoted with prime (i.e., q ′
j , Q

′, ...). Our aim is to show that
the two equilibria coincide.

Lemma A.4 If K ′ ≥ K and Q′ ≥ Q, the two equilibria coincide.

Proof As discussed in Remark A.2 (a), the optimal quantity qi of firm i is a continuous
function qi = ϕ(K , Q), and Proposition A.1 shows that ϕ is nonincreasing in both Q and K .
In particular, if K ′ ≥ K and Q′ ≥ Q, it follows that q ′

i = ϕi (K ′, Q′) ≤ ϕi (K , Q) = qi .
Summing this over i yields Q′ ≤ Q and we deduce that Q′ = Q and q ′

i = qi for all
1 ≤ i ≤ n. The same arguments apply to k′

i and ki . �

Lemma A.5 Let G ⊆ (I r0 ∪ Iint ) consist ofm ∈ {0, ..., n} firms and let H denote the remaining
n −m firms. If QG = ∑

j∈G q j and QH = Q − QG are the total quantities of those groups
in a given equilibrium, then

QG = m

1 + m
(z − QH ).

Consider a second equilibrium (denoted with primes) and assume G ⊆ (I r ′0 ∪ I ′
int ). Then

Q′
G − QG = − m

1 + m
(Q′

H − QH ) and Q′ − Q = 1

1 + m
(Q′

H − QH ).

Proof Proposition A.1 shows that all i ∈ G produce the common quantity qi = z − Q =
z − QG − QH . Summing over i ∈ G yields that QG = m(z − QG − QH ) which is the first
assertion. The same result holds in the second equilibrium and now the assertion about Q′

G
follows by taking differences. �
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As m
1+m ∈ [0, 1), Lemma A.5 shows that given a change in QH , the group G would react

by partially, but not fully, compensating that change. This property of strategic substitutes is
the driving force in the following key lemma.

Lemma A.6 Let K ′ ≥ K and (I q′
0 ∪ I ′

1) ⊆ (I q0 ∪ I1). Then the two equilibria coincide.

Proof Let G = I r0 ∪ Iint and H = I q0 ∪ I1. The assumption ensures that G ⊆ (I r ′0 ∪ I ′
int ).

We claim that k′
i ≤ ki for all i ∈ G. Indeed, this is trivial if i ∈ I r ′0 . If i ∈ Iint ∩ I ′

int ,
it follows immediately from K ′ ≥ K and the formulas for ki , k′

i in Proposition A.1 (iii).
Finally, i ∈ I r0 ∩ I ′

int is impossible since it would imply that K ≥ ai > K ′. Thus, the claim
holds and in particular K ′

G ≤ KG (notation of Lemma A.5). As a consequence, any increase
in total carbon must come from H ; that is, K ′

H ≥ KH .
Note that firms i ∈ H = I q0 ∪ I1 satisfy qi = ki (either both quantity and carbon are zero

or ri = 1) and thus KH = QH . On the other hand, r ′
j ≤ 1 for all firms, so that Q′

H ≥ K ′
H .

Therefore, K ′
H ≥ KH yields that Q′

H ≥ QH . Now Lemma A.5 shows that Q′ ≥ Q and we
conclude by applying Lemma A.4. �


It is intuitive that ifwe (exogenously) add carbon to an equilibrium, anyfirm that previously
used green technology will continue to do so—and even to a larger extent. This suggests that
the second condition in Lemma A.6 is always verified, as confirmed by the following.

Lemma A.7 Let K ′ ≥ K. Then (I q′
0 ∪ I ′

1) ⊆ (I q0 ∪ I1).

Proof We use the inequalities in Proposition A.1 to show that each of the possible violations
leads to a contradiction.

Let i ∈ I ′
1 ∩ I r0 , then K ≥ ai and hence K ′ ≥ ai . As i ∈ I ′

1 means in particular that
z−Q′+βi (ai −K ′) > 0, it follows that z−Q′ > 0. Together, we have z−Q′ > 0 ≥ ai −K ′,
which contradicts i ∈ I ′

1.
Next, suppose that i ∈ I ′

1 ∩ Iint . Then i ∈ I ′
1 yields Q − K < z − ai whereas i ∈ I ′

1
implies Q′ − K ′ ≥ z − ai . Thus, Q′ − Q ≥ K ′ − K ≥ 0. Now Lemma A.4 shows that the
equilibria coincide and in particular I ′

1 ∩ Iint = ∅.
Let i ∈ I q′

0 ∩ I r0 , then Q′ ≥ z and z > Q, thus Q′ ≥ Q andwe again obtain a contradiction
via Lemma A.4.

Finally, if i ∈ I q′
0 ∩ Iint , then Q − z < K − a < 0 ≤ Q′ − z and in particular Q′ ≥ Q,

and we conclude by Lemma A.4. �

Proof of Theorem 2.3—Uniqueness of Equilibrium Given two equilibria, we may label them
such that K ′ ≥ K . Then Lemma A.7 yields (I q′

0 ∪ I ′
1) ⊆ (I q0 ∪ I1) and now Lemma A.6

shows that the two equilibria coincide. �


Appendix B

Proofs and elaboration for section 3

In Sect. 3.1 we discussed the case n = 2 of two firms under the condition that z > d or
equivalently A > c + 2d . Here, we treat the complete state space of possible parameters.
Recall that a firm producing nothing is called white—it clearly emits zero carbon, but this
is not necessarily because the firm cares about climate impacts. As before we label the two
firms such that a1 ≤ a2.
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a1

a2

z

z

Fig. 4 Regimes of equilibria for the case of two. The white-red regimes cease to exist when z > d

In the trivial case A − c ≤ 0, consumers are not willing to pay the marginal cost of
production and hence both firms are white. The case where A − c > 0 but z ≤ 0 has two
regimes: white-white if a1 > (1/d + 2/a2)−1 and white-red if a1 ≤ (1/d + 2/a2)−1. All
these are special cases of Example 3.4.

We now turn to the nondegenerate case z > 0. With respect to Sect. 3.1, there is an
additional regime “white-red.” Its appearance mandates that some of the other regimes carry
additional parameter restrictions (which are always verified when z > d as in Sect. 3.1); this
concerns the red-red and green-red regimes. The other regimes are unchanged.

(i) The regimes green-green, orange-orange, green-orange and orange-red are unchanged.
(ii) Red-red has the additional restriction a1a2 > d(a2 − 2a1).
(iii) Green-red has the additional restriction (d − z)a2 < 2zd .
(iv) White-red. Suppose that (d − z)a2 ≥ 2zd and d(a2 − 2a1) ≥ a1a2. Then q1 = k1 = 0

and q2 = k2 = A−c
2(1+β2)

. This regime does not exist when z > d as that renders the first
condition impossible. Moreover, as seen in Fig. 4, this regime occurs only when a1 is
very large and a2 is small, or vice versa.

Finally, we report the proofs that were omitted in Sect. 3.

Proof for Examples 3.2 and 3.3 It is straightforward that check that Q = ∑
j q j and K =

Kex + ∑
j r j q j with the stated definitions. The optimality for each firm can then be proved

by directly verifying the optimality conditions of Proposition A.1. �

Proof for Example 3.4 Note that a1 ≤ · · · ≤ an is equivalent to ξ1 ≤ · · · ≤ ξn and that
a1 ≥ z + Kex implies a j ≥ z + Kex for 1 ≤ j ≤ n.
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It is straightforward that check that Q = ∑
j q j with the stated definitions. Using the

definition of n0, we verify that 1
1+βi

[z − Q + βi (ai − K )] = ξi − Q ≥ 0 for i > n0
whereas the same quantity is < 0 for i ≤ n0. To conclude that firms i > n0 belong to I1
(cf. Proposition A.1), it only remains to observe z − ai ≤ z − a1 ≤ −Kex = Q − K .
Whereas for i ≤ n0 to belong to I q0 , we need to establish that Q ≥ z. Indeed, we can
assume that n0 ≥ 1 as otherwise there is nothing to prove. Then the definition of n0 leads to
Q = 1

n1+1

∑
j>n0 ξ j > ξn0 ≥ ξ1. Noting that the assumed inequality a1 ≥ z + Kex can be

rearranged into ξ1 ≥ z, we conclude that Q ≥ z as desired. In summary, the optimality criteria
of i > n0 are the ones of I1 and the criteria of i ≤ n0 are the ones of I q0 . Since the stated
formulas of qi and ki correspond to the ones of Proposition A.1 for these respective cases,
(q j , k j )1≤ j≤n indeed yield an equilibrium. Finally, the equilibrium is unique by Theorem 2.3.

�


Appendix C

More on comparative statics

We first derive several relationships between key quantities in the equilibrium (k j , q j )1≤ j≤n

associated with a given set (α2
j )1≤ j≤n of climate beliefs and fixed parameters A, b, c, d > 0

and Kex ≥ 0. Recall the definitions I r0 , Iint , I1 of Proposition A.1. We will also find it useful
to abbreviate

G = I r0 ∪ Iint , Aint =
∑

j∈Iint
a j , B1 =

∑

j∈I1
(1 + β j )

−1, QG =
∑

j∈G
q j

and similarly Q1 = ∑
j∈I1 q j , KG = ∑

j∈G k j and K1 = ∑
j∈I1 k j , as well as

n0 = |I r0 |, nint = |Iint |, n1 = |I1|, m = |G| = n0 + nint .

Proposition C.1 In equilibrium, the following relations hold:

Q = Q0 + Qint + Q1, K = KG + K1 + Kex , K1 = Q1, (C.1)

QG = m

m + 1
(z − Q1) = m(z − Q), Q = mz + Q1

m + 1
, (C.2)

KG = 1

nint + 1
Aint − nint

nint + 1
(Kex + Q1) = Aint − nint K , (C.3)

Q1 = B1(A − c − QG + KG + Kex ) − n1K , (C.4)

K = B1(A − c + md) + (B1 + m + 1)(Aint + Kex )

(nint + n1 + 1)(m + 1) − B1n0
, (C.5)

Q = z + B1(A − c + nint d) − (nint + n1 + 1)z + (B1 − n1)(Aint + Kex )

(nint + n1 + 1)(m + 1) − B1n0
. (C.6)

Proof The relations in (C.1) are clear and (C.2) is a special case of Lemma A.5. By Propo-
sition A.1 we have ki = ai − K for i ∈ Iint and ki = 0 for i ∈ I r0 , so that summing over
i ∈ G yields KG = Kint = Aint − nint K and now K − KG = Q1 + Kex yields (C.3). For
i ∈ I1, Proposition A.1 yields that

qi = (1 + βi )
−1(A − c − Q − βi K ) = (1 + βi )

−1(A − c − Q + K ) − K

= (1 + βi )
−1(A − c − QG + KG + Kex ) − K
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and then summing over i ∈ I1 shows (C.4). Equations (C.1)–(C.4) yield the linearly inde-
pendent system

(B1 + m + 1)Q + (n1 − B1)K = B1(A − c) + mz,

(m + 1)Q − (nint + 1)K = −Kex − Aint + mz

for Q, K which can then be solved to give (C.5) and (C.6). �

Next, we use the above formulas to compute the directional derivatives and, in particular,

derive the results in Sect. 4. In all that follows, we may and will assume that the direction of
perturbation keeps the equilibrium in the same regime; that is, the sets I r0 , Iint , I1 and hence
also the numbers n0, nint , n1, Aint , B1 are constant during the perturbation. As explained in
the beginning of Sect. 4, this is always true after defining the boundaries appropriately (which
corresponds to choosing appropriately the strict and non-strict inequalities in the definitions
of I r0 , Iint , I1 in Proposition A.1). Denote by N = (nint + n1 + 1)(m + 1) − B1n0 > 0
the denominator of (C.5) and (C.6). Using the formulas in Proposition C.1 and setting ñ =
n0 + nint + n1, we have

∂K

∂B1
= (m + 1)[(Aint + Kex )(ñ + 1) + (nint + n1 + 1)(z + (m + 1)d)]

N 2 > 0,

∂Q

∂B1
= (nint + 1)[(Aint + Kex )(ñ + 1) + (nint + n1 + 1)(z + (m + 1)d)]

N 2 > 0,

∂K

∂Aint
= m + 1 + B1

N
> 0,

∂Q

∂Aint
= B1 − n1

N
≤ 0.

(Of course, the derivatives with respect to B1 make sense only when I1 is not empty—
otherwise there is no corresponding perturbation—and similarly for Aint .) Combining these
derivatives with the formulas for qi and ki in Proposition A.1 as well as (C.2) and (C.3), we
can then compute the following.

(i) Let i ∈ I q0 . Then

∂ki
∂Aint

= ∂ki
B1

= 0,
∂qi

∂Aint
= − ∂Q

∂Aint
≥ 0,

∂qi
∂B1

= − ∂Q

∂B1
< 0.

(ii) Let i ∈ Iint . Then the formulas for qi in (i) still hold. In addition,

∂ki
∂B1

= − ∂K

∂B1
< 0,

∂ki
∂a j

= − ∂K

∂Aint
< 0 for i �= j ∈ Iint ,

∂ki
∂ai

= 1 − ∂K

∂Aint
≥ nint (n + 1)

N
> 0,

∂ri
∂a j

= 1

qi

(
ri

∂Q

∂Aint
− ∂K

∂Aint

)
< 0 for i �= j ∈ Iint ,

∂ri
∂ai

= 1

qi

(
1 + ri

∂Q

∂Aint
− ∂K

∂Aint

)
= 1

qi N
(N − m − 1 − B1 + ri (B1 − n1)) > 0,

∂ri
∂B1

= 1

qi

(
ri

∂Q

∂Q1
− ∂K

∂Q1

)∂Q1

∂B1
= 1

qi

( ri
m + 1

− 1

nint + 1

)∂Q1

∂B1
< 0.

(iii) Let i ∈ I1 and set b j = (1 + β j )
−1 for j ∈ I1. Then for all i �= j ∈ I1,

∂ki
∂Aint

= ∂qi
∂Aint

= (n1 − B1) − (1 − bi )(ñ + 1)

N
∈ R,
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∂ki
∂b j

= ∂qi
∂b j

= − (1 − bi )n0 + nint + 1

n0 + nint + 1

∂K

∂B1
< 0,

∂ki
∂bi

= ∂qi
∂bi

> 0. (C.7)

Remark C.2 The sign of the derivative ∂ki
∂Aint

in (C.8) is ambiguous in specific circumstances.
Suppose first that i is the firm with the smallest coefficient bi among the firms in I1, or
equivalently, the largest α2

i . Then B1 ≥ n1bi and hence ñ + 1 > n1 implies

∂ki
∂Aint

= (n1 − B1) − (1 − bi )(ñ + 1)

N
< 0 (C.8)

which is the same sign as ∂ki
∂a j

in (ii). Conversely, let i be the firm with the largest coefficient
bi among the firms in I1 (hence among all firms). Then it may happen that the expression
in (C.8) is strictly positive. For instance, in the extreme case α2

i = 0 we have bi = 1 and
∂ki

∂Aint
= n1−B1

N is strictly positive as soon as there exists some firm j ∈ I1 with α2
j > 0.

The intuition for this phenomenon is as follows. Suppose that a firm in Iint decreases
climate belief, which corresponds to an increase in Aint . Then, neglecting equilibrium effects,
itwould emitmore carbon andbut keep the quantity constant. (Other firms in Iint maypartially
compensate this; the cumulative change of Iint would still be an increase in carbon, with a
reduction in quantity.) A firm j ∈ I1 thus faces an environment with larger carbon emissions
and similar production quantity. If b j is relatively small, the reaction is the expected one: firm
j emits less carbon and thus also produces less. In fact, this reduced production more than
compensates the increase in quantity from Iint . Suppose now that there is some other firm
i ∈ Iint with a small coefficient α2

i ; then this firm’s optimality condition is hardly affected
by the change in carbon; however, the decrease in quantity from the aforementioned firm j
has an outsized impact and leads firm i to produce more, and hence also emit more carbon.

Remark C.3 The derivatives of K and Q with respect to Kex are the same as with respect to
Aint ; this follows from the fact that (C.5) and (C.6) depend on the sum Aint + Kex rather
than the individual quantities. In particular, Q is decreasing with respect to Kex whereas K
is increasing. The carbon emission K − Kex from the firms, on the other hand, is decreasing
as ∂(K−Kex )

∂Kex
= 1

N (m + 1 + B1 − N ) < 0.

Appendix D

Proofs for Sect. 5

Proof of Proposition 5.1 Let Km be the total carbon at the end of them-th round. The sequence
(Km) is monotone increasing, hence convergent. In any given round m, the optimality con-
ditions of Proposition A.1 hold with K = Km−1 + ∑

j k j and Q = ∑
j q j .

Suppose for contradiction that lim Km > a. Letm ≥ 1 be the first round such that Km > a,
then in particular Km > a(m)

j for all 1 ≤ j ≤ n. In view of Proposition A.1, all firms are in

I q0 ∪ I q0 , hence no firm emits carbon and Km = Km−1. This contradicts the choice of m. (In
fact the same argument shows that if a > 0, then Km is strictly smaller than a for all m; that
is, the limit is not reached in finite time.)

It remains to show that lim Km ≥ a. Assume first that Qm ≥ z holds for infinitely many
roundsm. Proposition A.1 shows that all firms are in I q0 ∪ I1, so that the additional carbon in
round m is Km − Km−1 = Qm ≥ z. As z > 0, the presence of infinitely many such rounds
implies that lim Km = ∞ ≥ a as desired. If the first assumption does not hold, there exists
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m0 such that Qm < z for all m ≥ m0. Define a(m) = max{a(m)
1 , ..., a(m)

n }. If m ≥ m0 and
a(m) < ∞, then

Km ≥ max
{
Km−1, λa

(m) + (1 − λ)Km−1)
}

(D.1)

for some λ > 0 independent of m. This follows by noting that Km ≥ Km−1 and applying
Lemma D.1 below to the firm i with a(m)

i = a(m). Whereas if m ≥ m0 and a(m) = ∞, we
check directly that ki ≥ 1

2 (A − c − Q−i ) ≥ d/2 and hence

Km ≥ Km−1 + d/2. (D.2)

The combination of (D.1) and (D.2) shows that lim Km ≥ lim sup a(m) = a, and that
completes the proof that lim Km = a. �

Lemma D.1 Consider an equilibriumwith Q < z. Then every firm i satisfies ki ≥ λ(ai−K−i )

for λ := 1
2

bα2
i

1+bα2
i

> 0.

Proof Let i be any firm. As Q < z, we have i /∈ I q0 in Proposition A.1. If i ∈ I q0 , then
ai −K−i < 0 and the claim is trivial. For i ∈ Iint the claim follows from Proposition A.1 (iii),
even with λ = 1/2. For i ∈ Iint , note that Q < z implies Q−i < z and then A − c − Q−i ≥
d = bα2

i ai . Thus Proposition A.1 (iv) yields

ki = qi = 1

2

1

1 + bα2
i

[A − c − Q−i − bα2
i K−i ] ≥ 1

2

bα2
i

1 + bα2
i

[ai − K−i ]

as claimed. �

Proof of Proposition 5.2 Wemay assume that A > c; otherwise no goods are produced and the
result is clear. Note that c+d ≥ A (i.e., z ≤ 0) implies z ≤ Q and hence I r0 = Iint = ∅ in any

round; cf. Proposition A.1. Fix a round m and let i be such that β(m)
i = min{β(m)

1 , ..., β
(m)
n }.

Suppressingm in the notation and assumingfirst thatβi > 0, the formula for Q inExample 3.4
shows that

Q = 1

n1 + 1

( ∑

j∈I1

A − c − β j Km−1

1 + β j

)

≥ 1

n1 + 1

(
A − c − βi Km−1

1 + βi

)

≥ βi

(n1 + 1)(1 + βi )

(
A − c

βi
− Km−1

)

≥ β

(n + 1)(1 + β)

(
A − c

βi
− Km−1

)

and hence

Km = Km−1 + Qm ≥ λ
A − c

βi
+ (1 − λ)Km−1 (D.3)

for λ = β
(n+1)(1+β)

> 0. Whereas if βi = 0, the same line of argument yields

Qm ≥ A − c

n + 1
. (D.4)

At least one of (D.3) and (D.4) holds in any roundm andweconclude that lim Km ≥ (A−c)/β
(i.e., lim Km = ∞ if β = 0).

It remains to show that lim Km ≤ (A− c)/β if β > 0. Again, fix a roundm. As 1/(1+ x)
is decreasing and x/(1 + x) is increasing in x , Example 3.4 yields

Q = 1

n1 + 1

( ∑

j∈I1

A − c − β j Km−1

1 + β j

)

≤ n1
n1 + 1

(
A − c − βi Km−1

1 + βi

)
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≤ n1
n1 + 1

(
A − c − βi Km−1

βi

)

<
A − c

βi
− Km−1.

Thus, Km = Km−1 + Q < (A − c)/βi ≤ (A − c)/β and the result follows. �


Appendix E

Other utility functions

In this appendix we discuss a generalization where consumers’ utility function u is not
quadratic. For simplicity we focus on the interior type of equilibria with Kex = 0 and a
smooth utility function u : R+ → R. Stated in terms of the quantity qi and the carbon
ki = ri qi , firm i’s expected profit is

Ei [πi (ki , qi )] = u′(Q)qi − bEi [α2]Kriqi − [c + (1 − ri )d]qi
= u′(qi + Q−i )qi − bα2

i (ki + K−i )ki − (c + d)qi + dki .

Interior maximizers satisfy ∂q Ei [πi (ki , qi )] = 0 which with Q−i = ∑
j �=i q j leads to the

equation

u′′ (∑
j q j

)
qi + u′ (∑

j q j

)
= c + d, 1 ≤ i ≤ n.

Given any solution (q1, ...qn), the equation implies that qi = c+d−u′(Q)
u′′(Q)

for Q = ∑
j q j , for

all i . That is, just as in Example 3.2, any solution consists of a common quantity q0 for all
firms, and clearly q0 must be a solution of

u′′ (∑
j q j

)
qi + u′ (∑

j q j

)
= c + d. (E.1)

As discussed below, this equation may have zero, one or more solutions for general u, but
typical examples are well-behaved. Any solution induces an equilibrium as follows: suppose
that (E.1) has an interior solution q0 and that the associated optimal ki ∈ [0, ri ] are interior.
Then the first-order condition ∂k Ei [πi (ki , qi )] = 0 yields that ki = ai − K for K = ∑

j k j ,
or equivalently ri = ki/qi = (ai − K )/q0, a direct extension of Example 3.2.

Example E.1 (a) For the logarithmic utility u(x) = log(x), the unique solution of (E.1) is
q0 = n−1

(c+d)n2
whenever n ≥ 2.

(b) More generally, consider the CRRA utility u(x) = (1 − γ )−1x1−γ where 0 < γ < n
and γ = 1 corresponds to the logarithmic case. Then the unique solution of (E.1) is

q0 = γ

√
n−γ

(c+d)γ nγ+1 . For γ ≥ n, no positive solution exists.

The following is a general sufficient condition for existence.

Proposition E.2 Define the relative risk aversion ρ(x) = − xu′′(x)
u′(x) . Suppose that u satisfies

the Inada conditions u′(0) = ∞ and u′(∞) = 0 and that sup0≤x≤ε ρ(x) < n for some
ε > 0. Then (E.1) has a solution. If moreover nu′′′(nx)x + (n + 1)u′′(nx) < 0, the solution
is unique.

Proof Note that ρ(x) is nonnegative and that

ϕ(x) := u′′(nx)x + u′(nx) = u′(nx)
[

1 + u′′(nx)x
u′(nx)

]

= u′(nx)
[

1 − 1

n
ρ(nx)

]
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is a continuous function of x . Under the stated conditions, ϕ(0) = ∞ and ϕ(∞) ≤ 0.
Thus, existence of a solution follows from the intermediate value theorem. Moreover,
uniqueness must hold when ϕ is strictly decreasing, and that is implied by the fact that
ϕ′(x) = nu′′′(nx)x + (n + 1)u′′(nx) < 0. �
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