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We introduce a constrained optimal transport problem where origins x

can only be transported to destinations y ≥ x. Our statistical motivation is to
describe the sharp upper bound for the variance of the treatment effect Y −X

given marginals when the effect is monotone, or Y ≥ X. We thus focus on
supermodular costs (or submodular rewards) and introduce a coupling P∗ that
is optimal for all such costs and yields the sharp bound. This coupling admits
manifold characterizations—geometric, order-theoretic, as optimal transport,
through the cdf, and via the transport kernel—that explain its structure and
imply useful bounds. When the first marginal is atomless, P∗ is concentrated
on the graphs of two maps which can be described in terms of the marginals,
the second map arising due to the binding constraint.

1. Introduction. We study a constrained Monge–Kantorovich optimal transport prob-
lem between marginal distributions μ and ν on the real line where the couplings are required
to be “directional” in the sense that an origin x can only be transported to destinations y

with y ≥ x. While one can think of several natural transport or matching problems with
such a constraint, our initial motivation comes from the statistical analysis of treatment ef-
fects. There, one compares a (treated) experiment group of patients with an (untreated) con-
trol group. A fundamental problem is that any potential outcome that treated patients would
have received without treatment is not observed, and vice versa. While the marginal distribu-
tions μ and ν of the performance evaluations X and Y of the two groups can be estimated
from experiment data, the joint distribution cannot, as the two groups are nonoverlapping by
design—Neyman noted as early as 1923 (cf. [4]) that there are no unbiased or consistent es-
timators for the covariance. The improvement of the performance measure due to treatment,
Y − X, is known as treatment effect. To test the hypothesis of substantial treatment effect, it
is important to understand bounds on Var(Y − X) or more generally the joint distribution P

of (X,Y ). Crude (yet popular) bounds can be obtained by mapping one group to the extremes
of the support of the other. The classical Fréchet–Hoeffding (or Hardy–Littlewood) mecha-
nism gives better bounds and is often used in the literature (see, e.g., [4, 14], and [26, 27] for
mathematical background). The lower bound for Var(Y −X) over all couplings is attained by
the comonotone (or Fréchet–Hoeffding) coupling. The upper bound over all couplings leads
to the antitone coupling, which may be unrealistic in the context of many treatment effects:
this coupling corresponds to the idea that the healthiest untreated subject would have become
the least healthy patient if treated, and vice versa, which seems exceedingly pessimistic, for
example, in a study on the impact of physical activity on obesity. As proposed in [22], this
issue can be alleviated by the assumption of monotone treatment effect when suitable, pos-
tulating that the treatment effect is nonnegative: Y ≥ X means that an untreated individual’s
performance would not have been worsened by the treatment, and vice versa. Of course, this
assumption is only made after verifying that ν stochastically dominates μ in the data. Under
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FIG. 1. Left panel: An example of P∗, with the y-axis shown at the top. Right panel: An improvable pair which
can be “improved” to the dotted pair.

the assumption of monotone treatment effect, the sharp upper bound of Var(Y − X) corre-
sponds to a coupling P∗ that we call optimal directional coupling.1 More generally, P∗ yields
the sharp upper bound for EP [g(X,Y )] whenever g is supermodular. The lower bound re-
mains trivial in that it still corresponds to the comonotone coupling (which satisfies Y ≥ X

in view of the necessary stochastic dominance), whence our focus on the upper bound.
In the next section we introduce P∗ for general marginals μ,ν in stochastic order and

provide manifold characterizations that resemble familiar properties of the antitone coupling
while also taking into account the constraint. Globally, the geometry is significantly richer
than in the classical antitone case. At a local level, the interaction between supermodular-
ity and constraint is much more transparent, and each of our characterizations clarifies that
interaction from a different angle.

The construction of P∗ is best explained in the simple case μ = 1
n

∑n
i=1 δxi

and ν =
1
n

∑n
i=1 δyi

where both marginals consist of a common number of atoms of equal size at
distinct locations, and moreover x1 > · · · > xn are numbered from right to left. The trans-
port P∗ processes these atoms xi in that order, sending each origin to the minimal (left-most)
destination y = T (xi) that is allowed by the constraint y ≥ T (xi) and has not been filled yet
(Figure 1). That is, starting with the set S1 = {y1, . . . , yn} of all destinations, we iterate for
k = 1, . . . , n:

(i) T (xk) := min{y ∈ Sk : y ≥ xk},
(ii) Sk+1 := Sk \ {T (xk)}.

A less formal description is to imagine a left parenthesis “(” at each location xi and a right
parenthesis “)” at each yi . Then T agrees with the usual rule of matching a left with its
corresponding right parenthesis in a mathematical statement. The antitone coupling would be
obtained omitting the inequality in (i) above, making apparent how the constraint creates the
difference with the classical coupling at the local level.

Further properties provided in the next section include a geometric characterization
through the support of the coupling and of course the optimality as transport for all supermod-
ular costs (or submodular rewards, including variance of treatment effect); here the notion of
cyclical monotonicity plays a key role. In particular, we provide sharp conditions under which
P∗ admits a Monge map. Finally, one can also describe P∗ through its joint cdf.

The constraint is responsible for qualitative differences with the antitone coupling. As-
suming that the first marginal is atomless, the latter coupling always admits a Monge map, in
other words, it is concentrated on a graph. By contrast, the constrained coupling is concen-
trated on two graphs. The two maps can be described in detail: one is the identity function
and appears when the constraint is locally binding, the other admits a graphical interpretation

1We prefer “directional” over “monotone” as the latter terminology often refers to the Fréchet–Hoeffding cou-
pling in the transport literature.
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and a semi-explicit formula based on the difference of the marginal cdf’s. The appearance
of the identity is clearly reminiscent of the unconstrained transport problem for costs like
c(x, y) = |y − x|p , 0 < p < 1 that combine concavity away from the origin with convexity
at the origin, and was first observed in [17] in that context. See also [29], Section 3.3.2, for a
discussion. Another difference is the behavior under marginal transformations. The antitone
coupling is invariant with respect to arbitrary monotone transformations of the coordinate
axes; more precisely, the copula corresponding to the coupling is the same for all marginals.
This is no longer true for the constrained version, the reason being that the underlying con-
straint Y ≥ X is not invariant. Instead, the copula depends on the marginals and an invariance
property holds only when a common transformation is applied to both axes.

Several constrained optimal transport problems have been of lively interest in recent years.
One related problem is the optimal transport with quadratic cost c(x, y) = |y−x|2 in Rd stud-
ied in [19] (see also [10, 11]) under a convex constraint: transports have to satisfy y − x ∈ C

for a given convex set C. It is shown that this problem admits an optimal transport map
(Monge map) in great generality. The specification y − x ∈ C accommodates our constraint,
but minimizing the quadratic cost (rather than maximizing) yields the comonotone coupling
in our setting. Indeed, [19] details that the comonotone coupling is the optimal solution for
general C in the scalar case—the constraint is not binding as soon as an admissible coupling
exists. In our problem, the constraint is typically binding and the optimal coupling typically
does not admit a Monge map but instead requires a randomization between two maps. (See
also Section 6.3 for a generalization of P∗ to cone constraints that may simplify the compar-
ison with [19].)

A different constrained problem is the martingale optimal transport introduced in [6, 16,
33], corresponding to the constraint E[Y |X] = X as motivated from financial mathematics
(see [1, 7–9, 12, 18], among many others). In particular, the left- and right-curtain couplings
of [7] correspond to the constrained versions of the comonotone/antitone couplings. It is
worth noting that these couplings are also concentrated on the graphs of two maps in typ-
ical cases, like P∗. (However, the appearance of a randomization is more obvious: only a
constant martingale is deterministic.) The supermartingale constraint E[Y |X] ≤ X in [24]
resembles the current situation in being an inequality constraint. Compared to all of these
examples, the present case yields by far the most explicit and detailed results. In hindsight,
the directional transport is arguably the most canonical and simplest nontrivial example of
a constrained optimal transport problem. For general transport problems in Polish spaces,
cyclical monotonicity and duality theory with constraints (or equivalently cost functions with
infinite values) were studied by [2, 5, 13, 21, 31], among others.

The literature on copulas features several directly related results; these works seem to be
mostly unaware of one another and of the results in the optimal transport literature. The
earliest related contribution that we are aware of, [32], features a bound on the cdf of any
directional coupling (see also Remark 4.4 below). It is not investigated if or when that bound
corresponds to a coupling. Almost two decades later, [28] was interested in coupling ran-
dom walks “fast” and determined a directional coupling which maximizes a cost of the form
ϕ(y − x) with ϕ strictly convex, nonnegative and decreasing. It is clear from Theorem 2.2
below that this coupling is P∗; the decrease of ϕ is irrelevant as convexity alone implies sub-
modularity. In [28], the application to random walks is successful only when the difference
of the marginal distributions is unimodular, and in that case, P∗ has a trivial structure as
the sum of an identity and an antitone coupling between disjoint intervals (see Example 4.5
below)—that may explain why [28] did not investigate the coupling further. The recent work
[3] characterizes all directional dependence structures of marginals in stochastic order and
derives several related bounds, in particular one on the cdf which gives exactly the cdf of P∗.
(In fact, the same cdf was previously stated in [28], in a slightly more implicit form.) The
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structure of the coupling, and more generally the point of view of optimal transport, are not
highlighted in these works.

While we hope that this paper is a fairly complete study of the scalar case with inequality
constraint (or, more generally, one-dimensional cone constraint; cf. Section 6.3), we mention
that the multidimensional case is wide open. To stick with the above motivation, consider a
treatment which affects two (or more) separately measured qualities—for example, the im-
pact of physical exercise on blood pressure and body mass index. Control and experiment
groups now give rise to distributions in R2, and the assumption of monotone treatment ef-
fect for both performance measures corresponds to a cone constraint y − x ∈ [0,∞)2. It is
worth noting that even if a scalar quantity is used to aggregate the two performances, the
cone constraint is typically more stringent than what would be obtained by constraining the
aggregated performances.

The remainder of the paper is organized as follows. Section 2 formalizes the problem and
presents the main results. The subsequent Sections 3–5 provide the proofs and some required
tools, as well as examples and additional consequences. Section 6 gathers three discussions
that we omitted in the main results: another decomposition of P∗, optimality properties in
unconstrained transport problems, and an extension to general (random) cone constraints.

2. Main results. Let μ and ν be probability measures on R and denote by X(x, y) = x,
Y(x, y) = y the coordinate projections on R2. A coupling, or transport, of μ and ν is a
probability P on R2 with marginals P ◦ X−1 = μ and P ◦ Y−1 = ν. We call a coupling P

directional if it is concentrated on the closed halfplane above the diagonal,

H = {Y ≥ X} = {
(x, y) ∈ R2 : y ≥ x

}
,

meaning that μ-almost every origin x is transported to a destination located to the right of x

(or to x itself). Denoting by D = D(μ, ν) the set of all directional couplings, we have D �=∅

if and only if μ and ν are in stochastic order, denoted μ 	st ν, meaning that their cdf’s
satisfy Fμ ≥ Fν . Indeed, μ 	st ν if and only if the comonotone coupling is directional. More
generally, we indicate by θ1 	st θ2 two subprobabilities with common mass θ1(R) = θ2(R)

and Fθ1 ≥ Fθ2 . The other notions also have obvious generalizations.
The following theorem corresponds to a general version of the discrete construction of P∗

in the Introduction. We write θ ≤ ν for a subprobability θ with θ(A) ≤ ν(A) for all A ∈ B(R).

THEOREM 2.1. Let μ 	st ν. There exists a unique directional coupling P∗ = P∗(μ, ν)

which couples μ|(x,∞) to νx for all x ∈ R, where the subprobability νx is defined by its cdf

Fνx = sup
θ∈Sx

Fθ for Sx = {θ : μ|(x,∞) 	st θ ≤ ν}.

The measure νx is the unique minimal element of Sx for the order 	st.

The coupling P∗ differs from the antitone coupling except in the trivial case where all
couplings are directional; that is, when μ((−∞, x]) = ν([x,∞)) = 1 for some x ∈R. Indeed,
this is the only case where the antitone coupling is directional.

We make μ 	st ν a standing assumption in all that follows. The above theorem is one of
several equivalent characterizations of P∗ that we detail next. The most important for our
analysis is geometric, describing the support of P∗ based on the idea that we would like any
two trajectories of the transport to cross whenever that is allowed by the constraint. We say
that the pair ((x, y), (x′, y′)) ∈ H2 is improvable if x < x′ ≤ y < y′. This means that (x, y)

and (x′, y′) do not cross, but they could be rearranged (“improved”) into the configuration
((x, y′), (x′, y)) which forms a cross and remains H2 (Figure 1). A set � ⊆ H satisfies the
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constrained crossing property if it contains no improvable pairs. Stated differently, any two
trajectories in � either cross, or they cannot be rearranged into a cross without exiting H.

This property is closely related to a characterization of P∗ through optimal transport with
specific reward functions. A Borel function g :H →R is submodular (on H) if

g(x, y) + g
(
x′, y′) ≤ g

(
x, y′) + g

(
x′, y

)
for all x < x′ ≤ y < y′(2.1)

and strictly submodular if the inequality in (2.1) is strict; two examples are g(x, y) = (x−y)2

and g(x, y) = −√|x − y|. If g is differentiable, the Spence–Mirrlees condition −gxy > 0 is
a sufficient condition. We say that g is (μ, ν)-integrable if |g(x, y)| ≤ φ(x)+ψ(y) for some
φ ∈ L1(μ) and ψ ∈ L1(ν). This implies uniform bounds on

∫
g dP for any coupling P and

in particular that the optimal transport problem

sup
P∈D

∫
g dP

(
or equivalently, inf

P∈D

∫
−g dP

)
(2.2)

is finite as soon as D �= ∅. Finally, P ∈ D is optimal for g if it attains the supremum. To see
the connection with the constrained crossing property, observe that for any strictly submodu-
lar g,

g(x, y) + g
(
x′, y′) < g

(
x, y′) + g

(
x′, y

)
if

(
(x, y),

(
x′, y′)) is improvable.

The following result also contains a third (straightforward) characterization in terms of the
so-called concordance order in (i).

THEOREM 2.2. For a coupling P ∈ D(μ, ν), the following are equivalent.

(i) FP ≤ FQ on R2 for all Q ∈ D(μ, ν), where FQ is the cdf of Q.
(ii) P is optimal for all (μ, ν)-integrable and submodular g.

(iii) P is optimal for some (μ, ν)-integrable and strictly submodular g.
(iv) P is supported by a set � ⊆ H with the constrained crossing property.
(v) P = P∗.

The geometric characterization in Theorem 2.2(iv) implies that the optimal coupling P∗ is
invariant with respect to common transformations of both coordinate axes as follows.

COROLLARY 2.3. Let φ :R →R be a strictly increasing function. Then

P∗(μ, ν) = P∗
(
μ ◦ φ−1, ν ◦ φ−1) ◦ (φ,φ).

In particular, copulas of P∗(μ, ν) are precisely those of P∗(μ ◦ φ−1, ν ◦ φ−1), and thus
these copulas are invariant under common, strictly increasing transformations of the axes.
The strict increase of φ is necessary to retain the constrained crossing property. Similarly, it
is clear that the same transformation must be applied to both axes—in contrast to the uncon-
strained transport problem, as highlighted in the Introduction.

Theorem 2.2(i) yields an implicit description of the optimal cdf which, by a result of
[3], implies the following representation. A proof by direct computation will be sketched in
Section 4, as well as resulting bounds.

COROLLARY 2.4. The cdf of P∗ is given by

F∗(x, y) =
⎧⎨
⎩

Fν(y) if y ≤ x,

Fμ(x) − inf
z∈[x,y]

(
Fμ(z) − Fν(z)

)
if y > x.

(2.3)
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FIG. 2. Left panel: On the formula for F∗. Right panel: Definition of T .

See also Figure 2 for a graphical representation. As a first consequence, we observe the
continuity of P∗ with respect to weak convergence (

w→) of the marginals.

COROLLARY 2.5. Consider marginals μn 	st νn, n ≥ 1 with μn
w→ μ and νn

w→ ν, and
suppose that μ and ν are atomless. Then P∗(μn, νn)

w→ P∗(μ, ν).

We will see in Example 4.2 that the continuity can fail in the presence of atoms.
The subsequent results describe the finer structure of the optimal transport. The common

part μ ∧ ν of μ and ν is the measure defined by

d(μ ∧ ν)

d(μ + ν)
:= dμ

d(μ + ν)
∧ dν

d(μ + ν)
.

Alternately, μ∧ν is the maximal measure θ satisfying θ ≤ μ and θ ≤ ν, and we can note that
μ,ν are mutually singular if and only if μ ∧ ν = 0. Importantly, P∗ always transports μ ∧ ν

according to the identity coupling, similarly as in [17], Main Theorem 6.4, for unconstrained
transport with cost l(|y − x|) and l strictly concave (see Figure 3 for two simple examples).

PROPOSITION 2.6. The optimal coupling P∗(μ, ν) satisfies

P∗(μ, ν) = Id(μ ∧ ν) + P∗
(
μ′, ν′),

where Id(μ ∧ ν) = (μ ∧ ν) ⊗x δx is the identical coupling of μ ∧ ν with itself whereas μ′ =
μ − μ ∧ ν and ν′ = ν − μ ∧ ν are the mutually singular parts of μ and ν.

A coupling P is of Monge-type if P(Y |X) = T (X) is a deterministic function T of X

which is then called a Monge map or transport map of P . Equivalently, the stochastic kernel
κ in the decomposition P = μ ⊗ κ has the form κ(x, dy) = δT (x)(dy) μ-a.s. Proposition 2.6
suggests that the constrained nature of our transport problem may render P∗ randomized (i.e.,
not of Monge-type) even in the absence of atoms.

FIG. 3. Illustration of Proposition 2.6 (left) and Example 2.7 (right).
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EXAMPLE 2.7. Let μ = Unif[0,1] and ν = Unif[0,2]. Then μ 	st ν and there are no
atoms, yet P∗ has nondeterministic kernel κ(x) = 1

2(δx + δ2−x); cf. Figure 3. This can be
seen, for example, from the constrained crossing property.

The next results show that this example is representative: the “coin-flip” randomization
into two maps is the only randomization in P∗ when μ is atomless, and it occurs if and
only if μ ∧ ν and μ − μ ∧ ν are not mutually singular. The second transport map can also
be analyzed in detail. To that end, suppose first that μ ∧ ν = 0, so that (μ, ν) is already
in the reduced form (μ′, ν′) of Proposition 2.6. Moreover, suppose for the moment that the
marginals are atomless—we discuss later how to reduce atoms to diffuse measures. With the
convention inf∅= ∞, we have the following (see Figure 2 for the graphical interpretation).

THEOREM 2.8. Let μ,ν be atomless and μ ∧ ν = 0. Then P∗ is of Monge-type with
transport map T given by

T (x) = inf
{
y ≥ x : (

y,F (x)
)

/∈ H
}

for the function F = Fμ − Fν and its hypograph H = {(x, z) : z ≤ F(x)}.

The proof proceeds by showing that T couples μ and ν and that the graph of T satisfies the
constrained crossing property. Some of our considerations regarding the local regularity of F

may be of independent interest. Combining the last two results and noting that Fμ − Fν =
Fμ′ − Fν′ in Proposition 2.6, we deduce the aforementioned assertion on the coin-flip.

COROLLARY 2.9. Let μ,ν be atomless. Then

P∗(μ, ν) = (μ ∧ ν) ⊗x δx + μ′ ⊗x δT (x),

where μ′ = μ − μ ∧ ν. In particular, P∗ is of Monge-type if and only if μ′ and μ ∧ ν are
mutually singular.

This result immediately extends to the case where ν has atoms, essentially by “filling
in” vertical lines in the graph of F where there are jumps (cf. Figure 2). Using a simple
transformation detailed in Section 5.4, it also generalizes to atoms in both marginals, but then
T is replaced by a (possibly randomized) coupling; see Theorem 5.5.

We remark that the invariance property in Corollary 2.3 translates immediately: if T is the
map of P∗(μ, ν), then T φ := φ ◦ T ◦ φ−1 is that of P∗(μ ◦ φ−1, ν ◦ φ−1); in other words, T φ

transports φ(x) to φ(y) whenever T transports x to y.
While we consider the above the main results, three further considerations are presented in

Section 6. We discuss when and how P∗ can be decomposed as a sum of antitone couplings of
sub-marginals, remark that P∗ occurs as optimizer in specific unconstrained transport prob-
lems, and finally offer an extension to cone constraints more general than Y ≥ X.

3. Equivalent characterizations of P∗. In this section we prove Theorems 2.1–2.2 and
Proposition 2.6, the latter being a consequence of the former. The first step is to show that νx

in Theorem 2.1 is well defined. We write M for the set of finite measures on R and recall
that θ1, θ2 ∈M satisfy θ1 	st θ2 if θ1(R) = θ2(R) and Fθ1 ≥ Fθ2 .

LEMMA 3.1. Let μ0 ≤ μ. The set S = {θ ∈ M : μ0 	st θ ≤ ν} has a unique minimal
element θ∗; that is, θ∗ ∈ S and θ∗ 	st θ for all θ ∈ S. The measure θ∗ has cdf supθ∈S Fθ and
we denote θν(μ0) := θ∗.
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PROOF. We first show that F := supθ∈S Fθ is a cdf. Given x < y, we have Fθ(y) −
Fθ(x) ≤ Fν(y) − Fν(x) for any θ ∈ S and hence

F(y) − F(x) ≤ sup
θ∈S

[
Fθ(y) − Fθ(x)

] ≤ Fν(y) − Fν(x) → 0 as y ↓ x,

showing that F is right-continuous. As the remaining properties of a cdf are immediate,
we can introduce θ∗ as the measure associated to F . In view of F = supθ∈S Fθ , we have that
μ0 	st θ∗ and θ∗ 	st θ for every θ ∈ S. It remains to see that θ∗ ≤ ν, or equivalently that Fν−θ∗
is nondecreasing. Indeed, Fν−θ∗ = Fν − supθ∈S Fθ = infθ∈S Fν−θ , and Fν−θ is nondecreasing
for every θ ∈ S. �

Next, we show that the map μ0 �→ θν(μ0) of Lemma 3.1 is “divisible”, which is important
for its iterated application: mapping μ0 = μ1 +μ2 into ν produces the same cumulative result
as first mapping μ1 and then mapping μ2 into the remaining part of ν.

LEMMA 3.2. Let μ1,μ2 satisfy μ1 + μ2 ≤ μ. Then μ − μ1 	st ν − θν(μ1) and

θν(μ1 + μ2) = θν(μ1) + θν−θν(μ1)(μ2).

PROOF. Let Q = μ ⊗ κ ∈ D(μ, ν) be arbitrary and let Q(μ1) be its image of μ1 (i.e.,
the second marginal of μ1 ⊗ κ). In view of Q ∈ D(μ, ν) we have μ1 	st Q(μ1) ≤ ν and
μ − μ1 	st ν − Q(μ1). The minimality property of θν(μ1) then yields θν(μ1) 	st Q(μ1)

and therefore

μ2 ≤ μ − μ1 	st ν − Q(μ1) 	st ν − θν(μ1).

In particular, the measure θν−θν(μ1)(μ2) is well defined, and its definition entails θν(μ1) +
θν−θν(μ1)(μ2) ≤ ν. The minimality property of θν(μ1 + μ2) now shows that

θν(μ1 + μ2) 	st θν(μ1) + θν−θν(μ1)(μ2).(3.1)

On the other hand, the minimality properties of θν(μ1) and θν(μ1 +μ2) and direct arguments
(omitted for brevity) imply that θν(μ1) ≤ θν(μ1 + μ2). The minimality property of θν(μ1)

then states in particular that θν(μ1) is minimal in stochastic order among all sub-measures of
θν(μ1 + μ2) with mass μ1(R). As a consequence, we see that

μ2 	st θν(μ1 + μ2) − θν(μ1).

Clearly also θν(μ1 + μ2) − θν(μ1) ≤ ν − θν(μ1), and so the minimality property of
θν−θν(μ1)(μ2) implies

θν−θν(μ1)(μ2) 	st θν(μ1 + μ2) − θν(μ1).

In view of (3.1), the claim follows. �

We can now construct P∗.

PROOF OF THEOREM 2.1. Noting that ν − θν(μ|(x,∞)) is a nonnegative measure for
fixed x, the function

F(x, y) := (
ν − θν(μ|(x,∞))

)
(−∞, y]

is clearly nondecreasing and right-continuous in y. Moreover, Lemma 3.2 implies that

θν(μ|(x1,∞)) − θν(μ|(x2,∞)) = θν−θν(μ|(x2,∞))(μ|(x1,x2]) ≥ 0, x1 ≤ x2.(3.2)
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The total mass of the right-hand side equals μ(x1, x2] and thus converges to zero as x2 ↓ x1,
showing that x �→ F(x, y) is right-continuous. Relation (3.2) also implies that F is super-
modular (or nondecreasing on R2): for x1 ≤ x2 and y1 ≤ y2,[

F(x2, y2) − F(x2, y1)
] − [

F(x1, y2) − F(x1, y1)
]

= θν(μ|(x1,∞))(y1, y2] − θν(μ|(x2,∞))(y1, y2]
= θν−θν(μ|(x2,∞))(μ|(x1,x2])(y1, y2] ≥ 0.

As F has the proper normalization, we conclude (e.g., [20], page 27) that F induces a unique
probability measure P∗ on B(R2). It remains to observe that P∗ ∈ D(μ, ν). Indeed, the second
marginal of P∗ is clearly ν. The first marginal is equal to μ as for each x,

lim
y→∞F(x, y) = ν(R) − θν(μ|(x,∞))(R) = 1 − μ

(
(x,∞)

) = μ
(
(−∞, x]).

Finally, P∗ is directional since

P∗
(
(x,∞) × (−∞, x]) = θν(μ|(x,∞))(−∞, x] = 0, x ∈ R

due to the fact that μ|(x,∞) 	st θν(μ|(x,∞)) by the definition of θν(·). �

REMARK 3.3. While we have defined P∗ as mapping μ|(x,∞) to θν(μ|(x,∞)), it equiv-
alently maps μ|[x,∞) to θν(μ|[x,∞)) for all x ∈ R. This follows from Theorem 2.1 and
Lemma 3.2.

We now turn the the equivalent characterizations in Theorem 2.2; here the most important
tool is the notion of cyclical monotonicity in optimal transport (e.g., [17, 34]).

PROOF OF THEOREM 2.2. Given two probability measures P,Q on R2 with the same
marginals, it is known that the concordance order FP ≤ FQ is equivalent to

∫
g dP ≥ ∫

g dQ

for all (suitably integrable) supermodular g; cf. [23], Theorem 3.8.2, page 108. The implica-
tion (i)⇒(ii) is a direct consequence of that fact, and (ii)⇒(iii) is trivial.

(iii)⇒(iv): Let g be Borel and (μ, ν)-integrable. We consider the (unconstrained) Monge–
Kantorovich optimal transport problem on R×R with marginals (μ, ν) and cost function

c(x, y) =
{−g(x, y) (x, y) ∈ H,

∞ otherwise.

Noting that c(x, y) ≥ φ(x) + ψ(y) for some φ ∈ L1(μ) and ψ ∈ L1(ν), it follows from [5],
Theorem 1(a), that any optimal transport P is concentrated on a Borel set � ⊆ R2 that is
c-cyclically monotone. As no transport with finite cost charges the complement Hc, we may
replace � with � ∩ H to ensure that � ⊆ H. Cyclical monotonicity then states in particular
that2

g(x, y) + g
(
x′, y′) ≥ g

(
x, y′) + g

(
x′, y

)
for all (x, y),

(
x′, y′) ∈ �.

Thus, if g is strictly submodular, � cannot contain improvable pairs.
(iv)⇒(v): Suppose for contradiction that P �= P∗. In view of Theorem 2.1, there exists

x ∈ R such that P maps μ|(x,∞) to a measure ν′
x �= νx , and νx 	st ν′

x by the minimality
property of νx . It follows from Lemma 3.4 below that there exist z > y ≥ x such that

νx

(
(x, y]) > ν′

x

(
(x, z)

)
and νx

([y, z)
)
> ν′

x

([y, z)
)
.(3.3)

2More generally, the monotonicity holds for cycles of finite length n; that is,
∑n

i=1 g(xi , yi) ≥∑n
i=1 g(xi , yπ(i)) for all (x1, y1), . . . , (xn, yn) ∈ � and permutations π of {1, . . . , n}. The stated property cor-

responds to n = 2.
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Using also that μ((x, y]) ≥ νx((x, y]) due to μ|(x,∞) 	st νx , we deduce

P
((

x, y] × [z,∞)
) ≥ μ

(
(x, y]) − ν′

x

(
(x, z)

) ≥ νx

(
(x, y]) − ν′

x

(
(x, z)

)
> 0.

By the constrained crossing property, this implies P((−∞, x]) × [y, z)) = 0 and thus

ν
([y, z)

) = P
(
R× [y, z)

) = P
(
(x,∞) × [y, z)

) = ν′
x

([y, z)
)
,

contradicting (3.3).
(v)⇒(i): Let x, y ∈ R; we show FP∗(x, y) ≤ FQ(x, y) for Q ∈ D(μ, ν). As P∗ and Q have

the same second marginal, this is equivalent to

P∗
(
(x,∞) × (−∞, y]) ≥ Q

(
(x,∞) × (−∞, y]).

Recalling νx from Theorem 2.1 and denoting by θ the measure that μ|(x,∞) is transported to
by Q, the above can be stated as νx((−∞, y]) ≥ θ((−∞, y]), and that clearly follows from
the formula for Fνx in Theorem 2.1. �

The following was used in the preceding proof of (iv)⇒(v).

LEMMA 3.4. Given μ1,μ2 ∈ M with μ1 	st μ2 and μ1 �= μ2, there exist z > y such
that

μ1
(
(−∞, y]) > μ2

(
(−∞, z)

)
and μ1

([y, z)
)
> μ2

([y, z)
)
.(3.4)

PROOF. Define two real functions

φ+(y) = μ1
(
(−∞, y]) − μ2

(
(−∞, y]), φ−(y) = μ1

(
(−∞, y)

) − μ2
(
(−∞, y)

)
.

Then φ+ and φ− are right- and left-continuous, respectively, both are nonnegative, and
φ+(y) = φ−(y) whenever μ1({y}) = μ2({y}). If y ∈ R satisfies

φ+(y) > 0 and sup
z∈(y,y+ε)

φ−(z) > φ−(y) for each ε > 0,(3.5)

then (3.4) holds by choosing z > y close enough to y. We argue by contradiction and sup-
pose that there is no y ∈ R satisfying (3.5). Thus, if φ+(y) > 0, there exists ε > 0 such that
φ−(z) ≤ φ−(y) for z ∈ (y, y + ε). This implies that the function φ− has no upward jumps;
that is, �φ− ≤ 0. As μ1 �= μ2, there exists y0 ∈ R such that φ−(y0) > 0. Since φ−(y) → 0 as
y ↓ −∞ and there are no upward jumps, there exists y1 < y0 such that 0 < φ−(y1) < φ−(y0).
Let y = inf{z > y1 : φ−(z) > φ−(y1)}. Then the left-continuity of φ− implies y < y0 and the
absence of upward jumps implies φ−(y) = φ−(y1) as well as that y cannot be the location of
a downward jump. Therefore, μ1({y}) = μ2({y}) and φ+(y) = φ−(y) = φ−(y1) > 0. Finally,
given ε > 0, we have φ−(z) > φ−(y1) = φ−(y) for some z ∈ (y, y + ε) by the definition of
y, so that y satisfies (3.5) and we have reached a contradiction. �

REMARK 3.5. The integrability condition in Theorem 2.2 can be weakened to the posi-
tive part g+ being (μ, ν)-integrable and the negative part satisfying

∫
g− dP < ∞ for some

P ∈ D, so that the value function is not trivial.

The final task of this section is to deduce the decomposition in Proposition 2.6 from The-
orem 2.2.

PROOF OF PROPOSITION 2.6. By Theorem 2.2, the optimal coupling P∗(μ′, ν′) of μ′, ν′
is supported by a set �′ with the constrained crossing property. Define � = �′ ∪ � where
� = {(x, x) : x ∈ R} is the diagonal in R2, then � again has the constrained crossing property.
Set P = Id(μ ∧ ν) + P∗(μ′, ν′) and note P ∈ D(μ, ν). As � supports the identical coupling,
P is supported by � and (iv)⇒(v) of Theorem 2.2 shows that P = P∗(μ, ν). �
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4. Joint distribution function. As mentioned in Section 2, the formula for the joint
distribution function F∗ of P∗ in Corollary 2.4 can be deduced from Theorem 2.2(i) and [3],
Theorem 6, which uses arguments from copula theory. Below, we sketch a direct derivation
and some consequences.

PROOF OF COROLLARY 2.4. As P∗ is directional, y ≤ x implies

F∗(x, y) = P∗
(
(−∞, x] × (−∞, y]) = ν

(
(−∞, y]) = Fν(y),

so we can focus on y > x. Denote c = infz∈[x,y](Fμ(z) − Fν(z)) and recall that X,Y are the
coordinate projections. We first consider an arbitrary P ∈ D(μ, ν). Then as X ≤ Y P -a.s., we
have for z ∈ [x, y] that

P(X ≤ z,X > x) ≥ P(Y ≤ z,X > x)

= P(Y ≤ z) − P(Y ≤ z,X ≤ x)

= P(Y ≤ z) − P(X ≤ x) + P(Y > z,X ≤ x)

≥ P(Y ≤ z) − P(X ≤ x) + P(Y > y,X ≤ x);
that is, Fμ(z)−Fμ(x) ≥ Fν(z)−Fμ(x)+P(Y > y,X ≤ x). This shows P(Y > y,X ≤ x) ≤
infz∈[x,y](Fμ(z) − Fν(z)) = c and we conclude that

FP (x, y) = P(X ≤ x) − P(Y > y,X ≤ x) ≥ Fμ(x) − c.(4.1)

In view of Theorem 2.2 we have F∗(x, y) = infP∈D(μ,ν) FP (x, y). Thus, to complete the
proof, it suffices to show that some P ∈D(μ, ν) attains equality in the above inequality.

Let a = Fμ(x) and b = Fν(y); note that 0 ≤ c ≤ a ≤ b + c ≤ 1. Let U ∼ Unif[0,1] and
define a random variable V as

V =

⎧⎪⎪⎨
⎪⎪⎩

U + b + c − a, a − c < U ≤ a,

U − c, a < U ≤ b + c,

U, otherwise.

Then V ∼ Unif[0,1] like U , and thus P := Law(F−1
μ (U),F−1

ν (V )) has marginals μ and ν,
respectively. One checks by direct arguments that P is directional. Finally, if U ∈ (a − c, a],
then F−1

μ (U) ≤ F−1
μ (a) ≤ x and F−1

ν (V ) ≥ F−1
ν (b+), so that P(X ≤ x,Y > y) ≥ P(U ∈

(a − c, a]) = c. This shows that P attains equality in (4.1). �

REMARK 4.1. One can give a yet another proof of Corollary 2.4 based on Theorem 2.8,
as may be intuitive given Figure 2.

Corollary 2.4 implies that P∗ is continuous with respect to the marginals as stated in Corol-
lary 2.5. The next example shows that this assertion may fail if the limiting marginals have
atoms, a phenomenon caused by the directional constraint.

EXAMPLE 4.2 (Discontinuity wrt marginals). For n ∈ N, let μn and νn be such that
μn{0} = μn{1} = 1/2 and νn{1 − 1/n} = νn{2} = 1/2. Then μn 	st νn and νn

w→ ν with
ν{1} = ν{2} = 1/2, and μn ≡ μ is constant. We see that P∗(μn, νn) is the comonotone cou-
pling, P∗(μ, ν) is the antitone coupling, and P∗(μn, νn)

w
� P∗(μ, ν).

Another consequence are simple bounds on F∗. A right-continuous function on R is uni-
modal if it is nondecreasing on (−∞, x0) and nonincreasing on [x0,∞) for some x0 ∈ R.
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COROLLARY 4.3. We have H∧ ≤ F∗ ≤ H∨ for

H∧(x, y) = Fν(y) − [(
Fμ(y) − Fμ(x)

) ∧ (
Fν(y) − Fν(x)

)]
+,

H∨(x, y) = Fμ(x) ∧ Fν(y).

(i) F∗ = H∧ if and only if F = Fμ − Fν is unimodal.
(ii) F∗ = H∨ if and only if D(μ, ν) is a singleton. If, in addition, F is continuous, these

conditions are further equivalent to μ = ν.

PROOF. The lower bound follows by considering z ∈ {x, y} in (2.3). The upper bound
follows directly from (2.3); alternately, it can also be obtained by noting that H∨ is the cdf
of the comonotone coupling.

To see (i), note that by (2.3), F∗ = H∧ if and only if minz∈[x,y] F(z) = F(x) ∧ F(y)

for all x < y. This is equivalent to F being unimodal. Turning to (ii), we first recall from
Theorem 2.2(i) that P∗ has the minimal cdf in D(μ, ν). On the other hand, H∨ is the cdf of
the comonotone coupling, which is the maximal cdf among all couplings and in particular in
D(μ, ν). Thus, F∗ = H∨ if and only if all directional couplings have the same cdf, showing
the first claim. Now let F be continuous and suppose for contradiction that μ �= ν. In view
of Proposition 2.6, we may assume that μ ∧ ν = 0. By Lemma 5.1, μ(I) > 0 for the set I

of strict increase of F . In particular, there exists x ∈ I , which implies that Fμ(x) > Fν(x)

and μ((x, z]) > 0 for any z > x. As P∗ is the comonotone coupling, μ|(x,∞) is transported to
ν|(y,∞) for some y > x. On the other hand, ν((x, y]) > 0 due to μ((x,∞)) = ν((y,∞)) <

ν((x,∞)), which by minimality implies that νx charges (x, y], contradicting νx = ν|(y,∞).
Conversely, μ = ν clearly implies that the identity is the only directional coupling. �

REMARK 4.4. (a) In view of Theorem 2.2(i), the lower bound F∗ ≥ H∧ is equivalent to
the statement that FQ ≥ H∧ for all Q ∈ D(μ, ν). The latter result was first obtained in [32].
See also [30] for a lower bound on a different coupling in a similar spirit. Both upper and
lower bound were noted in [3], where it was also observed that the lower bound holds in the
case of unimodality. The sharpness conditions are novel, to the best of our knowledge.

(b) The continuity assumption in (ii) is clearly important for the last conclusion: if μ is a
Dirac mass, all couplings of μ and ν coincide and in particular F∗ = H∨, but of course μ

and ν need not be equal.

The following is a standard example satisfying the condition in Corollary 4.3(i) and cov-
ering, for instance, two normal or exponential marginals in stochastic order. The appearance
of an antitone coupling is a particular case of a phenomenon that will be discussed in detail
in Section 6.1.

EXAMPLE 4.5 (Single-crossing densities). Suppose that μ and ν have densities fμ and
fν which cross exactly once; that is, there exists a point x0 ∈ R such that fμ(x) ≥ fν(x)

for x ≤ x0 and fμ(x) ≤ fν(x) for x ≥ x0. Then F is unimodal and hence F∗ = H∧. By
Proposition 2.6 and the fact that the measures μ′ and ν′ (defined therein) are supported on
disjoint sets, we see that P∗(μ, ν) is the sum of an identity coupling Id(μ∧ν) and an antitone
coupling P∗(μ′, ν′).

5. The transport map. The aim of this section is to prove Theorem 2.8 on the optimal
transport map T . The analysis rests on a specific Hahn decomposition that holds for arbi-
trary signed, diffuse measures on R and is provided in the first subsection. We then return
to our transport problem, showing in Sections 5.2–5.3 that T induces a coupling with the
constrained crossing property, and thus is optimal. Section 5.4 explains how marginals with
atoms can be reduced to the continuous case by a simple transformation.
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5.1. Sets of increase and decrease. Let F : R → R be a continuous function of bounded
variation. We recall that the signed measure ρ associated to F admits a unique Jordan de-
composition ρ = μ − ν into mutually singular nonnegative measures, and then τ = μ + ν

is the total variation measure of ρ. (In this section, μ and ν are arbitrary finite measures—
not necessarily of the same mass or even μ 	st ν.) Similarly to ρ, the function F can be
uniquely decomposed as F = Fμ − Fν into continuous nondecreasing functions that are mu-
tually singular; that is, V := Fμ + Fν is the total variation of F . Disjoint Borel sets Bμ,Bν

form a Hahn decomposition for ρ (or F ) if μ(Bc
μ) = ν(Bc

ν) = 0 and μ(Bν) = ν(Bμ) = 0. In
particular, τ is then carried by Bμ ∪ Bν .

If F is of class C1, the sets {∂F > 0} and {∂F < 0} clearly form a Hahn decomposition.
Moreover, the two sets are countable unions of intervals where F is monotone. Our purpose
is to provide a similar Hahn decomposition for bounded variation functions—here the sets
will merely be Borel, as it is well known that a function can be absolutely continuous without
being monotone on any interval (e.g., [15], page 109, Exercise 41).

Consider a function F : R→R and x ∈ R. We call x a point of strict increase if there is a
neighborhood of x in which x0 < x < x1 implies F(x0) < F(x) < F(x1). The set of all such
points is called the set of strict increase of F and denoted IF . Points of strict decrease are
defined analogously, and their set is denoted DF .

PROPOSITION 5.1. Let F : R → R be a continuous function of bounded variation. The
sets IF ,DF of strict increase and decrease form a Hahn decomposition for F .

PROOF. Step 1. Let μ,ν, τ and Fμ,Fν,V be as introduced above. Clearly μ,ν admit
densities fμ,fν with respect to τ , and these can be chosen to be indicator functions of
complementary sets by the Hahn decomposition theorem. That is, fμ(x), fν(x) ∈ {0,1} and
fμ(x) + fν(x) = 1 for all x ∈R.

Next, we claim that (with z/0 := 0, say) the limit

f (x) := lim
ε→0

μ([x, x + ε])
τ ([x, x + ε])

exists for τ -a.e. x ∈ R and defines a version of the Radon–Nikodym derivative dμ/dτ—
existence meaning particular that the limit is the same along any sequence 0 �= εn → 0. Let
V −1 be the right-continuous inverse of V . Then Fμ ◦ V −1 is nondecreasing and Fμ � V

implies that μFμ◦V −1 � λ, where μFμ◦V −1 is the Lebesgue–Stieltjes measure of Fμ◦V −1 and
λ is the Lebesgue measure. By Lebesgue’s differentiation theorem ([15], Theorem 3.21, page
98), Fμ ◦ V −1 is λ-a.e. differentiable and the derivative φ defines a density dμFμ◦V −1/dλ.

(In fact, Fμ ◦V −1 is even Lipschitz.) That is, there exists a Lebesgue-nullset Nλ such that for
y /∈ Nλ and y′ → y,

φ(y) = lim
y′→y

Fμ(V −1(y′)) − Fμ(V −1(y))

y′ − y

exists. Let N = V −1(Nλ); then τ(N) = 0 as τ = λ ◦ V . For x /∈ N we have y := V (x) /∈ Nλ.
As V is continuous and Fμ = Fμ ◦ V −1 ◦ V , using the above with y′ = V (x′) yields that

f (x) = lim
x′→x

Fμ(x′) − Fμ(x)

V (x′) − V (x)
= lim

y′→y

Fμ(V −1(y′)) − Fμ(V −1(y))

y′ − y

exists and satisfies f (x) = φ(V (x)). By the change-of-variable formula we see that f is a
density of μ with respect to τ . It now follows that f = fμ τ -a.e. As a result, for all x outside
a τ -nullset and any sequence εn → 0,

f (x) = lim
n

Fμ(x + εn) − Fμ(x)

Fμ(x + εn) − Fμ(x) + Fν(x + εn) − Fν(x)
∈ {0,1}.
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Step 2. Let I = IF , D = DF . The set (I ∪ D)c consists of three types of points. First, the
strict local minimum and maximum points; this subset is countable and hence a τ -nullset as
V is continuous. Second, the points which are contained in an interval of constancy of F .
There are countably many such intervals and each one is clearly a τ -nullset. Third, the points
of oscillation: If x ∈ (I ∪ D)c is not in an interval of constancy of F and if 0 �= εn → 0, then
for all n large we have either Fμ(x + εn) − Fμ(x) �= 0 or Fν(x + εn) − Fν(x) �= 0. If, in
addition, x is not a strict local extremum, continuity implies that there exist 0 �= εn → 0 such
that F(x) = F(x + εn); that is, Fμ(x + εn)−Fμ(x) = Fν(x + εn)−Fν(x). Combining these
two properties,

Fμ(x + εn) − Fμ(x) = Fν(x + εn) − Fν(x) �= 0

for all n large. In particular,

Fμ(x + εn) − Fμ(x)

Fμ(x + εn) − Fμ(x) + Fν(x + εn) − Fν(x)
→ 1

2
.

In view of Step 1, the set of all such x must be a τ -nullset. This completes the proof that
(I ∪ D)c is τ -null. It is easy to see that I and D are disjoint Borel sets. Noting also that
{f = 1} ⊆ I and {f = 0} ⊆ D, it follows that I,D form a Hahn decomposition. �

5.2. Basic properties of T . We return to our setting with given marginals μ 	st ν.
Throughout this section we assume that μ ∧ ν = 0, or equivalently, that μ and ν are mu-
tually singular. For simplicity of exposition, we first focus on the case of diffuse marginals μ

and ν; the extension to measures with atoms is then simple and carried out in Section 5.4.
We consider F = Fμ − Fν , a nonnegative continuous function of bounded variation with

F(−∞) = F(∞) = 0, its graph G and its hypograph H ,

G = {
(x, z) : z = F(x)

}
, H = {

(x, z) : z ≤ F(x)
}
.

Recall from Theorem 2.8 that

T (x) = inf
{
y ≥ x : (

y,F (x)
)

/∈ H
}

(5.1)

for x ∈ R, with the convention inf∅ = ∞. Let I = IF and D = DF be the sets of strict
increase and decrease of F , respectively (see Section 5.1).

LEMMA 5.2. We have μ(I) = ν(D) = 1. The function T is upper semicontinuous and
bimeasurable, it satisfies (T (x),F (x)) ∈ G whenever T (x) < ∞, and T (x) = ∞ if and only
if F(x) = 0.

PROOF. The statement μ(I) = ν(D) = 1 follows directly from Proposition 5.1 since
I,D form a Hahn decomposition for F and μ ∧ ν = 0. As H is closed, T is upper semicon-
tinuous. In view of G = ∂H , we also have (T (x),F (x)) ∈ G whenever T (x) < ∞. Finally,
F(∞) = 0 implies that T (x) = ∞ if and only if F(x) = 0. To see that T is bimeasurable—
that is, also satisfies T (B(R)) ⊆ B(R)—it suffices to show that there are at most countably
many points y whose preimage T −1(y) is uncountable; see, for instance, [25], Main Theo-
rem. Let y be such that T −1(y) contains more than one point. The construction of T shows
that all elements x ∈ T −1(y), except possibly one, are local minima of F , and they have
the common value F(x) = F(T −1(y)). Any real function f only has countably many local
minimum values f (x) (because each local minimum is minimal within a rational interval,
yielding an injection of the minimum values into Q2), so it suffices to show that for fixed y,
T −1(y) contains at most countably many points x which also have the property that T −1(x)

has several elements. If x0 < x is such that T (x0) = x, it follows that T −1(x′) = ∅ for all
x′ ∈ (x0, x) with F(x′) = F(x). Thus we can associate with x an interval of positive length
in which it is unique with the property in question, and that implies the claim. �
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FIG. 4. On the proof of Lemma 5.4.

5.3. Marginals and geometry of T .

LEMMA 5.3. The map T transports μ to ν.

PROOF. We show that μ{T ≤ y} = ν((−∞, y]) for y ∈ R. Define the continuous func-
tion

M(x) = F(x) − min
z∈[x,y]F(z) ≥ 0, x ∈ (−∞, y].

For x ∈ I with x ≤ y, M(x) > 0 is equivalent to the existence of z ∈ (x, y] such that F(z) <

F(x), thus equivalent to T (x) ≤ y. As μ is concentrated on I and T is directional, it follows
that

μ{T ≤ y} = μ
{
x ∈ (−∞, y] : T (x) ≤ y

} = μ
(
(−∞, y] ∩ {M > 0}).

On the other hand, M > 0 on D ∩ (−∞, y) and ν is concentrated on D, hence ν((−∞, y]) =
ν((−∞, y] ∩ {M > 0}) and it suffices to show that

(μ − ν)
(
(−∞, y] ∩ {M > 0}) = 0.

Noting that M(−∞) = M(y) = 0, we see that the set (−∞, y] ∩ {M > 0} is open and thus
is the union of countably many open intervals of the form J = (a, b) with M(a) = M(b) = 0
and M > 0 on J . The last two facts and the definition of M imply that

F(a) = min
z∈[a,y]F(z) = min

z∈[b,y]F(z) = F(b)

and hence (μ − ν)(J ) = F(b) − F(a) = 0, completing the proof. �

LEMMA 5.4. If x′, x ∈ R satisfy x′ < x ≤ T (x′), then T (x′) ≥ T (x). In particular, the
graph of T has the constrained crossing property.

PROOF. Let x′, x ∈ R satisfy x′ < x ≤ T (x′). Note that F(x) < F(x′) would imply
(x,F (x′)) /∈ H and hence T (x′) < x, a contradiction. Thus, F(x′) ≤ F(x). The semi-infinite
rectangle R = {(a, b) : x ≤ a ≤ T (x), b ≤ F(x)} is contained in the hypograph H , and simi-
larly for the rectangle R′ defined with x′ instead of x (cf. Figure 4).

To see that T (x′) ≥ T (x), it suffices to check that the segment [x′, T (x)] × {F(x′)} is
contained in H . In view of T (x ′) ≥ x, the first (x − x′)-long part of the segment has that
property, and the rest of the segment is contained in R and thus in H . �

We now have all the ingredients for the main result on T .

PROOF OF THEOREM 2.8. In view of Lemma 5.3 and T (x) ≥ x, we have that P := μ ⊗
δT ∈ D(μ, ν). Lemma 5.4 shows that P is supported on a set with the constrained crossing
property and then Theorem 2.2 yields P = P∗. �
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FIG. 5. Transformation of an atom in μ at x.

5.4. Reduction of atoms. Let μ 	st ν satisfy μ ∧ ν = 0 as before, but consider the case
where μ and ν may have atoms. We still write F = Fμ − Fν , now this function is right-
continuous rather than continuous. The idea is to reduce to the atomless case by a transfor-
mation which inserts an interval at the location of each atom, with its length corresponding
to the atom’s mass. The atom is then replaced by a uniform density (cf. Figure 5).

Let τ = μ + ν be the total variation and let

j (x) = x + ∑
y≤x

∣∣F(y) − F(y−)
∣∣, x ∈R

be the sum of the identity function and the cdf of the jump part of τ . Clearly j is strictly
increasing and right-continuous; we denote its right-continuous inverse function by j−1 :
j (R) →R. Moreover, let

Jx = [
j (x−), j (x)

]
be the interval representing the jump of j at x. In particular, Jx is an interval of length τ({x})
and a singleton {j (x)} if x is not an atom of μ or ν.

Define an auxiliary measure μ′ on R through its cdf as follows: for z ∈ j (R) we set
Fμ′(z) = Fμ(j−1(z)), whereas on the complement of j (R) we define Fμ′(z) by linearly in-
terpolating from its values on j (R). In other words, μ′ is defined by the two properties that
Fμ′(j (x)) = Fμ(x) for x ∈ R and if τ has an atom at x, then μ′ is uniform on the interval
Jx with total mass μ′(Jx) = μ({x}). It follows that j is measure-preserving in the sense that
μ′(j (B)) = μ(B) for any B ∈ B(R). A second measure ν′ is defined analogously from ν.

The construction implies that μ′ 	st ν′ if and only if μ 	st ν, and μ′ ∧ ν′ = 0 if and only
if μ ∧ ν = 0. Moreover, μ′ and ν′ are atomless. Thus, Theorem 2.8 applies to F ′ = Fμ′ − Fν′
and yields a Monge map T ′ := T (μ′, ν′). Reversing the transformation j , this map describes
the desired coupling P∗(μ, ν) as follows. (Of course, we can further apply Proposition 2.6
to produce a statement analogous to Corollary 2.9, covering the case of arbitrary marginals
μ 	st ν without imposing the condition μ ∧ ν = 0.)

THEOREM 5.5. Let μ ∧ ν = 0 and define T ′ = T (μ′, ν′) as above. Then P∗(μ, ν) =
μ ⊗ κ for the stochastic kernel

κ(x) =
⎧⎪⎨
⎪⎩

1

μ({x})ν
(· ∩ j−1(

T ′(Jx)
))

if μ
({x}) > 0,

δj−1(T ′(j (x))) if μ
({x}) = 0.

In particular, κ is of Monge-type with transport map T (x) = j−1(T ′(j (x))) whenever μ is
atomless.

PROOF. If μ({x}) > 0, then κ(x) is well defined by Lemma 5.2 and has the proper nor-
malization as μ({x}) = μ′(Jx) = ν′(T ′(Jx)). Among the points x with μ({x}) = 0, it suffices
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to consider those with j (x) ∈ I ′, the set of points of strict increase of F ′—indeed, as j is
measure-preserving, it follows from Lemma 5.2 that the complementary set is μ-null. For
j (x) ∈ I ′, Lemma 5.2 shows that κ(x) = δj−1(T ′(j (x))) is well defined. As T ′ defines a cou-
pling in D(μ′, ν′) and j is strictly monotone and measure-preserving, it follows that κ de-
fines a coupling in D(μ, ν). Moreover, we know that the graph �′ of T ′ has the constrained
crossing property (Lemma 5.4). The strictly monotone transform j does not invalidate that
property (Corollary 2.3), hence � := j−1(�′) has the same property, and � carries μ ⊗ κ , as
noted above. We conclude by Theorem 2.2. �

We note that P∗ can still be of Monge-type when μ has atoms: by Theorem 5.5, that
happens precisely if j−1(T ′(Jx)) is a singleton whenever μ({x}) > 0. This requires very
specific atoms in ν, as κ must transport each upward jump point of F to a downward jump
point, and moreover the downward jump must have at least the same size as the upward jump.
One example of such a match-up is given in (a) below.

EXAMPLE 5.6 (Empirical distributions). Consider marginals μ = 1
nμ

∑nμ

i=1 δxi
and ν =

1
nν

∑nν

i=1 δyi
in stochastic order.

(a) If the xi are distinct and nμ = nν =: n, then P∗ is Monge and the transport map T is as
constructed in the Introduction: considering the destinations S1 = {y1, . . . , yn} as a multiset
(i.e., distinguishing the yi even if they have the same value), we iterate for k = 1, . . . , n:

(i) T (xk) := min{y ∈ Sk : y ≥ xk},
(ii) Sk+1 = Sk \ {T (xk)}.
(b) The case nμ �= nν is natural when μ and ν are empirical distributions of observed

data—in the study of treatment effects, data are often not observed in pairs and hence the two
marginals may not have the same number of observations; see Section 1. The above algorithm
immediately extends to the case where nμ = mnν for an integer m, by redefining the yi . If
nμ and nν are arbitrary, and/or the atoms have possibly different, rational weights, we can
still write the marginals in the form μ = 1

n

∑n
i=1 δxi

and ν = 1
n

∑n
i=1 δyi

after by choosing a
suitable n, now with the xi not necessarily distinct. The principle of the above algorithm to
find P∗ still applies, but when several xi are at the same location, it will typically deliver a
randomized coupling since an atoms of μ may be mapped into multiple atoms of ν.

6. Further oroperties.

6.1. Antitone decomposition. As seen in Example 4.5, P∗ is the sum of an identity cou-
pling and an antitone coupling when the marginal densities satisfy a single-crossing condi-
tion. In this section, we analyze to which extent such a decomposition generalizes to other
marginals. The first result (together with Proposition 2.6) shows that P∗ is always the sum
of an identity coupling and countably many antitone couplings. We will see that in certain
cases, the marginal measures for those antitone couplings are simply restrictions of μ and ν to
specific intervals, as in the aforementioned example. In general, however, the decomposition
remains more implicit as the marginal measures do not admit such a simple description.

PROPOSITION 6.1. Let μ 	st ν satisfy μ ∧ ν = 0. Then P∗ is the sum of countably many
antitone couplings.

PROOF. In view of Theorem 5.5, we may assume that μ,ν are atomless. For any contin-
uous, nonnegative, nonconstant function G of finite variation with G(−∞) = G(∞) = 0, we
define xG = min(arg maxG) as the smallest global maximum point and set

G′(x) = min
y∈[x,xG]G(y)1{x≤xG} + min

y∈[xG,x]G(y)1{x>xG},
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whereas if G ≡ 0, we use xG := −∞ instead. Note that G′ is continuous, increasing on
(−∞, xG] and decreasing on [xG,∞), with 0 ≤ G′ ≤ G and maxG′ = maxG. Thus G′ can
be decomposed as G′ = Fμ′ − Fν′ where the singular measures μ′ and ν′ can be coupled
by a directional antitone coupling. This coupling, while equal to P∗(μ′, ν′), will be denoted
by P(G) for brevity. Moreover, μ′ ≤ μ and ν′ ≤ ν. Finally, the total variation V (G′) =
(μ′ + ν′)(R) satisfies V (G′) ≥ 2 maxG′ = 2 maxG.

Define F1 := F and

Fk+1 := Fk − F ′
k, k ≥ 1.

Using the above notation, P(Fk) is the directional antitone coupling between the singular
measures μ′

k, ν
′
k forming a decomposition for F ′

k .
To see that F = ∑

k F ′
k , note that V (F ′

k) → 0 as
∑

k V (F ′
k) ≤ V (F) = 2. On the other

hand, V (F ′
k) ≥ 2 maxFk , so that maxFk → 0; that is, Fk uniformly decreases to zero and in

particular F = ∑
k F ′

k . This shows that
∑

k P (Fk) is a coupling of μ and ν. Clearly this cou-
pling is directional, and thus equal to P∗(μ, ν) by Theorem 2.2 if it satisfies the constrained
crossing property. To verify the latter, let x be a point of strict increase of Fk and suppose
that the transport map Tk of P(Fk) maps x to y. Then Fk(x) = Fk(y) and Fk(z) ≥ Fk(x) > 0
for all z ∈ [x, y]. It follows for any j < n that F ′

j (z) < Fj (z) for all z ∈ [x, y], which in turn
implies that F ′

j is constant over the interval [x, y]. In other words, the couplings P(Fj ) for
j < k cannot transport any mass into the interval or out of the interval. This shows the con-
strained crossing property, and in addition that the marginals μ′

j (resp. ν′
j ) of P(Fj ), j ≤ k

are supported on disjoint sets which are finite unions of intervals. �

In particular cases, we can obtain the antitone couplings in P∗ explicitly as antitone cou-
plings between disjoint intervals.

EXAMPLE 6.2 (Multiple-crossing densities). Assume that μ and ν are atomless and that
F = Fμ − Fν is piecewise monotone (with finitely many pieces). Then by inspecting the
proof of Proposition 6.1, we see that P∗ is the sum of the identical coupling of μ ∧ ν and
finitely many antitone couplings between pairs of disjoint intervals.

As an important special case extending Example 4.5, suppose that μ and ν have continuous
densities that cross finitely many times. Then F = Fμ −Fν = Fμ−μ∧ν −Fν−μ∧ν is piecewise
monotone and the optimal coupling between μ − μ ∧ ν and ν − μ ∧ ν is the sum of finitely
many antitone couplings between disjoint intervals.

In contrast to the above example, the following shows that a decomposition into antitone
couplings between intervals is not possible in general.

EXAMPLE 6.3 (Absence of antitone intervals). Let μ be the Cantor distribution on [0,1]
and ν be uniform on [0,2]. Clearly μ ∧ ν = 0. We first verify that μ 	st ν, or equivalently
D(μ, ν) �= ∅. Each element x ∈ C, where C is the Cantor ternary set, can be represented
in base 3 as x = 2

∑∞
n=1 xn3−n where xn ∈ {0,1}. The comonotone transport TC given by

TC(x) = 2
∑∞

n=1 xn2−n is directional and transports μ to ν. Hence, μ 	st ν.
Next, we show that P∗ ∈ D(μ, ν) does not contain any antitone couplings between

intervals. Assume for contradiction that there exists an interval [a, b] ⊆ [0,1] such that
μ([a, b]) > 0 and T |[a,b] is the antitone mapping between μ|[a,b] and its image. This im-
plies that there exists c such that μ([a, c]) > 0 and T transports μ|[a,c] to a distribution sup-
ported by (c,∞). However, by Theorem 2.1, T transports μ|(a,∞) to a distribution νa whose
minimality property together with ν([a, c]) > 0 imply that νa charges [a, c], a contradiction.
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6.2. Optimality as unconstrained transport. The optimal directional coupling P∗ is also
the optimizer for certain classical transport problems (unconstrained and with finite cost func-
tion) where the constraint is “not binding,” although only for specific marginals. We confine
ourselves to giving one example. Consider μ 	st ν and the transport problem

inf
P

∫
c
(|y − x|)P(dx, dy)(6.1)

over all couplings P of μ and ν. Suppose that c :R →R+ is increasing and concave, so that
c(|y − x|) is supermodular on H but (typically) not on R2.

PROPOSITION 6.4. If F = Fμ − Fν is unimodal, then P∗(μ, ν) is an optimal coupling
for the unconstrained problem (6.1). If c is strictly concave, the optimizer is unique.

This follows from the general results stated in [17], Part II. A direct argument is sketched
below.

PROOF. We know from Theorem 2.2 that P∗ is optimal among all directional couplings.
To rule out that a nondirectional coupling has a smaller cost, the key observation is that if
P is an optimizer, it is concentrated on a c-cyclically monotone set �, which implies that
� cannot contain pairs (x, y), (x′, y′) with y < x and either (i) x′ ∈ [y, x) and y′ ≥ y or (ii)
y′ ∈ [x, y) and x′ ≤ x. Together with the unimodality condition, this can be seen to imply the
result. We omit the details in the interest of brevity. �

The unimodality condition in Proposition 6.4 is crucial; for example, the assertion fails for
μ = 1

2(δ0 + δ13) and ν = 1
2(δ12 + δ25) with cost function

√|y − x|.
6.3. Other constraints. The directional constraint Y ≥ X naturally generalizes to Y ≥

X + D for a measurable function D : R → R such that x �→ x + D(x) is strictly increasing.
For instance, if D ≡ d is constant, this means that the transport must travel as least a distance
d to the right (or at most distance |d| to the left, if d < 0). While Y ≥ X is equivalent to
P(H) = 1, the generalized constraint is expressed as P(D) = 1 for the epigraph D of x �→
x + D(x). We denote by DD(μ, ν) the set of all such couplings P of μ,ν.

The construction of P∗ naturally extends to this constraint. Indeed, let Z(x) = x + D(x)

and consider arbitrary distributions μ and ν on R. We define the transformed marginal μ′ =
μ◦Z−1 and define μ 	D ν to mean that μ′ 	st ν. Then μ 	D ν if and only if DD(μ, ν) �= ∅,
and more generally, the transformation Z induces a bijection between DD(μ, ν) and the
set D(μ′, ν) of directional couplings between μ′ and ν. If we define the analogues of the
constrained crossing property, constrained submodularity, etc., for D, this bijection preserves
the crossing/optimality properties and we find that

P D∗ (μ, ν) := P∗
(
μ′, ν

) ◦ (Z, Id)

has the properties analogous to the optimal directional coupling for the constraint D. We omit
the details in the interest of brevity.
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