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ABSTRACT. The article addresses the mathematical modeling of the
folding of a thin elastic sheet along a prescribed curved arc. A rig-
orous model reduction from a general hyperelastic material description
is carried out under appropriate scaling conditions on the energy and the
geometric properties of the folding arc in dependence on the small sheet
thickness. The resulting two-dimensional model is a piecewise nonlinear
Kirchhoff plate bending model with a continuity condition at the fold-
ing arc. A discontinuous Galerkin method and an iterative scheme are
devised for the accurate numerical approximation of large deformations.

1. INTRODUCTION

Because of their relevance in the development of new technologies bending
theories for thin sheets have attracted considerable attention within applied
mathematics in the past decades, with renewed activity following the semi-
nal article [FJMO02a]. In the present article the folding of thin elastic sheets
along a prepared curved arc is considered which naturally leads to bend-
ing effects, cf. Figure This setting has only been partially addressed
mathematically, e.g., [DD82; BBH22], but has recently attracted consider-
able attention in applied sciences, cf., e.g. [Sch+15; CM19; [PM19; PHL19;
Cab+19; |Liu+21] and references therein. Particular applications arise in
the design of cardboxes and bistable switching devices that make use of
corresponding flapping mechanisms. It is our aim to derive a mathematical
description via a rigorous dimension reduction from three-dimensional hy-
perelasticity and to devise effective numerical methods that correctly predict
large deformations in practically relevant settings.

To describe our approach we let S C R? be a bounded Lipschitz do-
main that represents the midplane of an asymptotically thin sheet and
let ¥ C S be a curve (with endpoints on 0S) that models the crease,
i.e., the arc along which the sheet is folded. The corresponding three-
dimensional model involves a thickness parameter h > 0 and the thin do-
main Qp = S x (—h/2,h/2). The material is weakened (or damaged) in a
neighbourhood of width » > 0 around the arc ¥ and we consider for given
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functions W and f., the hyperelastic energy functional for a deformation
zZ Qh — R3

EMz) = A Jer(@)W(Vz)dz.

Here f.,(z) € (0, 1] is small with value € > 0 close to the arc ¥ and approx-
imately 1 away from the arc, the function W is a typical free energy density.
Hence, the factor f., models a reduced elastic response of the material close
to Y. By appropriately relating the thickness h, the intactness fraction e,
and width r of the prepared region, we obtain for (h,e,7) — 0 a mean-
ingful dimensionally reduced model which seeks a minimizing deformation
y: S — R3 for the functional

1 /
B) = g [ Q)

where A is the second fundamental form related to the parametrization y
which is weakly differentiable in S with second weak derivatives away from
>, i.e., we consider

y e W22(S\ ;R3) N Whe°(S;R?).

The quadratic form @ is obtained by a pointwise relaxation procedure of
the Hessian of W. For isotropic materials it can explicitly be represented in
terms of the Lamé coefficients, cf. [FJM02a]. Furthermore, the deformation
y is required to satisfy the pointwise isometry condition

(Vy)"(Vy) =1,

which implies that no shearing and stretching effects occur. The minimiza-
tion of F'k is supplemented by boundary conditions and possible body forces.
Note that for our scaling of the parameters ¢, r, and h, e.g., ¢ = o(h) and
r = O(h), no energy contributions such as a penalization of the folding an-
gle arise from the crease, i.e., the material can freely fold along the arc and
y is in general only continuous on . In our analysis, the damaged set is
required to be wide enough to ensure that the strain of the folded sheet can
easily remain of order one, and the damaged material should be soft enough
to ensure that the energetic contribution of the fold becomes asymptotically
negligible. On the other hand, if the damaged material is too soft, the sheet
could fall apart; our compactness ensures the continuity of the asymptotic
deformation across the fold.

In the absence of a crease X the model coincides with Kirchhoff’s plate
bending functional describing, e.g., the deformation of paper, which was
rigorously derived in [FJMO02a|. We slightly modify the arguments given
there to take into account the fact that any asymptotic deformation which
does not only bend but also folds has infinite Kirchhoff energy. This is
because the Hessian corresponding to a folding deformation is not square
integrable. Other variants of the setting from |[FJMO02a] have been addressed,
in [Fri+03; [FJMO02b; HV18; Vell5; [Sch07] and many others.
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FiGURE 1. Left: Geometry of a prepared elastic sheet S
with folding arc X that separates regions S7 andf So; bound-
ary conditions are imposed in the points zp,z’5. Right:
When the boundary points zp and z’; are moved towards
each other a flapping mechanism occurs.

A typical setting and an experiment are shown in Figure [I] and a coarse
visual inspection indicates that the scaling relation r ~ h together with a
sufficiently strong compression of the material along the arc lead to the de-
sired folding effect. Interesting phenomena take place at the folding arc. It
was observed in that a deformation on one side of the arc locally re-
stricts possible deformations on the other side. In fact, only a finite number
of scenarios is possible and either the gradients coincide along the arc result-
ing in a smooth deformation or a discontinuity occurs and the deformation
is locally up to a sign uniquely determined. This important effect is a result
of the isometry condition and the related physical property that thin elastic
sheets are unshearable in the bending regime. Moreover, this effect arises
in biology and inspires the development of new technologies and design in

architecture [Sch+15].

Our numerical method to approximate minimizers is based on a discontin-
uous Galerkin method from which generalizes the approach based
on a nonconforming method of [Barl3]. It allows us to define a discrete
curve ¥ as a union of element sides that approximates Y and to account
for possible discontinuities of deformation gradients along > by simply re-
moving typical jump terms in the discrete formulation. The continiuity
condition on the deformation y along the interface X is similar to a simple
support boundary condition in linear bending theories. For such problems
the plate paradox, cf. [BP90], states that convergence of approximations re-
sulting from polyhedral approximations of curved domains or interfaces fails
in general. We therefore consider piecewise quadratic approximations ¥ of
Y. We note however that we do not observe significant differences to ap-
proximations obtained with piecewise linear arcs ¥ in the nonlinear setting
under consideration.
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We assume for simplicity and without loss of generality that Q(A) =
|A]? and use that the Frobenius norm of the second fundamental form
equals the Frobenius norm of the Hessian in the case of an isometry v, i.e.,
|A|2 |V2y|2. Our numerical method then uses discontinuous deformatlons

: S — R3 from an isoparametric finite element space V3 L?(S;R3) sub-
ordlnated to a partitioning T of S and a suitably defined discrete Hessian
H(Y) in S\ 3 which define the discrete energy functional

~ o~ 1 ~ ~
Ex(Y) =5, /S\E|H(Y)|2da:/

+7"/~ h£~3|[[}7]]|2ds+71/~ B VY] P s,
2 Juga 2 JugaS

The last two terms are typical stabilization terms with the mesh-size function
hg on the skeleton & of the triangulation T that guarantee coercivity and

enforce continuity of Y and the elementwise gradient Vy across interelement
sides or essential boundary conditions on certain boundary sides as the mesh-
size tends to zero. The union of all such sides is the set of active sides which
is denoted by £¢. Crucial here is that the penalized continuity of VY is not
imposed along the discrete folding arc 3 and that related consistency terms
do not enter in the definition of the discrete Hessian H. The important
isometry condition is imposed up to a tolerance via a sum of integrals on
elements, i.e., we require that

for a suitable tolerance ¢ > 0. To obtain accurate approximations of large
deformations choosing a small parameter is desirable. Its particular choice
is dictated by available density results. If, e.g., the density of smooth folding
isometries can be guaranteed similar to [Horll| even a pointwise controlled
violation criterion can be used; otherwise a condition g > ¢ h% has to be
satisfied, cf. [BNN21]|. Boundary conditions on a part of the boundary 0S5
are included in the discrete problem via an appropriate definition of the jump
terms. A justification of the discrete energy functionals via I" convergence
as in [Barl3; BBN17; [ BNN21]| is in preparation.

The iterative solution of the constrained minimization problem follows the
ideas of [Barl3; BBN17; BNN21|] and is realized by a discrete gradient flow
with a suitable linearization of the constraint. In particular, we consider the
linear space F|[Z] of variations for a given deformation Z € A defined via

(1) Ved={Ze¥:y ]/Tﬁz)T(%Z)_zdgcf

TeT

Flz)={W e / (V2)" (VW) + (V)T (VZ)da’ =0 for al T € 7).
T

We furthermore let (-, ), be an inner product and 7 > 0 a step size. Given
an approximation Y*~! € A we look for a correction d;Y* € F[Y*~1] such
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that
(2) (dY* V), +ag(Y* 4 7d Y5, V) =0

for all V € F[Y*~1] and with the discrete bilinear form d associated with
the discrete quadratic energy functional EK The existence of a unique
solution d;Y* is an immediate consequence of the Lax—Milgram lemma and
we define the new approximation

Ph = VA g rd, 7F,

This implies the interpretation Qf the symbol d; as a backward difference
quotient. By choosing V = d;Y* one directly obtains the energy decay
property for £ =0,1,...,
¢
Ex[Y]+7)_[ldY*|? < Ex[Y] = B
k=1

in particular, we see that ||d;Y*||, — 0 as k — oo, i.e., the iteration be-
comes stationary. Because of the orthogonality relation included in the
space F [Yk 11 we can bound the violation of the isometry constraint by
repeatedly replacing Yk=Yvyk14 Tthk ie., forall T € T we have

/ OVHTOV - Ida’ = / VTV - 1 4 12 Zﬁdt?kﬁdt?k do'.
T T k=1

If the discrete gradient flow metric (-,-), controls the L? norm of the ele-
mentwise gradient, we obtain from the energy decay law the estimate

> / [VYTVY! — 1da'| <0+ e, B,

TeT
where €9 is the initial isometry violation. In particular, we see that if 7 and
5~0 are sufficiently small, an arbitrary accuracy can be achieved and we have
Y € A independently of the number of iterations ¢ > 0.

Using the numerical scheme we simulate various scenarios that are moti-
vated by practical applications, e.g., how the shape of the folding arc affects
the flapping mechanism, or address subtle analytical features of solutions,
e.g., the occurrence of energy concentrations when the curve ¥ has a kink.
Besides that we illustrate the robustness of the numerical method with re-
spect to the choice of stabilization parameters and discuss the construction
of suitable deformations that serve as starting values in the discrete gradi-
ent flow. Our experiments show that large deformations in highly nontrivial
settings can be accurately computed with moderate resolution.

The outline of the article is as follows. In Section [2]we describe the general
setup and the dimensionally reduced model. Its rigorous derivation is given
in Section [3l The discontinuous Galerkin finite element method is derived
and stated in Section 4l Numerical experiments are reported in Section
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2. PRELIMINARIES

2.1. Hyperelasticity for plates. For a bounded Lipschitz domain S C R?
we consider a plate of thickness h > 0 occupying the domain €2, = S X I, in
the reference configuration. The elastic energy stored in the configuration
determined by a deformation z : Q5 — R3 is given by

W(Vz)dz.
Qp
Here W is a frame indifferent stored energy function and as in [FJMO02a| we
impose the following conditions:

(H1) W € CO(R3*3) and W € C? in a neighbourhood of SO(3).

(H2) W is frame indifferent, i.e., W (F) = W(RF) for all F € R3*3 and
all R € SO(3). Moreover, W(I) = 0.

(H3) There is a constant C' such that dist%o(g) < CW; here distgo(s) :

R3%3 — [0, c0) denotes the distance function from the set SO(3).

To analyze the limiting behaviour as h — 0 it is convenient to work on
the fixed domain
Q=5x1,
where I = (—1/2,1/2). We define a rescaled deformation y" : Q — R? by
setting 4" (', 23) = z(2’, has). Then the (re-scaled) elastic energy is given
by

') = [ (Vi) dz,
Q
where Vyy' = (V'y" | +95y") and V' = (01, 02).

2.2. Notation. Throughout this article we use standard notation related
to Sobolev spaces, e.g., W*P(U;R") denotes the set of s times weakly differ-
entiable, Rfvalued functions in LP whose weak derivatives are p-integrable.
LP norms are often used without specifying a domain when there is no am-
biguity, and we abbreviate the L? norm on S by || - ||. We occasionally omit
target domains R¢ when this is clear from the context. The open ball of
radius r > 0 around a point x € R" is denoted by B, (x). For integral func-
tionals ocurring below, it is often useful to specify their integration domains
explicitly, e.g., we write

E(y; S) = /SF(y) da'.

For the canonical choice, e.g., S=5 , this argument is usually omitted. For
S C R? we identify maps defined on S with their trivial extension to S x R.

2.3. Folded plates. Our aim is to modify the arguments from |[FJM02a]
in order to allow for folding effects along a prescribed curve, see Figure
In applications, the folding curve ¥ is prescribed by weakening the material
along it.

Throughout this article S C R? is a bounded Lipschitz domain. From now
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on X C S is a Jordan arc with both endpoints on the same connected
component of dS. More precisely, let o : [0,1] — R? be continuous and
injective, set ¥ = ¢(0,1) and 0¥ = {0(0),0(1)} and assume that ¥ C S
and that 9% is contained in one single connected component of 9S. Then
S\ X consists of precisely two connected components S7 and So. We assume,
in addition, that ¥ is such that both S7 and S are Lipschitz domains.
This latter hypothesis entails a great deal of regularity on Y. In particular,
> is locally a Lipschitz graph. Therefore, the area of the sets

Sk = Br(%) = | Br(z)
TEX
converges to zero as R | 0. As explained in the introduction, we let 7y,
ep > 0 be parameters that define the width of the prepared region and the
amount of the material intactness. We then define f : S — [0, o] by
(3) " =enxs,, +1-xs,,,

where s denotes the characteristic function of a set M. With this we con-
sider the (re-scaled) three-dimensional energy functional E" : W12(Q; R3) —
[0, 00]

(4) Eh(y) = / P )W (Vay () da.
Q

Passing to the thin film limit h~ — 0 leads to a pointwise isometry constraint,
but does not exclude and discontinuities of the gradients across the arc X:
we are led to the set of asymptotically admissible deformations

A(S,2) = {u e WH(S;R3) N WH2(S\ B;R?) :
(Vu)"(Vu) =TI a.e. on S}.

The corresponding asymptotic energy functional Ex : W2(S;R3) — [0, oo]
is defined as

()

+00 otherwise.

Exc(y) = {214 Jos Q) da'  if uc A(S,3),

Here, A is the second fundamental form of the surface parametrized by ¥y
with unit normal n = 01y x 0sy, i.e.,

A= (Vn)T(Vy),

and @ is obtained by relaxing, over the third column and row, the quadratic
form corresponding to the Hessian D?W (I) of W at the identity matrix, i.e.,

Q(A) = min D*W(I)[(Al]d), (A|d)],

where for given A € R?*2 the matrix (A|d) € R3*3 is obtained by con-
sistently appending a row and column defined by d € R3. Note that by
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hypotheses (H1)-(H3) we have the Taylor expansion

Wu+th_§D%wnwuq+dw)

for F € R3*3 and h > 0.

Remarks 2.1. (i) Observe that every y € A(S,X) belongs to WH*°(S;R3),
because y € WH2(S;R3) and its derivatives are bounded almost everywhere
on S since (Vy)T(Vy) = I almost everywhere. In particular, y is continuous
on S.

(ii) We recall that a Lipschitz function f is in W22(S\ X) precisely if there
is an F € L*(S;R?*2) such that V2f = F in the sense of distributions on
S\ X.

3. GAMMA-CONVERGENCE

The purpose of this section is to prove the following result.

Theorem 3.1. Let ¢y, 1, € (0,00) be null sequences satisfying
h2

(6) limsup — < oo
h—0 €h
and
h
(7) limsup — < o0
h—0 Th
as well as
. EnTh
8 limsup —— = 0.
( ) h—0 h?

Define f* as in , define E™ as in and define Ex as in .
Then deformations with finite bending energy are compact and %Eh Gamma-
converges to Ex. More precisely:

(1) Assume that y"* € WY2(Q,R3) are such that

1
lim sup —2Eh(yh) < 0.
h—o N
Then there exists a subsequence (not relabelled) and y € A(S,X) such
that y" — y weakly in W12(Q) and locally strongly in WH2((S\X) x
I).
(2) Assume that y" — y weakly in WH2(Q). Then

Ek(y) < liminf E"(y™).
h—0
(3) Lety € WY2(Q). Then there exist y* € W12(Q) such that

1
lim — E"(y") = Ex(y).
lim 5 E*(y") = Bk (y)
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Remarks 3.2. (i) The bound (6)) ensures that the damaged material is not
too soft. This is used in the proof of the compactness result, Part |1 of
Theorem (3.1}, as it rules out discontinuities of the asymptotic deformation
across X.

The bound requires the damaged part of the material to be wide enough
with respect to the thickness of the sheet, while asserts that the damaged
portion of the material should be soft enough to ensure that the fold does
not contribute to the asymptotic energy. Conditions and are used in
Part[3 of Theorem[3.1], as they exclude excessive strain.

(i) Observe that @ through are met, for instance, if €, ~ h? and
ry ~ h.

Theorem [3.1] is a consequence of Proposition [3.3] and of Proposition
below. Both of them rely on arguments and results in [F.JMO02a).

3.1. Compactness and lower bound.

Proposition 3.3. Let ey, v, | 0 as h | 0 and assume that @ is satisfied.
If yh € Wh2(S,R3) satisfy
lim sup %Eh(yh) < 00,
h—0
then there exists a map y € A(S,X) such that, after taking subsequences,
Yy — y weakly in WH2(Q,R3) and locally strongly in W2((S\ £) x I,R3)
as h | 0. Moreover,

1
Ex(y;S;) < liminf —Eh(yh;Si x I) fori=1,2.
h—0 h?2

Proof. We omit the index h in €5 and rp; the letter C' denotes constants
that do not depend on h. By the definition of f* in we have

/ W(Vay") de < Ch? < C.
O\(E, x1)
On the other hand, by @,

£ W(Vipy") da = / AW (Vipyh) dz < Ch? < Ce.
YpxI YexI

From hypothesis (H3) on W we deduce that
/Q distog)(Vay") dz < C /Q W(Vpy") dz < C.

Hence (V") is uniformly bounded in L2(Q2) due to the hypotheses on W.
This implies that there exists y € W12(S) such that " — y weakly in
W12(Q), after taking subsequences. Indeed, we first notice that (Vy") is
uniformly bounded in L?(2) and therefore, after taking a subsequence (not
relabelled), we see that there is some y € WH2(Q) such that y* — y weakly
in W12(Q). Then we note that ||83yh||L2(Q) < Ch — 0 implies that dzy = 0.
Hence y does not depend on z3 and therefore we can identify it with a map
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(denoted by the same symbol) in W1?(S).
Since f(S\E,«)XI) W(Vpy")de < Ch? and » — 0, by monotonicity of the
integral we conclude that for any (h-independent) R > 0 we have

/ W (Viy") dz < Ch?
(S\ER)XI

for all small enough h. The constant C does not depend on R.
Now fix a small R > 0 and define S® = S; \ Xg for i = 1, 2; both are
Lipschitz domains. We can apply [FJMO02a, Theorems 4.1 and 6.1 (i)] on
each SE. Hence y" — y strongly in W12?(S% x I) and y € A(S, Xg) with

1

(9) 2 Q(A)dz’ < liminf h2 W(Vhyh) dz < C.
SR h—0 SRExI

Here A is the second fundamental form of y on S\ ¥ = SF U SE. Since y
is an isometric immersion, by [FJMO06, Proposition 6] we have

|V2y| = |A| almost everywhere on S\ Xg.
Hence @ implies that
(10) HV2yHL2(S{a) + HVQZJHB(sg) <C.

This is true for all R and the constant C' does not depend on R. As noted
carlier, the area of ¥ converges to 0 as R — 0. Hence y € W22(S\ ¥) and

/ Q(A)dz’ =limsup | Q(A)dx’ < .
Sy R—0 JSE

Summarising, we have y* — y locally strongly in W1H2((S \ ¥) x I) and
y € A(S,X).
According to @, for every small R > 0 we have

Eic(y; Sf) < limint h=B"(y"; S x 1)
—>
< liminf h2E"(y"; S; x I).
h—0
The right-hand side does not depend on R. Taking the supremum over all
small R > 0, we therefore see that
Ex(y; S;) < liminf h=E"(y"; S; x I).
h—0
O

3.2. Recovery sequence. In the proof of Proposition below we will
use the following lemma.

Lemma 3.4. Let U C R? be a bounded Lipschitz domain. Then there exists

a constant § > 0, depending only on the Lipschitz constant of U, such that

the following is true: if M C U satisfies |M| < §(diam U)? and if we set
2| M|

R= 5
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then Br(x) intersects U \ M for each x € U.

Proof. This is standard; we include the proof for convenience. By Defini-
tion 1.3 in [Gia83, Chapter III] and the remark following it, there exists a
constant § > 0, depending only on the Lipschitz constant of U, such that
|B,(2) NU| > 6p? whenever z € U and p < diam U.

If Bg(x) did not intersect U \ M, then Br(z) NU C M and thus we would
have

2|M| = 6R* < |Br(z)NU| < |M|,
a contradiction. O

The main result of this section is the following proposition.

Proposition 3.5. Let e, r, € (0,00) be null sequences satisfying and
and lety € A(S,X). Then there exist y" € WH2(Q,R3) such that y" — y
weakly in WH2(Q,R?) and

. b h
(11) i E%(y") = B (y).
Proof. As before Sp 2 denote the connected components of S\ X. Denote
the restriction of y to S; by u; and denote by n; the normal to u;. In this
proof we will write ¢ instead of €5, and r instead of r;,. The letter C' denotes
constants that do not depend on h as h | 0.
Let U C R? be an open ball containing the closure of S. As each S; is a
Lipschitz domain, by [Ste70] we can extend each u; and each n; to maps

u; € W22(R?, R?) N WH=(R? R?)

n; € WHE(R? R3) N L°(R?, R3)

supported in U. Notice that we use the same symbols to denote the extended
maps as for the original ones. The norms of the extended maps can be
bounded by those of the original ones, up to a factor that only depends on

U, S and on X.
As in the proof of [FJMO02a, Theorem 6.1 (ii)] we truncate the maps n; and

(12)

u; and thus obtain sequences of maps n? and uf satisfying the bound
1
(13) (V)2 Ul oo 0y + 11V | oo o) < 7
while at the same time there is a set M" C S with
(14) li M 0
im sup =
h—0 h?
such that
(15) ul' = u; and nf' = n; on S\ M.

Since |[M"| — 0 by (14), Lemma shows that there is a constant § de-
pending only on S and X, such that choosing

_ 2]
Ph = 5
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we have
(16) By, (x0) NS\ My, # 0 for all zp € S.
By we have
(17) lim sup Ph — 0.
h—s0 h

We claim that, for ¢ = 1,2, the following L° bounds are satisfied for a
constant C' depending only on y, S and X:

1
(18) —|ul — ;| + |[V'ul| + |n'| < C almost everywhere on S.
Ph

In fact, implies that

(19) |V'ui| 4 |ni| < C almost everywhere on R,

Since uf = u; (hence V' u? = V'u;) and nf” = n; almost everywhere on

S\ M" by (15), we clearly have
(20) |V'ul’| + [nf| < C almost everywhere on S\ M".

On the other hand, shows that the Lipschitz constants of V' uf and of
nf on U are bounded by 1/h. By (16), for all z € S there is a y € S\ M"
such that

1
nl@)] < Inf ()| + Inf () = nl ()] < C+ 7o —yl < O+ L2,

Here we used to estimate [n”(y)|. In view of this implies the bound
on [n?| asserted in (18). The bound on |V'u?| is proven similarly.

In particular, the Lipschitz constants of uf : S — R? are uniformly bounded.
Since wu; is Lipschitz as well, the maps u? — u; are Lipschitz on S with
uniformly bounded Lipschitz constants as A | 0. Since uf —u; = 0 on
S\ M" we deduce from that |u? —u;| < Cpy, on S. This concludes the
proof of .

We will now define the recovery sequence. In order to do so, for each h let
n" € C=(S,[0,1]) be a smooth cutoff function with n* = 1 on S; \ ¥, and

nh =0 on S \ X,; we choose it such that

C
(21) VD" || oo () < —
Set 77? = 75" and 7751 =1-—nh Letde Whee (S, R?) and define the recovery
sequence
2 22
(22) Y@l m3) =) (u?(x') - hxgnff(x’)) ni' (@) + W ().
i=1

For later use we note that by this definition
2

y" - Z umzh

=1

< h(|nf| + [n5]) + h2|d].
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Hence, in view of we conclude that there is a constant C' depending
only on S, ¥ and y such that
(23) ly" —y| < Ch(1+h|d|) on (S\%,) x I.
Now we compute

2
V(! z5) = Z (V'u?(x’) + hxgvln?(x')) nl(z)
=1

2 2
+ Z (u?(a:’) + hmn?(x’)) Vinh') + hZ%V’d(a:’).
i=1
Recalling that n{l =" and 773 =1 —n", we see that on X, x I

2
V'Y <> (VU] + BV'n))
4 =1
(24) -l — u2|| V] + R — nk ||V + B2V
1 h
<C(1+ ;|u’f —ul| + ;|ni‘ —nbl).

We have used the bound as well as and the estimate for V/ nf

Similarly, since
2

y(a',x3) = h Z n} (2 )i (') + hPwsd(2'),
i=1
we can estimate

2
1
(25) Elazayhl < D Ininf + hlasd| < C(Inf| + [nf| +h) < C,
i=1

in view of . Recalling , we deduce from and that
1

(26) IVry"| SC(1+;|ulf—ug|) on X, x I.
Here we used (18) to estimate |n? — n%| on the right-hand side of . We
claim that
(27) lul —ul| < Cron %,.
To prove this, note that , and imply that

|u) — us| < Cpp < Ch < Cron S.
Hence it remains to show that
(28) |ur —ug| < Cr on X,.

But u; — ug is Lipschitz on U in view of . Moreover it is zero on X
because y is continuous. Hence follows from the definition of 3. This
concludes the proof of .
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By and we see that
IVhY" | Lo (5, x1) < C-
Since W is locally bounded, this implies
IW (V") Lo (s, 1) < C-
Therefore, since |3,| < Cr due to the regularity of ¥,

1 4w on € h Cer
ﬁE (y 727‘ X I) = ﬁ ETXIW(Vhy )dl‘ < ?
The right-hand side converges to zero due to (8).

On S; \ ¥, the function nf‘ is identically equal to 1. Hence
h%x3
2
The map R = (V'y | n) clearly takes values in SO(3). Define

(29)

(30) Vay" = (V'ul | ) + has(V'nl | d) + (V'd | 0) on (S;\ %) x 1.

h T/l h hf’fg T/
a; = x3R (Vni|d)+TR (V'd | 0).

Then

(31) 0| < CV'nl| + |d] + hV'd]) < C(1 + [V'nl).
Hence ensures that, for small h,

(32) hlal| < C on S.

On S\ M" we have nf = n;, hence V’ Z‘ = V’n; almost everywhere on this

set. Therefore, shows that

(33) lal'| < C(1 4 |V'ny]) on S; \ M.
By the frame indifference of W we have, almost everywhere on (S;\ 2,) x I,
(34) W(Viy") = W(R"Vpy") = W(RT(V'ul! |n]') + hal).
On S; \ M, we have (V'ul |nl) = R, so on (S; \ 2, \ M") x I

1 1

S W(Vny") = W+ hay)

C .
< ﬁdlstgo(:s)(l + hal) < Clal)?.

We have used and the fact that the hypotheses on W imply that W <
C dist?gow) on bounded subsets of R3*3. Now implies the bound

1
(35) maXsam, W+ hal') < C(1+ |V'n?).

The right-hand side is in L!(S;) and does not depend on h. On the other
hand, by Taylor expansion and since || — 0 and [M"| — 0

1 1
FEXEAZAM) < T W (L + hal) — 5@s (z3RT(V'n; | d))
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pointwise almost everywhere on S; x I. Combining this with we can
apply dominated convergence to conclude

1 1
(36) BN (SINENMY) x D) = 7 | Qa(R(V'ni|d)) do’
We now claim that
(37) lim sup | (V3y") | 2o ((s\53,)x 1) < 00
h—0

In fact, since W is locally bounded, will follow once we show that

(38) IV Ry oo ((s\2)x1) < C-
But by (30), on (S; \ ;) x I we have

(Vay" < C (14 IVl + Il + B[Vl )

The last term on the right-hand side is uniformly bounded due to ,
whereas the other two are uniformly bounded due to . This concludes

the proof of .
Using we see that

C
ﬁ|Mh|-

1 1
(39)  SE"y", (Mu\Sr) xI)=— / W(Viy") <
h h* J s, xr

By the right-hand side converges to zero as h — 0. Summarizing, by
combining , and we see that

1 1 , ,
BN MLQg(RT(Vn\d))dx,

where n is the normal to y. Relaxing over d € L? as in [FJMO02a], the
convergence follows.

More precisely, there exist d; € Whee (S, R3) converging strongly in L? and
a sequence h; — 0 such that, defining vy as in with d = d;, the
convergence is true for h = h;. Propositionimplies that, after taking
a subsequence, (y") converges weakly in W12(Q) to some § € A(S, ).
Since the d; remain uniformly bounded in L?, estimate ensures that
y=y. O

4. DISCRETIZATION

We devise in this section a discretization of the folding problem based on
the use of an isoparametric discontinuous Galerkin finite element method.
Corresponding functions and related discrete quantities are marked by a
tilde sign.
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4.1. Finite element spaces. We follow [BNN21] and let 7 be a partition
of the Lipschitz domain S into closed shape regular elements T € T which
are images of mappings Fp : T > T, where T is a reference triangle or
square. The space V of discontinuous piecewise transformed polynomials of
fixed polynomial degree k > 2 is defined as

V={VelL*S):VoFrePUQ forallT € T},

where P, and Qi denote polynomials of total and partial degree k on the
respective reference element. We let £ be the set of interior edges.

The elementwise application of a differential operator is indicated by a
tilde, e.g., for V €V we define

VVir =V({V]r)

for all T € 7. We use standard notation to denote jumps and averages of
elementwise smooth functions, e.g.,

VIe=V*-V", {Vle=({V*"+V7)/2,

for an inner side e = TTNT~ with a fixed unit normal f. pointing from T+
into T~ that determines the sign of [V].

To match the targeted experiments, the boundary conditions imposed in
all the numerical simulations provided below are pointwise Dirichlet bound-
ary conditions, i.e. we enforce y(a:{j ) = gi, where x; is a vertex of the
subdivision on the boundary of S and g; are given boundary deformations,
i =1,...,np. Whence, the jump and average operators do not need to be
defined on boundary edges as in the free boundary case |[Bon+21| unlike the
clamped boundary case [BNN21].

4.2. Curve approximation. We assume throughout that the folding curve
¥ is Lipschitz continuous and piecewise C? with possible kinks only oc-
curring at vertices of the subdivision. Moreover, we assume that either a
parametric description ¥ = {y(u),u € [0,1]} or, provided that ¥ is C?, the
distance dy, to the curve is available. We also assume that the triangulation
defines a piecewise smooth curve

Z:UJ 16j

with inner sides e; € gmt, J = ,J, such that the endpomts of the

segments e; belong to . This 1mphes that there exists a bijection M:% —
3. such that the distance between the two curves is small in the sense that

(40) ||M —id ||W1700® — 0

as h — 0.
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4.3. Discrete He551an To obtain good consistency properties of the ap-
proximate Hessian H (V) of a function V € V we first note that the distribu-
tional Hessian D2V is for ¢ € C°(S \ £;R2*2) on the open set S\ & given
by

<D%ﬂ@:i/~deDw¢df
S\E

odd+ Y [V)Dve pe) - 971 (o) ds,
S\E ecEint\S ©

where Div denotes the application of the standard divergence operator to the

columns of a matrix-valued function. We aim at preserving this identity for

elementwise polynomial functions 5 and represent the contributions on the

interior edges £™ by functions defined in the edge patches w, = T~ U T.

We follow ideas from [Pry14; BNN21| and define the operators

Se L2(6;R) — @sz\we, Te L2(6;R2) — @2X2\we,

for inner edges e € £ via

/w 5(8): $da’ = /ea{ Divy & - e} ds,
/we re(@) s pde’ = [ @ {nc}as

for all ¢ € V2*2|, : the functions se(ﬁ) and r.(w) are trivially extended to
S. We then define H(V) € V2*2 4

H(V) =DV + S¢(V) — Re(VV),
where

S = 3 s llVD, Re(VV) = ¥ n([VV]).

ecEint ecEint\ ]

Note that the contributions Sg associated with the continuity of y contains
the edges on 5. while these are omitted in R¢ respecting possible disconti-
nuities in deformation gradients.

For every ¢ € V2X2n CL(S\ 2;R2*2) we have the consistency property

(D*V, ) = /Uﬁ(f/) cpda’.

In general the intersection V2*2 N CL(S\ £; R2%2) only contains constant
functions. When the interface X is exactly captured by the subdivisions,
i.e. X = X, then the reconstructed Hessian restricted to any subdomain
separated by ¥ weakly converge to the continuous Hessian in L? [Bon+21].
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We define a discrete seminorms approximating a seminorm of W?22(S\ )N
W12(8) for V €V via

Vi = I0R7IP+ [ 0PI as s [ g (971 ds

Note that the identity ||V|| 72 = 0 only implies that V is continuous and
piecewise affine. By using standard inequalities we find that the discrete
Hessian defines a bounded operator in the sense that

V)| < eV
for all V € V with a constant ¢ > 0 that is independent of the cardinality
of T.

4.4. Discrete energy functional. Our discrete energy functional is de-
fined on a discrete admissible set that enforces the isometry condition up to
a tolerance p > 0, i.e., we set

<o}

A={Zev: Y )/&mﬁ) I
et T
The discrete functional Eg is then obtained by replacing the Hessian by
its discrete approximation which is applied componentwise and introducing
stabilizing and penalty terms, i.e., for v, 71,72 > 0 and Y € A we set

- -1 .
E(¥) = /S\i\H(Y)\de’

L0 2 ds + 71/~ D[V ds

2 gint
’Y2 Dy12
Zh (Y — gi)(aP)]2.

Assuming an isotropic material we have up to a constant factor Q(A) = |A|?;
we note that the approach applies to more general quadratic forms. Note
that unlike in previous works, pointwise Dirichlet conditions are considered
and enforced via penalization; h; denotes a local meshsize around the vertex
zb.

The energy functional EK is uniformly coercive in H 2 i.e., there exists a
constant ¢ such that for any choice of parameters g, v1,v2 > 0 we have for
allY € V3

IV]g < aBr(Y), YeVs

Furthermore, the gradients of deformations in the discrete admissible set A
are uniformly bounded:

VY| <V2(@+|S), VYeA
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We refer to [Bon+21] for proofs of the above two inequalities. Note that
these two estimates do not provide a uniform L? control. As a consequence,
depending on the boundary conditions, the deformations may be defined up
to certain invariances. If the gradient flow metric controls the L? norm, then
the discrete gradient provides unique iterates. N

A rigorous justification of the discrete energy functional Ex can be ob-
tained by establishing its Gamma convergence to Ex as the maximal mesh-
size h tends to zero. To prove the stability bound or liminf inequality one
uses the coervity estimate and follows [BNN21; Bon-+21] to show by us-
ing regularizations obtained with quasi-interpolation operators that for a

sequence (Y)ps0 with Ex(Y) < ¢ there exists a subsequence and a limit
y € W22(S\ 3;R3) N WH°(S;R?) such that in L?(S) we have for h — 0

Y -y, VY = Vy, f[(?) — D?y,
provided that elements T € T satisfy a geometric condition away from

the discrete interface 3. The consistency or limsup inequality requires the

construction of suitable interpolants Zy € A of a given folding isometry
y € W22(S\ 3;R3) N WHo(S;R?) such that

Ex(Ty) — Ex(y)

as h — 0. Crucial here is to show that on curved elements 7" € T along the
discrete folding arc 3 the difference of the local energy contributions

‘/ \52fy]2dx’—/ |D?y|* da’
T T

with the corrected element T hat has a side on the exact interface can be
sufficiently controlled. Corresponding details are in preparation.

5. NUMERICAL EXPERIMENTS

We report in this section on numerical results obtained with the proposed
numerical method and the iterative scheme.

5.1. Algorithmic aspects. Except for the presence of folding curves and
correspondingly removed edge contributions in the discontinuous Galerkin
method the overall strategy follows closely the algorithm devised in [Bon+20)|
and later analyzed in |[Bon+21]. The efficiency of the discrete gradient
flow for finding stationary configurations depends strongly on the avail-
ability of a good starting value, in particular on its discrete energy E% and
the isometry violation g, see . We note that the boundary conditions are
included in a weak, penalized form and, in practice, constitute a major con-
tribution of the initial energy when the initial deformation is not suitably
constructed. To obtain an initial deformation with simultaneously moder-
ate discrete bending energy E([)( and small isometry violation g, we use the
preprocessing procedure described in [Bon+20|. It combines the solution of
a linear bi-harmonic problem to obtain an approximate discrete extension
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Y0 € V3 of the boundary data with a subsequent gradient descent applied
to the isometry violation error with an iteration until this quantity is below
a given tolerance, i.e., until the iterate Y € V3 satisfies

1 ~ ~ ~
5 /S (VY EYT(VYE) — I da < g

We then define Y° = Y7 as the starting value for the gradient scheme .
The gradient flow metric (-, -), is obtained as a combination of the bilinear
form defined by the discrete energy functional and the L? norm. With this
choice we avoid nonuniqueness effects for certain boundary conditions. As a
stopping criterion for this iteration we impose the condition that the discrete
bending energy is nearly stationary, i.e.,

Er(YM) - EK(?M%)‘

‘thK(?M)‘ = < Estops

-
for a given tolerance €4, > 0. The deformation YM ¢ V3 serves as our
approximation of stationary, low energy configuration for E% in the admis-
sible set A. Unless specified otherwise, piecewise polynomials of degree 2
are used for the approximation of the deformation, the lifting operators in
the construction of the discrete Hessian, and in approximating the folding
curve by edges of elements. Our subdivisions are generated with the pack-
age Gmesh [GRO09|, the implementations make use of the deal.ii library
[BHKO7], and the visualization are obtained using Paraview [Squ+07].

5.2. Bistable flapping device. Our first set of experiment considers the
setting sketched in Figure[l] The precise parameters defining the domain S
and the arc ¥ are as follows.

Example 5.1 (Parabolic and circular arcs). For S = (0,9.6) x (0,15) we
consider compressive boundary conditions of rate s € (0,1) imposed at the
CoTNErs

rp = (0,0), 2z =(9.6,0.0).
Two choices of a folding arc ¥ C S are addressed:
(a) Let ¥ be the quadratic curve connecting two boundary points xx, ; € 05,
Jj = 1,2, and passing through the apex xx; 4 given by
el = (0, 2), Txno = (9.6, 2), T A= (4.8,6).
(b) Let ¥ be the circular arc with end-points xx, ; € 0S5, j = 1,2, and circular
midpoint xx pr € 3 given by
zs1 = (0,2), zx2=1(96,2), zxum=(48,-2),

i.e., with radius r* = (4.8)% + 42.

A typical triangulation with 556 elements together with an exact resolu-

tion of the parabolic arc defined in Example (a) is shown in Figure
Note that the arc is matched exactly by edges of elements. The simulations
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are performed for a pseudo-time step 7 = 0.01 and tolerances €440, = 0.01,
epp = 1.0. The numerical approximations YM e V3 obtained with the
numerical scheme for different compression rates imposed in the boundary
points zp and 2/, are shown in Figure We observe a good qualitative
agreement with the real experiment shown in the left part of Figure [1| and
a continuous dependence of the deformation on the compression rate. Only
0,5,10, 15 iterations of the gradient descent method for compression rates
s = 0%, 10%, 20%, and 30% were required to meet the prescribed stopping
criterion.

1

T

1
1T

JEEEEEES NSNS SN E NN

77777777777 7

FiGure 2. Triangulation, folding arc approximation, and
compressive point boundary conditions to generate a bistable
flapping mechanism described by Example with a qua-
dratic arc X that is resolved exactly.

When the folding arc is circular instead of parabolic then our discrete
curves Xp do not resolve the goemetry exactly. For the setting described in
Example (b) and a triangulation consisting again of 556 elements that
provide a piecewise quadratic approximation Y; of ¥ we obtained for the
parameter choices 7 = 0.01, e44p = 0.1, and €y, = 1 the nearly stationary
configurations shown in Figure 4 The discrete deformations are similar to
those obtained for the parabolic arc except that the deformed right side of
the initial rectangular plate is now curved.

The effect of approximating the folding arc by a polygonal, piecewise
straight curve is illustrated in Figure The plots display the deforma-
tions obtained for the circular arc approximated accurately with piecewise
quadratic edges of elements to a coarse approximation using three straight
segments. The Frobenius norm of the Hessian, i.e., an approximation of the
mean curvature of the deformed plates is visualized via a gray scale color-
ing. We see that energy concentrations occur at the kinks of the piecewise
linear arc while a more uniform distribution arises for the circular arc with
moderate peaks at the boundary where the compressive boundary condition
is imposed and where the arc ends. Apart from that the overall deformation
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Ficure 3. Nearly stationary configurations YM € V3 in
Example with quadratic folding arc for compression rates
s = 0%, 10%, 20%, and 30% (left to right, top to bottom).

J J/
e |

FIGURE 4. Nearly stationary configurations YM ¢ V3 in
Example with circular folding arc for compression rates
s = 10%, 20%, 30%, and 100%.
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does not differ significantly and the main difference is a less curved plate
away from the arc for the coarse, piecewise linear approximation.

v

Ficure 5. Different approximations of a circular folding
arc using a piecewise quadratic segments (left) and piecewise
linear segments (right) lead to different energy contributions
but similar deformations. The colors represent the average
curvature over each element of the subdivision. The ranges
are from 0 (white) to 0.71 (black) for the quadratic folding
line and from 0 (white) to 1.7 (black) for the piecewise linear
folding line.

5.3. Paper cutting and bending. Our second experiment simulates a
typical origami folding construction with curved arcs which is also known
as kirigami folding which includes cutting and bending a piece of paper. In
our example a square domain with a square hole is prepared using four arcs
that connect midpoints of the outer boundary with the corners of the inner
boundary, cf. Figure [l The precise settings are as follows.

Example 5.2 (Flower configuration). Let S = (0,16) x (0,16) \ S’, where
S’ is the square with defined by the vertices ©1 = (6,7), zo = (7,10), x3 =
(10,9), and x4 = (9,6). We use four cubic Bezier curves that connect the
midpoints xar1 = (8,0), xm2 = (16,8), zar3 = (8,16), and xpr4 = (0,8) of
the outer sides of S with the points xs3, 9, x1, T4, respsectively, using suitable
control points, e.g., for the first arc ' we use

Z1,1 = (10 4+ 3 cos(a) — sin(a), 9 — cos(a) — 3sin(a)),

ZT12 = (8 4+ 3.162 cos(w), 3.162sin()),
with o = /6. Control points for the arcs ¢, £ = 2,3,4, are obtained via
rotational point symmetry, cf. Figure[6l Compressive boundary conditions

with s = 60% compression rate are imposed at the opposite boundary points
Tpm and Tar3.
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The setting and a photo of the result of a real experiment corresponding
to Example are shown in Figure [6]

W

)
23
Zeoen
oTel
2250
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()
o

23

W L

FIGURE 6.

Geometric setting of Example (left) and

result of a real experiment with s = 60% compression rate
(right).

Numerical solutions for Example for different compression rates are
shown in Figure [/l We used a triangulation with 1904 elements, a pseudo-
time step 7 = 0.025, termination tolerances esop = 0.3, €, = 0.5. The
discrete, nearly isometric deformations obtained with our numerical scheme
reveal a remarkable similarity to configurations obtained in real experiments.
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