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Abstract. The article addresses the mathematical modeling of the
folding of a thin elastic sheet along a prescribed curved arc. A rig-
orous model reduction from a general hyperelastic material description
is carried out under appropriate scaling conditions on the energy and the
geometric properties of the folding arc in dependence on the small sheet
thickness. The resulting two-dimensional model is a piecewise nonlinear
Kirchho↵ plate bending model with a continuity condition at the fold-
ing arc. A discontinuous Galerkin method and an iterative scheme are
devised for the accurate numerical approximation of large deformations.

1. Introduction

Because of their relevance in the development of new technologies bending
theories for thin sheets have attracted considerable attention within applied
mathematics in the past decades, with renewed activity following the semi-
nal article [FJM02a]. In the present article the folding of thin elastic sheets
along a prepared curved arc is considered which naturally leads to bend-
ing e↵ects, cf. Figure 1. This setting has only been partially addressed
mathematically, e.g., [DD82; BBH22], but has recently attracted consider-
able attention in applied sciences, cf., e.g. [Sch+15; CM19; PM19; PHL19;
Cab+19; Liu+21] and references therein. Particular applications arise in
the design of cardboxes and bistable switching devices that make use of
corresponding flapping mechanisms. It is our aim to derive a mathematical
description via a rigorous dimension reduction from three-dimensional hy-
perelasticity and to devise e↵ective numerical methods that correctly predict
large deformations in practically relevant settings.

To describe our approach we let S ⇢ R2 be a bounded Lipschitz do-
main that represents the midplane of an asymptotically thin sheet and
let ⌃ ⇢ S be a curve (with endpoints on @S) that models the crease,
i.e., the arc along which the sheet is folded. The corresponding three-
dimensional model involves a thickness parameter h > 0 and the thin do-
main ⌦h = S ⇥ (�h/2, h/2). The material is weakened (or damaged) in a
neighbourhood of width r > 0 around the arc ⌃ and we consider for given
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functions W and f",r the hyperelastic energy functional for a deformation
z : ⌦h ! R3

Eh(z) =

Z

⌦h

f",r(x)W (rz) dx.

Here f",r(x) 2 (0, 1] is small with value " > 0 close to the arc ⌃ and approx-
imately 1 away from the arc, the function W is a typical free energy density.
Hence, the factor f",r models a reduced elastic response of the material close
to ⌃. By appropriately relating the thickness h, the intactness fraction ",
and width r of the prepared region, we obtain for (h, ", r) ! 0 a mean-
ingful dimensionally reduced model which seeks a minimizing deformation
y : S ! R3 for the functional

EK(y) =
1

24

Z

S\⌃
Q(A) dx0,

where A is the second fundamental form related to the parametrization y
which is weakly di↵erentiable in S with second weak derivatives away from
⌃, i.e., we consider

y 2 W 2,2(S \ ⌃;R3) \W 1,1(S;R3).

The quadratic form Q is obtained by a pointwise relaxation procedure of
the Hessian of W . For isotropic materials it can explicitly be represented in
terms of the Lamé coe�cients, cf. [FJM02a]. Furthermore, the deformation
y is required to satisfy the pointwise isometry condition

(ry)T(ry) = I,

which implies that no shearing and stretching e↵ects occur. The minimiza-
tion of EK is supplemented by boundary conditions and possible body forces.
Note that for our scaling of the parameters ", r, and h, e.g., " = o(h) and
r = O(h), no energy contributions such as a penalization of the folding an-
gle arise from the crease, i.e., the material can freely fold along the arc and
y is in general only continuous on ⌃. In our analysis, the damaged set is
required to be wide enough to ensure that the strain of the folded sheet can
easily remain of order one, and the damaged material should be soft enough
to ensure that the energetic contribution of the fold becomes asymptotically
negligible. On the other hand, if the damaged material is too soft, the sheet
could fall apart; our compactness ensures the continuity of the asymptotic
deformation across the fold.

In the absence of a crease ⌃ the model coincides with Kirchho↵’s plate
bending functional describing, e.g., the deformation of paper, which was
rigorously derived in [FJM02a]. We slightly modify the arguments given
there to take into account the fact that any asymptotic deformation which
does not only bend but also folds has infinite Kirchho↵ energy. This is
because the Hessian corresponding to a folding deformation is not square
integrable. Other variants of the setting from [FJM02a] have been addressed,
in [Fri+03; FJM02b; HV18; Vel15; Sch07] and many others.
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Figure 1. Left: Geometry of a prepared elastic sheet S
with folding arc ⌃ that separates regions S1 andf S2; bound-
ary conditions are imposed in the points xB, x0B. Right:

When the boundary points xB and x0B are moved towards
each other a flapping mechanism occurs.

A typical setting and an experiment are shown in Figure 1 and a coarse
visual inspection indicates that the scaling relation r ⇠ h together with a
su�ciently strong compression of the material along the arc lead to the de-
sired folding e↵ect. Interesting phenomena take place at the folding arc. It
was observed in [DD82] that a deformation on one side of the arc locally re-
stricts possible deformations on the other side. In fact, only a finite number
of scenarios is possible and either the gradients coincide along the arc result-
ing in a smooth deformation or a discontinuity occurs and the deformation
is locally up to a sign uniquely determined. This important e↵ect is a result
of the isometry condition and the related physical property that thin elastic
sheets are unshearable in the bending regime. Moreover, this e↵ect arises
in biology and inspires the development of new technologies and design in
architecture [Sch+15].

Our numerical method to approximate minimizers is based on a discontin-
uous Galerkin method from [BNN21] which generalizes the approach based
on a nonconforming method of [Bar13]. It allows us to define a discrete
curve e⌃ as a union of element sides that approximates ⌃ and to account
for possible discontinuities of deformation gradients along ⌃ by simply re-
moving typical jump terms in the discrete formulation. The continiuity
condition on the deformation y along the interface ⌃ is similar to a simple
support boundary condition in linear bending theories. For such problems
the plate paradox, cf. [BP90], states that convergence of approximations re-
sulting from polyhedral approximations of curved domains or interfaces fails
in general. We therefore consider piecewise quadratic approximations e⌃ of
⌃. We note however that we do not observe significant di↵erences to ap-
proximations obtained with piecewise linear arcs e⌃ in the nonlinear setting
under consideration.
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We assume for simplicity and without loss of generality that Q(A) =
|A|2 and use that the Frobenius norm of the second fundamental form
equals the Frobenius norm of the Hessian in the case of an isometry y, i.e.,
|A|2 = |r2y|2. Our numerical method then uses discontinuous deformations
eY : S ! R3 from an isoparametric finite element space eV3 ⇢ L2(S;R3) sub-
ordinated to a partitioning eT of S and a suitably defined discrete Hessian
eH(eY ) in S \ e⌃ which define the discrete energy functional

eEK(eY ) =
1

24

Z

S\⌃
| eH(eY )|2 dx0

+
�0
2

Z

[eEa
h�3
eE
|JeY K|2 ds+ �1

2

Z

[eEa\e⌃
h�1
eE
|JereY K|2 ds.

The last two terms are typical stabilization terms with the mesh-size function
heE on the skeleton eE of the triangulation eT that guarantee coercivity and

enforce continuity of eY and the elementwise gradient ery across interelement
sides or essential boundary conditions on certain boundary sides as the mesh-
size tends to zero. The union of all such sides is the set of active sides which
is denoted by eEa. Crucial here is that the penalized continuity of ereY is not
imposed along the discrete folding arc e⌃ and that related consistency terms
do not enter in the definition of the discrete Hessian eH. The important
isometry condition is imposed up to a tolerance via a sum of integrals on
elements, i.e., we require that

(1) eY 2 eA =
n
eZ 2 eV3 :

X

T2eT

���
Z

T
(er eZ)T(er eZ)� I dx0

���  e%
o

for a suitable tolerance e% > 0. To obtain accurate approximations of large
deformations choosing a small parameter is desirable. Its particular choice
is dictated by available density results. If, e.g., the density of smooth folding
isometries can be guaranteed similar to [Hor11] even a pointwise controlled
violation criterion can be used; otherwise a condition e% � c0heT has to be
satisfied, cf. [BNN21]. Boundary conditions on a part of the boundary @S
are included in the discrete problem via an appropriate definition of the jump
terms. A justification of the discrete energy functionals via � convergence
as in [Bar13; BBN17; BNN21] is in preparation.

The iterative solution of the constrained minimization problem follows the
ideas of [Bar13; BBN17; BNN21] and is realized by a discrete gradient flow
with a suitable linearization of the constraint. In particular, we consider the
linear space eF [ eZ] of variations for a given deformation eZ 2 eA defined via

eF [ eZ] =
n
fW 2 eV3 :

Z

T
(er eZ)T(erfW ) + (erfW )T(er eZ) dx0 = 0 for all T 2 eT

o
.

We furthermore let (·, ·)? be an inner product and ⌧ > 0 a step size. Given
an approximation eY k�1 2 eA we look for a correction dt eY k 2 eF [eY k�1] such
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that

(2)
�
dt eY k, eV

�
?
+ eaK

�eY k�1 + ⌧dt eY k, eV
�
= 0

for all eV 2 eF [eY k�1] and with the discrete bilinear form eaK associated with
the discrete quadratic energy functional eEK . The existence of a unique
solution dt eY k is an immediate consequence of the Lax–Milgram lemma and
we define the new approximation

eY k = eY k�1 + ⌧dt eY k.

This implies the interpretation of the symbol dt as a backward di↵erence
quotient. By choosing eV = dt eY k one directly obtains the energy decay
property for ` = 0, 1, . . . ,

eEK [eY `] + ⌧
X̀

k=1

kdt eY kk2?  eEK [eY 0] = eE0
K

in particular, we see that kdt eY kk? ! 0 as k ! 1, i.e., the iteration be-
comes stationary. Because of the orthogonality relation included in the
space eF [eY k�1] we can bound the violation of the isometry constraint by
repeatedly replacing eY k = eY k�1 + ⌧dt eY k, i.e., for all T 2 eT we have
Z

T
[ereY `]T ereY ` � I dx0 =

Z

T
[ereY 0]T ereY 0 � I + ⌧2

X̀

k=1

[erdt eY k]T erdt eY k dx0.

If the discrete gradient flow metric (·, ·)? controls the L2 norm of the ele-
mentwise gradient, we obtain from the energy decay law the estimate

X

T2eT

��
Z

T
[ereY `]T ereY ` � I dx0

��  "0 + c? eE0
K⌧,

where "0 is the initial isometry violation. In particular, we see that if ⌧ and
"0 are su�ciently small, an arbitrary accuracy can be achieved and we have
eY ` 2 eA independently of the number of iterations ` � 0.
Using the numerical scheme we simulate various scenarios that are moti-

vated by practical applications, e.g., how the shape of the folding arc a↵ects
the flapping mechanism, or address subtle analytical features of solutions,
e.g., the occurrence of energy concentrations when the curve ⌃ has a kink.
Besides that we illustrate the robustness of the numerical method with re-
spect to the choice of stabilization parameters and discuss the construction
of suitable deformations that serve as starting values in the discrete gradi-
ent flow. Our experiments show that large deformations in highly nontrivial
settings can be accurately computed with moderate resolution.

The outline of the article is as follows. In Section 2 we describe the general
setup and the dimensionally reduced model. Its rigorous derivation is given
in Section 3. The discontinuous Galerkin finite element method is derived
and stated in Section 4. Numerical experiments are reported in Section 5.
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2. Preliminaries

2.1. Hyperelasticity for plates. For a bounded Lipschitz domain S ⇢ R2

we consider a plate of thickness h > 0 occupying the domain ⌦h = S⇥ Ih in
the reference configuration. The elastic energy stored in the configuration
determined by a deformation z : ⌦h ! R3 is given by

Z

⌦h

W (rz) dx.

Here W is a frame indi↵erent stored energy function and as in [FJM02a] we
impose the following conditions:

(H1) W 2 C0(R3⇥3) and W 2 C2 in a neighbourhood of SO(3).
(H2) W is frame indi↵erent, i.e., W (F ) = W (RF ) for all F 2 R3⇥3 and

all R 2 SO(3). Moreover, W (I) = 0.
(H3) There is a constant C such that dist2SO(3)  CW ; here distSO(3) :

R3⇥3 ! [0,1) denotes the distance function from the set SO(3).

To analyze the limiting behaviour as h ! 0 it is convenient to work on
the fixed domain

⌦ = S ⇥ I,

where I = (�1/2, 1/2). We define a rescaled deformation yh : ⌦ ! R3 by
setting yh(x0, x3) = z(x0, hx3). Then the (re-scaled) elastic energy is given
by

eEh(yh) =

Z

⌦
W (rhy

h) dx,

where rhyh = (r0yh | 1
h@3y

h) and r0 = (@1, @2).

2.2. Notation. Throughout this article we use standard notation related
to Sobolev spaces, e.g., W s,p(U ;R`) denotes the set of s times weakly di↵er-
entiable, R`-valued functions in Lp whose weak derivatives are p-integrable.
Lp norms are often used without specifying a domain when there is no am-
biguity, and we abbreviate the L2 norm on S by k · k. We occasionally omit
target domains R` when this is clear from the context. The open ball of
radius r > 0 around a point x 2 Rn is denoted by Br(x). For integral func-
tionals ocurring below, it is often useful to specify their integration domains
explicitly, e.g., we write

E(y; S̃) =

Z

S̃
F (y) dx0.

For the canonical choice, e.g., S̃ = S, this argument is usually omitted. For
S ⇢ R2 we identify maps defined on S with their trivial extension to S ⇥R.

2.3. Folded plates. Our aim is to modify the arguments from [FJM02a]
in order to allow for folding e↵ects along a prescribed curve, see Figure 1.
In applications, the folding curve ⌃ is prescribed by weakening the material
along it.
Throughout this article S ⇢ R2 is a bounded Lipschitz domain. From now
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on ⌃ ⇢ S is a Jordan arc with both endpoints on the same connected
component of @S. More precisely, let � : [0, 1] ! R2 be continuous and
injective, set ⌃ = �(0, 1) and @⌃ = {�(0),�(1)} and assume that ⌃ ⇢ S
and that @⌃ is contained in one single connected component of @S. Then
S\⌃ consists of precisely two connected components S1 and S2. We assume,
in addition, that ⌃ is such that both S1 and S2 are Lipschitz domains.
This latter hypothesis entails a great deal of regularity on ⌃. In particular,
⌃ is locally a Lipschitz graph. Therefore, the area of the sets

⌃R = BR(⌃) =
[

x2⌃
BR(x)

converges to zero as R # 0. As explained in the introduction, we let rh,
"h > 0 be parameters that define the width of the prepared region and the
amount of the material intactness. We then define fh : S ! [0,1] by

(3) fh = "h�⌃rh
+ 1� �⌃rh

,

where �M denotes the characteristic function of a set M . With this we con-
sider the (re-scaled) three-dimensional energy functional Eh : W 1,2(⌦;R3) !
[0,1]

(4) Eh(y) =

Z

⌦
fh(x0)W

�
rhy

h(x)
�
dx.

Passing to the thin film limit h ! 0 leads to a pointwise isometry constraint,
but does not exclude and discontinuities of the gradients across the arc ⌃:
we are led to the set of asymptotically admissible deformations

A(S,⌃) = {u 2 W 1,2(S;R3) \W 2,2(S \ ⌃;R3) :

(ru)T(ru) = I a.e. on S}.

The corresponding asymptotic energy functional EK : W 1,2(S;R3) ! [0,1]
is defined as

(5) EK(y) =

(
1
24

R
S\⌃Q(A) dx0 if u 2 A(S,⌃),

+1 otherwise.

Here, A is the second fundamental form of the surface parametrized by y
with unit normal n = @1y ⇥ @2y, i.e.,

A = (rn)T(ry),

and Q is obtained by relaxing, over the third column and row, the quadratic
form corresponding to the Hessian D2W (I) of W at the identity matrix, i.e.,

Q(A) = min
d2R3

D2W (I)[(A | d), (A | d)],

where for given A 2 R2⇥2 the matrix (A | d) 2 R3⇥3 is obtained by con-
sistently appending a row and column defined by d 2 R3. Note that by
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hypotheses (H1)-(H3) we have the Taylor expansion

W (I + hF ) =
h2

2
D2W (I)[F, F ] + o(h2)

for F 2 R3⇥3 and h > 0.

Remarks 2.1. (i) Observe that every y 2 A(S,⌃) belongs to W 1,1(S;R3),
because y 2 W 1,2(S;R3) and its derivatives are bounded almost everywhere

on S since (ry)T(ry) = I almost everywhere. In particular, y is continuous

on S.
(ii) We recall that a Lipschitz function f is in W 2,2(S \⌃) precisely if there

is an F 2 L2(S;R2⇥2) such that r2f = F in the sense of distributions on

S \ ⌃.

3. Gamma-Convergence

The purpose of this section is to prove the following result.

Theorem 3.1. Let "h, rh 2 (0,1) be null sequences satisfying

(6) lim sup
h!0

h2

"h
< 1

and

(7) lim sup
h!0

h

rh
< 1

as well as

(8) lim sup
h!0

"hrh
h2

= 0.

Define fh
as in (3), define Eh

as in (4) and define EK as in (5).
Then deformations with finite bending energy are compact and

1
h2Eh

Gamma-

converges to EK . More precisely:

(1) Assume that yh 2 W 1,2(⌦,R3) are such that

lim sup
h!0

1

h2
Eh(yh) < 1.

Then there exists a subsequence (not relabelled) and y 2 A(S,⌃) such
that yh * y weakly in W 1,2(⌦) and locally strongly in W 1,2((S \⌃)⇥
I).

(2) Assume that yh * y weakly in W 1,2(⌦). Then

EK(y)  lim inf
h!0

Eh(yh).

(3) Let y 2 W 1,2(⌦). Then there exist yh 2 W 1,2(⌦) such that

lim
h!0

1

h2
Eh(yh) = EK(y).
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Remarks 3.2. (i) The bound (6) ensures that the damaged material is not

too soft. This is used in the proof of the compactness result, Part 1 of

Theorem 3.1, as it rules out discontinuities of the asymptotic deformation

across ⌃.
The bound (7) requires the damaged part of the material to be wide enough

with respect to the thickness of the sheet, while (8) asserts that the damaged

portion of the material should be soft enough to ensure that the fold does

not contribute to the asymptotic energy. Conditions (7) and (8) are used in

Part 3 of Theorem 3.1, as they exclude excessive strain.

(ii) Observe that (6) through (8) are met, for instance, if "h ⇠ h2 and

rh ⇠ h.

Theorem 3.1 is a consequence of Proposition 3.3 and of Proposition 3.5
below. Both of them rely on arguments and results in [FJM02a].

3.1. Compactness and lower bound.

Proposition 3.3. Let "h, rh # 0 as h # 0 and assume that (6) is satisfied.

If yh 2 W 1,2(S,R3) satisfy

lim sup
h!0

1

h2
Eh(yh) < 1,

then there exists a map y 2 A(S,⌃) such that, after taking subsequences,

yh * y weakly in W 1,2(⌦,R3) and locally strongly in W 1,2((S \ ⌃)⇥ I,R3)
as h # 0. Moreover,

EK(y;Si)  lim inf
h!0

1

h2
Eh(yh;Si ⇥ I) for i = 1, 2.

Proof. We omit the index h in "h and rh; the letter C denotes constants
that do not depend on h. By the definition of fh in (3) we have

Z

⌦\(⌃r⇥I)
W (rhy

h) dx  Ch2  C.

On the other hand, by (6),

"

Z

⌃r⇥I
W (rhy

h) dx =

Z

⌃r⇥I
fhW (rhy

h) dx  Ch2  C".

From hypothesis (H3) on W we deduce that
Z

⌦
dist2SO(3)(rhy

h) dx  C

Z

⌦
W (rhy

h) dx  C.

Hence (rhyh) is uniformly bounded in L2(⌦) due to the hypotheses on W .
This implies that there exists y 2 W 1,2(S) such that yh * y weakly in
W 1,2(⌦), after taking subsequences. Indeed, we first notice that (ryh) is
uniformly bounded in L2(⌦) and therefore, after taking a subsequence (not
relabelled), we see that there is some y 2 W 1,2(⌦) such that yh * y weakly
in W 1,2(⌦). Then we note that k@3yhkL2(⌦)  Ch ! 0 implies that @3y = 0.
Hence y does not depend on x3 and therefore we can identify it with a map
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(denoted by the same symbol) in W 1,2(S).
Since

R
(S\⌃r)⇥I)W (rhyh) dx  Ch2 and r ! 0, by monotonicity of the

integral we conclude that for any (h-independent) R > 0 we have
Z

(S\⌃R)⇥I
W (rhy

h) dx  Ch2

for all small enough h. The constant C does not depend on R.
Now fix a small R > 0 and define SR

i = Si \ ⌃R for i = 1, 2; both are
Lipschitz domains. We can apply [FJM02a, Theorems 4.1 and 6.1 (i)] on
each SR

i . Hence yh ! y strongly in W 1,2(SR
i ⇥ I) and y 2 A(S,⌃R) with

(9)
1

24

Z

SR
i

Q(A) dx0  lim inf
h!0

h�2
Z

SR
i ⇥I

W (rhy
h) dx  C.

Here A is the second fundamental form of y on S \ ⌃R = SR
1 [ SR

2 . Since y
is an isometric immersion, by [FJM06, Proposition 6] we have

|r2y| = |A| almost everywhere on S \ ⌃R.

Hence (9) implies that

(10) kr2ykL2(SR
1 ) + kr2ykL2(SR

2 )  C.

This is true for all R and the constant C does not depend on R. As noted
earlier, the area of ⌃R converges to 0 as R ! 0. Hence y 2 W 2,2(S \⌃) and

Z

Si

Q(A) dx0 = lim sup
R!0

Z

SR
i

Q(A) dx0 < 1.

Summarising, we have yh ! y locally strongly in W 1,2((S \ ⌃) ⇥ I) and
y 2 A(S,⌃).
According to (9), for every small R > 0 we have

EK(y;SR
i )  lim inf

h!0
h�2Eh(yh;SR

i ⇥ I)

 lim inf
h!0

h�2Eh(yh;Si ⇥ I).

The right-hand side does not depend on R. Taking the supremum over all
small R > 0, we therefore see that

EK(y;Si)  lim inf
h!0

h�2Eh(yh;Si ⇥ I).

⇤
3.2. Recovery sequence. In the proof of Proposition 3.5 below we will
use the following lemma.

Lemma 3.4. Let U ⇢ R2
be a bounded Lipschitz domain. Then there exists

a constant � > 0, depending only on the Lipschitz constant of U , such that

the following is true: if M ⇢ U satisfies |M | < �(diamU)2 and if we set

R =

r
2|M |
�

,
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then BR(x) intersects U \M for each x 2 U .

Proof. This is standard; we include the proof for convenience. By Defini-
tion 1.3 in [Gia83, Chapter III] and the remark following it, there exists a
constant � > 0, depending only on the Lipschitz constant of U , such that
|B⇢(z) \ U | � �⇢2 whenever z 2 U and ⇢ < diamU .
If BR(x) did not intersect U \M , then BR(x) \ U ⇢ M and thus we would
have

2|M | = �R2  |BR(x) \ U |  |M |,
a contradiction. ⇤

The main result of this section is the following proposition.

Proposition 3.5. Let "h, rh 2 (0,1) be null sequences satisfying (7) and

(8) and let y 2 A(S,⌃). Then there exist yh 2 W 1,2(⌦,R3) such that yh * y
weakly in W 1,2(⌦,R3) and

(11) lim
h#0

Eh(yh) = EK(y).

Proof. As before S1,2 denote the connected components of S \ ⌃. Denote
the restriction of y to Si by ui and denote by ni the normal to ui. In this
proof we will write " instead of "h and r instead of rh. The letter C denotes
constants that do not depend on h as h # 0.
Let U ⇢ R2 be an open ball containing the closure of S. As each Si is a
Lipschitz domain, by [Ste70] we can extend each ui and each ni to maps

ui 2 W 2,2(R2,R3) \W 1,1(R2,R3)

ni 2 W 1,2(R2,R3) \ L1(R2,R3)
(12)

supported in U . Notice that we use the same symbols to denote the extended
maps as for the original ones. The norms of the extended maps can be
bounded by those of the original ones, up to a factor that only depends on
U , S and on ⌃.
As in the proof of [FJM02a, Theorem 6.1 (ii)] we truncate the maps ni and
ui and thus obtain sequences of maps nh

i and uhi satisfying the bound

(13) k(r0)2uhi kL1(U) + kr0nh
i kL1(U) 

1

h
,

while at the same time there is a set Mh ⇢ S with

(14) lim sup
h!0

|Mh|
h2

= 0

such that

(15) uhi = ui and nh
i = ni on S \Mh.

Since |Mh| ! 0 by (14), Lemma 3.4 shows that there is a constant � de-
pending only on S and ⌃, such that choosing

⇢h =

r
2|Mh|

�



12 S. BARTELS, A. BONITO, AND P. HORNUNG

we have

(16) B⇢h(x0) \ S \Mh 6= ; for all x0 2 S.

By (14) we have

(17) lim sup
h!0

⇢h
h

= 0.

We claim that, for i = 1, 2, the following L1 bounds are satisfied for a
constant C depending only on y, S and ⌃:

(18)
1

⇢h
|uhi � ui|+ |r0uhi |+ |nh

i |  C almost everywhere on S.

In fact, (12) implies that

(19) |r0ui|+ |ni|  C almost everywhere on R2.

Since uhi = ui (hence r0uhi = r0ui) and nh
i = ni almost everywhere on

S \Mh by (15), we clearly have

(20) |r0uhi |+ |nh
i |  C almost everywhere on S \Mh.

On the other hand, (13) shows that the Lipschitz constants of r0uhi and of
nh
i on U are bounded by 1/h. By (16), for all x 2 S there is a y 2 S \Mh

such that

|nh
i (x)|  |nh

i (y)|+ |nh
i (x)� nh

i (y)|  C +
1

h
|x� y|  C +

⇢h
h
.

Here we used (20) to estimate |nh
i (y)|. In view of (17) this implies the bound

on |nh
i | asserted in (18). The bound on |r0uhi | is proven similarly.

In particular, the Lipschitz constants of uhi : S ! R3 are uniformly bounded.
Since ui is Lipschitz as well, the maps uhi � ui are Lipschitz on S with
uniformly bounded Lipschitz constants as h # 0. Since uhi � ui = 0 on
S \Mh, we deduce from (16) that |uhi �ui|  C⇢h on S. This concludes the
proof of (18).
We will now define the recovery sequence. In order to do so, for each h let
⌘h 2 C1(S, [0, 1]) be a smooth cuto↵ function with ⌘h = 1 on S1 \ ⌃r and
⌘h = 0 on S2 \ ⌃r; we choose it such that

(21) kr0⌘hkL1(⌃r) 
C

r
.

Set ⌘h1 = ⌘h and ⌘h2 = 1� ⌘h. Let d 2 W 1,1(S,R3) and define the recovery
sequence

(22) yh(x0, x3) =
2X

i=1

⇣
uhi (x

0) + hx3n
h
i (x

0)
⌘
⌘hi (x

0) + h2
x23
2
d(x0).

For later use we note that by this definition
�����y

h �
2X

i=1

ui⌘
h
i

�����  h(|nh
1 |+ |nh

2 |) + h2|d|.
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Hence, in view of (18) we conclude that there is a constant C depending
only on S, ⌃ and y such that

(23) |yh � y|  Ch (1 + h|d|) on (S \ ⌃r)⇥ I.

Now we compute

r0yh(x0, x3) =
2X

i=1

⇣
r0uhi (x

0) + hx3r0nh
i (x

0)
⌘
⌘hi (x

0)

+
2X

i=1

⇣
uhi (x

0) + hx3n
h
i (x

0)
⌘
r0⌘hi (x

0) + h2
x23
2
r0d(x0).

Recalling that ⌘h1 = ⌘h and ⌘h2 = 1� ⌘h, we see that on ⌃r ⇥ I

|r0yh| 
2X

i=1

(|r0uhi |+ h|r0nh
i |)

+ |uh1 � uh2 ||r0⌘h|+ h|nh
1 � nh

2 ||r0⌘h|+ h2|r0d|

 C
�
1 +

1

r
|uh1 � uh2 |+

h

r
|nh

1 � nh
2 |
�
.

(24)

We have used the bound (21) as well as (18) and the estimate (13) for r0nh
i .

Similarly, since

@3y(x
0, x3) = h

2X

i=1

nh
i (x

0)⌘hi (x
0) + h2x3d(x

0),

we can estimate

(25)
1

h
|@3yh| 

2X

i=1

|nh
i ⌘

h
i |+ h|x3d|  C(|nh

1 |+ |nh
2 |+ h)  C,

in view of (18). Recalling (7), we deduce from (24) and (25) that

(26) |rhy
h|  C

�
1 +

1

r
|uh1 � uh2 |

�
on ⌃r ⇥ I.

Here we used (18) to estimate |nh
1 � nh

2 | on the right-hand side of (24). We
claim that

(27) |uh1 � uh2 |  Cr on ⌃r.

To prove this, note that (18), (17) and (7) imply that

|uhi � ui|  C⇢h  Ch  Cr on S.

Hence it remains to show that

(28) |u1 � u2|  Cr on ⌃r.

But u1 � u2 is Lipschitz on U in view of (12). Moreover it is zero on ⌃
because y is continuous. Hence (28) follows from the definition of ⌃r. This
concludes the proof of (27).
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By (27) and (26) we see that

krhy
hkL1(⌃r⇥I)  C.

Since W is locally bounded, this implies

kW
�
rhy

h
�
kL1(⌃r⇥I)  C.

Therefore, since |⌃r|  Cr due to the regularity of ⌃,

(29)
1

h2
Eh(yh,⌃r ⇥ I) =

"

h2

Z

⌃r⇥I
W (rhy

h) dx  C"r

h2
.

The right-hand side converges to zero due to (8).
On Si \ ⌃r the function ⌘hi is identically equal to 1. Hence

(30) rhy
h = (r0uhi | nh

i )+hx3(r0nh
i | d)+ h2x23

2
(r0d | 0) on (Si \⌃r)⇥ I.

The map R = (r0y | n) clearly takes values in SO(3). Define

ahi = x3R
T(r0nh

i | d) + hx23
2

RT(r0d | 0).

Then

(31) |ahi |  C(|r0nh
i |+ |d|+ h|r0d|)  C(1 + |r0nh

i |).
Hence (13) ensures that, for small h,

(32) h|ahi |  C on S.

On S \Mh we have nh
i = ni, hence r0nh

i = r0ni almost everywhere on this
set. Therefore, (31) shows that

(33) |ahi |  C(1 + |r0ni|) on Si \Mh.

By the frame indi↵erence of W we have, almost everywhere on (Si \⌃r)⇥ I,

(34) W (rhy
h) = W

�
RTrhy

h
�
= W

�
RT(r0uhi |nh

i ) + hahi
�
.

On Si \Mh we have (r0uhi |nh
i ) = R, so on (Si \ ⌃r \Mh)⇥ I

1

h2
W (rhy

h) =
1

h2
W (I + hahi )

 C

h2
dist2SO(3)(I + hahi )  C|ahi |2.

We have used (32) and the fact that the hypotheses on W imply that W 
C dist2SO(3) on bounded subsets of R3⇥3. Now (33) implies the bound

(35)
1

h2
�Si\Mh

W (I + hahi )  C(1 + |r0ni|2).

The right-hand side is in L1(Si) and does not depend on h. On the other
hand, by Taylor expansion and since |⌃r| ! 0 and |Mh| ! 0

1

h2
�(Si\⌃r\Mh)⇥IW (I + hahi ) !

1

2
Q3

�
x3R

T(r0ni | d)
�
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pointwise almost everywhere on Si ⇥ I. Combining this with (35) we can
apply dominated convergence to conclude

(36)
1

h2
Eh(yh, (Si \ ⌃r \Mh)⇥ I) ! 1

24

Z

Si

Q3(R
T(r0ni | d)) dx0.

We now claim that

(37) lim sup
h!0

kW
�
rhy

h
�
kL1((S\⌃r)⇥I) < 1.

In fact, since W is locally bounded, (37) will follow once we show that

(38) krhy
hkL1((S\⌃r)⇥I)  C.

But by (30), on (Si \ ⌃r)⇥ I we have

|rhy
h|  C

⇣
1 + |r0uhi |+ |nh

i |+ h|r0nh
i |
⌘
.

The last term on the right-hand side is uniformly bounded due to (13),
whereas the other two are uniformly bounded due to (18). This concludes
the proof of (37).
Using (37) we see that

(39)
1

h2
Eh(yh, (Mh \ ⌃r)⇥ I) =

1

h2

Z

(Mh\⌃r)⇥I
W (rhy

h)  C

h2
|Mh|.

By (14) the right-hand side converges to zero as h ! 0. Summarizing, by
combining (29), (36) and (39) we see that

1

h2
Eh(yh) ! 1

24

Z

S
Q3(R

T(r0n | d)) dx0,

where n is the normal to y. Relaxing over d 2 L2 as in [FJM02a], the
convergence (11) follows.
More precisely, there exist dj 2 W 1,1(S,R3) converging strongly in L2 and
a sequence hj ! 0 such that, defining yhj as in (22) with d = dj , the
convergence (11) is true for h = hj . Proposition 3.3 implies that, after taking
a subsequence, (yhj ) converges weakly in W 1,2(⌦) to some ey 2 A(S,⌃).
Since the dj remain uniformly bounded in L2, estimate (23) ensures that
ey = y. ⇤

4. Discretization

We devise in this section a discretization of the folding problem based on
the use of an isoparametric discontinuous Galerkin finite element method.
Corresponding functions and related discrete quantities are marked by a
tilde sign.
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4.1. Finite element spaces. We follow [BNN21] and let eT be a partition
of the Lipschitz domain S into closed, shape regular elements T 2 eT which
are images of mappings FT : bT ! T , where bT is a reference triangle or
square. The space eV of discontinuous piecewise transformed polynomials of
fixed polynomial degree k � 2 is defined as

eV = {eV 2 L2(S) : eV � FT 2 Pk [Qk for all T 2 eT },

where Pk and Qk denote polynomials of total and partial degree k on the
respective reference element. We let eE int be the set of interior edges.

The elementwise application of a di↵erential operator is indicated by a
tilde, e.g., for eV 2 eV we define

ereV |T = r(eV |T )

for all T 2 eT . We use standard notation to denote jumps and averages of
elementwise smooth functions, e.g.,

JeV Ke = eV + � eV �, {eV }e = (eV + + eV �)/2,

for an inner side e = T+\T� with a fixed unit normal µe pointing from T+

into T� that determines the sign of JeV K.
To match the targeted experiments, the boundary conditions imposed in

all the numerical simulations provided below are pointwise Dirichlet bound-
ary conditions, i.e. we enforce y(xDi ) = gi, where xi is a vertex of the
subdivision on the boundary of S and gi are given boundary deformations,
i = 1, ..., nD. Whence, the jump and average operators do not need to be
defined on boundary edges as in the free boundary case [Bon+21] unlike the
clamped boundary case [BNN21].

4.2. Curve approximation. We assume throughout that the folding curve
⌃ is Lipschitz continuous and piecewise C2 with possible kinks only oc-
curring at vertices of the subdivision. Moreover, we assume that either a
parametric description ⌃ = {�(u), u 2 [0, 1]} or, provided that ⌃ is C2, the
distance d⌃ to the curve is available. We also assume that the triangulation
defines a piecewise smooth curve

e⌃ = [J
j=1ej

with inner sides ej 2 eE int, j = 1, . . . , J , such that the endpoints of the

segments ej belong to ⌃. This implies that there exists a bijection fM : e⌃ !
⌃ such that the distance between the two curves is small in the sense that

(40) kfM � id kW 1,1(e⌃) ! 0

as h ! 0.
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4.3. Discrete Hessian. To obtain good consistency properties of the ap-
proximate Hessian eH(eV ) of a function eV 2 eV we first note that the distribu-
tional Hessian D2 eV is for � 2 C1

c (S \ e⌃;R2⇥2) on the open set S \ e⌃ given
by

hD2 eV ,�i =
Z

S\e⌃
eV divDiv � dx0

=

Z

S\e⌃
eD2 eV : � dx0 +

X

e2eEint\e⌃

Z

e
JeV K

�
Div � · µe

�
� JereV K ·

�
�µe

�
ds,

where Div denotes the application of the standard divergence operator to the
columns of a matrix-valued function. We aim at preserving this identity for
elementwise polynomial functions e� and represent the contributions on the
interior edges eE int by functions defined in the edge patches !e = T� [ T+.
We follow ideas from [Pry14; BNN21] and define the operators

se : L
2(e;R) ! eV2⇥2|!e , re : L

2(e;R2) ! eV2⇥2|!e ,

for inner edges e 2 eE int via
Z

!e

se(bv) : e� dx0 =

Z

e
bv
�
Divh e� · µe

 
ds,

Z

!e

re( bw) : e� dx0 =

Z

e
bw ·

�e�µe
 
ds,

for all e� 2 eV2⇥2|!e ; the functions se(bv) and re( bw) are trivially extended to
S. We then define eH(eV ) 2 eV2⇥2 as

eH(eV ) = eD2 eV + SE(eV )�RE(ereV ),

where

SE(eV ) =
X

e2eEint

se(JeV K), RE(ereV ) =
X

e2eEint\e⌃

re(JereV K).

Note that the contributions SE associated with the continuity of y contains
the edges on e⌃ while these are omitted in RE respecting possible disconti-
nuities in deformation gradients.

For every e� 2 eV2⇥2 \ C1
c (S \ e⌃;R2⇥2) we have the consistency property

hD2 eV , e�i =
Z

U

eH(eV ) : e� dx0.

In general the intersection eV2⇥2 \C1
c (S \ e⌃;R2⇥2) only contains constant

functions. When the interface ⌃ is exactly captured by the subdivisions,
i.e. e⌃ = ⌃, then the reconstructed Hessian restricted to any subdomain
separated by ⌃ weakly converge to the continuous Hessian in L2 [Bon+21].
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We define a discrete seminorms approximating a seminorm of W 2,2(S \⌃)\
W 1,2(S) for eV 2 eV via

keV k2eH2 = kD2
h
eV k2 +

Z

eEint
h�3
eE
|JeV K|2 ds+

Z

eEint\e⌃
h�1
eE
|JereV K| ds.

Note that the identity keV k eH2 = 0 only implies that eV is continuous and
piecewise a�ne. By using standard inequalities we find that the discrete
Hessian defines a bounded operator in the sense that

k eH(eV )k  ckeV k eH2

for all eV 2 eV with a constant c > 0 that is independent of the cardinality
of eT .

4.4. Discrete energy functional. Our discrete energy functional is de-
fined on a discrete admissible set that enforces the isometry condition up to
a tolerance e% > 0, i.e., we set

eA =
n
eZ 2 eV3 :

X

T2eT

���
Z

T
(er eZ)T(er eZ)� I dx0

���  e%
o
.

The discrete functional eEK is then obtained by replacing the Hessian by
its discrete approximation which is applied componentwise and introducing
stabilizing and penalty terms, i.e., for �0, �1, �2 > 0 and eY 2 eA we set

eEK(eY ) =
1

24

Z

S\e⌃
| eH(eY )|2 dx0

+
�0
2

Z

eEint
h�3
eE
|JeY K|2 ds+ �1

2

Z

eEint\e⌃
h�1
eE
|JereY K|2 ds

+
�2
2

nDX

i=1

h�2
i [(eY � gi)(x

D
i )]

2.

Assuming an isotropic material we have up to a constant factor Q(A) = |A|2;
we note that the approach applies to more general quadratic forms. Note
that unlike in previous works, pointwise Dirichlet conditions are considered
and enforced via penalization; hi denotes a local meshsize around the vertex
xDi .

The energy functional eEK is uniformly coercive in eH2, i.e., there exists a
constant c such that for any choice of parameters �0, �1, �2 > 0 we have for
all eY 2 eV3

keY k eH2  c1 eEK(eY ), eY 2 eV3.

Furthermore, the gradients of deformations in the discrete admissible set eA
are uniformly bounded:

kereY k 
p
2 (e%+ |S|) , 8eY 2 eA.
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We refer to [Bon+21] for proofs of the above two inequalities. Note that
these two estimates do not provide a uniform L2 control. As a consequence,
depending on the boundary conditions, the deformations may be defined up
to certain invariances. If the gradient flow metric controls the L2 norm, then
the discrete gradient provides unique iterates.

A rigorous justification of the discrete energy functional eEK can be ob-
tained by establishing its Gamma convergence to EK as the maximal mesh-
size h tends to zero. To prove the stability bound or liminf inequality one
uses the coervity estimate and follows [BNN21; Bon+21] to show by us-
ing regularizations obtained with quasi-interpolation operators that for a
sequence (eY )h>0 with eEK(eY )  c there exists a subsequence and a limit
y 2 W 2,2(S \ ⌃;R3) \W 1,1(S;R3) such that in L2(S) we have for h ! 0

eY ! y, ereY ! ry, eH(eY ) * D2y,

provided that elements T 2 eT satisfy a geometric condition away from
the discrete interface e⌃. The consistency or limsup inequality requires the
construction of suitable interpolants eIy 2 eA of a given folding isometry
y 2 W 2,2(S \ ⌃;R3) \W 1,1(S;R3) such that

eEK(eIy) ! EK(y)

as h ! 0. Crucial here is to show that on curved elements T 2 eT along the
discrete folding arc e⌃ the di↵erence of the local energy contributions

���
Z

T
| eD2eIy|2 dx0 �

Z

bT
|D2y|2 dx0

���

with the corrected element bT hat has a side on the exact interface can be
su�ciently controlled. Corresponding details are in preparation.

5. Numerical experiments

We report in this section on numerical results obtained with the proposed
numerical method and the iterative scheme.

5.1. Algorithmic aspects. Except for the presence of folding curves and
correspondingly removed edge contributions in the discontinuous Galerkin
method the overall strategy follows closely the algorithm devised in [Bon+20]
and later analyzed in [Bon+21]. The e�ciency of the discrete gradient
flow (2) for finding stationary configurations depends strongly on the avail-
ability of a good starting value, in particular on its discrete energy eE0

K and
the isometry violation e%, see (1). We note that the boundary conditions are
included in a weak, penalized form and, in practice, constitute a major con-
tribution of the initial energy when the initial deformation is not suitably
constructed. To obtain an initial deformation with simultaneously moder-
ate discrete bending energy eE0

K and small isometry violation e%, we use the
preprocessing procedure described in [Bon+20]. It combines the solution of
a linear bi-harmonic problem to obtain an approximate discrete extension
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bY 0 2 eV3 of the boundary data with a subsequent gradient descent applied
to the isometry violation error with an iteration until this quantity is below
a given tolerance, i.e., until the iterate bY L 2 eV3 satisfies

1

2

Z

S
|(erbY L)T(erbY L)� I|2 dx  "pp.

We then define eY 0 = bY L as the starting value for the gradient scheme (2).
The gradient flow metric (·, ·)⇤ is obtained as a combination of the bilinear
form defined by the discrete energy functional and the L2 norm. With this
choice we avoid nonuniqueness e↵ects for certain boundary conditions. As a
stopping criterion for this iteration we impose the condition that the discrete
bending energy is nearly stationary, i.e.,

��dt eEK(eY M )
�� =

��� eEK(eY M )� eEK(eY M�1)
���

⌧
 "stop,

for a given tolerance "stop > 0. The deformation eY M 2 eV3 serves as our

approximation of stationary, low energy configuration for eE0
K in the admis-

sible set eA. Unless specified otherwise, piecewise polynomials of degree 2
are used for the approximation of the deformation, the lifting operators in
the construction of the discrete Hessian, and in approximating the folding
curve by edges of elements. Our subdivisions are generated with the pack-
age Gmesh [GR09], the implementations make use of the deal.ii library
[BHK07], and the visualization are obtained using Paraview [Squ+07].

5.2. Bistable flapping device. Our first set of experiment considers the
setting sketched in Figure 1. The precise parameters defining the domain S
and the arc ⌃ are as follows.

Example 5.1 (Parabolic and circular arcs). For S = (0, 9.6) ⇥ (0, 15) we

consider compressive boundary conditions of rate s 2 (0, 1) imposed at the

corners

xD = (0, 0), x0D = (9.6, 0.0).

Two choices of a folding arc ⌃ ⇢ S are addressed:

(a) Let ⌃ be the quadratic curve connecting two boundary points x⌃,j 2 @S,
j = 1, 2, and passing through the apex x⌃,A given by

x⌃,1 = (0, 2), x⌃,2 = (9.6, 2), x⌃,A = (4.8, 6).

(b) Let ⌃ be the circular arc with end-points x⌃,j 2 @S, j = 1, 2, and circular

midpoint x⌃,M 62 ⌃ given by

x⌃,1 = (0, 2), x⌃,2 = (9.6, 2), x⌃,M = (4.8,�2),

i.e., with radius r2 = (4.8)2 + 42.

A typical triangulation with 556 elements together with an exact resolu-
tion of the parabolic arc defined in Example 5.1 (a) is shown in Figure 2.
Note that the arc is matched exactly by edges of elements. The simulations
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are performed for a pseudo-time step ⌧ = 0.01 and tolerances "stop = 0.01,

"pp = 1.0. The numerical approximations eY M 2 eV3 obtained with the
numerical scheme for di↵erent compression rates imposed in the boundary
points xD and x0D are shown in Figure 3. We observe a good qualitative
agreement with the real experiment shown in the left part of Figure 1 and
a continuous dependence of the deformation on the compression rate. Only
0, 5, 10, 15 iterations of the gradient descent method for compression rates
s = 0%, 10%, 20%, and 30% were required to meet the prescribed stopping
criterion.

Figure 2. Triangulation, folding arc approximation, and
compressive point boundary conditions to generate a bistable
flapping mechanism described by Example 5.1 with a qua-
dratic arc ⌃ that is resolved exactly.

When the folding arc is circular instead of parabolic then our discrete
curves ⌃h do not resolve the goemetry exactly. For the setting described in
Example 5.1 (b) and a triangulation consisting again of 556 elements that
provide a piecewise quadratic approximation ⌃h of ⌃ we obtained for the
parameter choices ⌧ = 0.01, "stop = 0.1, and "pp = 1 the nearly stationary
configurations shown in Figure 4. The discrete deformations are similar to
those obtained for the parabolic arc except that the deformed right side of
the initial rectangular plate is now curved.

The e↵ect of approximating the folding arc by a polygonal, piecewise
straight curve is illustrated in Figure 5. The plots display the deforma-
tions obtained for the circular arc approximated accurately with piecewise
quadratic edges of elements to a coarse approximation using three straight
segments. The Frobenius norm of the Hessian, i.e., an approximation of the
mean curvature of the deformed plates is visualized via a gray scale color-
ing. We see that energy concentrations occur at the kinks of the piecewise
linear arc while a more uniform distribution arises for the circular arc with
moderate peaks at the boundary where the compressive boundary condition
is imposed and where the arc ends. Apart from that the overall deformation
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Figure 3. Nearly stationary configurations eY M 2 eV3 in
Example 5.1 with quadratic folding arc for compression rates
s = 0%, 10%, 20%, and 30% (left to right, top to bottom).

Figure 4. Nearly stationary configurations eY M 2 eV3 in
Example 5.1 with circular folding arc for compression rates
s = 10%, 20%, 30%, and 100%.
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does not di↵er significantly and the main di↵erence is a less curved plate
away from the arc for the coarse, piecewise linear approximation.

Figure 5. Di↵erent approximations of a circular folding
arc using a piecewise quadratic segments (left) and piecewise
linear segments (right) lead to di↵erent energy contributions
but similar deformations. The colors represent the average
curvature over each element of the subdivision. The ranges
are from 0 (white) to 0.71 (black) for the quadratic folding
line and from 0 (white) to 1.7 (black) for the piecewise linear
folding line.

5.3. Paper cutting and bending. Our second experiment simulates a
typical origami folding construction with curved arcs which is also known
as kirigami folding which includes cutting and bending a piece of paper. In
our example a square domain with a square hole is prepared using four arcs
that connect midpoints of the outer boundary with the corners of the inner
boundary, cf. Figure 6. The precise settings are as follows.

Example 5.2 (Flower configuration). Let S = (0, 16) ⇥ (0, 16) \ S0
, where

S0
is the square with defined by the vertices x1 = (6, 7), x2 = (7, 10), x3 =

(10, 9), and x4 = (9, 6). We use four cubic Bezier curves that connect the

midpoints xM,1 = (8, 0), xM,2 = (16, 8), xM,3 = (8, 16), and xM,4 = (0, 8) of
the outer sides of S with the points x3, x2, x1, x4, respsectively, using suitable
control points, e.g., for the first arc ⌃1

we use

bx1,1 = (10 + 3 cos(↵)� sin(↵), 9� cos(↵)� 3 sin(↵)),

bx1,2 = (8 + 3.162 cos(↵), 3.162 sin(↵)),

with ↵ = ⇡/6. Control points for the arcs ⌃`
, ` = 2, 3, 4, are obtained via

rotational point symmetry, cf. Figure 6. Compressive boundary conditions

with s = 60% compression rate are imposed at the opposite boundary points

xM,1 and xM,3.
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The setting and a photo of the result of a real experiment corresponding
to Example 5.2 are shown in Figure 6.

Figure 6. Geometric setting of Example 5.2 (left) and
result of a real experiment with s = 60% compression rate
(right).

Numerical solutions for Example 5.2 for di↵erent compression rates are
shown in Figure 7. We used a triangulation with 1904 elements, a pseudo-
time step ⌧ = 0.025, termination tolerances "stop = 0.3, "pp = 0.5. The
discrete, nearly isometric deformations obtained with our numerical scheme
reveal a remarkable similarity to configurations obtained in real experiments.
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