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Abstract

We compute the asymptotic behavior of the average-case filling volume
for certain models of random Lipschitz cycles in the unit cube and sphere.
For example, we estimate the minimal area of a Seifert surface for a model
of random knots first studied by Millett. This is a generalization of the clas-
sical Ajtai–Komlós–Tusnády optimal matching theorem from combinatorial
probability. The author hopes for applications to the topology of random
links, random maps between spheres, and other models of random geometric
objects.

1 Introduction

1.1 Main results

This paper introduces a new kind of average-case isoperimetric inequality. Given
a k-cycle Z on ([0, 1]n, ∂[0, 1]n), in any of a number of geometric measure theory
senses, its filling volume FV (Z) is the minimal mass of a chain whose boundary is
Z. The well-known Federer–Fleming isoperimetric inequality [FF] states that for
all k-cycles Z,

FV (Z) ≤ Cn,k mass(Z)
k+1
k and FV (Z) ≤ Cn,k mass(Z).

The left inequality dominates when mass(Z) << 1, the right when mass(Z) >> 1.
However, one might expect that most cycles of given mass are much easier to fill.

Unfortunately, as explained to the author by Robert Young, a geometrically
meaningful probability measure on the space of all cycles of mass ≤ N may be too
much to ask for. The issue is one of picking a scale: say we are trying to build a
random 1-Lipschitz curve in a finite-dimensional space. If the curve is to fluctuate
randomly at scale ε, then over time 1 it will only travel a distance on the order of√
ε. Thus there is no way of ensuring random behavior in a scale-free way. This

idea of decomposing a finite-mass cycle into pieces at different scales can be made
precise using the notion of a corona decomposition, as in [Jones] (in dimension 1)
and [Young] (in higher dimensions).
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On the other hand, there are a number of ways of, and a number of moti-
vations for, building random “space-filling” cycles of mass O(N) which look es-
sentially trivial on balls of radius N−1/n. Our main theorems characterize three
models of this form which exhibit similar isoperimetric behavior, and we hypoth-
esize that this behavior should be generic for models which are random at many
scales, including the largest—an idea which may have a precise Fourier-analytic
formulation.

This isoperimetric behavior is described in codimension d by the function

AKTd(N) =

⎧⎪⎨⎪⎩
√
N if d = 1

√
N logN if d = 2

N (d−1)/d if d ≥ 3.

Theorem A. Let Z be a k-cycle on Sn obtained by sampling N oriented great k-
spheres independently from the uniform distribution on the oriented Grassmannian˜︂Grk+1(Rn+1). Then there are constants C > c > 0 depending on n and k such
that

cAKTn−k(N) < E(FV (Z)) < C AKTn−k(N). (1.1)

Moreover, FV (Z) is concentrated around its mean: there are constants C1, C2 > 0
depending on n and k such that

for every r > 0, P[|FV (Z)− E(FV (Z))| ≥ r] ≤ C1 exp(−C2

√
Nr) (1.2)

From (1.2) we see that the spread of the distribution around the mean is at
most on the order of

√
N ; in codimensions d = n− k ≥ 2, this is small compared

to the mean:

for every ε > 0,
|FV (Z)− E(FV (Z))|

E(FV (Z))
≤ ε with high probability as N → ∞.

If a model of random codimension-d cycles of mass O(N) satisfies (1.1) and (1.2),
we say it exhibits AKT statistics, in honor of Ajtai, Komlós, and Tusnády, who
discovered this phenomenon in the case of zero-cycles.

By rescaling the picture, we can make this result more interpretable. Define
R = N1/(n−k). Then the corresponding process in the n-sphere of radius R gener-
ates a cycle of mass Θ(Rn) which is evenly spread throughout the sphere, so that
a 1-ball intersects one of the great k-spheres in Z on average. With that rescaling,
the mass of an optimal filling becomes⎧⎨⎩ Θ(Rn

√
R) if k = n− 1

Θ(Rn
√
logR) if k = n− 2

Θ(Rn) if k ≤ n− 3.

Informally speaking, to meet its match, the average point in Z has to travel a
distance Θ(

√
R) (in codimension 1), Θ(

√
logR) (in codimension 2), or Θ(1) (oth-

erwise) times the distance to its closest neighbor.
We also prove similar results for the cube:

2



Theorem B. Let Z be a relative k-cycle on ([0, 1]n, ∂[0, 1]n) obtained by sampling
N planes independently from the uniform distribution on the space Y of oriented
k-planes which intersect [0, 1]n nontrivially. Then Z exhibits AKT statistics.

There may be reasonable disagreement as to which distribution is the uniform
one in this context; to prove (1.1) it suffices to require that it be uniform on each
subset of Y (isometric to two copies of a polytope) consisting of parallel planes,
but to prove (1.2) we also need to assume that it behaves reasonably with respect
to the manifold structure on Y (for example, is a positive density or has finite
support).

In fact, the only thing used here about Z is that almost all of its “slices” along
coordinate k-planes consist of O(N) independent uniformly distributed points.
This means that there are a number of other possible models that can be fit into
this framework. However, the following requires a separate proof:

Theorem C. Let {MN} be a sequence of k-dimensional oriented pseudomanifolds
with N vertices and at most L simplices incident to any given simplex. Let Z be
a k-cycle on [0, 1]n obtained by sending each vertex of MN to a uniformly random
point in [0, 1]n and extending linearly. Then Z exhibits AKT statistics.

In the context of this theorem, the constants in (1.1) depend on n, k, and
L, but not on the shapes of the pseudomanifolds (which can therefore also be
randomized). The case k = 1, n = 3 describes the “random jump” model of
random knots and links introduced by Millett [Mil]. Moreover, by a theorem of
Hardt and Simon [HS], the optimal filling of such a knot or link (after a slight
rounding of corners) is a C1 embedded surface. In particular:

Corollary 1.3. For some C > c > 0, the minimal Seifert surface of a knot
produced using N random jumps has area between c

√
N logN and C

√
N logN

with high probability.

1.2 Motivation

The methods we use to prove Theorems A, B, and C can be easily extended to
other i.i.d. samples of simple shapes on various spaces. However, the investigation
is mainly motivated by the desire to analyze topological invariants of random
geometric objects such as links and maps. Models of such objects tend to produce
random cycles which are similarly trivial at small scales, but are more difficult to
sample because they cannot be easily written in terms of i.i.d. parameters.

Random knots and links

There have been a number of proposed models of random knots and links; see [E-Z]
for a detailed survey. Several of these models are “spatial” in the sense that they
produce random knotted curves in space, and one supposes that these may exhibit
AKT statistics for filling area. As mentioned above, we show this for Millett’s
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random jump model, but it may also be true for random polygonal walks with
shorter segments as well as random grid walks, perhaps with some restrictions on
segment length.

Given two random curves in a certain model, one may want to understand the
distribution of their linking number. Since this will usually be zero on average,
the first interesting question is about the second moment. Linking number can be
computed as the intersection number of one curve with a filling of the other, thus
one may expect that two random curves of length N which exhibit AKT statistics
have expected squared linking number ∼ N logN or ∼ N

√
logN .

However, this is not the case for the Millett model: the second moment of the
linking number between two random jump curves of length N is ∼ N [ABD+,FK].
Similarly, one may take the setup of Theorem A for k = 1 and n = 3 as a model
of a random link and try to understand the total linking number, that is, the sum
of the signed linking numbers of all pairs of circles. This is then the intersection
number of the chain with its own filling. Here it is easy to see (as pointed out by
Matthew Kahle) that the second moment of the distribution is once again ∼ N .

In both cases, this seeming incongruity perhaps boils down once again to the
issue of multiple scales: random jump curves and great circles only “see” the
largest scales, but the lower bound on filling volume in codimension 2 comes from
looking on many different scales at once. One may perhaps get a different answer
most easily by analyzing the linking number of an asymmetric model: a random
jump curve and a random walk of total length N made of smaller segments.

In [Tanaka,Marko], the second moment is computed for the linking number of
two random walks; normalizing so that these walks have length N and expected
diameter 1, this second moment again becomes ∼ N . In this model, however, ran-
domness happens at scale ∼ 1/N , so it is not expected to exhibit AKT statistics.

Random maps

Another way of producing a random (framed) link is as the preimage of a generic
point under a random map f : S3 → S2. In fact, the self-linking number of
this link is the Hopf invariant of the map, which is itself a natural subject for
investigation since it is a complete topological invariant of such maps.

One natural model of L-Lipschitz random maps is a uniformly random simpli-
cial map from a triangulation of S3 at scale ∼ L to a tetrahedron. The maximal
self-linking number of such a map is Θ(L4), cf. [Gro]; on the other hand, the
heuristics above would suggest that the second moment of the linking number of
the random model is between L3 and L3 logL.

These ideas may have applications in topological and geometric data analysis,
see [FKW].

4



1.3 Methods

The k = 0 cases of Theorems A and B are, up to minor adjustments, a classical
theorem in combinatorial probability:

Theorem 1.4 (Ajtai, Komlós, and Tusnády [AKT]). Let {X1, . . . , XN} and
{Y1, . . . , YN} be two sets of independent, uniformly distributed random points in
[0, 1]d, and let L be the transportation cost between {Xi} and {Yi}, that is, the
total length of an optimal matching. Then there are constants 0 < cd < Cd such
that with high probability,

cd AKTd(N) < L < Cd AKTd(N).

Since the original geometric proof in [AKT] of the most subtle case d = 2, this
and related results have been proved many other times, often by applying Fourier
analysis; see [BL2] for further references and [Tal3] for a detailed treatment of
certain analytic approaches. Another beautiful geometric proof of the upper bound
on the sphere is due to Holden, Peres, and Zhai [HPZ].

The proofs of Theorems A and B in general are obtained by applying the k = 0
results to (n − k)-dimensional slices of the cube and sphere. This is the reason
that the results depend only on the codimension, and for the critical nature of
codimension 2. The lower bound in (1.1) is obtained directly by integrating the
lower bounds on these slices. The upper bound is obtained via a dual result on
differential forms; this kind of technique was already used in [AKT] for the proof
of the lower bound for the square. Finally, (1.2) is proved using the notion of
concentration of measure due originally to Gromov and Milman [GM]; see [Led]
for an extensive modern treatment.

Theorem C is proved similarly, except that slices no longer consist of i.i.d.
points. Even this small amount of dependence complicates the argument consid-
erably. We use ad hoc combinatorial arguments to overcome this, but one might
hope to generalize, for example by applying a variant of Stein’s method, to a ver-
sion of Theorem 1.4 in the presence of dependence (one approach, which only gives
upper bounds, is discussed in [BL2, §5]).

Structure of the paper

Section 2 introduces necessary ideas and results from geometric measure theory,
and Section 3 discusses the classical AKT theorem. In Sections 4 and 5, the
upper and lower bounds in Theorems A and B are proved using tools that may
generalize to other models of random cycles. In Section 6, we discuss the extra
ideas needed to prove Theorem C. Finally, Section 7 discusses the concentration
of the distributions in these theorems around their mean.
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2 Definitions and preliminaries

2.1 Cycles and currents

There are a number of useful ways to define chains and cycles from the point
of view of topology and geometric measure theory. Algebraic topology typically
uses singular k-chains: formal linear combinations of continuous maps from the
k-simplex to a topological space X (“singular simplices”). We will usually restrict
our attention to Lipschitz simplices (that is, requiring the maps to be Lipschitz)
on a Riemannian manifold M . By Rademacher’s theorem, a Lipschitz simplex
σ : ∆k → M is differentiable almost everywhere and so has a well-defined volume
or mass,

mass(σ) =

∫︂
∆k

σ∗d volM .

We can then extend by linearity to define the mass of a Lipschitz chain.
A more general notion of chain is that of a normal current. A k-dimensional

current on a manifold M is simply a functional on (smooth) differential forms,
which we think of as integration over the current. For example:

• Every Lipschitz chain T defines a current via ω ↦→
∫︁
T
ω.

• Every compactly supported (n−k)-form α ∈ Ωn−k(M) defines a current via
ω ↦→

∫︁
M

α ∧ ω.

We will write the value of T on ω either as T (ω) or as
∫︁
T
ω, since currents should

be thought of as generalized domains of integration. The boundary operator is
defined via Stokes’ theorem: for a current T ,

∂T (ω) = T (dω).

The mass of a k-current T on M , which agrees with the same notion on Lipschitz
chains, is defined to be

mass(T ) = inf{T (ω) : ω ∈ Ωk(M) and ∥ω∥∞ = 1}.
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Here ∥ω∥∞ is the supremum of the value of ω over all frames of unit vectors. For
a general current, the mass of course need not be finite. A current T is normal
if T and ∂T both have finite mass; in particular any cycle (current with empty
boundary) of finite mass is normal.

2.2 Fillings and duality

Now, if S is a normal current such that ∂S = T , we call it a filling of T . The
filling volume of T is

FV (T ) = inf{mass(S) | ∂S = T},

which is always finite by the work of Federer and Fleming. The following is an
instance of the Hahn–Banach theorem:

Proposition 2.1. Let M be a manifold. Then a normal k-current T in M with
∂T = 0 has a filling of mass c if and only if for every ω ∈ Ωk(M) with ∥dω∥∞ ≤ 1,∫︁
T
ω ≤ c.

More generally, for any closed set A ⊂ M , write Ωk(M,A) for the vector space
of forms whose restriction to A is zero. Let T be a normal k-current with ∂T
supported on A, that is, such that

∫︁
∂T

α = 0 for any (k−1)-form α ∈ Ωk−1(M,A).
Then T has a filling relative to A (that is, a (k+1)-current S such that ∂S−T is
supported on A) of mass c if and only if for every ω ∈ Ωk(M,A) with ∥dω∥∞ ≤ 1,∫︁
T
ω ≤ c.

In other words, the filling volume of a cycle T can be redefined as

FV (T ) = sup
{︁∫︁

T
ω | ω ∈ Ωk(M) such that ∥dω∥∞ ≤ 1

}︁
in both the absolute and the relative case. Our proofs of the upper bounds in
Theorems A and B will be based on this proposition rather than constructing
fillings directly.

Of course, knowing that a nice Lipschitz cycle has a filling which is a normal
current is not very satisfying—after all, normal currents can still be very strange.
Luckily, given a normal current filling, we can upgrade it to a Lipschitz chain
(at the cost of multiplying the mass by a constant) using the following classical
theorem:

Theorem 2.2 (Federer–Fleming deformation theorem [FF, Thm. 5.5]). There is
a constant ρ(k, n) = 2n2k+2 such that the following holds. Let T be a normal
current in Nk(Rn). Then for every ε > 0 we can write T = P +Q+ ∂S, where

1. mass(P ) ≤ ρ(k, n)mass(T ).

2. mass(Q) ≤ ερ(k, n)mass(∂T ).

3. mass(S) ≤ ερ(k, n)mass(T ).
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4. P is a polyhedral cycle which can be expressed as an R-linear combination of
k-cells in the cubical unit lattice in Rn.

5. If T is a Lipschitz chain, then so are Q and S.

6. If ∂T is a Lipschitz chain, then so is Q.

If T is a normal current filling a Lipschitz chain ∂T , then P +Q is a Lipschitz
chain filling T whose mass is only greater by a multiplicative constant ρ(k, n).

It is not hard to upgrade the deformation theorem to manifolds, although the
resulting constants will depend on the manifold and its metric; see for example
[EPC+, Theorem 10.3.3].

2.3 Slicing

An important property of normal currents, introduced in [FF, §3], is the ability to
take “slices” by hyperplanes to produce currents in lower dimensions. We follow
the exposition of F. Morgan [Mor, 4.11], who follows Federer [Fed, §4.2.1].

Let u : M → R be a Lipschitz function on a manifold M . Given a k-current T
on M and a differential r-form ω, define the (k − r)-current T ⌞ ω by

T ⌞ ω(η) = T (ω ∧ η).

In particular, this makes sense when ω is a measurable function, for example the
characteristic function χA of a set A. In that case we can write T ⌞ A = T ⌞ χA

for the restriction of T to A.
Given a Lipschitz function u : M → R, the slice of T at u(x) = r is defined by

T ∩ {u(x) = r} = (∂T ) ⌞ {u(x) > r} − ∂(T ⌞ {u(x) > r}). (2.3)

If T is a normal current, then T ∩ {u(x) = r} is a normal current for almost all r.
In addition, we have the following standard properties:

1. If T is defined by integration over a (rectifiable) set X ⊂ M , then the slice
T ∩ {u(x) = r} is defined by integration over M ∩ {u(x) = r}.

2. ∂T ∩ {u(x) = r} = −∂(T ∩ {u(x) = r}).

3. mass(T ) ≥ 1
Lipu

∫︁∞
−∞ mass(T ∩ {u(x) = r})dr.

A quick calculation from the definitions yields an additional property:

Proposition 2.4. If ω is a (k − 1)-form, then

T (du ∧ ω) = −
∫︂ ∞

−∞
(T ∩ {u(x) = r})(ω)dr.
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Proof. Start with the equalities

∂(T ⌞ u)(ω) =
∫︂ ∞

−∞
∂(T ⌞ {u(x) > r})(ω)dr

(∂T ⌞ u)(ω) =
∫︂ ∞

−∞
((∂T ) ⌞ {u(x) > r})(ω)dr.

Subtract one from the other; then applying Stokes’ theorem and the Leibniz rule
on the left and (2.3) on the right, we get the desired identity.

In particular, by inductively slicing in different directions, we get the following:

Proposition 2.5. Let 1 ≤ k ≤ m ≤ n, and let T be an m-dimensional current on
[0, 1]n. Given x⃗ = (x1, . . . , xk) ∈ Rk, let Px⃗ be the plane {x⃗} × Rn−k. Then there
are (m− k)-dimensional currents T ∩ Px⃗, normal for almost all x⃗, such that

∂(T ∩ Px⃗) = ∂T ∩ Px⃗

mass(T ) ≥
∫︂
[0,1]k

mass(T ∩ Px⃗)dx⃗.

In addition, given an m-index I ⊂ {1, . . . , n} and a function f : [0, 1]n → R,∫︂
T

fdxI = (−1)m
∫︂
[0,1]Ic

(︂∫︂
T∩Px⃗

f
)︂
dx⃗.

3 A variation on the Ajtai–Komlós–Tusnády the-
orem

The results of this paper are a generalization of Theorem 1.4. Properly, the the-
orem of Ajtai, Komlós, and Tusnády [AKT] is in the case n = 2; their paper also
asserts the case n ≥ 3, which is easy and later proved and extended in several
directions by Talagrand [Tal1,Tal2]. The n = 1 case is elementary, and the proof
along with a vast array of strengthenings and generalizations can be found in [BL1]
by Bobkov and Ledoux. Here we need a slight variation.

Theorem 3.1. Generate a cycle Z of mass N in C0([0, 1]
n, ∂[0, 1]n) by selecting

N independent, uniformly distributed points in [0, 1]n × {+1,−1}. Then there are
constants 0 < cn < Cn such that

cn AKTn(N) ≤ E(FV (Z)) ≤ Cn AKTn(N).

Remark 3.2. Suppose that D is a Riemannian ball diffeomorphic to [0, 1]n and
has a volume form. Then by the main theorem of [BMPR] (extending results of
Moser [Moser] and Banyaga [Bany]), there is a diffeomorphism between the two
which multiplies the volume form by a constant. Therefore Theorem 3.1 also holds
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with respect to Lebesgue measure on D, with constants 0 < cD < CD depending
on the ratio of the volumes and the bilipschitz constant of this diffeomorphism.

Moreover, given a smooth family of Riemannian balls, [BMPR] indicates that
there is a smooth family of such diffeomorphisms. Therefore, if the family is
compact, one can find uniform constants for the whole family.

Proof. There are two differences here from the results as they are typically pre-
sented in the probability literature, where the problem consists of matching two
sets of random points of the same cardinality: first, the number of positive and
negative points may not match; second, we are allowed to match points to the
boundary as well as to points of the opposite orientation.1 We briefly explain how
to modify the original proofs to deal with this.

Clearly, the possibility of matching to the boundary cannot make the upper
bounds worse. Let’s say without loss of generality there are more positive points.
To obtain the upper bound for n ≥ 2, we may simply ignore some arbitrary set of
“extra” positive points, matching all the others first. By the central limit theorem,
the expected number of extra points is O(

√
N), so the extra mass generated by

matching them all to the boundary of the cube does not change the asymptotic
answer.

For the lower bound in the case n = 2, we use the same stratagem of ignoring
the “extra” points to create a new cycle Z ′ with an equal number of positive
and negative points. From the original proof in [AKT], we know that there is
a 1-Lipschitz function f : [0, 1]2 → R which is zero on ∂[0, 1]2 and such that∫︁
Z′ f ≥ c

√
N logN with high probability. Since with high probability the number

of extra points is <<
√
N logN , and the values of f lie between −1/2 and 1/2,

we also know that
∫︁
Z
f ≥ c

√
N logN with high probability.

The lower bound in the case n ≥ 3 is easy to see: conditional on any distribution
of the positive points, most negative points will be at distance ≥ cN−1/n from
every positive point and the boundary, where c > 0 is a constant depending on n.

In the case n = 1, the filling is unique up to a constant: the unique filling F
supported away from zero has density

∫︁ x

0
Z at x ∈ [0, 1]. We use arguments found

in [BL1, §3] to give estimates on E(massF ).
The upper bound is a simple calculation:

E(massF ) =

∫︂ 1

0

E
(︁⃓⃓∫︁ x

0
Z
⃓⃓)︁
dx

≤
∫︂ 1

0

√︂
Var(

∫︁ x

0
Z)dx =

√
N

2
.

The lower bound comes from the following classical fact, found in [BL1] as Lemma
3.4:

1In fact, a somewhat similar, but more complicated modification was studied by Shor [Shor].
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Lemma 3.3. Given independent mean zero random variables ξ1, . . . , ξN ,

E
(︃⃓⃓⃓⃓ N∑︂

k=1

ξk

⃓⃓⃓⃓)︃
≥ 1

2
√
2
E
(︃(︃ N∑︂

k=1

ξ2k

)︃1/2)︃
.

Let (Xk, σk) ∈ [0, 1] × {+1,−1} be the kth chosen point. Then applying the
lemma to ξk = σkχ{Xk≤x}, we get

E
(︁⃓⃓∫︁ x

0
Z
⃓⃓)︁

≥ 1

2
√
2
E
(︃(︃ N∑︂

k=1

ξ2k

)︃1/2)︃

≥ 1

2
√
2

(︃ N∑︂
k=1

(E(|ξk|))2
)︃1/2

=
1

2
√
2

√
Nx,

and therefore E(massF ) ≥
√︁
N/32.

4 Proof of the upper bound

To prove the upper bound in Theorems A and B, we will use Stokes’ theorem; that
is, we use the fact that for a cycle Z ∈ Ck(M,A),

FV (Z) = sup
{︁∫︁

Z
α : α ∈ Ωk(M,A) such that ∥dα∥∞ = 1

}︁
. (4.1)

In fact, since Z is a cycle,
∫︁
Z
α only depends on ω = dα. To bound this quantity,

we first note that any ω ∈ Ωk+1([0, 1]n) can be decomposed into a sum of “basic”
forms of the form

ωI(x)dxi1 ∧ · · · ∧ dxik+1
,

where ωI is a function Rn → R, for each subset {i1, . . . , ik+1} ⊂ {1, . . . , n}.

Lemma 4.2. For any exact form ω ∈ Ωk+1([0, 1]n), there is a form α ∈ Ωk([0, 1]n)
given by

α =
∑︂
I⊂[n]
|I|=k

αI(x)dxI ,

such that dα = ω, and for each I,

∥αI∥Lip = ∥dαI∥∞ ≤ Cn,k∥ω∥∞.

If ω is exact in Ωk+1([0, 1]n, ∂[0, 1]n), then α can be chosen to be zero on ∂[0, 1]n.

Proof. We prove this by induction on n and k, keeping n−k constant. In the base

case k = 0, we can take the function α to be the fiberwise integral
∫︁ 1

0
ω along one

of the coordinates.
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To do the inductive step in the relative case, we follow the usual proof of the
Poincaré lemma with compact support, following [BottTu, §1.4]. Fix a smooth
bump function ε : [0, 1] → [0, 1] which is 0 near 0 and 1 near 1. By applying the
lemma one dimension lower, we get a form η ∈ Ωk−1([0, 1]n−1, ∂[0, 1]n−1) with

dη =
∫︁ 1

0
ω and ∥ηI∥Lip ≤ Cn−1,k−1∥ω∥∞. Then ω = dα for

α =
∫︁ t

0
ω − ε(xn)π

∗(
∫︁ 1

0
ω)− dε(xn) ∧ π∗η,

where π is the projection to the (n− 1)-cube along xn. Notice that

αI =

⎧⎨⎩− dε

dx
ηI\{n} if n ∈ I∫︁ t

0
ωI∪{n} − ε(x1)π

∗(
∫︁ 1

0
ωI∪{n}) otherwise.

This gives us a bound on each ∥αI∥Lip in terms of the ∥ωI∥Lip and ∥ηI∥Lip as well
as the derivatives of ε.

For the non-relative version, we follow the same proof, mutatis mutandis, taking

α =
∫︁ t

0
ω − π∗η.

Here and in the next section, by a random k-cycle we mean a random variable
taking values in k-cycles, that is, a measure on the space of k-cycles. We follow
the convention, common in probability theory, of blurring the distinction between
a measure on a set of objects and an object randomly drawn from that measure.

Theorem 4.3. Let Z be a random k-cycle in ([0, 1]n, ∂[0, 1]n) or in [0, 1]n which
satisfies the condition that for some M > 0,

E(FV (Z ∩ P )) ≤ M (4.4)

for almost all (n − k)-planes P parallel to one of the coordinate (n − k)-planes.
Then

E(FV (Z)) ≤
(︃
n

k

)︃
Cn,kM, (4.5)

where Cn,k is the constant from Lemma 4.2.

Proof. For a k-form α,
∫︁
Z
α depends only on dα. Therefore to estimate (4.1) it is

enough to show that for any (k + 1)-form ω with ∥ω∥∞ = 1, there is a k-form α
such that dα = ω and

∫︁
Z
α ≤ Cn,kM .

By Lemma 4.2, we can choose

α =
∑︂
I⊂[n]
|I|=k

αI(x)dxI

12



such that ∥dαI∥∞ ≤ Cn,k for every I. Then for α ranging over all these choices of
antidifferentials,

FV (Z) = sup
α

∫︂
Z

α = sup
α

∑︂
I⊂[n]
|I|=k

∫︂
[0,1]Ic

∫︂
Z∩Pu

αIdu

≤
∑︂
I⊂[n]
|I|=k

∫︂
[0,1]Ic

(︃
sup
α

∫︂
Z∩Pu

αI

)︃
du ≤

∑︂
I⊂[n]
|I|=k

∫︂
[0,1]Ic

Cn,kFV (Z ∩ Pu).

By linearity of expectation,

E(FV (Z)) ≤
∑︂
I⊂[n]
|I|=k

∫︂
[0,1]Ic

Cn,kE(FV (Z ∩ Pu)) ≤
(︃
n

k

)︃
Cn,kM.

Proof of Theorem B, upper bound. Let Z be a cycle in Ck([0, 1]
n, ∂[0, 1]n) obtained

by samplingN i.i.d. planes from a distribution on the set of oriented k-planes which
intersect nontrivially with [0, 1]n, such that the distribution is uniform (with re-
spect to Lebesgue measure on the corresponding polytope in Rn−k) on each set of
parallel planes.

This condition clearly implies that for every coordinate (n−k)-plane P , Z ∩P
consists of at most N i.i.d. positive and negative points with probability 1. Then
Theorem 3.1 implies that (4.4) holds for Z with M = Cn−k AKTn−k(N).

E(FV (Z)) ≤ 2

(︃
n

k

)︃
Cn,kCn AKTn−k(N).

Proof of Theorem A, upper bound. We use the fact that the transverse intersection
of an oriented great k-sphere with an oriented great (n − k)-sphere is a pair of
antipodal points with opposite orientations. Therefore, if Z is a cycle obtained by
sampling N oriented great k-spheres independently from the uniform distribution,
then for any great (n− k)-sphere P , with probability 1

Z ∩ P =

N∑︂
i=1

[xi]− [−xi]

where the xi are i.i.d. uniform points on Sn−k.
Consider Sn as a subset of Rn+1, with standard unit basis vectors e0, . . . , en.

Let K±
i be the preimage of the cube [−R,R]n under central projection (that is,

projection along lines through the origin) to the plane xi = ±1. If R is large
enough, the interiors of the K±

i cover Sn. Each K+
i is disjoint from its antipodal

set K−
i ; therefore for any great (n− k)-sphere P , with probability 1 Z ∩ P ∩K±

i

consists of i.i.d. uniform points. By Remark 3.2,

E(FV (Z ∩ P ∩K±
i )) ≤ Cn,k AKTn−k(N),
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where Z ∩ P ∩K±
i is considered as a cycle in C0(P ∩K±

i , ∂(P ∩K±
i )).

Note that central projection sends great spheres to hyperplanes. Therefore, by
Theorem 4.3, for each i and sign,

E(FV (Z ∩K±
i )) ≤ Cn,k AKTn−k(N). (4.6)

Set a partition of unity {φ±
i } subordinate to {K±

i } which is invariant with
respect to the involution, that is, such that φ+

i (x) = φ−
i (−x). To prove the

theorem, it is enough, given a k-form ω ∈ Ck+1(S
n) with ∥ω∥∞ = 1, to show that

for some (and therefore every) α ∈ Ck(S
n) with dα = ω,∫︂

Z

α ≤ Cn,k AKTn−k(N).

But note that ∫︂
Z

α =

n∑︂
i=0

(︂∫︂
Z∩K+

i

φ+
i α+

∫︂
Z∩K−

i

φ−
i α

)︂
.

Therefore it suffices to find an antidifferential and a bound separately for each
φ±
i ω. Therefore (4.6) suffices to prove the theorem.

5 Proof of the lower bound

Theorem 5.1. Let Z be a random Lipschitz k-cycle in ([0, 1]n, ∂[0, 1]n) such that
for almost every k-plane

Px⃗ = {(x1, . . . , xk)} × [0, 1]n−k ⊂ [0, 1]n,

the slice Z ∩ Px⃗ satisfies
E(FV (Z ∩ Px⃗)) ≥ p(x⃗)

where p : [0, 1]k → [0,∞) is an L1 function. Then

E(FV (Z)) ≥
∫︂
[0,1]k

p(x⃗)dx⃗.

Proof. Let U be a normal current filling Z such that mass(U) ≤ FV (Z) + ε, for
any ε > 0. Then for almost all Px⃗, there is a slice U ∩ Px⃗ which fills Z ∩ Px⃗, and

mass(U ∩ Px⃗) ≥ FV (Z ∩ Px⃗).

By Proposition 2.5,

FV (Z) + ε ≥ mass(U) ≥
∫︂
[0,1]k

mass(U ∩ Px⃗)dx⃗ ≥
∫︂
[0,1]k

FV (Z ∩ Px⃗)dx⃗.

Since this is true for every ε > 0, and by linearity of expectation,

E(FV (Z)) ≥
∫︂
[0,1]k

E(FV (Z ∩ Px⃗))dx⃗ ≥
∫︂
[0,1]k

p(x⃗)dx⃗.

14



Proof of Theorem B, lower bound. Let Z be a cycle in Ck([0, 1]
n, ∂[0, 1]n) obtained

by sampling N i.i.d. planes from a distribution on the set of oriented k-planes
which intersect nontrivially with [0, 1]n, such that the distribution is uniform (with
respect to Lebesgue measure on the corresponding polytope in Rn−k) on each set of
parallel planes. Assume, perhaps by permuting coordinates, that this distribution
is not concentrated on planes of the form

Px⃗ = (x1, . . . , xk)× Rn−k.

As in the proof of the upper bound, it follows that for every Px⃗, Z∩Px⃗ consists
of i.i.d. positive and negative points with probability 1. Moreover, the probability
of a random plane P intersecting Px⃗ inside [0, 1]n depends only on the direction
of P and not on x⃗. Thus

E(mass(Z ∩ Px⃗)) ≥ cN,

where c depends on the distribution but not on x⃗.Thus by Theorems 3.1 and 5.1,

E(FV (Z)) ≥ 1

2
Cn−k AKTn−k(cN).

Proof of Theorem A, lower bound. Let Z be a cycle in Ck(S
n) obtained by sam-

pling N independent uniformly distributed great k-spheres. It suffices to show
that for some compact submanifold K ⊂ Sn,

FV (Z ∩K) ≥ Cn,k AKTn−k(N)

where Z ∩K is considered as a cycle in Ck(K, ∂K).
Recall that for any great (n− k)-sphere P , with probability 1

Z ∩ P =

N∑︂
i=1

[xi]− [−xi]

where the xi are i.i.d. uniform points on Sn−k. Let T ⊂ Sn be a great k-sphere and
T ′ the (n−k)-sphere consisting of points farthest from T . We useNε(U) to indicate
the ε-neighborhood of the set U ; then Sn \ Nπ/4(T

′) = Nπ/4(T ) deformation

retracts to T along the orthogonal retraction ρ : Nπ/4(T ) → T . Let K = ρ−1(K ′)
whereK ′ is some closed ball in T which does not include any point and its antipode.

Notice that K is foliated by equal-volume patches of great (n − k)-spheres
Pu which retract to points u ∈ K ′, and also does not include any point and its
antipode. By Remark 3.2, there is a bilipschitz diffeomorphism from K to [0, 1]n

which sends each Pu to a plane of the form

(x1, . . . , xk)× Rn−k

in a volume-preserving way (up to a constant). Therefore, for each u ∈ K ′,

E(FV (Z ∩ Pu ∩K)) ≥ cAKTn−k(cN),

and applying Theorem 5.1, we obtain the result.
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6 Proof of Theorem C

Before we prove Theorem C, we must give a more precise statement.
By an oriented k-pseudomanifold we mean a k-dimensional simplicial complex

M with the following properties:

• It is pure, i.e. every simplex is contained in an k-dimensional simplex.

• Every k-simplex comes with an orientation such that the sum of all the
oriented k-simplices is a cycle in Ck(M).

Note that this is considerably wider than the usual definition: it is just enough so
that if M is equipped with the standard simplexwise metric, any Lipschitz map
from M to a metric space X defines a Lipschitz k-cycle in X.

We say M has geometry bounded by L if every k-simplex intersects at most L
others.

With these definitions, we restate Theorem C:

Theorem. Let M be an oriented k-pseudomanifold with N vertices and geometry
bounded by L. Let Z be a k-cycle on [0, 1]n obtained by sending each vertex of
M to a uniformly random point in [0, 1]n and extending linearly. Then there are
constants C > c > 0 depending on n and k such that

cL−1 AKTn−k(N) < E(FV (Z)) < CLAKTn−k(N). (6.1)

The concentration result will be proved in the next section.
As with Theorem B, the proof is a direct application of Theorems 4.3 and 5.1.

To apply these theorems, we need to understand the filling volumes of slices of
Z, which is more complicated in this case because while the points are identically
distributed, they are not entirely independent. We establish the upper bound
in Lemma 6.3; this depends only on the fact that every point is independent of
all but a constant number of others. For the lower bound in Theorem 6.13, the
argument is more subtle: even if every point is correlated with only one other,
such pairs could be very close and have opposite signs; then the least filling would
be much smaller than for independent points. Accordingly, we have to show that
most correlated points are still far apart. Together, these two bounds complete
the proof.

In this section as before, fix the notation

Px⃗ = {x⃗} × [0, 1]n−k ⊂ [0, 1]n, x⃗ ∈ [0, 1]k.

We start by analyzing the slice Z ∩ Px⃗.

Lemma 6.2. Let x⃗ ∈ [0, 1]k. Then the slice Z ∩ Px⃗ is the sum of N random
0-chains ζ1, . . . , ζN which are identically distributed on {±[y] : y ∈ [0, 1]n−k}∪{0}
according to a distribution µx⃗ depending on k and x⃗. Moreover:
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(i) µx⃗ is invariant with respect to the involution sending a chain ζ to −ζ;

(ii) µx⃗ ≤ C(n, k)µLebesgue on [0, 1]n−k.

(iii) Each ζi is independent of all but at most L other ζj.

Since the distribution of Z is invariant under permuting coordinates, this holds
for any (n− k)-dimensional slice in a coordinate direction.

Proof. The distribution in question is the intersection of a random linear k-simplex
in [0, 1]n with Px⃗. Property (i) is obvious from this, and (iii) follows since a pair
of ζi are independent whenever the two corresponding simplices do not intersect.
To see (ii), consider the function

Fx⃗ :
(︁
([0, 1]n)k+1, µLebesgue

)︁
→

(︁
{±[y] : y ∈ [0, 1]n−k} ∪ {0}, µx⃗

)︁
sending each linear k-simplex to its intersection with Px⃗. This function is measure-
preserving by definition, and its restriction to

K = F−1
x⃗ {[y] : y ∈ [0, 1]n−k}

is 1-Lipschitz. Therefore, by the coarea formula, the density function of µx⃗ is given
by the [n(k+1)−(n−k)]-dimensional Hausdorff measure of point preimages. Thus
it is enough to bound H(n+1)k(F

−1
x⃗ (y⃗)) for each y⃗.

Let T be the set of linear k-simplices with vertices in [−1, 1]n which pass
through 0⃗, and let

Tx⃗ = (T + (x⃗, 0⃗)) ∩ ([0, 1]k × [−1, 1]n−k)k+1.

(Here each vertex is translated by (x⃗, 0⃗).) Notice that

F−1
x⃗ (y⃗) ⊂ Tx⃗ + (0⃗, y⃗).

All these translates are disjoint and their union is a subset of ([0, 1]k×[−1, 2]n−k)k.
Therefore, again by the coarea formula,

H(n+1)k(Tx⃗) ≤ 3(k+1)(n−k).

This completes the proof of (ii).

Condition (iii) gives a dependency graph of degree ≤ L between the ζi. This
graph has an (L+ 1)-coloring, giving a partition of {0, . . . , N} into L+ 1 disjoint
subsets I1, . . . , In such that for i ∈ Ij , the ζi are i.i.d.
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6.1 Upper bound

This lemma gives the upper bound to plug into Theorem 4.3:

Lemma 6.3. For every x⃗ ∈ [0, 1]k,

E(FV (Z ∩ Px⃗)) ≤ (L+ 1)Cn,k AKTn−k(N).

Proof. We estimate E(FV (Z ∩ Px⃗)) by separately considering each summand

Z(x⃗, j) =
∑︂
i∈Ij

ζi, j = 1, . . . , L+ 1.

These summands consist of i.i.d. negative and positive points.
Write νx⃗ for the probability measure on [0, 1]n−k given by

νx⃗(A) =
µx⃗{[y⃗] : y⃗ ∈ A}

µx⃗{[y⃗] : y⃗ ∈ [0, 1]n−k}
.

If ζ is a random 0-cycle in [0, 1]n−k with N positive and N negative points dis-
tributed according to νx⃗, then the AKT upper bound holds for ζ: by [BL2, equation
(12)], for some constant Cn−k independent of the measure,

E(FV (ζ)) ≤ Cn−k AKTn−k(N). (6.4)

To reduce to this situation, we note that while Z ∩Px⃗ is a cycle (and therefore
has an equal number of negative and positive points), Z(x⃗, j) may not be. We
produce cycles Z̃(x⃗, j) for j = 1, . . . , L+1 by adding up toN additional i.i.d. points
distributed according to νx⃗. We add each point to Z̃(x⃗, j) for two different j, with
opposite signs, so that

L+1∑︂
j=1

Z̃(x⃗, j) =

L+1∑︂
j=1

Z(x⃗, j) = Z ∩ Px⃗.

Each Z̃(x⃗, j) is a 0-cycle consisting of at mostN positive andN negative i.i.d. points.
Therefore, by (6.4),

E(FV (Z ∩ Px⃗)) ≤ (L+ 1)Cn,k AKTn−k(N).

6.2 Lower bound

For the lower bound, we begin by showing that correlated points in Z ∩ Px⃗ are
usually not very close; this relationship is summarized in Lemma 6.5. We use this
as an ingredient in the proof of Theorem 6.13, which retraces some of the steps in
the original proof of the AKT theorem.
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In many places, we refer to the function Fx⃗ and set Tx⃗ defined in the proof of
Lemma 6.2. Also, given a subset A ⊆ [0, 1]n−k, we write

[A] = {[y] : y ∈ A} and ±[A] = {±[y] : y ∈ A}

for the respective sets of 0-dimensional chains.

Lemma 6.5. Assume that x⃗ ∈ [1/4, 3/4]k. Let 0 < ℓ < 1/2 and let ζ and ζ ′ be
random variables whose values are the intersections with Px⃗ of two k-simplices ∆
and ∆′ of M whose vertices, some of which are shared, are chosen uniformly at
random from [0, 1]n. Let Q ⊂ [1/4, 3/4]n−k be a cube of side length ℓ. Then

P
[︁
ζ ′ ∈ ±[Q] | ζ ∈ [Q]

]︁
≤ Cn,k

√
ℓ. (6.6)

Remark 6.7. A more careful analysis based on the same principle shows that

P
[︁
ζ ′ ∈ ±[Q] | ζ ∈ [Q]

]︁
≤

{︄
Cn,kℓ|log ℓ| if n− k = 1,

Cn,kℓ otherwise.

Proof. The idea is this: suppose that ∆ and ∆′ share a (k− 1)-face ∆0, and let w
and w′ be the non-shared vertices of ∆ and ∆′. If the intersections of ∆ and ∆′

with Px⃗ are close to each other, then either the angle between ∆ and ∆′ is small
(forcing w′ to be close to the k-plane containing ∆), or ∆0 is close to Px⃗. We
would like to show that neither of these happens too often.

We will do this case in detail; the analysis when ∆ and ∆′ share a lower-
dimensional face is similar.

First, we show that ∆0 is not very often too close to Px⃗. This is easy to
establish globally; the tricky bit is showing that it’s true after conditioning on ζ
being supported in Q. Let ρx⃗(∆0) be the distance from ∆0 to the hyperplane
{x⃗} × Rn−k. The following lemma will be proved later.

Lemma 6.8. Let x⃗ ∈ [1/4, 3/4]k and let A ⊆ [1/4, 3/4]n−k be a set of positive
measure. Let ∆ be a simplex with vertices chosen uniformly at random from [0, 1]n,
and let ∆0 be its 0th face. Then

P
[︁
ρx⃗(∆0) ≤ r | Fx⃗(∆) ∈ [A]

]︁
≤ Cn,kr.

In particular,
P
[︁
ρx⃗(∆0) ≤

√
ℓ | ζ ∈ [Q]

]︁
≤ Cn,k

√
ℓ. (6.9)

Now we must show that when ρx⃗(∆0) >
√
ℓ, ζ ′ doesn’t very often land near

ζ. The point is that the difference depends on the angle between ∆ and ∆′, and
the distribution of this angle is not too concentrated anywhere; this is true for any
given ∆0. Fix ∆0 with ρ(∆0) ≥

√
ℓ, and let U(∆0, Q) ⊆ [0, 1]n be the set of points

w′ such that ζ ′ ∈ ±[Q]. Note that U(∆0, {z}) is contained in the intersection of
a k-plane with [0, 1]n(k+1) and hence its k-dimensional Hausdorff norm is at most
some Cn,k. Now we would like to use the coarea formula to integrate with respect
to z ∈ Q. For this we need the following estimate, to be proved later:
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Px⃗

∆yi

D ≤
√
k

d ≥ r

Figure 1: When a vertex moves by ∆yi, ∆ ∩ Px⃗ moves by (d/D)∆yi.

Lemma 6.10. Given a linear k-simplex ∆ ∈ ([0, 1]n)k+1 such that at least one of
its (k − 1)-faces is at distance at least r from Px⃗,√︂

det
(︁
[(DFx⃗)∆]T (DFx⃗)∆

)︁
≥ Cn,kr

n−k.

Then by the coarea formula, for fixed ∆0,(︃
ℓ

k

)︃n−k
2

vol(U(∆0, Q)) ≤ Cn,k vol(Q)

and therefore
vol(U(∆0, Q)) ≤ Cn,kℓ

n−k
2 .

Integrating this over the domain in [0, 1]kn containing all values of ∆0 such that
ρx⃗(∆0) ≥

√
ℓ, we see that

P
[︁
ζ ′ ∈ ±[Q] | ζ ∈ [Q], ρ(∆0) ≥

√
ℓ
]︁
≤ Cn,kℓ

n−k
2 . (6.11)

Together, (6.9) and (6.11) imply (6.6).

Now we prove the lemmas.

Proof of Lemma 6.10. From Figure 1, we see that for every 1 ≤ i ≤ n − k, there
is a unit vector v⃗ such that (DFx⃗)∆(v⃗) = ce⃗i, for c > r/

√
k. Therefore√︂

det
(︁
[(DFx⃗)∆]T (DFx⃗)∆

)︁
≥

(︃
r√
k

)︃n−k

.

Proof of Lemma 6.8. Let X be the event that ρx⃗(∆) ≤ r, and let Y be the event
that ∆ ∩ Px⃗ ∈ [Q]. Bayes’ rule states that

P(X | Y ) = P(Y | X)P(X)/P(Y ).
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We will bound P(X | Y ) by giving upper bounds for P(Y | X) and P(X) and a
lower bound for P(Y ).

We first show that

P(Y | X) ≤ 3(n−k)(k+1) vol(A). (6.12)

In fact, in this inequality, X may be any constraint on the first k coordinates of
each vertex of ∆ (note that ρx⃗(∆) depends only on those coordinates).

We start by fixing the first k coordinates of each vertex. Given a simplex ∆
with vertices in Rn, let π(∆) be the projection onto the first k coordinates, and
fix a simplex ∆π with vertices in [0, 1]k. Let U ⊂ ([−1, 1]n−k)k+1 contain the last
n − k coordinates of simplices in π−1(∆π) whose intersection with Px⃗ is [(x⃗, 0⃗)].
Write U +A to mean the set of translates of simplices in U by points in A. Notice
that

1. U + [0, 1]n−k ⊆ ([−1, 2]n−k)k+1,

2. the volume of U +A is proportional to vol(A), and

3. U + {y⃗} contains F−1([y⃗]) ∩ π−1(∆π).

Therefore, the probability that a given point of ([0, 1]n−k)k+1 is contained in U+A
is at most 3(n−k)(k+1) vol(A), and this in turn bounds

vol(F−1([A]) ∩ π−1(∆π)).

Integrating over possible values of ∆π gives (6.12).
Now we show that P(X) ≤ Cn,kr. Choosing k points in Rk uniformly at

random induces a probability measure on the set of (k − 1)-planes, whose density
at a plane P is proportional to vol(P ∩ [0, 1]k)k. This density is bounded above
by some Cn,k, and so the set of planes whose distance from x⃗ is at most r has
measure ≤ Cn,kr.

Finally we must give a lower bound for P(Y ), that is, the volume of

ΣY = {∆ : Fx⃗(∆) ∈ [A]} ⊆ [0, 1]n(k+1).

For this, we note that when x⃗ and y⃗ have all coordinates in [1/4, 3/4],

F−1
x⃗ ([y⃗]) ⊇ Tx⃗ ∩ ([−1/4, 1/4]n + {(x⃗, 0⃗)}) + {(0⃗, y⃗)}.

This is a translate of a set which is independent of x⃗ and y⃗. Taking all the translates
with respect to vectors in A, we see that ΣY contains a set whose volume depends
linearly on vol(A) and is easily seen to be positive.

Thus overall we get P(X | Y ) ≤ Cn,kr.

Finally we have the tools we need to prove the lower bound for Theorem C.
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Theorem 6.13. For every x⃗ ∈ [1/4, 3/4]k,

E(FV (Z ∩ Px⃗)) ≥ cn,kL
−1 AKTn−k(N).

Proof. Write d = n−k. We are trying to find a lower bound for the expected filling
length of a certain distribution on 0-cycles in [0, 1]d which is defined as a sum of a
large number of identically distributed points. This is very similar to the original
AKT theorem, in which the points are, in addition, independent and uniformly
distributed. In [AKT], the lower bound is proved using the dual definition of filling
volume given in (4.1), which we restate here for a 0-cycle Z0 in [0, 1]d:

FV (Z0) = sup
{︁∫︁

Z0
f : [0, 1]d → R such that Lip(f) ≤ 1

}︁
.

For the case d = 2, Ajtai, Komlós and Tusnády construct a
√
N logN -Lipschitz

function f whose integral over Z0 is usually at least cN logN . The filling vol-
ume FV (Z0) is then bounded below by the ratio of the integral to the Lipschitz
constant.

When d = 2, we construct f the same way as in [AKT], but on a modified
point set in order to overcome two issues:

1. The points of Z ∩ Px⃗ are not uniformly distributed. We use a bilipschitz
rescaling of the domain to make sure that they are.

2. The points of Z∩Px⃗ are not independent. We instead construct the function
f to have a large integral over a large independent subset, and then use
Lemma 6.5 to show that the integral over the remaining points is small.

For d = 1 and d ≥ 3, we use the same reduction steps, but the function f is
somewhat simpler. We start by more precisely describing the common argument
and then give the detailed construction of f for each case.

Let ζi be the chain-valued random variables corresponding to intersections of
k-simplices of Z with Px⃗. Recall that ζi = ±[vi] or {0}, with vi ∈ [0, 1]d iden-
tically distributed according to a density which is bounded below on [1/4, 3/4]d.
Moreover, this bound is uniform with respect to x⃗ ∈ [1/4, 3/4]k. Thus, following
Remark 3.2, there is a uniformly bilipschitz family of diffeomorphisms

φx⃗ : [1/4, 3/4]d → [0, 1]d

which send this density to a constant times the standard volume form. In partic-
ular, Lemma 6.5 still holds for the ζi after applying the diffeomorphism. We now
write ζi for φx⃗(ζi).

In each case, consider an (L+1)-coloring I1, . . . , IL+1 of the dependency graph
between the ζi, with the colored subsets ordered from largest to smallest. Note
that each of the ζi is correlated with ζi′ for at most L values of i′.

We write Zj =
∑︁

i∈Ij
ζi. In each case, we show that Z1 is hard to fill by

constructing a Lipschitz function f such that∫︂
Z1

f ≥ cn,k
L

AKTn−k(N) Lip f with high probability.
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Then we show that E(
∫︁
Zj

f) for each j ̸= 1 is small enough that it does not affect

the overall asymptotics.
In each case, the function f is constructed as a sum of simpler functions. Given

a cube Q ⊆ [0, 1]d, let ∆Q : [0, 1]d → R be the function supported on Q whose
graph is a symmetric pyramid with base Q and height 1. We also write ∆r

v for
the cube in the lattice of side length r which contains v ∈ [0, 1]d. The function
f will consist of a sum of scaled copies of ∆Q, each reflecting the “imbalance” of
positive and negative points on the cube Q. The main difference between different
dimensions is the scale of these cubes: for d ≥ 3, the cubes are at the smallest
scale (comparable to the average distance between neighboring points), for d = 1
they are at the largest scale (comparable to 1), and for d = 2 we use cubes at
many scales, as in the original proof of [AKT].

In each case, we construct f by means of an auxiliary function

g(x) =
∑︂
i∈I1

gζi(x)

(in the case d = 2, each ζi is associated to many summands grζi at different scales,
which we consider separately). This g may not satisfy the desired upper bound on
the Lipschitz constant, so we produce f by removing some of the summands where
they are too concentrated. Whenever ζi is independent from ζi′ , E

(︁∫︁
ζi′

gζi(x)
)︁
= 0,

and so for every j ̸= 1 we can write⃓⃓
E
(︁∫︁

Zj
g
)︁⃓⃓

≤
∑︂
i∈Ij

∑︂
{
⃓⃓
E
(︁∫︁

ζi
gζi′

)︁⃓⃓
| ζi′ is correlated with ζi}.

By Lemma 6.5, this correlation is not too high, and therefore we can bound each
of the summands. By the construction of f , this also bounds

⃓⃓
E
(︁∫︁

Zj
f
)︁⃓⃓
.

If we tune everything correctly, we get that for each j ̸= 1,⃓⃓
E
(︁∫︁

Zj
f
)︁⃓⃓

≤ 1

2L
E
(︁∫︁

Z1
f
)︁
,

giving a lower bound on E
(︁∫︁

Z
f
)︁
.

Case d ≥ 3

We split the cube [0, 1]d into ∼ N subcubes of side length r ≈ N−1/d, and let

g(x) =
∑︂
i∈I1

gi(x) =
∑︂
i∈I1

±r∆r
vi(x) where ζi = ±[vi],

f(x) =

r−1−1∑︂
t1,...,td=0

sign
(︂∫︂

Z1

χQr(t1,...,td)

)︂
r∆Qr(t1,...,td)(x),
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where Qr(t1, . . . , td) is the cube with side length r whose vertex closest to the
origin is (rt1, . . . , rtd). Note that f is 2-Lipschitz.

We can think of the number of points landing in each subcube asN independent
λ = 1 Poisson processes which we stop once their sum reaches roughly

P(ζi ∩ [0, 1]d ̸= 0)|I1|.

By the law of large numbers, the stopping time will be very close to

t = N−1P(ζi = ±[y], y ∈ [0, 1]d)|I1|

and very nearly Nte−t of the subcubes will contain exactly one point. Of these,
with high probability, at least (1/2) · 3−d ·Nte−t will be contained in the middle
third of their subcube. Therefore,∫︂

Z1

f ≥ cn,k
L

·N
d−1
d with high probability.

On the other hand, given j ̸= 1, i ∈ Ij , and i′ ∈ I1 such that ζi is correlated with
ζi′ , Lemma 6.5 tells us that ⃓⃓

E
(︁∫︁

ζi
gi′

)︁⃓⃓
≤ Cn,kr

3/2

and therefore ⃓⃓
E
(︁∫︁

Zj
f
)︁⃓⃓

≤
∑︁

i∈Ij
LCn,kr

3/2 ≤ LCn,kN
d−1
d − 1

2d .

Since this is small compared to
∫︁
Z1

f , this shows that

E
(︂∫︂

Z∩Px⃗

f
)︂
≥ cn,k

L
N

d−1
d Lip f for large enough N.

Case d = 2

This case is broadly similar, but we build the function f in a more complicated
way, following the original proof of [AKT]. For an integer r, let Qr

st be the square of
side length 2−r whose lower left corner is at (s ·2−r, t ·2−r), and write ∆r

st = ∆Qr
st
.

We write

g(x, y) =

0.1 logN∑︂
r=1

2r−1∑︂
s,t=0

grst(x, y) =

0.1 logN∑︂
r=1

2r−1∑︂
s,t=0

∆r
st(x, y)

∫︂
Z1

∆r
st

=

0.1 logN∑︂
r=1

∑︂
i∈I1

grζi(x, y)

=

0.1 logN∑︂
r=1

∑︂
i∈I1

∆r
vi(x, y)

∫︂
ζi

∆r
vi where ζi = ±[vi].
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Notice that
∫︁
Z1

grst is always nonnegative: roughly speaking, it measures the
square of the “imbalance” of positive and negative points in Qr

st. In particular,
it’s not hard to see that E(

∫︁
Z1

grst) = cn,k · 2−2rN , and therefore, after summing

over different scales, E(
∫︁
Z1

g) = cn,kN logN .

On the other hand, the derivative of g is O(
√
N logN) on average, but can

be much larger in some places. To remedy this, Ajtai, Komlós, and Tusnády
introduced a “stopping time” rule, building f as the sum of some, but not all
of the grst. We do not need to give the exact definition, remarking only that the
function f satisfies

E
(︁∫︁

Z1
f
)︁
≥ cn,k

L
N logN (6.14)

Lip f ≤ Cn,k

√︁
N logN. (6.15)

Now, for j ̸= 1,

⃓⃓
E
(︁∫︁

Zj
f
)︁⃓⃓

≤
∑︂
i∈Ij

0.1 logN∑︂
r=1

∑︂{︁⃓⃓
E
(︁∫︁

ζi
grζi′

)︁⃓⃓
| ζi′ is correlated with ζi

}︁
.

By Lemma 6.5, the value of each term of this triple sum is O(2−r/2). Therefore,

⃓⃓
E
(︁∫︁

Zj
f
)︁⃓⃓

≤ Cn,kLN

0.1 logN∑︂
r=1

2−r/2 ≤ (1 +
√
2)Cn,kLN.

Combining this with (6.14) and (6.15), we see that

E
(︂∫︂

Z∩Px⃗

f
)︂
≥ cn,k

L

√︁
N logN Lip f for large enough N.

Case d = 1

We split the interval [0, 1] into R equal regions, with R to be determined later.
Write ∆s = ∆[s/R,(s+1)/R], and let

g(x) =

R−1∑︂
s=0

∆s(x)
∫︁
Z1
χ[ s

R , s+1
R ] =

∑︂
i∈I1

gζi(x) =
∑︂
i∈I1

±∆1/R
yi

(x) where ζi = ±[yi].

We obtain the desired function f by replacing
∫︁
Z1

χ[ s
R , s+1

R ] with

hs = sign

(︃∫︂
Z1

χ[ s
R , s+1

R ]

)︃
min

{︃⃓⃓⃓⃓∫︂
Z1

χ[ s
R , s+1

R ]

⃓⃓⃓⃓
, Cn,k

√︃
N

R

}︃
for some sufficiently large Cn,k. Then Lip f ≤ Cn,k

√
NR and

∫︁
Z1

f ≥ cn,k

L N .

25



On the other hand, for j ̸= 1 and any i ∈ Ij and i′ ∈ I1 such that ζi and ζi′

are correlated, by Lemma 6.5,
⃓⃓
E
(︁∫︁

ζi
gζi′

)︁⃓⃓
≤ Cn,kR

−1/2, and therefore⃓⃓
E
(︁∫︁

Zj
f
)︁⃓⃓

≤ Cn,kLNR−1/2.

For some large enough R, depending on n and k but not on N ,⃓⃓
E
(︁∫︁

Zj
f
)︁⃓⃓

≤ 1

2L2
E
(︁∫︁

Z1
f
)︁
.

Thus E
(︁∫︁

Z∩Px⃗
f
)︁
≥ Cn,k

√
N Lip f , completing the proof.

7 Concentration of measure

In this section, we show that when n − k ≥ 2, the size of the filling tends to
concentrate around its mean. That is, we show that (1.2) holds in the case of
Theorems A, B, and C. We first prove this in the case of Theorem 3.1. The main
tool is the concentration of measure in high-dimensional balls, an idea due to
Gromov and Milman [GM] and of wide importance in probability theory [Led].
We follow the exposition due to Bobkov and Ledoux [BL1, §7.1] which covers the
1-dimensional case; the higher-dimensional cases are essentially the same although
they do not seem to appear explicitly in the literature.

Theorem 7.1. Let Z be a random cycle in C0([0, 1]
n, ∂[0, 1]n) as in Theorem 3.1.

Then for every r > 0,

P[|FV (Z)− E(FV (Z))| ≥ r] ≤ C1 exp
(︁
−C2r/

√
N
)︁

for universal constants C1, C2 > 0.

In particular, the standard deviation of FV (Z) is at most O(
√
N). In other

words, for n ≥ 2, FV (Z)/E(FV (Z)) converges to 1 as N → ∞.

Proof. Equip X = C0([0, 1]
n, ∂[0, 1]n) with the metric

dFV (Z,Z
′) = FV (Z − Z ′)

and let E = [−1, 1]× [0, 1]n−1. Define ζ0 : E → X by

ζ0(±x1, x2, . . . , xn) = ±[(x1, x2, . . . , xn)]

and ζ : (EN , dEucl) → X by

ζ(v1, . . . , vN ) =

N∑︂
i=1

ζ0(vi).
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This map is
√
N -Lipschitz since when every point moves by a tiny amount ε, the

distance is
√
Nε in the domain and Nε in the range.

Define the concentration function of a metric measure space (M,d, µ) of total
measure 1 to be

concM (r) = sup{1− µ(Nr(A)) | µ(A) ≥ 1/2}, r > 0,

where Nr(A) is the r-neighborhood of the set A. The key observation of Gromov
and Milman [GM, Thm. 4.1] is that

concM (r) ≤ 3

4
e− ln(3/2)λ1r,

where λ1 is the first nonzero eigenvalue of the Laplacian on M . Since the spectrum
of a product of manifolds is the sum of its spectra, λ1 is constant on powers of M .
The map ζ is measure-preserving, so it follows that

concX(r) ≤ 3

4
exp

(︁
− ln(3/2)λ1r/

√
N
)︁
.

Therefore, for any 1-Lipschitz function u : X → R,

P[|u(Z)−median(u)| ≥ r] ≤ 3

2
exp

(︁
− ln(3/2)λ1r/

√
N
)︁
.

By Chebyshev’s inequality, the same, modulo constants, holds for the mean (see
also [Led, Prop. 1.10]).

To adapt this proof for the case of Theorems A, B, and C, we just have to
change the space E: take

Esphere = ˜︂Grk(Rn) for Theorem A

Ecube = {affine k-planes P ⊂ Rn | P ∩ [0, 1]n ̸= ∅} for Theorem B

Eknot = [0, 1]n for Theorem C.

In the first two cases, the map ζ is constructed as before. In the last case, for

a k-pseudomanifold M with vertex set M0, ζM : E
|M0|
knot → Zk([0, 1]

n) sends
(v1, . . . , v|M0|) to the image of the linear immersion ofM with vertices (v1, . . . , v|M0|).

In each case, it is easy to see that if the space of k-cycles is given the filling
volume metric, then ζ is

√
N -Lipschitz. Therefore, the rest of the proof is identical

to that of Theorem 7.1.

References

[ABD+] J. Arsuaga, T. Blackstone, Y. Diao, E. Karadayi, and M. Saito, Linking
of uniform random polygons in confined spaces, J. Phys. A 40 (2007),
no. 9, 1925–1936.

27



[AKT] M. Ajtai, J. Komlós, and G. Tusnády, On optimal matchings, Combina-
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orem on manifolds with corners, Proc. Amer. Math. Soc. 146 (2018),
no. 11, 4889–4897.

[BottTu] R. Bott and L. W. Tu, Differential forms in algebraic topology, Graduate
Texts in Mathematics, no. 82, Springer, 1982.

[EPC+] D. Epstein, M. Paterson, J. Cannon, D. Holt, S. Levy, and W. P.
Thurston, Word processing in groups, Jones and Bartlett, 1992.

[E-Z] Ch. Even-Zohar, Models of random knots, J. Appl. Comput. Topol. 1
(2017), no. 2, 263–296.

[Fed] H. Federer, Geometric measure theory, Die Grundlehren der mathema-
tischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New
York, 1969.

[FF] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of
Math. (2) 72 (1960), 458–520.

[FK] E. Flapan and K. Kozai, Linking number and writhe in random linear
embeddings of graphs, J. Math. Chem. 54 (2016), no. 5, 1117–1133.
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