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The propagation and decay of a coastal vortex on
a shelf
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A coastal eddy is modelled as a barotropic vortex propagating along a coastal shelf. If the
vortex speed matches the phase speed of any coastal trapped shelf wave modes, a shelf
wave wake is generated leading to a flux of energy from the vortex into the wave field.
Using a simple shelf geometry, we determine analytic expressions for the wave wake and
the leading-order flux of wave energy. By considering the balance of energy between the
vortex and wave field, this energy flux is then used to make analytic predictions for the
evolution of the vortex speed and radius under the assumption that the vortex structure
remains self-similar. These predictions are examined in the asymptotic limit of small
rotation rate and shelf slope and tested against numerical simulations. If the vortex speed
does not match the phase speed of any shelf wave, steady vortex solutions are expected to
exist. We present a numerical approach for finding these nonlinear solutions and examine
the parameter dependence of their structure.
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1. Introduction

The interaction of interior ocean flows with coastal boundaries is a complicated multiscale
problem with important implications for the dissipation of mesoscale energy and the
generation of potential vorticity (Dewar, Berloff & Hogg 2011; Deremble, Johnson &
Dewar 2017). The dissipation of energy by coastal boundaries may be an important
component of the ocean energy budget and hence these boundary processes may influence
the global ocean circulation and long-term variability (Penduff er al. 2011). Vortices
and coastal trapped waves are important components of this flow (Isern-Fontanet,
Garcia-Ladona & Font 2006; Dewar & Hogg 2010; Hogg et al. 2011; Deremble et al.
2017; Crowe & Johnson 2020) and often occur on scales which are not well resolved by
global ocean models. Therefore, an understanding of the energetic consequences of these
processes is required to accurately parameterise their effects in global ocean models.
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Shelf waves are a form of coastal trapped topographic wave in which disturbances
propagate along a coastal boundary due to the combined effects of the Coriolis force and
offshore depth variations (LeBlond & Mysak 1978; Johnson & Rodney 2011). These waves
are dispersive and travel with the coastline to the right (left) in the Northern (Southern)
Hemisphere. Unlike Kelvin waves, shelf waves have a modal structure in the offshore
direction and can exist in barotropic systems with no change in surface elevation; this
allows a full spectrum of shelf waves to be captured by simple shallow water models
(Johnson 1989).

Moving bodies have long been known to generate wave fields when travelling in
fluids which support wave-like solutions and the wave generation by solid bodies has
been extensively studied, both experimentally (Long 1953; Machicoane et al. 2018) and
analytically (Fraenkel 1956; Bretherton 1967; Lighthill 1967). It is expected that travelling
vortices would similarly generate waves, however, since the only source of energy for the
wave field is the kinetic energy of the vortex, the formation of a wave field would lead to a
loss of vortex energy and hence a decay of the vortex. This leads to a feedback mechanism
where the generated modes depend on the properties of the vortex and the vortex decay
depends on the wave energy flux. Flierl & Haines (1994) used an adjoint method to
examine the decay of a modon on a beta plane. They found that as the vortex decayed,
mass was ejected from the rear. Therefore, unlike energy, momentum and enstrophy were
not conserved between the vortex and wave field. The value of the maximum vorticity
was argued to be a second conserved quantity and used to make analytical predictions for
the decay of the modon speed and radius. Johnson & Crowe (2021) and Crowe, Kemp
& Johnson (2021) estimated the decay of the Lamb—Chaplygin dipole (Meleshko & van
Heijst 1994) and Hill’s vortex (Hill 1894) in rotating and stratified flows by calculating the
work done by the leading-order wave drag and equating this to the loss of vortex energy.
Conservation of maximum vorticity was again used to close the system and shown to be
valid using numerical simulations.

Here we consider a simple analytical model of a moving vortex on the boundary of a
coastal shelf with the aim of determining the long-term evolution. Our vortex is taken
to consist of a near semicircular region of vorticity centred on the boundary. Using the
method of images, this may be modelled as a dipolar vortex with the dipole strength
determined by the vortex speed and radius. We begin in § 2 by presenting the model and
describing the exponential shelf profile used throughout. In § 3 we consider the generation
of shelf waves by a moving vortex. As expected, we observe that a wave field will only
be generated if the vortex speed matches the phase speed of any shelf waves and hence
vortices moving faster than, or in the opposite direction to, every shelf wave mode will not
generate a wave wake. The generation of these waves leads to a flux of energy from the
vortex to the wave field resulting in a decay of the vortex. We use a simple energy balance
to estimate this decay and present analytical results for the case of asymptotically small
rotation rate and shelf slope. Our predictions are tested against numerical simulations in
§4. In §5, we examine the case where the vortex does not generate waves. We expect
steady vortex solutions to exist and present a numerical approach for finding these fully
nonlinear solutions. Finally, in § 6 we discuss our results and the limitations of our model.

2. Set-up

Our starting point is the two-dimensional rotating shallow water equations under the
rigid lid assumption. Let Ox’y be Cartesian coordinates, fixed in the topography, where x’
describes the distance along a straight coastline and y describes the distance in the offshore
direction. We consider a near-semicircular vortex moving along the coastline with speed
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xl/ Y e=1/Ro

Figure 1. Our non-dimensional set-up showing a vortex of radius a(f) moving along a coastal boundary with
speed U(1). The layer depth, H(y), is shown as a shelf region of increasing depth of width D matched to a
constant depth ocean. The system is rotating with inverse Rossby number of €.

U(¢) and introduce coordinates following the vortex centre (Johnson & Crowe 2021) by
defining

13
x=x — / U dr, @2.1)
0

and working in the coordinate system Oxy. All quantities are specified by their value
in the frame of the topography unless stated otherwise. We thus simply work with
topographic frame variables expressed as functions of the moving coordinates (x, y) rather
than working in variables relative to a frame translating with speed U(¢). The advantage of
this formulation is that fictitious forces, that would arise from treating quantities relative
to the accelerating vortex frame, are absent. Throughout, whenever considering vortices
which are semicircular, or asymptotically close to semicircular, we will denote the radius
by a(?).

The non-dimensional equations in terms of (x,y) governing the horizontal velocity
components (u, v) relative to the topography are thus

du au du ou ap
— —-U— — — —ev=——, 2.2
TR T T T (2.24)
av av av av ap
— —U— — — =——, 2.2b
ot 8x+u8x+v8y+6u ay ( )
0 bl
— (uH) + — (vH) =0, (2.2¢)
dx ay

where € = 1/Ro is the inverse Rossby number and H is the layer depth. We take H to
represent a shelf with the depth varying only in the offshore, y, direction so H = H(y).
Our set-up is shown in figure 1 for a vortex of radius a(¢) and a depth profile, H(y),
consisting of a shelf of width D joined to a region of constant depth.

Equation (2.2) can be combined to give a single evolution equation for the potential
vorticity

i Ui l_][ 1=0 2.3
(ar_ 8x>q+H v.q1=0. (2.3)
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where the velocity can be expressed using a volume flux stream function

_ (W v
(u, v)_H< " ax>’ 2.4)

the vorticity is given by

v du  19? 3193
v w10y 01V @.5)
dax dy H ox ay | H dy
and g denotes the potential vorticity (PV) in the layer
{+e
= . 2.6
9="7 (2.6)

We impose a wall at y =0 with the boundary condition v(x,0) =0 or equivalently
¥(x,0) = 0. Far from the wall, disturbances are assumed to decay so (u,v) — O as
y = o0.

Throughout this study we will consider a shelf profile for H consisting of a shelf region
with exponentially increasing depth matched to a constant depth ocean. This profile is
chosen for simplicity of calculation, however, Huthnance (1974) and Gill & Schumann
(1974) showed that both the form of the dispersion relation remains unchanged and the
inner product exists for general topography, so similar results are expected to hold for
arbitrary H(y). Where possible, general results will also be given in terms of the arbitrary
profile H = H(y). Our shelf profile is given by

exp[Byl, y =D,

explBDI, v = D, @7

H(y) =

where D describes the shelf width and g describes the shelf slope.

We take our vortex solution to be dipolar and centred at (x,y) = (0,0) in our
vortex-following coordinates. This corresponds to a single vortex in y > 0 moving by
the image effect. The vortex boundary is taken to be close to semicircular with both the
vorticity and stream function being continuous across this boundary. In the far field,
the vortex appears as an irrotational source doublet (or equivalently, vortex doublet) of
strength u directed in the positive x direction. Therefore, far from the vortex we have

wzgmxaw=w. 2.8)

In the limit of B — 0 (with € such that Be — 0), our vortex solution is given by the
classical Lamb—Chaplygin dipole (Meleshko & van Heijst 1994) and hence

2J1(Kr)y
—Uy+ —, r<a,
Y= Jo(Ka)Kr (2.9)
—Uazy/rz, r>a,

forr? = X2 + y2. Here a is the semicircular vortex radius, Jy and J; are Bessel functions of
the first kind and K = j;/a where j; & 3.8317 is the first non-zero root of J;. In this case
the dipole strength may be calculated as . = 2mwUa®. A numerical approach for finding
these vortex solutions for a general depth profile, H, and rotation rate, €, is given in § 5.
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3. Vortex decay

This shelf system admits shelf wave solutions, so if the vortex is travelling in the same
direction as the phase speed of these waves (requiring eU > 0), it may generate a wave
field. These waves will remove energy from the vortex resulting in vortex decay (Flierl &
Haines 1994; Crowe et al. 2021; Johnson & Crowe 2021). Here, we determine conditions
for the existence of a wave field and hence determine the parameter values for which a
vortex will decay. We then use an asymptotic approach to derive an equation for the decay
rate of a vortex under the assumption of small rotation rate and shallow slope.

3.1. The topographic wave field

We begin by determining the linear topographic wave solutions admitted by the system
in the absence of a vortex. Our wave equation is obtained by linearising (2.3) and setting

U = 0to get

ad H, 9 H, 9

— | V2y — Hyoy | <H, oy =0. (3.1)
at H 9y H 0x

We now take H to be our shelf profile from (2.7) and assume wave-like solutions of the
form ¢ = «/IT](]; (y) exp(iwt — ikx) to obtain

92 2]z |-«*¢ y=D,
[a—yz‘k]¢—{o =D, G2)
where
2
ﬁmmﬁﬁ—%. (3.3)

We impose boundary conditions of <;~5 =0ony=0and q~5 — 0 asy — oo. Two boundary
conditions are also required at y = D so we take the velocity, (u, v), to be continuous here
giving that ¢ is continuous across y = D and

F§$+$Tﬁ=0 (3.4)
2H p- ‘
For y > D our solution is of the form
¢ = Ci(k) exp (—kly) . (3.5)
for some C1, hence, using (3.4), we can impose the boundary condition

@+<§+m0$=00ny=p, (3.6)

and only consider the shelf region y € [0, D]. In the shelf region we have a solution given
by
&:Qmm[ﬂ—%] 3.7)

where the square root term may be complex. Using the boundary condition aty = D, (3.6),
we obtain the dispersion relation

K2_k2

an[ Vi —p] = - YK
k[ +B/2

(3.8)
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with solutions describing a countably infinite set of modes with differing wavenumber and
offshore structure. To proceed we define

[ =+ —k2, (3.9

so [ can be thought of as the offshore wavenumber discretised by the shelf boundary at
y = D. We can now solve (3.8) numerically for /(k) for each mode and plot the frequency,
w, and phase speed, ¢, = w/k, by combining (3.3) and (3.9) to get

o= Pt =P (3.10a,b)
k= + 1=+ B=/4 k= 4+ 1=+ p=/4

For € > 0, the phase speed of the waves is positive for all wavenumbers and conversely for

€ < 0, the topographic wave phase speed is always negative. Additionally, the frequency

is odd in &, so we only need to consider waves with £ > 0. From (3.8), we note that for a

given mode, the offshore wavenumber, /(k), is an increasing function of k and lies within

the interval
1]l nw
l — ==, — ], 3.11

for mode number n = {1, 2, 3, ...} with
C o 21 nm
[(0) satisfying tan DI = _E and (k) — ) as k — oo. (3.12a,b)

Since w = ¢k, the group velocity is given by

CL L (3.13)

Cog=—=C¢C —, .
£ 0k P T ok
where the second term may be shown to be negative for k # 0 hence ¢, < ¢, for k #0.

Figure 2 shows the frequency and phase speed for the first five modes with € = 0.2,
B = 0.1 and D = 25.6. These curves are consistent with classical results for topographic
Rossby waves. For a vortex to generate a wave field, the speed of the vortex must match the
phase speed of one or more waves, hence a vortex cannot generate any waves if it moves
faster than the fastest mode or moves in the opposite direction to the topographic waves.
Therefore, for our choice of topography, a vortex moving with speed U will only generate
waves if

62/3

0<elU< EY S IL
;70) + B~/4

(3.14)

where /1 (0) is the smallest solution to 2/ + g tan DI = 0 and corresponds to the offshore
wavenumber of the lowest mode for £ = 0. Note that w/(2D) < [;(0) < 7/D and in the
case of § — 0 we have [1(0) — w/(2D). The condition in (3.14) has been multiplied
through by € to ensure it holds for both positive and negative €. We note that ¢, < ¢, for
all modes, hence for a vortex moving with speed U = ¢, energy will be emitted from the
rear of the vortex. This radiation condition will be required later.

If the vortex does not generate waves we expect that steady vortex solutions will exist,
these solutions can be found using the method outlined in § 5.
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Figure 2. Plots of the frequency, w, (a) and phase speed, c;, (b) for the first five modes with e = 0.2, 8 = 0.1
and D = 25.6.

3.2. Waves generated by a moving vortex

We now determine the amplitude of the vortex generated wave field. Working in
coordinates following the vortex (U # 0) and looking for steady wave solutions, we obtain
the linearised wave equation

9 H, 9
_pd ik (3.15)
ox| H H3 0x

Substituting for = +/H¢ gives

2

2 (ﬂ_ - f) d) y = Da
Vg = 4 U (3.16)

0 y=D,

where we note that
2
2 e p

k, Uk) = — — —. 3.17
K( ) U 2 (3.17)
Here x> must be positive if any waves are generated by the vortex by (3.14). As described

in (2.8), far from the vortex, the vortex appears as a point dipole of strength (., hence we
impose the boundary condition

¢ = %8()0 aty =0%. (3.18)

We also take ¢ — 0 as y — oo and impose continuity of ¢ and ¢, + [H,/(2H)]¢ across
y =D so that the velocity (u, v) is continuous here. We note that this approach is
equivalent to the matching step between an interior vortex and an exterior wave field in a
full asymptotic expansion in small €, § (Flierl & Haines 1994; Crowe et al. 2021; Johnson
& Crowe 2021).
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We now express ¢ using a Fourier transform as
L[> .
b = o [ bk expliko . (3.19)
T J-00

where ¢ satisfies the system

82 R 24 <D
L_plg={P v=D (3.20)
dy 0 y =D,
subject to
qAb = % aty =0,
¢—0 asy — 0o,
A1+
[ =0 aty =D, (3.2)
. Hy "
[@4—#{ :| =0 aty=D,

where we note that H,/H = 8 for y < D and Hy/H = 0 for y > D. The solution for (13 is
given by

(ésin[ﬂy]—kcos[ /cz—kzy]) y <D,

éz% A (3.22)
(C sin [«/K2 - kzD] + cos [ K2 — kzD]) e KO=D) vy > p,
where
VK2 — k% sin I:\/KZ — kZD] - (Ikl + g) cos [«/KZ — kZD]
C= (3.23)

ViZ — k2 cos [MD] + (Ikl + g) sin [MD] '

We note that the denominator of C vanishes if the dispersion relation in (3.8) is satisfied,
therefore the wave modes correspond to the residues of these poles.

By the radiation condition that ¢ — U < 0, we do not expect any waves generated
upstream of the vortex and hence we only consider the solution far downstream where
x < 0 and |x] > 1. For large x, the exponential term in (3.19) is strongly oscillatory and
the terms without poles decay as 1/x. We therefore consider only the terms containing C
and form a closed contour by including the arc [k| = R with R — oc in the lower half of
the complex k plane. All poles occur along the real line and are taken to lie within the
contour. Finally, the contribution from the arc vanishes as R — oo giving that

i - .
¢~ - Z Res[¢, k] exp(ik,x), (3.24)

where Res| f, x] denotes the residue of f and x. Here we sum over all poles of $ and have
gained an additional factor of —1 due to the orientation of the contour.
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Since ¢ is even in k there will be a pole at —k = k;, for each pole at k = k,, with residue
of the opposite sign. We therefore have

. N N
in A . . A .
¢ ~ — Y _Res[p, ky] [exp(—ikyx) — exp(ikyx)] = i ) _Res[, kylsin(knx),  (3.25)
2
n=1 n=1
where the k, are the positive poles of C and hence are the solutions to the dispersion
relation corresponding to a mode of phase speed U. Here N describes the number of modes

for which U = ¢, and will be determined later. By differentiating the denominator of C
we find that the residues are given by

. sin[ K2—k%y] y <D,
Res[¢, k,] = A, (3.26)
sin [,//{2 — k%D] e kO=D) y > p,
where
l Uk
A, = nle + 'g e (3.27)
knDle + Uky] + |€ + — | kn — =
2 2
for offshore wavenumber [, = \/k? — k2 satisfying
l
tan(/,D) = —— 7 (3.28)
kn+ —
2
The total wave field for large, negative x is now given by
N
Y [Ansin() sin(kyx) ] y<D,
=1
b~ u "N (3.29)
3 [An sin(1,D) sin(kx) e—W—D)] y>D.
n=1

The values of (k,, [,) can be determined numerically by finding the roots of ¢, = U using
(3.10a,b) (with I(k) given by (3.8)) or by solving (3.28) directly as a function of k. It may
be shown that the modal components of ¢ are mutually orthogonal in the y direction.

Finally, by calculating the maximum value of ¢, for each mode and comparing this with
U, we may determine the total number modes, N, as the greatest integer such that

INn<Kk=———. (3.30)

Using the bounds on / from (3.11) we have

D 2 1 D 2
Dl Py |1 D[P P (3.31)
NTU 4 2T AV U T 4

where | ] denotes the ‘floor’ function. By examining the form of (3.28), we observe that if
the value of T = tan(x D) + 2« /B is non-negative then equality holds in the upper bound
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Figure 3. Plots of the phase speed, cp, for the first five modes with g = 0.1, D = 25.6 and (a) € = 0.2, (b)
€ = 0.8. The dotted line denotes U = 1 and the k;, are determined as the intersections ¢, = U and denoted by
the open circles. We observe one mode for € = 0.2 and two modes for € = 0.8 for this choice of parameters.

of (3.31) whereas if 7 < O then equality holds in the lower bound. The case of N =0
corresponds to the vortex moving faster than the fastest wave and is equivalent to the
second inequality in (3.14) not being satisfied.

Figure 3 shows the solutions of ¢, =U for B =0.1, D=256, U=1 and € €
{0.2, 0.8}. The alongshore wavenumber, &, for which a given mode has ¢, = U is shown
by an open circle. The value of I, can be easily determined using [, = \/k% — k2. We
note that if a vortex slows down, it will generate an increased number of modes, as k will
increase.

3.3. Wave energy flux and vortex decay

As the vortex generates waves, it loses energy to the wave field and decays. Since the group
velocity for all waves is negative in the frame of the vortex, all energy emitted will cross
the line x = —L for L > 1 where the wave field is small in amplitude and hence linear
to leading order. Therefore, this energy flux is given to leading order by the quadratic
pressure work plus the transport of energy across the line due to the moving coordinates
(Crowe et al. 2021); so

F= fo T H [—pu +1 <u2 n vz) U] dy, (3.32)

where the factor of H is obtained by integrating over the layer depth. For linear waves, the
pressure may be determined from (2.2) as

€
= U —, 3.33
p u+ Hlﬂ (3.33)

S AN A AN X
r=| {ﬁ[(a) ‘(a—y)}ﬁa}dy' (339

Equation (3.34) may be written in terms of ¢ = v/ VH as

F= _/o |:<8_H; B E2_Hy> ¢ + (2_;; - 6) b¢y + Eﬁb}% - Ed)’%} dy, (3.35)
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and calculating F using (3.29) gives

N
Un? knA2 U B
F = 1 — N\ ky— = knD Ukyp] ) . 3.36
4 V;E—I-Ukn €+2 n 2 + kD [e + nl ( )
which we note is independent of x. Substituting for A, using (3.27) we have
Up? & knl2 [€ + UK
F=2y by [€ + Uks] , (3.37)

g [e + g (kn - g)] + kuD [€ + Uk, ]

which we note is always positive, corresponding to a loss of vortex energy. Equating this
flux with the loss of vortex energy, E, gives

dE

de
If we now assume that the vortex remains self-similar throughout the evolution, the energy,
E, and dipole strength, 1, may be determined in terms of the vortex speed U and radius a.
We now have two quantities, U and a, with a single evolution equation, (3.38), so a second
equation is required to close the system. Following Flierl & Haines (1994), Johnson &
Crowe (2021) and Crowe et al. (2021), we choose conservation of centre vorticity so that
the maximum vorticity of the vortex remains constant throughout the evolution. This gives
a second equation

—_F. (3.38)

dn
dr
where 7. = n.(U, a) is the maximum vorticity within the vortex and can be determined

from the vortex solution, either numerically or analytically.
In the case of asymptotically small 8 and €, the vortex solution reduces to the classical

Lamb—Chaplygin dipole and the quantities may be determined analytically from (2.9) as

=0, (3.39)

U
EWU,a) = nU%d*>, w(U,a) =2nUa> and n.(U,a) x —. (3.40a—c)
a

Therefore, (3.38) and (3.39) give

(3.41)

N
%(Uzaz) = —nUd Z U k,,l,zlﬂ[e + Ukl
n=1 |:€ + E (kn - 5)i| + knD [6 + Ukn]

E(H>_0 (3.42)
dt\a/) 7 '

Therefor,e a(f) oc U(t) so (3.41) may be solved as an equation for U(¢) subject to some
initial condition

and

(U,a) = (Up,ap) att=rty. (3.43)

We note that since the wavevector, (k,,[,), and number of modes, N, both have a
complicated dependence on U, this equation would have to be solved numerically.
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Figure 4. Plots of the wave energy flux F (blue) and the limit of F"as N — oo, denoted Fy (red). Here F and
Fy are shown as a function of U for (e, 8) = (0.2,0.1) (a) and (1, 0.4) (b) with D = 25.6 and u = 2nU. If
the vortex speed, U, exceeds the fastest wave there is no wave energy flux, this occurs for U > 2.14 for panel
(a) and for U > 7.87 for panel (b).

Figure 4 shows the wave energy flux, F, as a function of U for (e, ) = (0.2, 0.1) and
(1,0.4) with D = 25.6 and i = 2ntU. For large values of U the wave energy flux vanishes
as there are no modes which match the vortex speed. As we decrease U, an increasing
number of modes can satisfy ¢, = U so new modes appear in our solution. The dashed
lines in figure 4 denote the values of U at which these modes appear (disappear) as U is
decreased (increased). Whenever a new mode appears, a peak corresponding to this mode
is seen in the energy flux similar to the results of Johnson (1979). New modes appear with
k, = 0 (where ¢, is maximal), then k, increases as U decreases, with the associated energy
flux moving through a maximum and dropping off. We now consider the limit of small U
where the number of modes, N becomes large.

3.3.1. The large N limit
In the case of a large number of modes, we must have that

D |eg B2
N~ =[5 -2 1. 3.44
n\y U 4 > ( )

Therefore, this limit occurs if the velocity is small (U <« 1) or the shelf width is large
(D > 1). Noting that N &~ Dk /m and k, = O(x) we have that k,D is large and hence,
from (3.37), we have

N
Up? 2
F~ E:—". 3.45
D (345)

ni
I, ~ o (3.46)
SO
Unl N 2 2 U2 243/2
Fa2H Z”“ L (3.47)
4 ot D3 2 | U 4
927 A38-12


https://doi.org/10.1017/jfm.2021.790

https://doi.org/10.1017/jfm.2021.790 Published online by Cambridge University Press

Propagation and decay of a shelf vortex

where we have used
al |
> n?a gN3, (3.48)

n=1

for large N. We now define Fy to be the asymptotic form of F for large N so

U,bL2 |:€/3 ,82:|3/2

T n U 4

F
N U 4

(3.49)
where Fy is plotted in figure 4 and can be seen to well describe F for small U. Additionally,

we observe that Fy provides a fairly good approximation to ' for order-one values of U.
Taking € and B to be small we may use (3.40a—c) to obtain the approximate evolution

equations
3/2
d/ 5, Ua* [ep B2
— (U =— — - — 3.50
dt( “) 3 lu 4 G-20)
and
d /U
o <Z) =0, (3.51)

which may be easily solved in the case of 4¢ /U > B for vortex speed and radius

23
(U, a) = (Up, ap) |:1 4 %‘/63,33613/U0 (t— t())i| . (3.52)

This solution describes a polynomial decay of the vortex speed and radius similar to the
case of a beta plane modon considered by Flierl & Haines (1994) and Johnson & Crowe
(2021). Further, we note that (3.50) and (3.51) exactly correspond to the vortex decay
in the continuous limit of an unbounded shelf, D = oo, using the method of Johnson &
Crowe (2021) and Crowe et al. (2021). While the solution in (3.52) does require 4¢ /U >
B, it can be seen that if this condition is initially satisfied then it will remain true as U
decreases.

4. Numerical simulations

To test our predictions we perform numerical simulations using Dedalus (Burns et al.
(2020), set-up file available as supplementary material). We solve the full nonlinear,
rotating shallow water equations under the rigid lid assumption (see (2.2)) in a frame
moving with constant speed, Uy, in the along-shore (x) direction. We use the numerical
domain (x,y) € [—51.2,51.2] x [0, 51.2] with 1024 gridpoints in each direction and
decompose fields in terms of a Fourier basis in the x direction and a compound Chebyshev
basis in the y direction with separate Chebyshev expansions on and off the shelf. Solutions
are integrated for ¢ € [0, 50] using a second-order semi-implicit backward differentiation
formula (known as BDF) scheme with a timestep of 1073. We take boundary conditions
of no flow through the walls at y =0 and y = 51.2 and include small viscous terms
with a viscosity of v = 1.8 x 107> for numerical stability. The inclusion of viscosity
requires additional boundary conditions so we impose free-slip conditions on the walls,
dyu = 0ony =0, 51.2, and note that the leading-order vortex solution, (2.9), also satisfies
these conditions. Therefore, there is unlikely to be significant vorticity generation at the
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boundaries, something which can lead to a modification or breakdown of the vortex and is
particularly prevalent using no-slip boundary conditions.

The use of a Fourier basis in the x direction results in a periodic boundary and hence
waves may loop around the domain and interfere with the vortex. However, the stop
time, ¢ = 50, is found to be sufficiently early that these waves do not interact with the
vortex. Similarly, the solid wall at y = 51.2 differs from the semi-infinite domain used
in our theoretical calculations. Since wave-like disturbances will decay exponentially off
the shelf (in the region y > D), we would expect any effects of this rigid wall to be
exponentially small.

For all simulations, the shelf slope, 8, and shelf width, D, are chosen as (8, D) =
(0.1, 25.6). Simulations are initialised using the velocity fields corresponding to a
Lamb—Chaplygin dipolar vortex (see (2.9)) with initial speed |U(0)| =1 and radius
a(0) = 1. The frame speed, Uy, is set to match the speed of this initial vortex. Therefore,
we expect the vortex to remain close to x = 0 throughout the evolution with deviations
occurring as the vortex speed changes.

The effects of non-zero B and € are to modify the initial vortex leading to a transient
adjustment phase at the beginning of the simulation where the vortex adjusts to the effects
of rotation and shelf slope, and the wave field begins to develop. For small € and g, this
adjustment is small and the vortex remains approximately a Lamb—Chaplygin dipole with
a modified speed and radius. In order to compare with our theoretical predictions, we
take the values of Uy and ag to be the speed and radius after this adjustment phase, with
t = to describing the time taken for this adjustment to occur. A value of #y = 2 is found to
be sufficient and comparison is made with the theory for ¢ > 79. We note that accurately
determining the values of Uy and ag from the numerical data is difficult. This can present
issues when comparing with our theoretical predictions due to the sensitive dependence of
(3.41) on these quantities. The vortex speed, Uy, is determined by tracking the position of
the vorticity maximum and the vortex radius, ag, is estimated using the point at which the
vorticity becomes 2 % of its maximum value.

Figure 5 shows the stream function, v, for the final timestep, ¢ = 50, of our numerical
simulations for a range of parameters. Figures 5(a) and 5(b) show vortices which are,
respectively, moving faster than and in the opposite direction to all shelf wave modes.
For these simulations, the value of . is conserved to within the error expected due to
viscous effects and while a very weak wave signature is observed, this is likely the result
of transient waves generated during the initial adjustment. Figure 5(c) shows ¥ (x, y, 50)
for U(0) = 1 and € = 0.2 which initially matches the speed of a single wave with predicted
wavelength of 1, = 21 /k,, = 71.2. This wavenumber approximately matches the observed
wave which we note is likely to be restricted by the length of the domain. Finally figure 5(d)
shows ¥ (x, y, 50) for U(0) =1 and € = 1. The initial speed, U(0) = 1, is very close
to matching the phase speed of the first three modes, however, the vortex undergoes
significant adjustment due to the fairly large value of € and adjusts to a value of Uy ~ 1.1.
This value of Uy only matches the speed of the first two modes and, according to our
theoretical predictions, corresponds to modes with wavelengths of 4, = 22.7 and 4, =
31.0 and offshore wavenumbers of /, = 0.11 and /,, = 0.22, respectively. This prediction
appears consistent with our simulation where both these modes are seen. We note that as
the vortex speeds change throughout the evolution, so too will the wavenumbers of the
generated mode. The number of generated modes may also change if the vortex speed
slows sufficiently to excite a new mode.

For small € and B we can show using the Lamb-—Chaplygin solution that the
total stream function at the position of the maximum vorticity is proportional to Ua.
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Figure 5. The stream function, v, as a function of position in a frame moving with the speed of the initial
vortex, Ur = U(0). Results are shown for 8 = 0.1, D = 25.6 and ¢ = 50, for various inverse Rossby numbers,
€, and initial vortex speeds, U(0). The vortex adjusts slightly due to finite € and g effects so the value of U = Uy
taken at t = 1y = 1 can differ from U(0) by up to 10 %—15 %. (a) Here we have (e, U(0)) = (0.05, 1), a vortex
travelling faster than all shelf waves, (b) (e, U(0)) = (0.6, —1), a vortex moving in the opposite direction to all
shelf waves, (¢) (e, U(0)) = (0.2, 1), the vortex speed matches a single wave and (d) (e, U(0)) = (1, 1), the
vortex speed matches two waves.

Therefore, assuming that (3.42) holds, we have

Ve _ UMa@) _ U@
Yo Uoao Us

, 4.1)

where . is the value of the stream function at the position of maximum vorticity and
Yo is the value of V. at t = t9p = 2. The normalised value of ¥ can be easily determined
from our simulations and used to test our decay predictions by comparing with solutions
of (3.41) and (3.42) as well as the polynomial decay prediction in (3.52).

For very small values of € and 8 the wave energy flux, F, is small such that the vortex
decay, and hence the decrease in ¥, is slow. Since the effect of viscosity is to decrease
the domain averaged energy by around 1 %-2 % over the time interval ¢ € [0, 50], it is
not possible to accurately determine how the wave energy flux affects the evolution of the
vortex energy when the energy lost to the wave field is similar to the viscous dissipation.
Conversely, for values of € greater that 1, while the wave field remains small due to small 3,
the vortex is no longer well described by the Lamb—Chaplygin solution and the asymptotic
expressions for E, p and 7, in (3.40a—c) begin to deviate from the true values. Though
these deviations are fairly small despite an order 1 value of €, we find that (3.38) is very
sensitive to the values of E and u and our prediction gives only the order of magnitude
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Figure 6. Plots of the stream function, v/, showing the formation of the wave field for € = 0.8, Uy = 1.15,
ap =1, =0.1and D = 25.6 at two values of 7, t = 25 (a) and t = 50 (b). Similarly to figure 5, the solution
is shown in a frame moving with speed Uy = 1 in the x direction.

of the decay scale rather than an accurate result. As a compromise between these limits
we consider here the cases of € € {0.4, 0.6, 0.8}, 8 = 0.1 and (U(0), a(0)) = (1, 1) which
we observe are well described by the Lamb—Chaplygin solution. As described above, the
values of Uy and ag are predicted from the vortex speed and radius at ¢ = #.

Figure 6 shows the stream function, ¥, from our numerical simulation with
(e, B, D, Uy, ap) = (0.8,0.1,25.6, 1.15, 1). For these parameters we expect two shelf
wave modes with alongshore wavelengths of 4, =26.7 and A, = 42.7. We observe
evidence of these two modes and note that the mode with the shorter alongshore
wavelength (and hence larger alongshore wavenumber k, and smaller offshore
wavenumber /), propagates slower in the x direction due to a more negative value of the
group velocity, ¢, — Uy, and can be seen looping around the domain ahead of the slower
mode.

Figure 7 shows the values of ¥, and 1. from three simulations in which our theoretical
predictions are seen to be accurate. We plot two predictions: firstly, the numerical solution
to (3.41) and (3.42) using a fourth-order Runge—Kutta scheme is shown with dashed
lines; secondly, the polynomial approximation from (3.52) is shown with dot—-dashed
lines. In figure 7(a), close agreement is observed between our numerical results and
both predictions, and due to the sensitive dependence of these predictions on Up and
ap it is difficult to determine which is closest to the numerical results. The accuracy of
(3.52) is particularly interesting given that while the condition of 4¢ /U >> B holds for the
parameters we consider, the number of modes, N, is not large. The numerical value of /.
appears to slowly oscillate relative to the theoretical prediction; this is likely a consequence
of some higher-order wave-like behaviour within the vortex.

In figure 7(b) we plot the value of the maximum vortex vorticity, 1., as a function of
time in order to test our assumption (see (3.39)) that this quantity is conserved over the
decay scale of the vortex. We observe that 7. decreases by around 2 % over the course
of the simulations, and since this is much smaller than the decrease in v, and similar in
magnitude to the effects of viscous dissipation, we believe that this assumption is valid.

A supplementary movie, available at https://doi.org/10.1017/jfm.2021.790, shows
the time evolution of the wave field depicted in figure 6 and 7 with parameters
(e, B, D, Uy, ap) = (0.8,0.1,25.6, 1.15, 1). We plot the mass fluxes, (Hu, Hv), as
functions of time, ¢, and position, (x, y), in a frame moving with constant speed, Uy = 1.
The formation of two modes with different structure and speed can be clearly seen.
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Figure 7. (a) The normalised value of v, as a function of ¢, the solid line shows our numerical results, the
dashed line gives our analytical prediction from solving (3.41) and (3.42) and the dot—dashed lines give our
asymptotic prediction from (3.52). (b) The normalised value of 1, from our numerical simulation as a function
of time. Results in both panels are shown for (e, Uy, ag) = (0.4, 0.98, 1) (blue), (¢, Uy, ag) = (0.6, 1.1, 0.9)
(green) and (e, Uy, ap) = (0.8, 1.15, 1) (red) with 8 = 0.1, D = 25.6.

Additionally, we observe that the waves looping around the domain due to the periodic
x direction are unlikely to have a significant effect on the vortex for # < 50. Further, the
use of rigid boundary at y = 51.2 rather than the semi-infinite domain considered in our
theoretical model is justified as there is no noticeable disturbance near y = 51.2.

5. The steady nonlinear problem

We have shown that if the speed of the vortex matches the topographic wave speed for some
wavenumber, then the vortex will generate waves and decay due to the transfer of energy
from the vortex to the wave field. If, however, there is no wave speed which matches the
vortex speed, we expect steady vortex solutions to exist. This can occur if the vortex moves
in the opposite direction to the waves or moves faster than the fastest topographic wave.
The conditions for a decaying vortex are given in (3.14) and we will focus here on how to
determine steady vortex solutions to the full nonlinear system when these conditions are
not satisfied.

Neglecting the time derivative in (2.3) and combining the constant advection term with

the Jacobian gives
J[¢+U/de,§;€}=0, (5.1)

hence we have that the potential vorticity can be written as a function of the total stream

function as
—§;E:F<w+U/de). (5:2)

The function F may now be determined outside the vortex using the far-field condition
that ¢, ¥ — 0 as x — oo and hence

F(U / H(y) dy) - I%y) (5.3)
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for all y. Defining

y
A(y) = f H(y)dy, (5.4)
0
as the cross-sectional area in the offshore region [0, y] gives that
€
F@) = ———7——. (5.5)
H (A1 (z/U))
The full nonlinear problem outside the vortex can now be written as
192 d[10 eH
——f+—[——q+e: __<H0) (5.6)
H dx dy | H dy H (AT (/U +A(y))
and solved subject to
v =0 ony =0,
— 0 as x2 4+ y2 — oo,
v Y (5.7)
v+ UA(y) =0 onC,
(u,v) - t=uy on C,

where C is the vortex boundary and 7 is the tangent vector on C. Here u; is the tangential
velocity inside the vortex which is unknown at this stage. The third boundary condition
is the no-normal flow condition which states that the vortex boundary is a streamline of
the total stream function ¥ = ¥ 4+ UA(y). Note that this solution is only valid outside the
vortex since there are no streamlines which leave the vortex. Therefore, inside the vortex
we must instead impose F. Inside the vortex, i satisfies

2
o A aa—y [%%] e = HF(Y + UAGY) (5.8)
subject to
Y =0 ony =0,
v+ UA(y) =0 onC, (5.9)
(u,v) - t=u, onC.

To obtain a full solution we need to determine the vortex boundary, C, and the function,
F. This can be achieved by fixing F and then determining C from the requirement that
Y+ UA =0 on C and u, is the continuous across C. The typical analytical approach
would be instead to impose a boundary and then use u; from the exterior solution to
set a parameter in F (Moffatt 1969; Meleshko & van Heijst 1994), however, due to the
complicated functional dependence on H and nonlinear nature of this problem, there is
unlikely to exist a simple expression for the boundary.
To proceed we take

F(2) = K’z +e, (5.10)
inside the vortex. In the case of H = const., the system can be solved exactly to obtain the
circular Lamb—Chaplygin dipole (Meleshko & van Heijst 1994) vortex solution centred at
a point on the wall. For the Lamb—Chaplygin dipole we have K = j;/a where j; ~ 3.83

is the first non-zero root of the Bessel function, J;(z), and a is the vortex radius. For the
case of arbitrary € and H we expect K = K(e, (H), a) where (H) denotes some list of
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parameters of H and does not depend on y. Therefore, imposing a value for K sets the
size of the vortex as a function of (¢, (H)). We note that the vortex boundary, C, will
not necessarily be a semicircle as in the Lamb—Chaplygin dipole case, hence a here is a
parameter describing the vortex size rather than its radius. We do, however, expect that the
vortex will be close to a circle if € < 1 and H(y) varies slowly inside the vortex.

We can now seek numerical solutions by choosing a value for K and solving (5.6) and
(5.8) to obtain the stream function, ¥/, and hence the vortex size and velocity fields. The
numerical method is described in the Appendix (A).

5.1. Results

To illustrate our results we consider H given by (2.7). The cross-sectional area, A, is now
given by

1

5 [exp[By] — 1], y <D,
A(y) = 1 (5.11)
3 [exp[BD] — 1] + (y — D) exp[D], y =D,
which can be easily inverted for A~ (z).

We will consider here the case where the vortex radius is less than the shelf width,
a < D, however, our theory and numerical method is also valid for a > D. Here, the linear
operator, £, from (A10) can be written as

2 w2 €p p?
L=V"+ K exp[2B8yl0(a—r) + U@(r—a)—Z 6(D —y), (5.12)

which reduces to the linear operator for the Lamb—Chaplygin dipole problem
L=V*+K¥0@a-r), (5.13)

in the case of small €, . The terms C and N(¢) from (A10) can be similarly expressed in
terms of B and D.

Figures 8 and 9 show our nonlinear solutions for i for a range of parameters.
Figure 8 shows vortices which travel in the opposite direction to the wave field (U =
—1) for parameter values (e, 8) = {0.25, 1, 4} x {0.1, 1} while figure 9 shows vortices
which travel faster than the fastest topographic mode for € = 0.1 and g € {0.1, 1}. The
solutions are calculated on the numerical domain (x, y) € [—51.2, 51.2] x [0, 51.2] using
(Nx, Ny) = (2048, 1024) grid points and the solution is assumed to have converged if
8§ =1071%4n (A13). We plot the stream function in the frame of the vortex, i + UA(y), so
the streamline of height 0 denotes the vortex boundary. While our system depends on five
parameters, €, 8, D, U and K, we can set [U| = 1 and fix K. Setting |U| = 1 is equivalent
to setting the velocity scale used for calculating the inverse Rossby number, €, whereas
fixing K determines the size of the vortex and hence we can measure the slope, 8, and
shelf width, D, in units of the Lamb—Chaplygin dipole radius, a = j; /K. We therefore
vary only €, f and D and note that the dependence of the vortex structure on D is weak;
it is not shown here. We note, however, that D can play an important role in setting the
speed of the modes and hence is chosen such that the vortices in figure 9 do not generate
topographic modes. For the decaying vortex problem where energy is emitted towards the
edge of the shelf we expect that D will play a more important role.

From figures 8 and 9 we observe that the effect of increasing f is to reduce the vortex
size and to slightly alter its aspect ratio. Conversely, increasing € has no significant effect
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Figure 8. Plots of the stream function in the vortex frame, ¥ + UA(y), for six pairs of parameters, (¢, ),
given by (a) (0.25, 0.1), (b) (0.25, 1), (¢) (1,0.1), (d) (1, 1), (e) (4,0.1) and (f) (4, 1). Solutions are shown for
K =j1, U= —1and D = 12.5. Dependence on D is weak and hence not shown here. The dotted line shows
the vortex boundary for the Lamb—Chaplygin dipole case of (¢, 8) = (0, 0) using the same value of K.
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Figure 9. Plots of the stream function in the vortex frame, ¥ + UA(y), for e = 0.1, U =1 and B = 0.1 (a)
and B = 1 (b). Solutions are shown for K = j; and D = 12.5 and the dotted line shows the vortex boundary for
the Lamb—Chaplygin dipole case of (¢, 8) = (0, 0) using the same value of K. These solution correspond to
vortices travelling faster than the fastest topographic mode. While the dependence of the vortex structure on D
is weak, the value of D = 12.5 does ensure that there are no modes matching the vortex speed.

on the vortex size and shape though it does increase the peak value of the stream function,
corresponding to an increase in peak vorticity. The vortex shape can be discussed in terms
of aspect ratio: the ratio of the offshore radius, ay, to the alongshore radius, ay, given
by a, = ay/ay. Here a, and a, are defined as the distance from the origin to the curve
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Figure 10. Plots of G (a) and a, (b) as functions of € /U and B for D = 12.5. The range of parameters shown
is limited for € /U > 0 due to the appearance of decaying vortices in this region (we plot results for € /U €
[—4, 0.2]). The dashed line denotes € /U = 0.

€

¥ + UA(y) = 0 in the x and y directions, respectively. From (5.1) we note that v and
¢ may be scaled on U and hence € enters the system only through the quantity €/U.
Therefore, on dimensional grounds we may write the maximum vorticity as

Emax = %G (% 8, D) , (5.14)

where G is some function describing the dependence of the maximum vorticity on the
remaining parameters and a is some parameter describing the vortex size, taken here as
the offshore radius, a = a,.

In figure 10 we plot G and a, as functions of €/U and g for D = 12.5. Dependence on
D is weak and is not discussed here. Wave generation occurs for positive values of € /U
(see (3.14)) and we find that our iterative method fails to converge for vortices close to
the decaying regime. Therefore, only a small region of parameter space is shown for small
€/U > 0 corresponding to vortices moving faster than all wave modes as in figure 9. The
value of G is seen to increase with both 8 and —e/U corresponding to a higher vorticity
within the vortex centre. Finally, we observe that the aspect ratio, a,, increases slowly with
B and has very weak dependence on € /U. In the case of 8 = 0, the results are independent
of € and correspond to the Lamb—Chaplygin case given in (2.9).

6. Discussion and conclusions

Here, we have considered the evolution of a vortex moving along a shelf. To allow for the
calculation of analytical results in the limit of shallow slope and slow rotation, we take
our vortex to be contained within an approximately semicircular region against the wall.
Vortices of this form, therefore, limit to one half of the Lamb—Chaplygin dipole with the
other half corresponding to the vortex image.

Since a shelf system admits shelf wave solutions, we began by determining the speed
and structure of these modes. For positive rotation rate, these shelf waves move with the
coastal boundary on the right, as expected for coastal trapped waves. The finite shelf width
acts to discretise the modes leading to a countable set of wave solutions. The alongshore
and offshore wavenumbers can be determined numerically by solving a transcendental
equation and the frequency and phase speed of each mode can then be determined.

If the speed of the vortex matches the phase speed of any shelf wave modes, we expect
the vortex to excite these modes generating a wave wake. Using a Fourier transform
approach, we have determined the far-field amplitude of the wave wake and provided
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analytic predictions for the number of modes generated as a function of the vortex speed,
shelf parameters and rotation rate. We observe that a slower vortex will match the phase
speeds of a greater number of waves and will hence generate a higher number of different
modes. The group velocity of each modes is less than or equal to its phase velocity hence
all modes will be emitted behind the vortex and we expect no upstream wave signature.

The generation of waves corresponds to a flux of energy from the vortex to the wave
field with this flux resulting in the slow decay of the vortex. We have determined the
leading-order wave energy flux using our far-field wave solution and by equating this flux
to the loss of vortex energy we can describe the vortex decay. This decay is shown to
be proportional to the square of the vortex dipole strength and to have a complicated
dependence on the vortex speed, rotation rate and shelf slope. The vortex slows as it loses
energy, and so excites additional modes with large alongshore wavelength. The appearance
of new modes leads to a peak in energy flux resulting in more rapid loss of energy. As the
vortex slows further, the energy flux from this new mode and the vortex decay rate decrease
until a new mode appears.

In the limit of small rotation rate and small shelf slope we can approximate our vortex to
leading order using the Lamb—Chaplygin solution. This gives analytical expressions for the
vortex energy and dipole strength which allows us to solve for the evolution of the vortex
speed and radius by numerically integrating the energy balance equation. Additionally, we
present approximate analytic solutions for the case where the number of modes is large,
corresponding to either a very slow vortex or a wide shelf region. Polynomial decay of the
vortex speed and radius are observed and the results are consistent with the infinite width
shelf limit which can be derived using the methods of Johnson & Crowe (2021) and Crowe
et al. (2021).

To test our predictions we present numerical simulations of the full nonlinear system.
The vortex generated wave fields are shown for a range of parameters and found to be
consistent with our predictions. Finally, we compare our predicted vortex decay with the
vortex decay observed from numerical simulations and demonstrate fairly close agreement.
We note, however, that for a general rotation rate and shelf slope the difficulties in
accurately determining the vortex energy and dipole strength make it hard to test our
predictions due to the sensitivity of our results on these quantities. Additionally, the energy
flux can rapidly increase as a new mode appears, therefore any inaccuracies in estimating
the vortex speed can lead to significant errors in the vortex decay rate when the vortex is
close to exciting a new mode.

If the vortex does not excite any wave modes — either by travelling faster than the fastest
wave or travelling in the opposite direction to all shelf waves — we expect steady vortex
solutions to exist. We therefore consider the full nonlinear problem and present a numerical
approach for determining these nonlinear vortex solutions. Finally, solutions are presented
for a range of rotation rates and shelf slopes and compared with the Lamb—Chaplygin limit.
We find that increasing the rotation rate, hence reducing the Rossby number, increases
the maximum vorticity of the vortex. Increasing the shelf slope also corresponds to an
increase of the maximum vorticity when compared with the Lamb—Chaplygin case. In
addition, increasing shelf slope also changes the shape of the vortex boundary with a
slightly increased offshore scale compared with the alongshore scale.

From (3.52) we may estimate the dimensional decay time scale of a vortex as

[ U
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where here U and a describe the dimensional speed and radius of the vortex and B
measures the fractional change in depth across the vortex. Note that this result is valid
for 4af /U > B which ensures that there are many shelf wave modes matching the vortex
speed. Typical values of U =0.1ms™!,a =4 x 10°m, f = 107*s ' and 8 = 0.1 give a
time scale of around 5 days. Our asymptotic model requires a small inverse Rossby number
so is only valid for ‘small scale’ structures where rotation is dominated by advection.

We have used an exponential shelf profile throughout to illustrate our method and
results. For shelf waves above general monotonically sloping topography, Huthnance
(1974) and Gill & Schumann (1974) show that the dispersion relation takes a similar form
to that here and the inner product required for the orthogonality of modes exists. We thus
expect our results to extend to such shelf profiles and, when wave mode phase speeds
match the vortex speed, we expect vortex decay at a rate dependent on the shelf slope in
the same manner as for exponential topography.

The use of a shallow water model with a rigid lid assumption results in several
limitations. Firstly, the effects of vertical stratification, which may be expected to be
important over the scales of coastal vortices, are ignored. This precludes the consideration
of baroclinic effects such as depth dependence in the vortex and the generation of internal
Kelvin waves (Dewar & Hogg 2010; de Marez et al. 2017, 2020). Secondly, the rigid
lid approximation eliminates the free surface Kelvin and Poincaré waves. The relevant
parameter determining the strength of these waves is the Froude number

P (6.2)

VgH

which is typically small for coastal systems (Gill & Schumann 1974). The vortex speed U
is small compared with the long wave speed /gH and free-surface modes are only weakly
generated. The ratio of wave energy lost to surface waves (Ford, McIntyre & Norton 2000)
to that lost to shelf waves is of order O(F3 /e3) which is small for the parameters considered
above.

Supplementary material and movie. The Dedalus set-up file and a supplementary movie are available at
https://doi.org/10.1017/jfm.2021.790.
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Appendix A. General numerical solution

Here we present the numerical procedure used for solving (5.8) and (5.6) subject to the
boundary conditions (5.9) and (5.7). We begin by noting that

sgn[yr + UA] = —sgn[U], (AD)

inside the vortex and
sgn[yr + UA] = sgn[U], (A2)
927 A38-23
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outside to combine (5.6) and (5.8) as

W g e’ O(y/U + A)
Vi H 9y H (A7 (y/U + A)) v/
+H e — K2 (v + UA)] 0(—y /U — A), (A3)
where 6 is the heaviside function. Substituting ¥ = +/He¢ gives
H,, 3H?] cH3/?
Vip4+ - |2 2lp=—eVH+ 0(VHo/U + A)
[H 22 | H(A—l (ﬁ¢/U+A))
FHA [e K2 (dﬁqﬁ + UA)] 0(—He U — A), (A4)
and noting that
eH3/? eH,¢
=evH — —2 %), (A5)
H(A—l («/qu&/U +A)) UH

we may split (A4) into linear and nonlinear parts as

H 1| H, 3H?
V24 (K2H 0@ — 1) + 200 —a) + 5 | =2 — 2
|: +< (a—n+ Tl (r a)Jr2 H 2 ¢

= —VH[e(1 - H) + K*HUA]6(a — ) + N (), (A6)
where
N(¢) = H*? [9(—Jﬁ¢/U —A)—6(a— r)] [e K2 (JI?q& + UA)]
6H3/2
i (4 (Viig/U+4))

We note that (A6) is an exact rearrangement of (A4) for all values of a. However, picking
a to be close to the average vortex radius will minimise the nonlinear term, N, and make
finding solutions easier numerically. Defining the left-hand side linear operator as

(A7)

+49(r—a)|:—6x/_+ y¢}+9(\/_¢/U+A)

H 1| H 3H?2
L=V24+ KH9a -1+ o —ay+- | 2222 ), A8
—I—( (a F)+UH (r Cl)+2 H "3 (A8)

and the ¢ independent term as
C= —Jﬁ[e(1 —H) +K2HUA]0(a—r), (A9)
we may write (A6) as

L =C+ N(9). (A10)

We can now solve (A10) using an iterative method. We begin by finding the linear solution,
¢o, satisfying
Lo = C, (A1)
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by numerically inverting £ and imposing boundary conditions of ¢ = 0 on the boundaries
of the numerical domain. Using this linear solution as our initial guess we may now take

=L [C+N(gn1)], (A12)

and iterate until the domain averaged difference between consecutive ¢, is small,

/ |pn — Pp—11dA < 8, (A13)
D

for some §. Picking a value of a close to the size of the vortex minimises the nonlinear
term N and leads to faster and more consistent convergence. It is sufficient to pick initial
radius a using the Lamb—Chaplygin dipole value of @ = j; /K for small 8 and €. For larger
parameter values we can use gradually increase € or 8 while adjusting a to match the
observed vortex size from the previous parameter values. If convergence from the linear
solution is slow or fails, we can use a parameter continuation approach by taking the
nonlinear solution for slightly smaller € or B as our initial guess, ¢y.
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