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Abstract

Traditional depth sensors generate accurate real world
depth estimates that surpass even the most advanced learn-
ing approaches trained only on simulation domains. Since
ground truth depth is readily available in the simulation
domain but quite difficult to obtain in the real domain, we
propose a method that leverages the best of both worlds. In
this paper we present a new framework, ActiveZero, which
is a mixed domain learning solution for active stereovision
systems that requires no real world depth annotation. First,
we demonstrate the transferability of our method to out-of-
distribution real data by using a mixed domain learning
strategy. In the simulation domain, we use a combination
of supervised disparity loss and self-supervised losses on a
shape primitives dataset. By contrast, in the real domain,
we only use self-supervised losses on a dataset that is out-
of-distribution from either training simulation data or test
real data. Second, our method introduces a novel self-
supervised loss called temporal IR reprojection to increase
the robustness and accuracy of our reprojections in hard-
to-perceive regions. Finally, we show how the method can
be trained end-to-end and that each module is important
for attaining the end result. Extensive qualitative and
quantitative evaluations on real data demonstrate state of
the art results that can even beat a commercial depth sensor.
The codes of ActiveZero are available at: https://
github.com/haosulab/active_zero.

1. Introduction

Depth sensors can provide 3D geometry information

about a target scene, which is critical in various robotic

applications, including mapping, navigation, and object

manipulation [6,17,26]. Among the different types of depth

sensors available, active stereovision depth sensors (eg.

Intel RealSense™D series) are the most widely adopted in

both industry and academic settings due to their high spatial

Figure 1. ActiveZero produces more accurate and complete

disparity estimates on real IR stereo images for objects with

complex optical characteristics (specular, transparent) than com-

mercial depth sensors with zero real depth annotation using mixed
domain learning by leveraging self-supervised reprojection loss

on temporal IR patterns in the real domain and direct disparity

supervision in the simulation domain.

resolution, high accuracy, and low cost [19]. These sensors

are composed of an infrared (IR) pattern emitter and two IR

cameras with the IR pattern projected onto the target scene

to facilitate stereo matching. However, since these sensors

use classical stereo algorithms, they suffer from common

stereo matching issues such as over smoothing, edge fatten-

ing and holes for specular and transparent objects so they

are non-ideal for robotic applications which require high

precision and completeness [5].

Learning based methods can solve the aforementioned

issues by generating more accurate and complete depth

maps through the utilization of prior samples to understand

how to correctly handle edges and uncertain pixels [2–4,

35]. However, a large scale stereo dataset with ground truth

depth is required to train these learning based methods,

which is costly and time-consuming to collect in the real

world. Therefore, one way to alleviate this problem is to use
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self-supervised learning. Self-supervised stereo methods

[38, 39] use reprojection or other related losses between

binocular images as supervision, but the fluctuation of these

losses prohibit the network from reaching a meaningful

optima. Another approach is to use simulation data where

ground truth depth is readily available. However due to

the domain gap between the simulation and real world,

networks trained on only simulation data cannot be reliably

transferred to the real domain. Domain adaptation meth-

ods have been proposed to overcome the Sim2Real prob-

lem [23], but the introduction of GANs makes the training

process unstable [20] and the performance suboptimal.

This paper proposes an end-to-end learning stereo

method that combines the advantages of self-supervised

learning in the real domain and supervised learning in the

simulation domain which we call mixed domain learning
(Fig. 1). This strategy significantly boosts the stereo

network performance while also stabilizing and speeding

up the optimization process. Specifically, by only needing

to train on shape primitives in the simulation domain with

ground truth depth as supervision and an unrelated set

of scenes in the real domain with reprojection as self-

supervision, we are able to achieve comparable perfor-

mance on completely out-of-distribution objects in the real

domain as though we were directly training on those ob-

jects.

In addition, we observed that there are fundamental is-

sues with performing direct image reprojection as previous

works had done so we propose the use of temporal IR

by periodically adjusting the brightness of the emitted IR

pattern and extracting the binary pattern from the temporal

image sequences. The reprojection loss on the temporal

binary pattern eliminates the influence of scene texture

and also the effect of illumination strength decaying with

increased distance. Experimental results demonstrate that

our method is able to outperform state-of-the-art learning-

based stereo methods and commercial depth sensors, and

ablation studies verify the effectiveness of each module in

our work.

2. Related Work
Depth sensors can be classified into four categories ac-

cording to their underlying sensing principle [5]: pas-

sive stereo-vision, active stereo-vision, structured light,

and time-of-flight. Each depth sensing technique has its

own advantages and drawbacks. Giancola et al. [13]

introduces the principles of different depth sensors and

evaluated their metrological performance independently.

Chen et al. [5] compared the short-range depth sensing

performance of 8 commercially available depth sensors for

different illumination settings and objects and found that

active stereovision sensors and structured light sensors have

similar performance to each other and better performance

than the other two kinds of sensors. Furthermore, depth

sensor performance varies among different objects with

these sensors performing especially poorly on objects with

complex optical characteristics [29]. In this paper, we

focus on improving the visual and numerical performance

of active stereovision depth sensors, but the framework can

also be applied for structured light sensors.

Learning Based Stereo has become much more prevalent

with large-scale benchmarks and higher computational abil-

ity [12,16,21]. Stereo matching for depth estimation is typ-

ically done in four steps: matching cost computation, cost

aggregation, optimization, and disparity refinement [31].

Zbontar and LeCun were the first to design a network

for computing matching costs by utilizing a deep Siamese

architecture [37]. Building on this, DispNet introduced the

first end-to-end framework for predicting entire disparity

maps from stereo image pairs [25]. Works such as GWCNet

followed and improved on this framework by using 3D

convolutions to compute better cost volumes [18]. Recent

works have improved performance even further by utilizing

multi-scale context aggregation to estimate depth at dif-

ferent resolutions in order to leverage global image-level

information [2, 15]. However, the requirement of ground

truth depth as supervision has limited the application of

learning based stereo.

Self-supervised Stereo is a popular approach for stereo

matching when ground truth depth is unavailable. Godard

et al. [14] explored the use of left-right consistency in

a rectified stereo image pair for self-supervision. They

reconstruct the right view based on the given left view and

its predicted disparity map and then use the reconstruction

loss as a supervision for training. PDANet [11] introduced

the idea of perceptual consistency to improve reconstruction

quality on regions with low texture and high color fluctua-

tions. ActiveStereoNet [38] used local-contrast-normalized

(LCN) reprojection loss on IR images as self-supervision

to train a stereo network. However, this reprojection loss

fluctuates along the epipolar line and is heavily influenced

by occlusion and viewpoint variance. Not only that, LCN

loss also suffers in areas where camera noise and envi-

ronmental illumination dominate the projected IR pattern

since it only uses the IR image with projected pattern.

Our method addresses these concerns using temporal IR

reprojection loss by way of actively adjusting the brightness

of the emitted IR pattern which is more robust to camera

noise and environmental illumination.

Domain Adaptation techniques have shown great promise

in closing the gap between the simulation and real domains.

Tobin et al. [33] proposed using domain randomization

through randomizing rendering in the simulator to train a

robust model that would interpret the real domain as just

another variation of the simulation domain. Previous works

have also tried aligning the source and target domains by
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Figure 2. Architecture overview. The simulated and real stereo IR images are fed to a shared weight stereo network consisting of a CNN

for noise reduction and a cost-volume-based 3D CNN for disparity prediction. The network is trained with reprojection loss on temporal

binary IR pattern in the real domain, reprojection loss and disparity loss in the simulation domain as mixed domain learning.

matching their input distributions or their feature statis-

tics [24, 32]. Other works have attempted to learn domain-

invariant representations by augmenting the input based on

certain criterion set forth in the task and approach itself [10].

Moreover, unsupervised losses have seen increased use for

domain adaptation in tasks such as semantic segmentation

and object detection [7, 30, 34].

Our work is most related to StereoGAN [23], which

uses ground truth depth maps in the simulated domain and

reprojection loss in the real domain along with unsupervised

GAN losses in order to close the domain gap between

simulation and real images. Our work differs from theirs

in three key ways: (1) we utilize IR images with actively

projected patterns for stereo matching instead of passive

RGB images, which leads to a smaller sim2real gap and

better transferability; (2) we use the proposed temporal IR

reprojection loss as self-supervision which is more effective

in correlating local matching features; (3) we train using

only shape primitives and random real objects that are out-

of-distribution from test time data.

3. Method

In this section, we introduce mixed domain learning for

active stereovision. We first define the task setup: in real

domain X , we have a target set of real IR stereo images with

projected pattern X
t = {(xt

l , x
t
r)i}Ni=1, and our goal is to

learn an accurate disparity estimation network F to estimate

the disparity x̂t
d = F (xt

l , x
t
r). We utilize mixed domain data

to train the network: in real domain X we collect another

set of real IR stereo images X = {(xl, xr)i}Mi=1 without

disparity annotation. To be clear, the objects appearing in X

are different from the ones in X
t. In simulation domain

Y , we generate a set of synthetic IR stereo images with

ground truth disparity annotation Y = {(yl, yr, yd)i}Ki=1.

In order to guarantee the generalizability of the trained

network to unseen objects, we only use shape primitives

(sphere, cube, capsule) with different scales, textures and

materials to generate Y.

Figure 2 shows the framework of our proposed method.

In the real domain, we propose the use of temporal binary

IR reprojection loss as self-supervision (Sec. 3.1). In

the simulation domain, we use the loss between predicted

disparity and the ground truth disparity yd as supervision

(Sec. 3.2). The network is trained jointly using the self-

supervision in real domain and supervision in simulation

domain (Sec. 3.3). The stereo network architecture and

other implementation details are introduced in Sec. 3.4.

3.1. Real Domain: Self-supervised Learning on IR
Images

The prerequisite for computing reprojection loss of

grayscale stereo images in conventional self-supervised

learning methods [14, 38] is that the object surface is Lam-
bertian diffused where the reflection intensity is invariant

to the viewpoint, which is usually not satisfied in real

world. Therefore, we propose to extract the binary projected

13035



x(0) x(1) x(n-1)x(n) x(0) x(1) x(n-1) x(n)

Figure 3. Temporal binary pattern extraction

active pattern from temporal IR stereo image sequences,

which eliminates the adverse effect of surface reflection

while maintaining the most important components of active

pattern. Then, we construct the reprojection loss on this new

binary pattern.

Binary Pattern Extraction From Temporal IR Images.

For the real captured IR images xl or xr, the grayscale at

pixel (u, v) is:

xl(u, v) = Il(u, v) + α ∗ e ∗Kl(u, v) + ε (1)

where Il(u, v) represents the environmental illumination

intensity, Kl(u, v) represents the binary pattern captured

by the camera, α represents the reflection coefficient de-

termined by the object surface material, texture, angle and

distance, e represents the pattern emittance, and ε repre-

sents the camera sensor noise. For active depth sensors,

we manually adjust the pattern emittance e by changing

the emitter power. Therefore, as shown in Fig. 3, our

pattern extraction procedure is as follows: we set e to

{e0, e1, ..., en}, capture a temporal sequence of correspond-

ing IR images {x(0), x(1), ..., x(n)}, and fit x(0),. . . , x(n) to

the linear model regressed and obtain x̂(0), . . . , x̂(n). We

extract the binary IR pattern K(u, v) from the temporal

image sequence through local window normalization and

binarization:

K(u, v) =

{
1 ||x̂(n)(u, v)− x̂(0)(u, v)|| > δ(u, v) + c

0 otherwise

δ(u, v) =
1

w2

∑
||W (x̂(n), u, v)−W (x̂(0), u, v)|| (2)

where W (x, u, v) is a local window centered at pixel (u, v)
in x with window size w, c is a threshold to filter out noise

and areas where the reflection coefficient is extremely small

such as pure specular reflection regions. In our work, we

use n = 6.

In Fig. 4, we compare the pattern extracted by differ-

ent methods. By utilizing the temporal image sequence,

our method is able to extract the pattern accurately and

completely even in distant areas where the SNR (signal

noise ratio) is low. The local normalization and binarization

window filters out camera sensor noise and environmental

illumination while retaining the projected active pattern,

which is beneficial for further reprojection loss computa-

tion.

Binary Pattern Reprojection Loss. As demonstrated in

traditional stereo matching and active stereo methods [1,

8, 9, 38], patch-wise reprojection losses are smoother and

more accurate than pixel-wise losses and are beneficial for

matching. Therefore, we construct the patch-wise reprojec-

tion loss on the extracted binary IR pattern (Kl,Kr) :

Lreproj(Kl,Kr, x̂d) =
∑
uv

1

(2p+ 1)
2C(u, v)

C(u, v) =
∑

(up,vp)∈P (u,v)

||Kl(up, vp)− K̂l(up, vp)||2

where P (u, v) represents the patch centered at pixel (u, v)
with patch size (2p+1)×(2p+1), K̂l represents the warped

right image using the predicted disparity x̂d.

As shown in Fig. 4, since the temporal binary IR pattern

eliminates the influence of object texture and environmental

illumination and only retains the projected pattern, the

reprojection loss computed on the binary IR pattern reaches

global minima at the ground truth disparity while the losses

computed on the other two patterns could be misleading for

the stereo network.

3.2. Simulation Domain: Supervised Learning on
Shape Primitives

Although the proposed temporal IR reprojection loss

can be used as the sole loss for stereo network training, it

still has some limitations: the binary IR pattern cannot be

extracted accurately for translucent and transparent objects

and there are local minima in the loss with respect to

the disparity hypotheses. On the other hand, traditional

supervised learning with ground truth depth does not suffer

from the aforementioned issues. However, it is costly and

time-consuming to acquire ground truth depth in real world

settings. Thus, we perform supervised learning only in the

simulation domain.

Dataset Generation based on Ray-tracing. In the last

decade, there has been significant progress in ray-tracing
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Figure 4. Comparison of extracted pattern and reprojection loss along the epipolar line. LCN pattern represents local contrast

normalization [38] which consists of continuous values; 2-step IR pattern and temporal IR pattern represent the extracted binarized pattern

from temporal IR image sequence using n = 1 and n = 6, respectively.

rendering techniques in terms of speed and quality. Com-

pared with rasterization, ray-tracing rendering can accu-

rately simulate the light transmission process on translucent

and transparent objects [28]. Therefore, we use ray-tracing

rendering to generate the simulated training dataset: we

first build a cone lighting with mask to imitate the pattern

emitter in the real active stereovision depth sensor, and then

construct two cameras similar to stereo cameras in the real

setting. The relative position between cameras and lighting

are set using parameters from real sensors. We also add

dim ambient light in the simulation environment to imitate

the filtered environmental light in the real setting.

Shape Primitives. The semantic-specific biases in CAD

model datasets may mitigate the generalizability of the

learned stereo network. Thus we only use base shape

primitives for simulated dataset generation. We use images

from tiny ImageNet [22] as object textures. The number of

primitives is randomly sampled from 5 to 15. The sizes,

layouts and materials are also randomly generated.

Disparity loss. Given the synthetic stereo image pair with

ground-truth disparity (yl, yr, yd), we follow [2] and adopt

smooth L1 loss between yd and the predicted disparity on

synthetic stereo images:

Ldisp = L1smooth(F (yl, yr), yd) (3)

3.3. Mixed Domain Learning

Given the real stereo IR image(xl, xr), and the simulated

stereo IR image with ground truth disparity (yl, yr, yd), we

train the stereo network F (·, ·) by combining the reprojec-

tion loss in the real domain and the disparity loss along with

reprojection loss in the simulation domain:

L(xl, xr, yl, yr, yd) =λr · Lreal-reproj(xl, xr, F (xl, xr))+

λs ·
[
Ldisp(F (yl, yr), yd)+

Lsim-reproj(yl, yr, F (yl, yr))
]

where λr and λs represent the weights of the real domain

and the simulation domain respectively.

The loss terms on real domain guarantee transferrability

to unseen real data. However, we find that it is quite hard

to train the network using these terms alone, due to noise

in the self-supervision signals. Interestingly enough, after

adding the supervised loss terms in simulation domain on

primitive shapes, the behavior of loss minimization is much

more tame: not only does the network converge faster, but

also the final solution has better quality (see Sec. A.1 in sup-

plementary material and Sec. 4.3 for empirical evidences).

3.4. Implementation Details

In the stereo matching network, we adopt PSMNet [2] as

the backbone, which aggregates image features at different

scales, constructs a cost volume and uses 3D CNNs to

regress the disparity. The max disparity of PSMNet is set

to be 192. We also use a 6-layer CNN to filter out irrelevant

noise before feeding the stereo images into PSMNet. To

make the model more robust, we apply color jitter and

gaussian blur to the input images.

4. Experiments
4.1. Experiment details

Datasets. Figure 5 shows example images from the three

datasets in our work. For the testing dataset, we used
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an Intel RealSense D415 as the active stereovision depth

sensor. All the real RGB and IR images are captured using

the RealSense camera. In order to quantitatively evaluate

the performance of the camera, the complete and accurate

ground depth is required. To do so, we constructed a set of

simulated scenes which are pixel-wise aligned with the real

ones by precisely aligning the shapes and poses of objects

and the intrinsic and extrinsic parameters of the RealSense

camera. To evaluate the influence of object material on

depth estimation performance, we include two categories

of objects: 3D-printed objects and real objects. The 3D-

printed objects are printed using color plaster powder, and

are considered Lambertian diffused, while the real objects’

material are complex (specular, translucent, transparent)
and difficult for active stereovision depth sensors. Overall,

the testing dataset consists of 504 stereo images of 24

different scenes.

For the training dataset in the simulation domain, we

rendered 20,000 stereo IR images with ground-truth dis-

parity annotation using random shape primitives, including

spheres, cubes and capsules. 10% of the primitives are set to

be transparent, 50% are textured by images from tiny ima-

genet [22], and the rest are set to random colors. For the ray-

tracing rendering, the number of samples per pixel is 128

and the max bounces is set to 8. The rendered IR images

are post-processed by the NVIDIA OptiX denoiser [27].

For the training dataset in the real domain, we collected

1,047 real stereo IR images of random objects which are

different from the testing dataset. The objects are randomly

placed on the table, and captured by the same RealSense

from different viewpoints. Note that we only use the real

IR stereo images to construct the temporal IR reprojection

loss, and the depth images are not collected.

Training. We train the network using the Adam optimizer

with the initial learning rate set to 2e-4, decaying by half

every 10k iterations for a total of 40k iterations. The net-

work is trained on 2 GPUs each with 11GB GPU memory

and a batch size of 4. We use λs = 0.01 and λr = 2 for the

loss weight to set the two losses to similar scales.

For fair comparison, data augmentation is applied to both

our method and baseline methods. Specifically, brightness

and contrast is uniformly scaled by a value between 0.4 to

1.4, and 0.8 to 1.2 respectively. For gaussian blur, kernel

size is fixed to 9 × 9 and the standard deviation is selected

uniformly between 0.1 to 2.

Evaluation metrics. Several common stereo estimation

metrics are used to evaluate the proposed method. End-

point-error (EPE) is the mean absolute disparity error. Bad
1 is the percentage of pixels with disparity errors larger

than 1 pixel. By converting disparity to depth, we also

measure the average absolute depth error (abs depth err)

RGB IR Disparity

(a)

(b)

(c)

Figure 5. Example images from our dataset. (a) the simulation

training dataset of random shape primitives; (b) the real training

dataset of random objects different from testing; (c) the sim2real

aligned testing dataset, including specular surfaces such as metals

and translucent bodies such as liquids. Note: we don’t rely on

any annotation for real scenes which is why we have no disparity

annotation in (b).

and the percentage of depth outliers with absolute error

larger than 4mm, which is denoted as >4mm. To evalu-

ate the performance of our model on objects of different

materials, these depth metrics are measured separately on

two kinds of objects in the testing dataset using object

masks. Since the RealSense camera outputs a value of zero

at areas with high depth uncertainty, metrics are computed

in terms of excluding and including uncertain pixels so that

the evaluation is in the same completeness level.

4.2. Comparison with other Methods

For evaluation, our method is compared with other

learning based methods and a decent commercial depth

sensor - the RealSense D415. As shown in Tab. 1, our

method outperforms other methods in all metrics.

Learning-based methods. Our method is best compared

with PSMNet [2] and StereoGAN [23] and we use them as

our baselines. To test vanilla PSMNet, we train it on input

stereo images with and without active pattern using only

the training dataset in the simulation domain and then test it

directly in the real testing dataset. As shown in Tab. 1, using

active pattern can improve the stereo matching accuracy

across all metrics and is beneficial for eliminating the sim-

real domain gap. This intuitively makes sense since active

light adds pattern to textureless areas which are the most

difficult to match.
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Figure 6. Comparison of the disparity error map of our method with StereoGAN and RealSense D415. Our method improves disparity

accuracy on both 3D-printed objects and real objects.

Excluding uncertain pixels

Method
EPE (px) ↓ Bad 1 ↓ Abs depth err (mm) ↓ > 4mm↓

All All All Printed Real All Printed Real

PSMNet [2] w/o active pattern 0.664 0.187 9.218 12.600 16.467 0.478 0.686 0.836

PSMNet [2] w/ active pattern 0.476 0.077 7.135 9.174 15.570 0.504 0.591 0.800

StereoGAN [23] 5.603 0.741 44.284 36.892 42.105 0.925 0.915 0.931

StereoGAN [23] + PSMNet [2] 2.296 0.176 13.762 22.489 37.031 0.641 0.762 0.899

RealSense D415 0.392 0.032 5.817 7.851 15.826 0.565 0.612 0.817

Ours
0.334 0.029 4.607 6.942 15.675 0.358 0.472 0.734
± .022 ± .001 ± .242 ± .376 ± .789 ± .036 ± .04 ± .028

Including uncertain pixels

Method
EPE (px)↓ Bad 1↓ Abs depth err (mm)↓ > 4mm ↓

All All All Printed Real All Printed Real

PSMNet [2] w/o active pattern 0.698 0.194 9.530 12.987 16.960 0.485 0.689 0.840

PSMNet [2] w/ active pattern 0.513 0.084 7.444 9.580 16.745 0.510 0.595 0.804

StereoGAN [23] 5.765 0.744 44.747 36.703 42.220 0.926 0.915 0.932

StereoGAN [23] + PSMNet [2] 2.472 0.185 14.318 22.818 37.753 0.645 0.764 0.902

RealSense D415 1.793 0.056 8.159 9.891 22.492 0.576 0.621 0.835

Ours
0.420 0.037 5.027 7.450 17.430 0.366 0.479 0.748
± .024 ± .001 ± .245 ± .39 ± .853 ± .034 ± .039 ± .027

Table 1. Performance of different state of the art learning-based stereo, commercial depth sensor and our method on the real testing dataset

Furthermore, besides the original StereoGAN [23], we

extend the StereoGAN architecture by using PSMNet as

the disparity prediction backbone, which is denoted as

StereoGAN+PSMNet. This improved StereoGAN uses

cost volume aggregation in its stereo matching module,

which makes it more powerful and comparable with our

method. The results show that StereoGAN+PSMNet per-

forms better than StereoGAN in all metrics. Although,

when compared with our method, StereoGAN+PSMNet
performs considerably worse as the absolute depth error

increases from 4.377mm to 13.762mm. This is further

corroborated by Fig. 6, where StereoGAN+PSMNet strug-

gles to predict depth on real objects such as the metal can,

which is a specular surface. On the other hand, our mixed
domain learning method has improved accuracy on these

types of objects. This large performance improvement can

be attributed to direct supervision in the simulation domain

of primitives with random shapes and materials, a well-

shaped temporal IR reprojection which accurately locates

the correct correspondences, and a more robust pipeline

overall since it doesn’t use the GAN module.

Intel RealSense D415. To the best of our knowledge,

we are the first work to be quantitatively compared with

commercial products. The Intel RealSense D415 uses a

traditional CENSUS-based stereo matching method [19,

36], which has high computation efficiency but will leave

uncertain pixels without depth values. Therefore, we report

our results on the same completeness levels as RealSense

and demonstrate that our method outperforms RealSense in
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Pattern Abs depth err (mm) ↓ > 4mm ↓
Raw IR 32.166 0.638

LCN IR [38] 10.598 0.512

2-Step IR 4.697 0.373

Temporal IR 4.377 0.335

Table 2. Comparison of self-supervised reprojection loss on

different patterns

every metric. In Fig. 6, RealSense is unable to accurately

predict pixels in specular areas, while our method is able to

match those pixels well. In addition, for 3D-printed objects,

our model also demonstrates lower depth error.

4.3. Ablation Study

In this section, we validate the effectiveness of each

component and design choice through ablation experiments.

Reprojection Loss. We compare the network’s perfor-

mance when doing reprojection on different patterns which

is shown Tab. 2. Raw IR simply computes the patch-wise

Mean Squared Error (MSE) of the warped images. LCN IR
is from ActiveStereoNet [38], which uses an LCN module

to alleviate the condition where two matched pixels have

large residuals due to the distance from the camera and the

physical properties of the surface.

For the sake of fairness, we add synthetic ground truth

depth supervision to all of the experiments above. The

Raw IR reprojection has the worst result because it doesn’t

take into account the different intensities of IR light of two

matched pixels. While LCN IR helps address this issue,

it employs reprojection on the continuous local normalized

grayscale IR image, which is still affected by environmental

illumination and object texture. To tackle this issue, we

proposed a reprojection loss on 2-Step IR patterns which

shows better performance since the binary pattern elimi-

nates the small residual of two matched pixels. Lastly, since

the SNR is low for pixels that are far away from the camera,

2-Step IR cannot properly extract the active light pattern

in distant areas. This issue is addressed by our temporal

IR patterns. By tracking the intensity difference in the

temporal IR image sequence, our approach extracts a more

accurate and complete IR pattern. The results prove that our

reprojection on temporal IR images is superior to all other

reprojection methods.

Simulation Supervision. In order to investigate the effect

of simulation supervision, we implement the experiments

listed on Tab. 3. Specifically, we observe a significant

performance drop in the trained model after removing

supervision on simulation disparity. Therefore, we can

conclude that supervision on simulation domain helps the

network achieve better performance.

Without sim ground-truth

Reprojection Abs depth err (mm) ↓ > 4mm ↓
Raw IR 43.326 0.716

Temporal IR 4.729 0.367
With sim ground-truth

Reprojection Abs depth err (mm) ↓ > 4mm ↓
Raw IR 32.166 0.638

Temporal IR 4.377 0.335

Table 3. Comparison of disparity supervision in the simulation

domain with different self-supervised reprojection loss

Simulation Dataset Abs depth err (mm) ↓ > 4mm ↓
Testing objects 4.388 0.347

Shape primitives 4.377 0.335

Table 4. Performance of network trained on different simulation

datasets, ‘Testing objects’ consists of only objects in the testing

dataset, ‘Shape primitives’ consists of shape primitives of different

size, texture and material

As mentioned before, the simulation domain can help

temporal IR reprojection converge closer and faster to a

global minima. Then, temporal IR reprojection serves to

further converge to the ground truth disparity. The results in

Tab. 3 are consistent with the fact that synthetic supervision

can further improve the performance.

Generalization. In order to evaluate the generalizability

of the learned stereo network trained on the simulated

dataset consisting of shape primitives, we construct another

simulated dataset using the same objects as in the testing

dataset. Table 4 shows the model trained on the random

shape primitives dataset outperforms the model trained

on the dataset that contains only shapes and textures that

appear in the testing dataset, which validates the claim

that greater variation of geometry, texture, and material

introduced in our shape primitives dataset leads to superior

generalizability of the learned stereo network.

5. Conclusion and Future Work
In this paper, we propose a novel end-to-end training

framework, mixed domain learning, for learning-based

active stereo that surpasses commercial depth sensors and

state-of-the-art methods in the real world without any real

depth annotation. One limitation of our work is that we only

evaluate its effectiveness on one type of active stereovision

sensor. Further study is needed to understand the extent

to which our learned stereo network transfers to other out-

of-distribution real datasets and types of sensors. Addi-

tionally, in order for this framework to be useable in real

applications, we would need to investigate how to accelerate

network inference to achieve real-time depth predictions.
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