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ABSTRACT: This work systematically examines the interactions of alkali metal cations and their isoelectronic halide counterparts
with up to six solvating Ar atoms (M*Ar, and X Ar,, where M = Li, Na, K, and Rb; X = H, F, Cl, and Br; and n = 1—6) via full
geometry optimizations with the MP2 method and robust, correlation-consistent quadruple-{ (QZ) basis sets. 116 unique M*Ar,
and X“Ar, stationary points have been characterized on the MP2/QZ potential energy surface. To the best of our knowledge,
approximately two dozen of these stationary points have been reported here for the first time. Some of these new structures are
either the lowest-energy stationary point for a particular cluster or energetically competitive with it. The CCSD(T) method was
employed to perform additional single-point energy computations upon all MP2/QZ-optimized structures using the same basis set.
CCSD(T)/QZ results indicate that internally solvated structures with the ion at/near the geometric center of the cluster have
appreciably higher energies than those placing the ion on the periphery. While this study extends the prior investigations of M*Ar,

clusters found within the literature, it notably provides one of the first thorough characterizations of and comparisons to the
corresponding negatively charged X™Ar, clusters.

1. INTRODUCTION

The solvation of atomic ions and small charged molecular
species plays a vital role in a wide range of critically important
phenomena including biochemical processes in our bodies,'~*
water purification,” efficient electrochemical reduction of
N,,”® charge transport in fuel cells and batteries,”'” and the
formation of atmospheric aerosols.'”'> Small clusters in which
a single atomic ion is surrounded by a few uncharged and
chemically inert noble gas atoms (Ng = He, Ne, Ar, etc.) serve
as fundamental prototypes for studying ion solvation. For
example, a broad range of experimental and theoretical studies
have examined singly charged alkali metal cations in this
context (M+Ngn, where M = Li, Na, K, etc.).lg'_55 In contrast,
fewer investigations of their isoelectronic halide anion
counterparts (X Ng,, where X = H, F, Cl, efc.) have been
reported, particularly for n > 3.7

The clusters formed by sequentially solvating Li* or Na*
with Ar atoms provide the two most thoroughly characterized
systems in this family.”"******=*"*" Some common low-
energy structural motifs have been identified for Li*Ar, and
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Na*Ar, clusters in the range of n = 1—6 that resemble the
fundamental molecular shapes from the valence-shell electron
pair repulsion (VSEPR) theory69 (e.g, linear, trigonal planar,
tetrahedral, trigonal bipyramidal, and octahedral, as depicted
by the rightmost entry in each row of Figure 1). Other low-
lying structures have also been found that deviate from these
highly symmetric configurations, generic examples of which are
shown in Figure 1 along with the corresponding point group
symmetries (e.g., bent (C,,) rather than linear (D) for n = 2
or square pyramidal (C,,) rather than trigonal bipyramidal
(Dyy,) for n = 5). The different structures identified for a
particular cluster often have very similar energies due to the
relatively flat nature of the associated potential energy surfaces.
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Figure 1. General structures of all configurations and their respective point groups identified for M*Ar, and X Ar, clusters.

Consequently, there is still a fair bit of uncertainty regarding
the identity of the lowest-energy structures for some of these
small clusters where 2 < n < 6.

The deceptively challenging characterization of these simple
systems is highlighted by a series of MP2 computations on
Li*Ar, clusters with various triple- and quadruple-{ Gaussian
atomic orbital basis sets. While some earlier studies have
identified the linear D, configuration as the global minimum
structure,*”*” more recent studies have instead concluded that
the bent C,, configuration has a lower electronic energy than
the linear structure.”"”” Similar disagreements in the
identification of lowest-lying energy structures exist at
comparable levels of theory for other cation systems, including
Li*Ar, (trigonal planar vs pyramidal),”***"*" Na*Ar, (t-shape
vs pyramidal vs trigonal planar), and Na*Ar, (seesaw vs square
planar) 363940

This present study builds upon the prior M*Ar, studies by
performing a more extensive analysis of the possible structures
and energetics of the Li*Ar, and Na'Ar, systems utilizing the
MP2 and CCSD(T) ab initio methods and correlation-
consistent quadruple-{ basis sets. This systematic investigation
is extended to include the K*Ar, and Rb*Ar, clusters for n =
1-6, as well as the isoelectronic halide anion counterparts
(X"Ar,, where X = H, F, Cl, and Br and n = 1-6). This
research not only provides some of the first insights into these
X"Ar, interactions but also compares and contrasts the
structures and energetics of isoelectronic M*Ar, and X Ar,
clusters solvated by up to six Ar atoms.
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Finally, we note that although there have been a number of
studies examining the related solvated proton systems, the
H'Ng, clusters are not included in the present study because
the solute does not formally have any electrons, which is
fundamentally different from the isoelectronic M*Ng, and
X"Ng, clusters that are the focus of the current investigation.

2. COMPUTATIONAL METHODS

Full geometry optimizations were performed upon the M*Ar,
and X" Ar, systems (where M = Li, Na, K, and Rb; X = H, F,
Cl, and Br; and n = 1—6) using the second-order Meller—
Plesset perturbation theory’® (MP2) with a series of large
correlation-consistent basis sets. These basis sets were
augmented with diffuse functions on Ar and X (aug-cc-
pVXZ),”' =7 whereas weighted core valence correlation-
consistent basis sets were used for M (cc-pwCVXZ),”* which
include the ap7propriate pseudopotentials for K and Rb (cc-
pwCVXZ-PP).” Hereafter, all basis sets will be simply denoted
as XZ, where X = T, Q, or 5. Harmonic vibrational frequencies
were computed for the lowest-energy optimized structures for
each M*Ar, and X Ar,, cluster at the MP2/QZ level of theory
to confirm that they correspond to the minima on the
associated potential energy surfaces. The CCSD(T)"® coupled-
cluster method that includes single, double, and a perturbative
estimate of connected triple substitutions was employed to
perform single-point energy computations upon all MP2/QZ
optimized structures with the same basis set. In order to assess
the potential effects of the inconsistency commonly referred to
as the basis set superposition error (BSSE),”””® the Boys—
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Table 1. CCSD(T)/QZ Relative Energies (AE) in Kilocalories per Mole for the MP2/QZ Optimized M*Ar, and X Ar,
Clusters, Where AE = 0.00 Represents the Lowest-Energy Configuration for That Particular M*Ar, and X Ar, Cluster

n symmetry Li Na* K*
2 Gy ; +0.01 0.00
Dy 0.00 0.00 +0.11
3 Cs, - 0.00 0.00
C,, - +0.02 +0.16
Dy, 0.00 +0.10 +0.39
4 Cy, ; 0.00 0.00
Dy, +1.92 +0.07 +0.40
Ty 0.00 +0.10 +0.59
s C, - - 0.00
fo - - +0.04
Cy 0.00 0.00 +0.05
Dy, +0.05 +0.10 +0.53
6 Cs, +6.73 +2.29 +0.06
Cy ; - 0.00
Cy, ; - +0.12
0O, 0.00 0.00 +0.43

Rb* H™ F ClI™ Br~
0.00 0.00 0.00 0.00 0.00
+0.17 +0.20 +0.11 +0.18 +0.20
0.00 0.00 0.00 0.00 0.00
+0.21 +0.21 +0.13 +0.20 +0.21
+0.50 +0.62 +0.33 +0.58 +0.62
0.00 0.00 0.00 0.00 0.00
+0.66 +0.98 +0.34 +0.88 +0.97
+0.78 +1.03 +0.54 +0.95 +1.02
0.00 0.00 0.00 0.00 0.00
+0.10 +0.18 +0.05 +0.16 +0.18
+0.13 +0.06 +0.05 +0.27 +0.31
+0.86 +1.34 +0.47 +1.23 +1.36
0.00 0.00 +0.14 0.00 0.00
+0.12 +0.21 0.00 +0.20 +0.19
+0.35 +0.56 +0.11 +0.51 +0.54
+1.06 +1.88 +0.33 +1.67 +1.87

Bernardi counterpoise procedure’”*’ (CP) was employed
following the protocol detailed elsewhere,®’ using CCSD(T)/
QZ single-point energy computations performed upon the
MP2/QZ optimized M*Ar, and X Ar, clusters.

Additional computations were performed with the MP2 and
CCSD(T) methods to scan over the interatomic distances in
all M*Ar| and X" Ar, clusters using TZ, QZ, and 5Z basis sets.
Similarly, relaxed angular scans of the M'Ar, and X Ar,
clusters were performed with the same methods and basis
sets. These interatomic distance and relaxed angular scans were
performed with the aim to not only compare the electron
correlation and basis set effects between the cation and anion
systems but also unambiguously identify the global minimum
as linear or bent for each M*Ar, and X Ar, cluster.

Binding energies (E,;,q) were determined for every structure
by comparing the total CCSD(T) energy of each cluster
(M*Ar, or XAr,) to those of the isolated fragments (n Ar
atoms and either an M* ion or an X~ ion). Similarly, the
sequential binding energies (Ejd;) for the lowest-energy
configurations with n Ar atoms were examined by comparing
to the corresponding Ey,; 4 values for n — 1.

All MP2 computations were performed using Gaussian16,*”
and all CCSD(T) computations were performed with
Molpro.*” Analytic Hessians were used to obtain the MP2
harmonic vibrational frequencies. Default frozen-core approx-
imations are often inappropriate for charged systems
(especially cations). In this work, all electrons were correlated
for H™ and Li*, whereas the 1s-like orbital was frozen for F~
and Na', thereby excluding the two core electrons from the
correlation. The 1s-, 2s-, and 2p-like orbitals were frozen for
ClI” and Ar (excluding the 10 core electrons from the
correlation), while the 1s-, 2s-, 2p-, 3s-, 3p-, and 3d-like
orbitals were frozen for Br~ (excluding the 28 core electrons
from the correlation). The 10 core electrons of K were
replaced by the 10MDF pseudopotential, and the 28 core
electrons of Rb were replaced by the 28MDF pseudopotential,
leaving eight electrons for the MP2 and CCSD(T)
computations associated with the K* and Rb* ions.**

3. RESULTS AND DISCUSSION

3.1. Geometries and Relative Energies. The MP2
method and QZ basis set were employed for all geometry

optimizations after carrying out a series of MP2 and CCSD(T)
scans with the TZ, QZ, and 5Z families of basis sets for the n =
1 and 2 clusters. The radial and relaxed angular scans can be
found in the Supporting Information along with additional
details of this analysis. Structures reported in the previous
studies referenced in the Introduction section were used as
starting points for identifying the low-energy configurations
reported in this work. Figure 1 depicts the general structures
and corresponding point-group symmetries of the various
stationary points identified within this study. The MP2/QZ
optimized Cartesian coordinates for all unique M'Ar, and
X"Ar,, stationary points identified in this work are provided in
the Supporting Information. The configurations reported here
are generally consistent with those reported in the previous
literature reports. The structures include the high-symmetry,
fundamental geometries familiar to most chemists from the
VSEPR theory that effectively place the atomic ions in the
geometric center of the solvation shell of Ar atoms (e.g,, linear,
trigonal planar, tetrahedral, trigonal bipyramidal, and octahe-
dral, as depicted by the rightmost entry in each row of Figure
1), as well as closely related distortions of these basic shapes
where the ion is no longer in the geometric center of the
solvation shell (bent, pyramidal, t-shaped, seesaw, square
pyramidal, etc.).

Table 1 reports the CCSD(T)/QZ relative energies (AE)
for all applicable MP2/QZ optimized M*Ar, and X Ar,
configurations. MP2/QZ harmonic vibrational frequency
computations confirm that there are no imaginary frequencies
associated with the lowest-energy structure for each cluster
(represented by AE = 0.00). A dash in the table (-) indicates
that a particular configuration does not correspond to a
stationary point for that cluster, a situation only encountered
for the two smallest cations (all of the Li* clusters and the two
largest Na* clusters). Apart from these exceptions for Li* and
Na®, the MP2/QZ geometry optimizations tend to identify
stationary points with the same general structure and point-
group symmetry for a given value of n regardless of the identity
of the ion (M* or X7).

n = 2: Two stationary points, depicted in Figure la, were
identified for the n = 2 clusters: linear (D,),) and bent (C,,).
Relaxed angular scans on the MP2 and CCSD(T) potential
energy surface with the QZ and 5Z basis sets indicate that the
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Figure 2. Comparison of the MP2/QZ optimized structures of the C,, M*Arg and X Ar; stationary points.

bent stationary point does not exist for Li*Ar, (see the
Supporting Information). Structural deviations from the
general structures shown in Figure 1 occur for all ions as n
is increased up to 6. The simplest case can be described by the
unique M*Ar, and X Ar, C,, configurations, where the angle
ranges from 58° for Br™Ar, to 94° for Na*Ar,.

As can be seen from the first two rows of the data shown in
Table 1, the C,, and D, structures have very similar
CCSD(T) energies and are separated by no more than 0.20
kcal mol ™, with the bent stationary points typically having the
lower energy. In the case of Na', the bent and linear
configurations essentially have the same energies with the
methods and basis sets employed in this study.

n = 3: Three stationary points, depicted in Figure 1b, were
identified for the n = 3 clusters: pyramidal (C,,), t-shaped
(C,,), and trigonal planar (Dj;,). The latter was the only
structure identified as a stationary point for Li*Ar; on the
MP2/QZ potential energy surface because both the C;, and
C,, structures collapse to the higher-symmetry Dj, stationary
point. The results for n = 3 in Table 1 reveal that the C;, and
C,, structures have very similar CCSD(T)/QZ energies and
are separated by no more than 0.25 kcal mol™’, with the Cj,
pyramidal stationary point consistently having the lower
energy. The Dj;, trigonal planar stationary point, on the
other hand, is consistently higher in energy with the
CCSD(T)/QZ AE growing to be as large as 0.62 kcal mol™
for H™Ar;.

n = 4: For the clusters containing four solvating Ar atoms,
three stationary points were also identified, and they are shown
in Figure 1c: seesaw (C,,), square planar (D), and tetrahedral
(T,). Once again, a low-symmetry stationary point for the ion
with the smallest radius®® (Li*) collapses to a higher-symmetry
structure when optimized with the MP2 method and QZ basis
set (in this case, C,, seesaw — T tetrahedral). As seen from
the n = 4 data shown in Table 1, the C,, stationary point is
consistently the lowest in energy. The square planar and
tetrahedral stationary points are noticeably higher in energy
(by +0.40 to +1.02 kcal mol™") than the seesaw stationary
point for K, Rb", H7, F, CI7, and Br~, whereas the
corresponding CCSD(T)/QZ AE values continue to be
smaller for Na*. In stark contrast, the tetrahedral structure
for Li*Ar, is almost 2 kcal mol™" lower in energy than the Dy,
square planar structure.

n = 5: Four stationary points, depicted in Figure 1d, were
identified for the n = S clusters: trapezoidal pyramid (C,),
rectangular pyramid (C,,), square pyramid (C,,), and trigonal
bipyramid (Ds,). Here, the lower-symmetry C, and C,,

stationary points were not identified for the two smallest
ions (Li* and Na'). When optimized on the MP2/QZ
potential energy surfaces, these structures collapsed to the
higher-symmetry (either C,, or Dy,) stationary point. The C,
configuration has previously been reported as a stationary
point for the H™Arg cluster by Sebastianelli et al,’* but this
work appears to provide the first analysis of the analogous
stationary point for the other X"Ars and M*Ar; clusters (X = F,
Cl, and Br and M = K and Rb). Also, to the best of our
knowledge, the C,, rectangular pyramid stationary point has
not been previously reported for any of these systems. The n =
S results in Table 1 show the C; trapezoidal pyramid to be
consistently the lowest in energy for all ions except Li* and
Na*. However, the C, C,,, and C,, stationary points all have
energies within 0.31 kcal mol™' of each other based on
CCSD(T)/QZ computations. The Dy, trigonal bipyramidal
structure tends to have appreciably higher CCSD(T) energies
except in the case of Li*Ary and Na*Arg, for which the AE
values do not exceed +0.10 kcal mol™".

One of the most pronounced structural differences between
the ions for a particular cluster geometry occurs at n = S for the
C,, configurations. Figure 2 shows that the ion placement
relative to the solvating Ar atoms can differ greatly between the
smallest positively and negatively charged ions. In the Li*Ar;
cluster on the top left, the Li* ion sits 0.4 A above the plane of
Ar atoms that form the base of the square pyramid. The ion
position changes significantly for the analogous H™Arg cluster
seen on the bottom left, where the H™ ion sits 2.6 A below the
plane of Ar atoms forming the base of the square pyramid.

n = 6: For the clusters containing six solvating Ar atoms, four
stationary points were also identified, and they are depicted in
Figure le: pentagonal pyramid (Cs,), octahedral (0,), and two
distorted structures with C;, and C,, symmetries. As with n =
S, only the two highest-symmetry structures, pentagonal
pyramid and octahedral, were identified as stationary points
for Li*Ars, and Na'Ars on the MP2/QZ potential energy
surfaces. In comparison to the high-symmetry octahedral
stationary point, the Cs, and C,, structures appear to both be
derived from a pentagonal bipyramid, whereas the Cj,
structure resembles a distorted trapezoidal bipyramid.
Although the C;, pentagonal pyramid has been previously
reported as a stationary point for H™Ar,* and for Rb*Ar,**
and the C,;, structure has been previously identified for
K*Arg, ™ the corresponding stationary points for all of the other
ions have been characterized in this work for the first time to
the best of our knowledge. Additionally, it appears that the C,,
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Table 2. CCSD(T)/QZ Binding Energies (Ey;,q) and Sequential Binding Energies (Ej;l;) in Kilocalories per Mole for the
Lowest-Energy MP2/QZ Optimized M*Ar, and X Ar, Clusters

n Li* Na* K*

1 —6.91 —-3.94 —-2.54
2 —13.39 —=7.77 —-5.14
3 —19.41 —11.51 —7.85
4 —24.95 —15.19 —10.52
S —28.10 —18.83 —13.18
6 —32.09 —22.51 —15.82
1“ —691 —3.94 —-2.54
2 —6.48 —-3.83 —2.60
3 —6.02 —3.74 —2.71
4 —-5.54 —3.68 —-2.67
S -3.15 —3.64 —2.66
6 -3.99 —3.68 —2.64

apseq — _
Epidy = Epjng for n = 1.

Rb*
Epina
—-2.27
—464
—-7.17
—-9.66

—12.14
—14.72

EBiina
—227
-2.37
-2.53
—2.49
—2.48
-2.58

H™ I ClI Br~
—0.75 —2.48 —1.41 —1.21
-171 =5.01 -3.01 —2.62
—2.89 —7.61 —4.80 —4.24
—4.09 -10.19 —6.58 —5.86
—5.30 —12.75 —8.36 —7.48
—6.73 —15.30 —10.34 —9.30
—0.75 —2.48 —-1.41 —-1.21
—0.96 —-2.53 —1.60 —1.41
—1.18 —2.60 -1.79 —1.62
—1.20 —2.58 —-1.78 —1.62
-1.21 —2.56 -1.78 -1.62
—1.43 -2.55 —-1.98 -1.82

configuration has yet to be reported as a stationary point for
any of the n = 6 clusters in this work.

As can be seen in the last four rows of the AE data shown in
Table 1, the Cs, and Cs, stationary points compete for the
structure with the lowest CCSD(T) energy and are never
separated by more than +0.21 kcal mol™. The Cj, structure
has the lower energy for K* and F~, whereas the opposite is
true for Rb*, CI7, and Br™. The C,, stationary points identified
for K" and F~ are also extremely close in energy compared to
the corresponding C;, and C;, stationary points, with
CCSD(T)/QZ AE values not exceeding +0.12 kcal mol™.
The octahedral structure is noticeably higher in energy than
the other stationary points for n = 6 (with AE ranging from
+0.43 to +1.88 kcal mol™"). Conversely, the O, structure is
significantly lower in energy (by +6.73 and +2.29 kcal mol™",
respectively) than the Cs, structure for Li* and Na*. These
large differences in AE values are accompanied by significant
structural deviations for the unique Cs, n = 6 configurations. As
with n = §, the most pronounced difference occurs between the
Li* and H™ clusters, where the Li* ion prefers to sit 0.1 A above
the plane of Ar atoms that form the base of the pentagonal
pyramid and the H™ ion sits 1.9 A below it. The MP2/QZ
optimized Cartesian coordinates for all unique M*Ar,_s ¢ and
X"Ar,_s¢ stationary points are provided in the Supporting
Information.

3.2. Binding Energies. Table 2 reports the CCSD(T)/QZ
binding energies (Ey;,q) and corresponding sequential binding
energies (Ejd;) for the lowest-energy MP2/QZ optimized
M*Ar, and X" Ar, stationary points reported in this work. Ey;, 4
values were determined by comparing the total energy of each
cluster (M*Ar, and X" Ar,) to those of the isolated fragments
(n Ar atoms and either an M* ion or an X~ ion) for n = 1—6.
Ejisq values were then determined for the lowest-energy
stationary point with n Ar atoms by comparing its binding
energy to Ey; 4 for the corresponding lowest-energy stationary
point with one less Ar atom. CCSD(T)/QZ electronic binding
energies can be found in the Supporting Information for all
unique MP2/QZ optimized M'Ar, and X Ar, stationary
points identified in this work.

The CCSD(T)/QZ Ey;ng values are located in the upper half
of Table 2. The first row of data reveals that Li* has the
strongest interaction with a single Ar atom (—6.91 kcal mol™"),
while H™ has the weakest (—0.75 kcal mol™") according to
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CCSD(T)/QZ computations. Moving across the first row of
data in the table, the binding strength is inversely proportional
to the cation size,* decreasing from —6.91 kcal mol~! for Li*
to —2.27 kcal mol™' for Rb*. With the exception of H™, a
similar trend is observed for the anions, where the binding
energy with a single Ar atom ranges from —2.48 kcal mol ™" for
F~ to —1.21 kcal mol™! for Br~. For reference, the binding
energy of the Ar dimer is —0.27 kcal mol™' using the same
computational protocols, which is consistent with the bench-
mark values.***’

The CCSD(T)/QZ sequential binding energies, located in
the lower half of Table 2, remain fairly consistent as the
number of Ar atoms is increased from n = 2—6: —3.71 + 0.11
kcal mol™! for Na¥, —2.66 + 0.05 kcal mol™! for K, —2.49 +
0.12 kcal mol™! for Rb*, —1.20 + 0.24 kcal mol™ for H™,
—2.56 + 0.05 kcal mol™ for F~, —1.79 + 0.19 kcal mol™! for
CI', and —1.62 + 0.21 kcal mol™" for Br™. The exception to
this trend occurs for Li*Ar, clusters, where Ej;l; values can
deviate by almost 2 kcal mol~! from the average (—5.04 + 1.89
kcal mol™"), whereas analogous deviations for the other ions
do not exceed 0.24 kcal mol ™.

In the systems with a single Ar atom, the smallest
interatomic distance (R = 2.36 A) is observed for Li*Ar
which has the largest binding energy for n = 1. Moving down
that column of the periodic table, R consistently increases to
3.40 A for Rb*Ar as the magnitude of the binding energy
decreases and the ionic radius increases. The halide ions
interacting with one Ar atom exhibit a similar pattern (with the
exception of H™), where Br~Ar has the largest R value at 3.87
A. These trends hold as # is increased from 1 to 6. All unique
M*Ar, and X7Ar, R values are reported in the Supporting
Information.

The CP procedure was employed to evaluate the significance
of the BSSE on the binding energies for the M*Ar; and X Ar,
systems characterized in this work. The CCSD(T)/QZ Epnq
values computed with the CP procedure (Eff;) can be found
in the Supporting Information. When compared to the data
reported in Table 2, the results indicate that the CP procedure
decreases the magnitude of the binding energy by 0.12 kcal
mol™" for Rb*Ar;, by 0.07 kcal mol™" for F~Ary, and by no
more than 0.04 kcal mol™ for all of the other ions. These
relatively small differences suggest that the CCSD(T)/QZ
results presented in this study are close to the complete basis
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set limit, where by definition, the BSSE vanishes. Con-
sequently, the CP procedure was not employed elsewhere in
this investigation.

4. CONCLUSIONS

This investigation utilizes ab initio methods in conjuction with
robust correlation-consistent basis sets to characterize the
structures and energetics of singly charged alkali metal cations
(M*) and halide anions (X~) that are systematically solvated
with up to six Ar atoms (M*Ar, and X Ar,). As an extension of
the previous literature, over 100 unique stationary points were
identified for the Li*Ar,, Na'Ar,, K*Ar, and Rb*Ar, systems
and their isoelectronic anion counterparts H7Ar,, FAr,
CI"Ar,, and Br Ar,, where n = 1—6. To the best of our
knowledge, a significant number of the identified stationary
points have been reported here for the first time for several of
the M*Ar, and X Ar, clusters. These include the C, and C,,
structures for n = § and the Cs,, C;,, and C,, structures for n =
6. Notably, many of these newly identified structures are either
the lowest-energy stationary point for a particular cluster or
energetically competitive with it. This work provides one of the
first thorough characterizations of the halide family of X Ar,
clusters along with comparisons to the corresponding
positively charged M*Ar, clusters.

The stationary points reported in this work generally have
similar structures to those identified in the previous literature
reports, but the CCSD(T)/QZ energetics were able to clarify
some of the inconsistencies among previously reported lowest-
energy stationary points for some of the smaller Li* and Na*
systems. However, more rigorous computational strategies may
be required to resolve a few near degeneracies where AE is on
the order of 0.1 kcal mol™ or less. CCSD(T) geometry
optimizations and detailed vibrational analyses of the sta-
tionary points would be helpful, but spin—orbit coupling and
relativistic effects could also become significant for some of the
larger ions (e.g., Rb* and Br™). For a given value of n, MP2/QZ
geometry optimizations identify the stationary points with the
same general configuration and point-group symmetry for all of
the ions present in this work, with the exception of Li* and
Na®. As such, the lowest-energy structures are generally in
good agreement across the various M"Ar, and X" Ar, clusters.
The internally solvated structures that place the ion at or near
the geometric center of the cluster tend to have appreciably
higher CCSD(T) energies than those that have the ion near
the surface of the cluster, with the exception of Li*Ar,.

The CCSD(T)/QZ sequential binding energies for the
lowest-energy MP2/QZ optimized M*Ar, and X Ar, struc-
tures remain fairly consistent for all M* and X~ ions except Li*
as n is increased from 1 to 6. While Ej;l; values for Li*Ar,
become consistently smaller by approximately 0.5 kcal mol™" as
the second, third, and fourth Ar atoms are added, the
sequential binding energy changes by more than 2 kcal
mol ™" with the addition of the fifth Ar atom (from —5.54 for n
=4 to —3.1S for n = 5). This large change is consistent with
the MP2/6-311G* results previously obtained by Velegrakis
and co-workers.”” Their work revealed an even more
significant decrease in Ej; moving from n = 6 to n = 7,
which led to the conclusion that the full primary solvation shell
occurs at n = 6 for Li'Ar,. A closely related study noted that
much larger values of n were required to complete the primary
solvagioon shell for heavier metal cations with larger ionic
radii.
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