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of Computer and Information Sciences, Florida A&M University, Tallahassee, FL, USA

ABSTRACT

Additive manufacturing systems are being deployed on a cloud platform to provide networked
manufacturing services. This article explores the value of interconnected printing systems that
share process data on the cloud in improving quality control. We employed an example of quality
learning for cloud printers by understanding how printing conditions impact printing errors.
Traditionally, extensive experiments are necessary to collect data and estimate the relationship
between printing conditions vs. quality. This research establishes a multi-printer co-learning meth-
odology to obtain the relationship between the printing conditions and quality using limited data
from each printer. Based on multiple interconnected extrusion-based printing systems, the meth-
odology is demonstrated by learning the printing line variations and resultant infill defects
induced by extruder kinematics. The method leverages the common covariance structures among
printers for the co-learning of kinematics-quality models. This article further proposes a sampling-
refined hybrid metaheuristic to reduce the search space for solutions. The results showed signifi-
cant improvements in quality prediction by leveraging data from data-limited printers, an advan-
tage over traditional transfer learning that transfers knowledge from a data-rich source to a data-
limited target. The research establishes algorithms to support quality control for reconfigurable
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additive manufacturing systems on the cloud.

1. Background

With the advancement of Internet-of-Things (IoT) technol-
ogy, networked printing services are emerging to flexibly
meet customers’ diverse demands. The customers can
upload their printing models, which are processed by differ-
ent online printers. One characteristic of such networked
printers compared with the conventional printing process is
that quality/process data can be stored and shared on a
cloud platform (Baumann and Roller, 2017), creating an
interconnected environment for multiple printers. State-of-
the-art research has demonstrated the applications of such
interconnected Additive Manufacturing (AM) in offering
networked manufacturing services for personalized demands
or multi-printer collaboration to co-create the same struc-
ture with reduced time. Relatively limited research has
explored the values of interconnected AM and the shared
process data in improving quality control. This article
addresses the limitation by establishing a co-learning meth-
odology for multiple cloud printers to jointly learn printing
variations and defects based on limited data. The method-
ology will be demonstrated by learning infill defects induced
by extruder kinematics in extrusion-based AM as a case
study, such as fused deposition modeling or fused filament
fabrication.

Extrusion-based AM usually has the limitations of low
printing precision as reflected in the shape deviation from
the nominal CAD model. The printing errors can be attrib-
uted to material shrinkage and printing process setups, such
as extruder movement speed, acceleration, extrusion rate,
and temperature. These errors include not only the inaccur-
acy of printed contours, but also infill defects at each layer,
such as overfill and underfill problems (Figure 1). It is
essential to quantitatively understand the impact of these
setup parameters on printing quality in order to calibrate
printing processes, thereby improving printing quality and
reducing potential post-processing efforts. A major challenge
to learning process—quality relationships is acquiring process
data under different printing conditions, which can be time-
consuming. A considerable number of tests should be
conducted given various combinations of printing speeds,
accelerations, and/or temperatures to learn a data-driven
quality prediction model. The cost of experiments and time
to understand the process—quality relationship can signifi-
cantly delay the production and new printer setup to deal
with scalable printing tasks. New printers are frequently
engaged in a reconfigurable printing system to deal with
larger printing tasks, and limited time and budget are avail-
able to understand the printers’ variations.
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Figure 1. The kinematic-induced defects of infill pattern learned by cloud print-
ers. The left picture shows the gap between adjacent infill lines (Undefrfill
defect), and the right one shows excessive material deposition (Overfill defect).

This research envisions a solution to the data limitation
challenge by using multiple interconnected printers to co-
learn the process—quality relationship given limited data
from each printer. Based on the learning performance in the
case study, the co-learning strategy can effectively utilize the
data from multiple printers shared on the cloud and reduce
the experimentation necessary on each printer to obtain suf-
ficient data to learn process—quality relationship and print-
ing calibration.

2. State-of-the-art and research gaps

This section reviews recent research on (i) the quantitative
relationship between process setup and quality and (ii) the
learning strategy to obtain such a relationship based on lim-
ited data. Quality prediction and modeling for intercon-
nected printing processes are also reviewed. Finally,
methodological gaps are summarized for this research
to address.

2.1. Printing process-quality relationship

Compared with other printing technologies, relatively lim-
ited research has been conducted to predict the dimensional
inaccuracy in extrusion-based AM. Wang et al. (2017) mod-
eled the extruder’s position error and material deformation
for the compensation of the CAD design. Noriega et al.
(2013) adopted artificial neural networks to optimize the
distance between parallel faces in the prismatic part to
improve dimensional accuracy by adjusting the input values
in the CAD model. More importantly, most literature has
discussed the quality effect of the process parameter on
printing quality. Cheng et al. (2018) proposed a two-step
scheme to integrate the Gaussian process and a kernel
smoothing method to capture the nonlinearity between
shape accuracy and the different combinations of the pro-
cess parameters. Lyu and Manoochehri (2018) proposed the
integrated error model to simulate the effects of the
extruder’s temperature, infill density, and layer thickness. In
extrusion-based AM, the printing quality of the part can be
affected by many uncertainties. Equbal et al. (2017) analyzed
the quality relationship on three-factor inputs, ie., raster
angle, raster width, and air gap, and minimized the

dimensional error using a response surface method with a
composite desirability function.

A dearth of research was found that modeled the geomet-
ric variation of the printing line. Agarwala ef al. (1996)
addressed the dimensional error in the start and stop pos-
ition of the single printing line, which might partially result
from the material overflow and underflow from the extruder
at the two ends. Bouha (1999) developed a look-ahead tra-
jectory algorithm and integrated a position-and-deposition
system to reduce start/stop errors. A strategy has been
studied by Bellini et al. (2004) to improve the printing con-
sistency using the dynamics of the liquefier and established
flow control strategies during the printing acceleration and
deceleration (ACC/DCC) phases. Qin et al. (2019) proposed
a real-time speed control strategy to improve the position
error resulting from the speed fluctuation (ACC/DCC) on
the sharp corners and transition points from the toolpath.
Ravi et al. (2017) discovered the nozzle-bed distance and the
extruder’s temperature could impact the printing linewidth.
Comminal et al. (2018) developed a model to analyze the
deposition flow by changing the parameter combinations.

Most research has focused on the effects of printer mech-
anisms or part design on geometric errors; however, limited
research quantitatively models the quality of the inner struc-
ture or infill defects inside a part, such as the underfill and
overfill defects shown in Figure 1. In Ren et al. (2021), the
printing line variation was estimated by speed, acceleration,
and jerk using the G-code. The training still encounters
challenges in obtaining sufficient quality data under different
printing conditions.

2.2. Small-sample modeling and learning

One popular methodology to learn quality prediction models
based on limited data is sequential learning over multiple
stages, including Bayesian approaches (Lin and Wang,
2012), the Markov Decision Process (Alagoz et al, 2010),
and model-free reinforcement learning (van Hasselt et al.,
2016). These methods can update the distribution of the
learning parameters over time and incrementally increase
the small sample size. However, this line of methods does
not address the challenge of learning at a time when limited
samples are available.

Small-sample learning methodologies have emerged in
recent decades. For example, Data Augmentation (DA) is
one popular method that mutates the available limited data
to enlarge training datasets. The size of the input data for
learning can be increased by applying crop, flip, scale, rotate,
translation, and Gaussian noises (Takahashi et al, 2019) to
the limited data. The extra augmented samples from small
samples can provide more features and avoid overfitting for
the model. The limitation of DA is that it does not supple-
ment new information about the process for accuracy
improvement. Semi-supervised Learning (SML) is another
line of popular methods that learn the latent structure
between labeled and unlabeled data (van Engelen and Hoos,
2020) to supplement information for training. The limitation
is that it can become expensive to collect a sufficiently



labeled dataset. The performance of the method deteriorates
when the total sample size that is labeled is conside-
ably limited.

In AM applications, modeling the deviation for various
geometric shapes is challenging, since the operational cost
may not be affordable for users to produce sufficient train-
ing data. Sabbaghi et al. (2018) utilized a Bayesian discrep-
ancy measure to cluster the distributions of the local
features based on the small distinct printed shapes for the
newly observed shape, and further built an adaptive
Bayesian hierarchical model to estimate the model parame-
ters for local geometric deviations. The method considers
the learning contribution from the disparate printed shapes.
These small-sample modeling methods primarily focused on
shape variation and did not consider the process—quality
relationship.

2.3. Quality prediction and learning for interconnected
printing process control

Research on quality control for IoT has emerged and has
focused on real-time fault alarm monitoring for the cloud
printing system. Data-driven algorithms, e.g., artificial neural
networks (Wang ef al., 2019), have been proposed to distin-
guish abnormal images taken by the top-mounted camera
during the printing operation. When the printing alert is
triggered, the printing process is terminated to reduce
material waste. Chan et al. (2018), Majeed et al. (2019) and
Majeed et al. (2021) estimated the effects of parameters on
improving the printing accuracy and reducing the time cost
and  energy  consumption  under a  big-data-
driven framework.

In recent years, Transfer Learning (TL) has gaineds
increasing attention in dealing with quality prediction, given
limited data from the target process of interest, by leverag-
ing shared data from different printing processes. Unlike
DA and SML, TL can take advantage of the relations
between the target and source domains and allow the know-
ledge to be transferred from the target to the source. The
TL is considered suitable for quality learning in an intercon-
nected environment, where each printer can benefit from
the data shared by other printers. Cheng et al. (2017) cate-
gorized the deviation errors of the 2D printing shape into
the Shape-Independent Error (SIE) and Shape-Specific Error
(SSE),; with the SIE modeling parameters being shared with
the data-limited printer. However, its performance in learn-
ing more complex shapes is very limited. Cheng et al
(2021) extended their initial research by establishing feature-
based TL to enable the data-limited printer to co-learn a
common pattern for SSE on the local shape with diverse
printing shapes. Sabbaghi and Huang (2018) and Francis
et al. (2020) proposed an effect-equivalent framework to
address the challenge of model transfer between different
processes and material systems. This line of research primar-
ily focused on the modeling of geometric error.

In contrast, the impacts of printing process conditions,
such as speed, acceleration, and jerk specified in G-code, on
quality have not been modeled. In a recent study (Ren et al.,
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Figure 2. TL between two printers, as addressed by Ren et al. (2021).

2021), a between-printer TL algorithm (Figure 2) was devel-
oped to supplement the information from one source printer
to one target printer to improve the learning of a kinema-
tics—quality model for the target printer with limited sam-
ples. Nevertheless, this method is primarily focused on
transferring the knowledge from one data-rich to one data-
limited printer. The performance of the aforementioned AM
TL degrades when the data from the source printer is lim-
ited, and the methods do not address the problem of co-
learning for process—quality relationships from multiple
data-limited printers.

Relatively less research has been conducted on multi-
source learning problems. Yao and Doretto (2010) proposed
an upgraded boost learning method that can integrate the
information from multiple sources in TL and improve learn-
ing accuracy by updating the target’s parameters. Shao et al.
(2017) developed multi-task learning of a surface model to
improve the prediction of the machined surface shape by
leveraging the spatial data from a number of similar, but
not-identical, processes. To tackle the issue of small-sample
modeling for each task, Huang et al. (2012) introduced
Bayesian hierarchical modeling to construct a common pat-
tern for multiple related graphical models for medical image
data. A novel hybrid approach, multiple task learning, was
proposed by Saha et al. (2016) to transfer the data know-
ledge between the related source and target and online
update the learning tasks’ parameters upon the arrival of the
new data using the Bayesian method. These methods
focused on different applications from AM. A recent study
by Liu et al. (2021) proposed the Naive Bayes model to
transfer the knowledge from multiple metal printers to a
new printer by updating the prior knowledge of the relation-
ship between process parameters (e.g., laser energy and
power) and mechanical property (e.g., density, microhard-
ness). The methodology is purely data-driven and did not
incorporate process insights to simplify the model structures
to be learned. As such, its performance in dealing with co-
learning among multiple small-data processes can
be limited.

Based on literature reviews, this article envisions that lev-
eraging the data from multiple existing printers can be an
effective solution to the data scarcity problem on new print-
ers. The interconnected printers built on a cloud platform
can leverage the shared data to reduce experiments for
model training and expedite each printer’s learning process.
As such, a bidirectional and unidirectional co-learning
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Figure 3. Envisioned co-learning network from multiple data-limited printers.
Each printer may only collect the data under limited printing conditions (e.g.,
one or two G-code setup(s) per printer).

network can be established among multiple printers. As
shown in Figure 3, the arrow between two printers indicates
that the knowledge from a printer (at one end of the arrow)
can partially contribute to the learning of another printer
(the other end of the arrow) in the network. Multiple inter-
connected printers can jointly contribute to the learning of a
data-limited printer, whereas some printers possessing less
relatedness provide insignificant contributions. This envi-
sioned network can allow multiple printers to co-learn the
process—quality relationship even though each printer has
very limited measurements.

From the analysis of the literature survey, the research
challenges can be summarized as follows:

1. There is a lack of research that addressed the co-learn-
ing problem among multiple data-limited printers under
the inter-connected structure, as shown in Figure 3.
Prior TL in AM falls short of learning process—quality
relationship based on limited data from each printer.

2. How to capture interpretable similarity or relatedness
between different printing processes remains a chal-
lenge. Physical insights into the between-process
relatedness can help simplify the process—quality model-
ing structure and potential computations compared
with data-driven learning methodologies.

3. How to effectively explore the large search space of sol-
utions for the co-learning problem, which involves joint
estimation of common parameters of process—quality
models and printer-specific parameters for each printer.

To deal with challenge 1, this article provides an interpret-
able between-printer relatedness model to develop the co-
learning algorithm among multiple printers. Specifically, the
model allows the common covariance structure for all the
printers involved in the co-learning to share the information
among printers. For challenge 2, this article utilizes the kine-
matics—quality relationship developed in Ren et al. (2021) as
an example to capture the similar impacts of extruder kine-
matics on printed line variations, aiming to provide an

interpretable model for multi-printer co-learning. This article
further develops a hybrid metaheuristic approach to reduce
the search space and solve the co-learning problem 3. This
article also discusses the printing process selection to identify
the printers that significantly contribute to improving co-
learning accuracy. A case study demonstrates the proposed
methodology for co-learning among four data-limited printers
from different manufacturers.

The remainder of this article is organized as follows.
Following Sections 1 and 2, Section 3 focuses on the method-
ology development for co-learning based on the modeling of
between-printer relatedness guided by engineering insights
into the kinematics—quality relationship. Section 4 develops a
hybrid metaheuristic algorithm for solving the formulated co-
learning problem. Section 5 demonstrates the co-learning
between a pair of data-limited printers, and Section 6 dis-
cusses the printer selection among multiple printers to build
co-learning networks. Experimental data from four different
printers validate the results. Section 7 summarizes the results
and future work. The detailed additional information of the
appendices mentioned in the paragraphs is demonstrated in
Supplemental Online Materials.

3. Between-printer relatedness modeling for
co-learning

Based on Ren et al. (2021), this section proposes a more
generalized model to capture the between-printer relatedness
considering physical insights into how printing conditions
impact printed quality. Without losing generality, the study
will utilize the effect of extruder kinematics on the printing
line variation as an example to demonstrate the develop-
ment of the co-learning model.

3.1. Review of kinematics-quality modeling for
extrusion-based printing

Ren et al. (2021) dealt with the between-printer transfer of
knowledge on the impact of printing kinematics on printing
quality. This research indicates that even though the feed rate
has been fixed, there are still three stages, including acceler-
ation, constant speed, and the deceleration phases along the
printing nozzle’s movement direction. Observations from a
single printed line indicate that the kinematics can be
strongly correlated to printed line variation in five phases, as
labeled by (pl, p2... p5) in Figure 4. pl denotes the phase
when the nozzle is moving from the starting point and line
width decreases until it stops. p2 represents the phase when
the line width starts increasing until it stops at the nominal
value as specified. p3 is when the line width keeps increasing
from the specified nominal value until it reaches the con-
stancy. p4 is the phase when both the nominal feed rate and
line width remain constant. In the final phase, p5 denotes
when the feed rate starts to decelerate, and the line width
begins to increase until the extruder stops or moves on to the
next printing task.

To characterize the variation of the line caused by the
kinematics-induced parameter, Ren ef al. (2021) also
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Figure 4. Five phases of straight-line printing.

modeled the kinematic—quality relationship as a piecewise
function with five segments, which links the printing line
variation to various kinematic parameters, i.e., speed, accel-
eration, and jerk as shown in (1) as follows:

1
i) "
0s1/(t — bpl)v(t)a + w(bpl) + e
w(t) = § 04y/(t = bp2)v(1) + w(bp2) + es
Os + ey

Oslog (%) + w(bpd) + es
where w(t) is the line width at time ¢. v(f) denotes the actual
nozzle travel speed at time ¢. a and F denote the actual print
acceleration and print speed. This model can predict the line
width under different kinematic settings as specified in G-
code. (The validation of the kinematic-piecewise model (Ren
et al., 2021) and the simulation for the non-uniformity of infill
pattern are given in Appendices 1.1 and 1.2.)

if 0<t< bpl

if bpl <t < bp2
if bp2 <t <bp3 (1)
if bp3 <t < bp4

if bpa <t

3.2. Co-learning problem formulation based on the
engineering-driven relatedness model

This study explores similar kinematic variation patterns in
process variation data between multiple similar-but-non-iden-
tical printers. A prior study (Ren et al., 2021) revealed the cor-
relation between model parameters in (1) shares a similar
covariance structure (Appendix 1.3 shows an example of the
statistical testing on the correlation between model parame-
ters based on experimental data). Six model parameters,

denoted as 0 = (0,,0,--- 06)T in process-quality model (1),
are utilized to characterize the kinematic variation on

straight-line printing. The covariance structure £ for the
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model parameters 0 quantifies the kinematic-quality rela-
tionship between different line segments. The structure also
allows for selecting multiple interconnected printers x which
contain useful data to co-learn the common kinematic vari-
ation pattern and improve the learning of parameters for each
data-limited printer. The covariance structure is a 6 x 6
matrix £*), where each entry is cov(0;, 0;).

Assume the printing quality of segment i for a target printer
can be estimated by a piecewise linear function (e.g., Y;=
X;0; + &) from (1), where X; represents the terms consisting of
kinematic inputs (e.g., speed, acceleration) in (2) for the estima-
tion of segment i. Take p3 (Figure 4) as an example, X5 can be
expressed as \/(t — bp2)v(t). Y; is the printed linewidth of seg-
ment i, which can be expressed as w(t) — w(bp(i — 1)). The var-
iations of different printing line segments from the same printer
are statistically the same (Ren et al. 2021). As such & ~ N(0, 62).
In addition, the learning problem is affected by the appropriate
selection of cloud printer combinations . Thus, the co-learning
problem considering common covariance structure and printer
selection can be represented in (2), where || ||2 denotes the

Ty x. J, in this article, is

weighted norm squared, e.g,, ||x||f =x
tuned based on the range of the lower-bound and upper-bound
from sample variance for different printed line segments due to
the small samples (one or two G-codes) from each data-lim-
ited printer.

Denote Y as the printing quality data from the target printer.

The model parameters 0 ~ MVN(p, E) isassumed in the kin-
ematics—quality model for the target printer and can be estimated
leveraging other cloud printers by solving a least-squares estima-

tion problem or maximizing a posterior P( 0 |data), e.g., by

maxEP(f) 1Y) P(Y]0) P(0).

The assumption of multivariate normal prior 0 ~
MVN(u, Z) was made based on the numerical results from
Ren et al. (2021), which conducted the transfer learning
between two printers. It was also motivated by past experi-
ence that most coefficients fitted from experimental data are
centered around a value under the same printing condition,
and model coefficients from different phases in the piece-
wise model are not independent. Assume k is the cloud
printer combination selected for co-learning and the target
printer € k C K. X®) is a common covariance structure
among model parameters jointly shared with all the printers
from k. The estimation is also represented by

max logP(Ya ) + logP(F) ),

then the objective can be formulated as

) . 6 _ ~ a2
2
min. min > (||Y,»— X 03 )+ A0 || g

subject to det(EEl")) >0,Vn € {1,2..6}
(2)
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The inner minimization (first-stage optimization) learns the

model parameters 0 along with a common covariance struc-
ture £, given the cloud printer combinations x and the
outer minimization (second-stage optimization) identifies k.
Also, a constraint is added to verify the semi-positive defin-

iteness of each candidate £ generated in the optimization
problem. Specifically, let £*) be as an upper left n x n sub-

matrix, where 1 < n < 6. If all the det(EE;‘))s are positive,

then EE:‘) is positive definite. (The derivation of (2) is given
in Appendix. 1.4)

Ren et al. (2021) learned the coefficients in (1) by lever-
aging a data-rich printer to a data-limited printer. The com-

mon covariance structure ) of the model parameter in (1)
is estimated by sample covariance based on the data from a
data-rich printer. The limitation is that this formulation
does not facilitate the co-learning among multiple data-lim-
ited printers. The formulation in this study has two major
considerations beyond Ren et al. (2021): (i) the common

covariance structure of 0 is jointly learned by multiple
printers, and the covariance structure £® js unknown in
the optimization problem; and (ii) selection of appropriate
cloud printer combinations k to facilitate the co-learning,
which is not completely addressed in Ren et al. (2021). The
challenges of solving the co-learning problem in (2) are out-
lined as follows:

1. The unknown covariance structure among different seg-
ments of model parameters is commonly shared among
multiple printers. A simple aggregation of printers’ data
to estimate a pooled sample covariance is not accurate,
since the data from each printer may be insufficient to
estimate the model coefficients and their correlation.
The common covariance structure should be jointly
learned with model parameters associated with each
printer and the selection of cloud printer combinations.

2. 'The joint learning of covariance structure E*) along
with the selection of cloud printer combinations & sig-
nificantly enlarge the search space for the joint opti-
mization problem.

3. Traditional gradient-based approaches also encounter
challenges in the complexity of ensuring positive defin-
iteness. In addition, the printer selection makes the
combinatorial search NP-hard. There is a strong need
to develop an efficient metaheuristic customized to the
joint optimization formulated as a two-stage deci-
sion problem.

To estimate variables [f) ,E("),x] in the co-learning prob-
lem, this article proposes a hybrid metaheuristic method to
solve the problem by first reducing the feasible search space
and then combining two metaheuristics to explore different
search spaces. By contrast, the solution to the problem in
Ren et al. (2021) only involves a least-square estimation
with a closed-form representation.

4, Hybrid metaheuristic to solve the multi-printer
co-learning problem

_ _ T T T
Denote Y = [Y],YZ"'Yﬁ} and X = [Xl,Xz---XJ.

Taking the first derivative of f for 0 yields
_ _1n—1
0 — (XX +o22®7') X'y 3)

Therefore, the search for model parameters 0 for the target
printer requires the solution to covariance structure L)
and the selection of cloud printers «.

This section first proposes a posterior-distribution-based
sampling estimation to deal with the challenge of estimating
2 from all the printers involved in co-learning. To narrow
the search space, this study first models the distribution of

model parameters (0 based on multivariate statistics. A
Bayesian Framework is first established to update the prob-
ability of the common covariance structure by using the
data from multiple data-limited printers. Once the posterior
distribution of £® is obtained, the statistical sampling can
be implemented to construct the most likely intervals that
parameters should fall within, based on which a metaheuris-
tic algorithm can be developed to estimate E*) with the
minimized intervals. The accomplishment of the proposed
method could also lead to a new opportunity of leveraging
the cloud data uploaded from printers on the users’ ends to
improve the co-learning of quality control strategies.

4.1. Posterior distribution for the common
covariance structure

In Bayesian statistics, one common conjugate prior to the
unknown covariance and unknown mean of the multivariate
normal distribution is a Normal Inverse Wishart (NIW)
Distribution, which is a four-parameter distribution

with pt,, Ay, v, Ky. it denotes the parametric mean vec-
tor of the dataset, Ay denotes the scaling matrix and denotes
a d x d positive definite scaling matrix. Since the prior dis-
tribution of the common covariance is unknown, it is com-
mon to set a non-informative prior distribution to start with
and minimize the effect on the posterior from the prior.
(For completeness of the discussion, Appendix. 2.1 presents
a weakly informative prior for X®). By following
Schuurman et al. (2016), p, is chosen to be a zero vector
and Ay as an identity matrix to maintain the constraint of
its positive definiteness. d is the number of the model
parameters and is equal to six for the kinematics—quality
model. vy denotes degrees for freedom and vy > d - 1, and
Ko > 0 denotes the scaling factor. Based on Murphy (2007),
the prior for the covariance can be estimated by X, ~

IW,,(Ag) and mean i o[ Zprior ~ N (ﬁ o E}’(O) Thus,

(u prior> Lorior) follows a NIW Distribution (u prior> Lrior)
~ NIW(p o, Ay, vy, Ky). The probability density function
for (1 priors Lprior) is determined by



T 1 (e 1
P(#Prfo” EP““T) - $|2Pn'or‘ (5 H)exp(atr(AUlE l)

Ky

G = 10 (1 — ) )

>

where |y =

(4)

After specifying the prior, the posterior distribution can be
obtained from the data from all printers. The posterior distri-
bution would also follow a NIW Distribution, and the initial

parameters can be updated as NIW(u *,K*,A*,v*\dam,
R[]: A[}x Vo, K(J> nup,-,‘m»: Eprfﬂr)) where

ok K(j — + —
— X,

'u Ko—l—nuo KU+11

K'=Ky+ n, vv= v + n,

A=A S+

(5 ) (5 i)
Ko + 1 Ho Ho) >
§=>" (x;-%)x; %),

where n denotes the total number of experimental runs, x;
denotes the vector of all parameters in the ith experiment

run, and X is the sample mean Z’:l ' based on the data
from all printers.

4.2. Metaheuristic over MCMC-sampling-refined search
space for co-learning

Based on the distribution for covariance structure, this sec-
tion proposes a Markov Chain Monte Carlo (MCMC) sam-
ple-refined metaheuristic to learn the model parameters
(given printer combination selection) in two steps. The first
step narrows the search space again after specifying the pos-
terior distribution for £ by sampling. The second step uti-
lizes a solution-solution-based metaheuristic to seek the

optimal ™ in the reduced search space.

Step 1. Reduce search space by MCMC sampling
The posterior distribution for the marginal covariance
matrix Ep. given data from all printers can be derived by
Zoost|data ~ IW(A",v*). The estimation of the covariance
requires the multi-dimensional integration that involves pos-
terior distributions, posing a major challenge to computa-
tion. Therefore, MCMC sampling can be implemented to
simulate a myriad of samples to approximate the random
variables (Yildirim, 2012). In this case, MCMC can be
employed to sample each entry cov(0;, 0;) from E,.; fol-
lowing the marginal distribution IW(A*, +*) and estimate
the  optimal L) based on the
Metropolis—Hastings algorithm. The steps of the algorithm
are shown in Algorithm L.

To narrow the sampling range, the credible intervals of
estimated parameters need to be constructed on the

covariance
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marginal distribution of the covariance. A credible interval
represents the probability that the unobserved parameter
value would fall in this range. Since the credible ranges are
not unique, one challenge is which interval is more justifi-
able to be sampled since the interval could vary with the
posterior distribution. In this case, the narrowest credible
interval with a 95% probability (95%-NCI) can be selected
to include the most plausible value of every
entry cov(0;, 0;) from the posterior () (The visualization
of cov(0;, 0;) with a 95%-NCI is shown in Appendix. 2.2)

Algorithm I. Sampling from X,.|data ~ IW(A",v") via
Metropolis-Hastings algorithm

Input

T Total time,

B Burn-in period,

M Collection of MCMC samples for each entry
of Xyt

L, ost|data  Posterior target distribution by given data,

E;m Latest updated posterior covariance X,
in sampling.

Q(x|x")  Proposal distribution given the mean
value x'.

q(x"|x'~!) Proposal probability density function of x',
where x' ~ Q(x | x'™1).

fy) Posterior target probability density function
of y, where y ~ IW(A*,v*).

Output

M in TT without B for X, |data

Initialize the £° . from Loost|data

'‘post

fort=1: TT do
. -1
Generate a candidate E;m ~ Q(E;ost\f.;mst)

Generate the random value y ~ Uniform(0, 1)
F () At [Epsr)

LD T D)

Append £, to M

‘post

Ify < Min{l

else
Et . Et—l

post post

Append X! to M

‘post

Return M[B+1: TT]

Step 2. Optimize X'*) and 0 via a metaheuristic refined
by MCMC

The model parameter 0 can be estimated by (3) given the
sampled values of ). Metaheuristic approaches can be
implemented to approximate the optimal value of the parame-
ters. Finding the global optimum from a large search space
while avoiding local optima would be extremely challenging.
Metaheuristic algorithms can mitigate solutions being trapped
within the local optima while preserving the process of the
hill-climbing approach for optimization. Some representative
methods, such as Simulated Annealing (SA), are probabilistic
techniques to deal with the optimization problem based on
the analogy of the Metropolis—Hasting algorithm (Henderson
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et al., 2006). Without losing generality, this article utilizes the
SA as an example in Algorithm II to maximize the improve-
ment percentage of the Root-Mean-Square Error (RMSE),
denoted as R, by the co-learning methodology. The calcula-
tion of R between single printer prediction RMSEg;,gq. and
RMSE¢, jearn can help evaluate the performance of the model
prediction,

ie, R = (RMSEgig — RMSEcy iearm)/RMSEgig.

Algorithm II. SA over MCMC-refined search space

Input
T and Tmi n

Temperature and a minimum temperature, ¢
Number of times of exploring the new solu-
tions in T,

The cost function for estimating R, given
the co-learned covariance x,

o Cooling factor,

M(95%-NCI) The 95%-NCI by MCMC for each entry

of posterior covariance z®),

fix)

PD Boolean operator for indicating the posi-
tive definiteness of £,

n Size of the upper sub-matrix of ™) with
a size n X n,

x’ The latest updated optimal covariance as
input for f{x).

Output

The point estimation of each entry of £ and model

parameters 0
Initialize the £°
while T > T, do
for 1: t do
Generate the I' from M(95%-NCI).
PD = True
for 1: n do
If det (X)) < 0
PD = False
If PD is True

If (X ) > AX’)

=%
else
Generate the random value y from
(0, 1] for each entry of X°
Ify < e(_r(m;rfzﬂ])
=3
T = Txo

Estimate 0 by Eqn. (3)

Return XY, 5

4.3. Selection of printer combinations for co-learning by
a population-based metaheuristic

An appropriate selection of printers can ensure efficient learn-
ing accuracy, since dissimilar printers may introduce data that
mislead learning and increase computation. However, there

may exist non-unique selections of printers. As such, extra con-
straints and practical heuristics can be applied to identify the
feasible selection of printers. A population-based metaheuristic,
such as the Evolutionary Algorithm (EA, Bozorg-Haddad et al,
2017), can provide a higher chance of not being trapped by
local optima within a reasonable computational time. The
chromosome can be defined as a set Y to make different selec-
tions of printers by changing the values 1 or 0 for each compo-
nent y. The fitness value can be chosen to be the RMSE
improvement percentage over the single printer learning. The
parent chromosomes are generated from the current popula-
tion by using the roulette wheel selection method. The chromo-
some with a larger fitness value in the current population has a
higher chance to be selected as a parent for producing off-
spring. The crossover and mutation operators perform the
strategy of exploration and exploitation to maintain the com-
petitiveness and diversity of the population in each generation.
The EA iteration stops when a practical computational time is
reached. The EA procedure is also provided in Algorithm III.
(The EA operators are illustrated in Appendix. 2.3).

Algorithm III. EA searching for printer combination &
hybrid with MCMC-refined metaheuristic

Input

P Population consists of n chromosomes,

rp Population of parent chromosomes,

PO Population of offspring chromosomes,

m The number of printers in a chromosome,

ii th generation,

Jii th chromosomes in P;,

kk th printers in P; j,

A The number of current chromosomes passed to
the next generation,

n j— 4

C, Crossover rate,

M, Mutation rate,

f (P;) The cost function for estimating R, given )
and 0 optimized by
MCMC-refined SA metaheuristic from P;
Output
The chromosome with the best R in P;
i=1
for 1: n do
j=1
for 1: m do
k=1
Pijx = randint(0,1)
k=k+1

Optimize £ and 0 for (P;j) through Eqn. (2)
and MCMC-refined SA metaheuristic
j=j+1
If n %2! =0
A=4i+1
while NotTerminated() do
for 1: 4 do
i=1
P;,,, j = selectParent(P;)

SE



If rand(0,1) < C,
Append P;y, j to PP;
j=j+1
for 1: /2 do
PP, — Two chromosomes
selected from PP;
PO;,,, PO;, = crossover(PP;,, PP,;,)
for 1: m do
k=1
If rand(0,1) < M,
POi,]‘k = mutate(POill,k)
If rand(0,1),,;, <M,
Poi‘zvk = mutate(POi,z,k)

randomly

k=k+1
Append PO; to Pyt
i=i+1
for 1: n do
j=1

Update the optimized £ and 0 for
(P;j) through Eqn. (2) and MCMC-
refined SA

j=i+1

Return The chromosome with the best R in P;

4.4. A summary of hybrid metaheuristic refined by
MCMC for two-stage optimization

By combining the procedures in Sections 4.1 to 4.3, the pro-
posed hybrid metaheuristic (SA+EA) on the search space
refined by MCMC sampling can be summarized as follows:

1. Determine the prior model parameters that follow a
NIW Distribution.

2. Obtain the posterior distribution of model parameters
by considering the likelihood of all the printers’ data
(training data) on the prior distribution and derive the
marginal distribution of the covariance matrix £/ that
follows an Inverse Wishart Distribution.

3. Estimate £* by using MCMC sampling and building
up the 95%-NCI for each entry of ), eg., cov(0;, 0;)
= Loos < cov(0;, 0;) < Upos

4. Obtain the optimal £® from the 95%-NCI leading to
the largest R by single solution-based metaheuristic,
ie., SA. B

5. Re-optimize the model parameters ! by identifying/
updating the combination k of cloud printers in the
network over a regular time interval (over hours or
days) by a population-based metaheuristic, such as EA)

5. Case study 1: Co-learning between two data-
limited printers

Based on experiments, this case study focuses on the co-
learning between two printer models, each of which has
limited data collected under different G-code setups. This
section also compares the learning performance between the
TL (Ren et al., 2021) and the proposed co-learning method.
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5.1. Experimental condition and setup

Two extrusion-based printer models are employed in the experi-
ment, including LulzBot Taz 5 and LulzBot Taz 6. Taz 6 is the
printer of interest, whereas Taz 5 is a printer that can share data
with it over a common cloud platform. The nozzle diameter for
both printers is 0.5 mm. Taz 6 has the data obtained under only
one G-code setup, and Taz 5 also has limited samples. The data
collected under one G-code setup were chosen as the training
data for Taz 6, and the data under other G-code setups in set T,
where T: = ({speed (mm/s), acceleration (mm/s?)}) =
{{150, 800}, {150, 600}, {50, 600}, {150, 400}, {50,
400}}, are for testing. Both printers are data-limited, presenting
a challenge to estimate the common covariance as adopted by
Ren et al. (2021).

5.2. Results

To estimate E®), the search space needs to be narrowed
down by deriving the marginal distribution of the covariance
structure under the Bayesian Framework. The four parameters
o> Mo, vo, Ko for the prior NIW Distribution should be
defined for each entry cov(0);, 0;) of Z*). The diagonal value
of Ay was tuned to be 10 in this case. The value of vy is six. Ky
is chosen to be one to minimize the scalar effect and p,,,, =
(0, 0)'. After specifying the parameters for the prior NIW, the

posterior NIW could be updated as NIW(1t,,y, Lpost| TR

A", v*, K*) by considering 0 . The posterior marginal distri-
bution X,y is also derived from NIW as Zpt,jf|data ~
IW(A*,v*) for MCMC sampling.

Given Xy for cov(0;, 0;), the MCMC sampling method
was run to reduce the search space of £, This case runs
12,000 iterations and burn-in constitutes the first 2000 itera-
tions. The normal distribution will be selected as a proposal dis-
tribution to sample a candidate cov(0; 0;)" ~ N(cov
(0., 0)'"',6%) and cov(0i, 0;)" = cov(0;, 0;)". & is treated as
a moving step and tuned by evaluating the autocorrelation con-
vergence plot. The samples were collected from the remaining
10,000 to build a 95%-NCI for cov(0;, 0;) of X in Fig. 5(a)-(b).

To test the stability of the MCMC, we first examine the
trace plot (Figure 5(a)) and burn in the MCMC sample in
the early iterations. Different starting values are tested to
ensure that the trace plots are mostly overlapped. Then we
plot the autocorrelation (Figure 5(c)) of the samples between
different lags to ensure that the Markov chain is stationary
(high correlation leads to a slow convergence pattern). As
can be seen from one example cov(0;, ;) sampling in
Figure 5, the high correlations only appear among the short
lags, and the algorithm can reach convergence within a few
iterations. This NCI preliminarily narrows the range for
plausible values of T®*), although the potential search space
is still large. SA is then implemented to optimize
each cov(0;, 0;) with a lower and acceptable value of the
RMSE. After hyperparameter tuning, the temperature (T) of
the algorithm is set to be one, and the minimum tempera-
ture (T,,) is set to a small value of 0.00001. The cooling
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Figure 5. The example of (a) the trace plot; (b) the 95%-NClI; (c) the autocorrelation plot for checking the stability in the MCMC sampling of IO
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Figure 6. TL (Ren et al., 2021) vs. proposed co-learning approach given differ-
ent sample sizes from Taz 5. The left axis refers to the RMSE for prediction, as
shown by the bar chart. The right axis is the median RMSE reduction (%) com-
pared with the single-printer learning represented by dash lines.

factor o in a cooling step is chosen to be 0.9 for annealing.
An identity matrix is chosen to be the initial covariance to
start computing. The cost function is the percentage of the
median RMSE reduction between the median RMSE
obtained from the single-printer learning and proposed co-
learning approach. As such, the learning problem is to find
the combination of cov(0;, 0;) leading to the largest per-
centage of the median RMSE reduction. The results in
Figure 6 show the improvement of the proposed co-learning
methodology for two data-limited printers. Specifically,
when each printer has only one or two samples, the co-
learning methodology can significantly reduce the RMSE in
quality prediction for Taz 6 compared with TL by Ren ef al.
(2021). (The detailed data in a tabular format for Figure 6
and an example of linewidth prediction by co-learning on
Taz 6 are documented in Appendices 3.1 and 3.2)

6. Case study 2: Mulitple data-limited printers
co-learning network

The incorporation of more extrusion printers into the co-
learning can potentially contribute to the improvement in

learning. This case study considers the co-learning among
multiple printers to simulate the scenario when the users
received quality and G-code data from more networked
printers over the cloud. It is worth noting that the TL pro-
posed by Ren et al. (2021) is limited to the knowledge trans-
fer between a data-rich to a data-limited printer and does
not apply to this case study.

6.1. Selection of cloud printer combinations

As in case study 1, the printer LulzBot Taz 6 is still the
printer of interest, and the other one LulzBot Taz 5, and
two Creality Ender’s are the real printers sharing the data
on the cloud. For simplicity, the two Creality Ender’s are
labeled as Ender 1 and 2, respectively. The nozzle diameter
for two newly involved printers is 0.4 mm. The experiment
compares the impacts of kinematics setup in G-codes on
printing quality between Taz 6 and the other three net-
worked printers. The printed line quality generated by the
five G-codes as shown in T, is evaluated for each printer
involved in the co-learning. All printers exhibit similar vari-
ation patterns in phases p3 and p5, and their correlation
information can be shared across printers. Due to the differ-
ent characteristics of printer models, it is not guaranteed
that more data from different printers can contribute to the
co-learning process. In this study, all possible combinations
of printers for co-learning include Taz 5, Ender 1, Ender 2,
Taz 5+ Ender 1, Ender 1+ Ender 2, Taz 5+ Ender 2, and
Taz 5+ Ender 1 + Ender 2.

The data in this case study were constructed so that only
one sample is available for each printer to train the quality
prediction model. Since the experiment tested five G-codes
on each printer, one G-code from T is selected as training
data at a time for Taz 6 to co-learn the printed quality with
various G-codes from other printers. The RMSEs are col-
lected by cross-validation on different one-selected training
and four non-selected testing G-codes in T,. Then, the
InterQuartile Rrange (IQR) and the median RMSE are con-
structed to evaluate the learning performance of each printer
combination. Figure 7 compares different printer selections
and shows the most significant improvement in the IQR
and the median RMSE achieved by the co-learning. The
results show that the selection of printers for co-learning
with Taz 6 should include Taz 5 and Ender 1. This study
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Figure 7. Examples of IQR of the RMSEs in co-learning with some printer selections.
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Figure 8. A comparison between the IQR of the method with and without
applying SA on posterior-based sampling.

also compared the learning performance of employing
MCMC only vs. MCMC+-SA based on the best printer com-
bination identified (Taz 6+Taz 5+Ender 1) in Figure. 8.
The results of the IQRs show that the median RMSE from
MCMCHSA significantly outperforms MCMC’s values by
more than 32%. Appendix. 4.1 further shows the autocorrel-
ation convergence plot for MCMC diagnostics.

The co-learning can be implemented on all printers on the
same cloud. The target printer of interest can be selected as
Taz 5, Ender 1, and 2, and each printer still contains only one
G-code. Figure 9 shows the co-learning network among four
printers, where the arrows indicate the information from the
printer at the arrow’s origin can help co-learn the quality
from the printer at the arrow’s end. Taz 5 and Ender 1 have
been tested to be the best printer combination for co-learning
of printing quality in Taz 6. In addition, Taz 5 co-learns the
printing quality with the other three printers involved and can
maximize the learning performance up to around 36%. The
printer Ender 1 can be co-learned with the combination of
Taz 5 and Ender 2 with the best accuracy improvement of
22.56%. Ender 2 appears to exhibit more different behaviors
from other printers and has the least improved accuracy

through co-learning by up to 4.65%. It is noticeable that after
the printer selection, the co-learning is not bi-directional
between a pair of printers, indicating that the information
sharing from the cloud is not equivalent for all printers.

6.2. Simulation of selection of cloud printer network

In this section, 20 printers are simulated from four groups
of printers (Taz 5, Taz 6, Ender 1 & 2) for the co-learning
network. Each group has five simulated printers. For group
Taz 5, Ender 1 & 2, each printer contains only one G-code
quality data generated by adding the Gaussian noise on the
real data from T . For group Taz 6, each of the four simu-
lated printers contains one of the extra four untested G-
codes T, = ({speed (mm/s), acceleration (mm/s*)}) =
{{100, 800}, {50, 800}, {100, 600}, {100, 400}}  with
Gaussian noise, and only one printer contains the real qual-
ity data (without noise) from T, . The printer with the real
G-code data serves as the printer of interest. Also, the kine-
matic—quality relationship between line segments p3 and p5
is learned across different printer combinations.

In this study, the first-stage optimization is the same as
Section 5.2 except for the cooling factor a. By considering
the time limit, the co-learning of the first-stage optimization
process in each printer combination is set not to exceed
120 seconds. Therefore, o is tuned to be 0.5 to accelerate the
learning process. For the second-stage optimization, the
population size # is five. The number of chromosomes
chosen from P; to P;,; is three. The crossover and mutation
rates are mostly set in a range [0.8-0.95] and [0.001-0.05] as
suggested by Yang et al. (2015). In this article, the crossover
rate (C,) and mutation rate (M,) are also defined as 0.8 and
0.01 within the above-suggested range. The stopping criter-
ion of the two-stage optimization is set to the CPU running
time of 3600 seconds for practical implementation.

To evaluate the proposed two-stage optimization, the
study cross-validated the performance of a method by select-
ing one G-code data in T; from a non-simulated printer as
training data, and the rest of the non-selected four G-codes
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reduction by Co-learning
LulzBot Taz6 32.67%
LulzBot Taz5 36.62%
Creality Ender 1 22.56%
Creality Ender 2 4.65%

Figure 9. An established co-learning network from four data-limited printers (e.g., one or two G-code setup(s) per printer). For each printer, the arrows indicate the
combination of printers that can jointly contribute to the co-learning accuracy with the best performance. The table to the right highlights the best improvement

in RMSE reduction for quality prediction on each printer.
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Figure 10. A comparison among three methods (single-printer learning, meta-
heuristic using EA only, and hybrid metaheuristic using SA for the first stage
and EA for the second stage) for IQRs of the RMSEs from the cross-valid-
ation results.

in T, are testing data. Then, the IQR and median RMSE are
measured based on the collection of all the testing results
(RMSEs). For each training G-code, three more runs are
conducted, and the results with the largest median RMSE
reduction are selected. In this section, the learning perform-
ances of the single-printer learning and two-stage co-learn-
ing solved by an EA metaheuristic are also compared with
the proposed hybrid metaheuristic (single-solution-based
SA + population-based EA). Figure 10 compares he IQR and
median RMSE for three different methods.

It can be seen that the proposed two-stage co-learning
improves the learning accuracy over single-printer learning
by 34.33% and outperforms EA by 14.51% within the
computation time. Given the results, it is seen that the
single-solution-based metaheuristic (SA) is more efficient
compared with the population-based method (EA) in deal-
ing with the continuous space search in the first-stage opti-
mization. The autocorrelation convergence plot for MCMC
diagnostics is shown in Appendix. 4.2.

7. Conclusions and future work

Cloud AM has emerged over recent decades as a way to
effectively utilize scattered manufacturing resources to

deliver on-demand customized or personalized products.
Interconnected printers on the cloud can share printing data
for collaborative production state-of-the-art research mainly
focuses on system integration and production scheduling for
cloud printing; however, limited research is available on the
quality control issues by taking advantage of data sharing on
the cloud.

This article proposes a co-learning methodology that
allows multiple interconnected printers to learn the proc-
ess—quality relationship, especially multiple data-limited
printers, potentially helping expedite process calibration for
quality control. The methodology is established using an
example of extrusion-based printers that have low precision.
Traditionally, quality improvement requires the calibration
of the printer setup that involves extensive experimentation
to estimate how printing conditions in the G-code affect
quality. The established co-learning methodology leverages
process physics insights, a kinematics—quality model, to
address the challenge. The contributions can be summarized
as follows:

1. A two-stage optimization problem is formulated to
jointly learn the printer selection, common covariance
structure of the model coefficients, and the model coef-
ficient for the target printer.

2. An MCMC-refined hybrid metaheuristic algorithm is
developed to solve the two-stage optimization, which
involves the challenge of ensuring positive definiteness
of the covariance structure and the combinatorial prob-
lem. The MCMC based on the distribution of covari-
ance structure first identifies the credible interval to
narrow the search space for ™). Based on the nar-
rowed search space, a hybrid metaheuristic is developed,
including a single-solution-based search to find the
model parameters and L) within feasible computa-
tional timeframe at Stage 1 and a population-based
search to explore the cloud printer combination at
Stage 2.

3. The method to obtain the kinematics—quality relation-
ship by co-learning the data from cloud printers provide
a quantitative model for a new research direction, i.e.,
adjusting a printer’s kinematics parameters, including



speed and acceleration, to for the
infill errors.

4. The proposed work can also be applied in (i) building
reconfigurable and scalable manufacturing with various
personalized products in future manufacturing, and (ii)
lowering the entry barrier for new manufacturers such
as small business owners to contribute their manufac-
turing resources, which is especially helpful for mobiliz-
ing local resources to manufacture products with high
priority under a national emergency, and (iii) other
applications such as IoT services and power control for

a smart grid.

compensate

Future research may include:

1. Extension of the kinematics-quality model leveraging
the data from cloud printers has the potential to com-
pensate for printing infill errors by adjusting the
extruder’'s moving speed and acceleration in the print-
er's G-code along printing paths. Such a compensation
strategy is expected to improve infill uniformity and
structural performance.

2. Extension of the error estimation to 2D and 3D geo-
metric errors and infill patterns. Training the model
based on the part with different dimensions will be
another study to be conducted.

3. Consideration of the impact of machine degradation
and retooling in the printer. The model parameters con-
cerning the time sequence will also be developed in the
model upgrade.

4. Extension of the methodology to other printing proc-
esses, such as stereolithography or metal printing, by
co-learning how printing conditions impact quality.

5.  Exploration of practical security models for cloud-based
AM platform; cloud-based AM has potential risks and
vulnerabilities for hackers or adversary to exploit it.
This security access control model will help AM to be
more reliable and secure.
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