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Abstract—Virtual Optical Networks (VONSs) offer scientists the
opportunity to test and validate Software Defined Networking
(SDN) controllers without requiring access to expensive optical
equipment. A key component in VON is the real-time optical
layer emulation (OLE) engine that must estimate the OSNR at
the virtual receiver of every virtual lightpath that is established
in the VON.

This study investigates two algorithms for training a two-
hidden layer Neural Network (NN) whose aim is to estimate
the OSNR penalties caused by a series of virtual Wavelength
Selective Switches (WSS) that are traversed by a virtual lightpath
before reaching its virtual receiver. The NN solution yields good
accuracy and only requires a few microseconds of computation
time — a two key requirements for achieving a meaningful.

Index Terms—virtual optical network, WSS filter penalty,
neural network, elastic optical networks, optical layer emulation

I. INTRODUCTION

Transport networks combine multiple technologies spanning
from the optical to IP layer. Experimental testing of these
multi-layer solutions require significant investments, which be-
come prohibitively high when testing with large size networks.
Virtualization of switches and routers has been one of the
most successful tools to enable scientists to experimentally test
with layer 2 and layer 3 protocols, along with their Software
Defined Networking (SDN) controllers [1]. Unfortunately,
virtualization of optical networks is not a widely available
tool at this time.

Optical networks have been extensively studied using an-
alytical models, discrete-event simulators, and experimental
testbeds. Simulation platforms like NS-3, OPNET, OMNET++
are quite popular as they offer the flexibility to rapidly
implement new algorithms, protocols, and architectures. Julius,
an emulation environment for SDN-enabled, multi-layer, and
flexible IP/Optical networks was recently announced [2]. This
environment combines Mininet [1] — for the SDN network
emulation — and LINC-OE [3] — for the simulation of
optical elements. While it offers web interfaces to configure
the optical link properties, Julius does not support Quality of
Transmission (QoT) models.

To achieve a realistic virtual optical network (VON) the em-
ulation environment must provide a real-time optical physical
layer emulation (OLE) engine that accounts for the desired
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QoT models in real-time. The OLE engine must be able to
estimate relevant QoT performance indicators like pre-Forward
Error Correction (FEC) Bit Error Rate (BER) and Optical
Signal-to-Noise Ratio (OSNR) of any virtual lightpath that is
established in the VON. Accounting for the fact that hundreds
or even thousands of virtual lightpaths can be established in the
VON, the OLE engine must make use of efficient techniques
to compute these QoT performance indicators for each virtual
lightpath in real-time.

The study in this paper aims to investigate the use of two-
hidden layer Neural Networks (NNs) to accurately compute
the OSNR penalty induced by a cascade of Wavelength
Selective Switch (WSS) devices at the virtual receiver of a
virtual lightpath routed through said virtual WSS devices.
The NN solution is expected to account for a number of
input parameters, including the modulation scheme, baud-
rate, WSS bandwidth, and number of cascaded WSS devices.
It is worth noting that in current and past deployments of
Dense Wavelength Division Multiplexing (DWDM) networks
the WSS induced penalties are for the most part negligible
when compared to other factors, such as fiber non-linearity
and optical amplifier noise. However, with the introduction
of flexible grid allocation in Elastic Optical Network (EON)
the fiber spectrum is expected to become more densely pop-
ulated, making WSS induced OSNR penalties more relevant.
Hence, a meaningful OLE engine must also account for the
WSS induced OSNR penalties. Other OSNR penalties can be
accounted for either independently [4] or inter dependently [5].

More precisely, the study investigates the use of two
NN training algorithms, i.e., Levenberg-Marquardt (LM) and
Bayesian Regularization (BR) [6]. LM is generally the fastest
among all backpropagation algorithms. BR is based on LM
and typically requires more training time, but can result in
good generalization for difficult, small, or noisy input datasets.
The considered NN solution is shown to yield accurate com-
putation of the OSNR penalty caused by a cascade of multiple
WSS filters, achieving less than 1 dB mean squared error for
OSNR penalties that are most relevant to the OLE engine
and while accounting for a wide range of virtual lightpath
establishment scenarios. By making use of two hidden layers
and 128+128 neurons the considered NN solution requires
limited computation capabilities, thus making it possible for
the OLE engine to estimate the OSNR penalties of 100,000
virtual lightpaths in less than one second.
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II. MODELING A CASCADE OF WSS DEVICES

In transparent optical networks a lightpath occupying a frac-
tion of the fiber optics spectrum (wavelength) is routed from
the source to the destination node through multiple intermedi-
ate nodes. Lightpath routing and termination at these network
nodes are achieved through Reconfigurable Optical Add/Drop
Multiplexer (ROADM). ROADMs make use of Wavelength
Selective Switch (WSS) devices, which are configured to
selectively allow fractions of the optical spectrum to propagate
through the device. WSS also enables advanced functionalities
in the ROADM referred to as colorless, directionless, and
contentionless (CDC) [7].

Ideal WSS devices with flat top and steep edges of fre-
quency response are hard to built. Realistic WSS transfer
functions have non-flat top and limited roll-off rates at the
edges, which together result in QoT deterioration every time
the signal goes through one WSS device. This WSS filter
penalty is cumulative, in that every WSS device traversed by
the lightpath further affects the integrity of the transmitted sig-
nal. This problem is exacerbated in flexible grid deployments
whereby channel spectral spacing between lightpaths and their
respective guard bands are both reduced to accommodate more
transmission capacity in the same optical fiber cable.

The frequency response of a WSS device is typically
modelled by (1) (2) [8], where BWorr is the roll-off factor
and B is the bandwidth of the aperture of the WSS (usually set
to match channel spacing). This model shows good agreement
with WSS device experimental measurements.
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Cascading multiple WSS devices has the net effect of
multiplying their bandpass filter frequency responses together.
Fig. 1 shows the equivalent 6 dB bandwidth after a number
of cascaded WSS modules, assuming that the WSS modules
have identical frequency responses. The resulting effect of
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Fig. 1: Equivalent 6 dB bandwidth of cascaded WSS modules,
where BWorr = 10.5 GHz and B = 37.5 GHz.

the applied 6 db bandwidth on the signal OSNR degradation

(penalty) can only be investigated experimentally or through
simulation, the latter being more economical.

Signal penalties induced by WSS filtering are typically
negligible in conventional 50-GHz grid DWDM networks
when using standard symbol rates such as 28 Gbd and 32 Gbd.
However, as already mentioned, these penalties become sig-
nificant in EON as a result of their reduced channel spac-
ing [9]. Fig. 2 shows the WSS filtering OSNR penalty in a
32 Gbd 256 Gbps optical signal modulated as PM-16QAM
with 37.5 GHz channel spacing as it gets routed through WSS
devices. Considering that a minimum of 4 cascaded WSS
devices are needed to provision an optical circuits between
two ROADMs (a single hop path), the resulting OSNR penalty
(14.4 dB) quickly becomes prohibitively high. This example
illustrates how the WSS filtering effect can induce signifi-
cant transmission degradation in EON with narrow channel
spacing. It must also be noted that besides the frequency
response shape and number of traversed WSS devices, the
resulting OSNR penalty depends on the relative position of the
channel inside the WSS passband and the signal modulation
format. Considering that numerical simulation techniques to
estimate the OSNR penalty for each of the possible network
configurations are time consuming, a faster and comprehensive
alternative solution is highly desirable when designing a OLE
engine.
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Fig. 2: OSNR penalty for 32 Gbd 256 Gbps optical signal
modulated as PM-16QAM with 37.5 GHz channel spacing
due to cascaded WSS filtering.

III. NEURAL NETWORK ARCHITECTURE AND TRAINING
ALGORITHMS

Neural network (NN) [10] is a modeling technique with
varying structures that can be applied to solve most complex
numerical problems through an effective input-output variable
mapping. Structures may vary based on the specific problems
under consideration and include artificial neural networks,
convolutional neural networks, and recurrent neural networks.
Classification and regression are two typical tasks neural
networks are designed for. In this paper, artificial neural
network is chosen to model the WSS filtering characteristics
and estimate the resulting OSNR penalty through non-linear
regression.
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A generalized artificial neural network structure is shown in
Fig. 3. The input layer contains a number of neurons matching
the number of input variables (features). Between the input and
output layer, one or more hidden layers are deployed, each
hosting a number of neurons. Each neuron is fully connected
with the neurons in the previous and successive layers and
applies a non-linear activation function to the weighted sum
of the incoming values to produce its outgoing value. This
NN type is also known as feedforward neural network for
supervised learning. In this study, the ReLU [11] activation
function is used.

OO O\
o e

- : | ) " /" Output Layer
AL WA

Input Layer
Hidden Layers

Fig. 3: A generalized artificial neural network structure.

The NN training process requires a backpropagation al-
gorithm that calculates the gradients and Jacobians iterating
backward from the last layer to the first layer [12]. Any
network that has differentiable transfer functions, weight func-
tions, and net input functions can be trained by a back-
propagation algorithm. Variable optimization algorithms are
used within the backpropagation procedure. In this paper, we
mainly focus on Levenberg-Marquardt (LM) and Bayesian
Regularization (BR) algorithms [6]. LM is generally the fastest
among all backpropagation algorithms. BR is based on LM
and typically requires more time to complete the NN training.
However, it provides good generalization for difficult, small
or noisy datasets. Batch training is used as it is significantly
faster and produces smaller errors compared to incremental
training. Mean squared error (MSE) — defined in (3) — is
used as key indicator for the trained NN performance, where
t; is the target output and p; is the predicted output.
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IV. RESULTS
A. Dataset Generation

Due to insufficient experimental data on WSS filtering
penalty currently available to the authors, the training dataset
is generated with the help of a simulator. Features (illustrated
in Fig. 4) and restrictions are described next.

e R Symbol rate, is a continuous value from 2 Gbd to
42 Gbd. The 2 Gbd lower limit is set to account for
Subcarrier Multiplexing (SCM) channels which may use
only part of B. The 42 Gbd upper limit is set to account
for most signal widths that would fit in the 50 GHz upper
limit value for B.

o B: WSS filter bandwidth (channel spacing), is a contin-
uous value from max(6.25 GHz, Rs) to 50 GHz. The
minimum nominal central frequency granularity defined
by the ITU-T is 6.25 GHz [13]. The upper limit is 50 GHz
as it is the grid of traditional fixed grid DWDM network.
Other values such as 67.5 GHz, 100 GHz, etc. are also
acceptable.

o Af: Signal center frequency relative to the center of the
optical filter, is a continuous value from (—B+ R;)/2 to
(B—Rj)/2 that accounts for all possible relative positions
of a SCM channel.

¢ o: Signal root-raised-cosine roll-off factor, is a continuous
value from 0.01 to 1.

e M: Modulation format, is one of the following eight
categories: PM-BPSK, PM-QPSK, PM-8QAM, PM-
16QAM, PM-32QAM, PM-64QAM, PM-128QAM, and
PM-256QAM.

o n: Number of cascaded WSS devices, is a discrete value
from 1 to 20.

e OSNRwygss: WSS filtering OSNR penalty, is the output
value the neural network needs to make regression on.

By selecting these key features that may affect the WSS
filtering penalty, the trained neural network is expected to be a
valid estimation tool for a broad range of scenarios beyond cur-
rent commercial configurations. Feature values are randomly
selected within their respective ranges when generating the
training dataset. The complete dataset contains 48,258 samples
and is divided to form three disjoint sets: training (70%),
validation (15%), and testing (15%).
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Fig. 4: Parameters used to generate the training dataset.

Pre-processing of the input features is necessary to increase
the NN accuracy. For continuous-valued features, i.e., Ry, B,
Af, and o, each feature is scaled by its maximum absolute
value. For discrete-valued features, values are encoded using
binary digits. Three digits are needed for feature M and five
digits are needed for feature n. A total of 12 features are used.

B. Neural Network Training and Evaluation

The NN training is performed using a computer with the

following specifications:

e CPU : Intel Core i9-9900k @ 4.7GHz.

e RAM : G.Skill Trident Z Neo F4-3600C18Q-128GTZN
DDR4-3600MHz  CL18-22-22-42  1.35V  128GB
(4x32GB).

o Environment: MATLAB R2021b.

We use four groups of data to train the NN, labelled as
“Whole Data,” “[0,5],” “[0,10],” and “[0,15],” respectively.
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Whole Data includes the complete dataset of 48,258 samples.
The highest value of OSNR penalty in the Whole Data group
is 36.891 dB, while the lowest value of OSNR penalty is 0 dB.
The distribution of OSNR penalty in the dataset is shown in
Fig. 5. The other three groups are obtained by removing the
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Fig. 5: Whole Data OSNR penalty (dB) distribution.

samples in the original dataset whose OSNR penalty does not
fall in the [0,x] range (in dB). Table I shows the total number
of samples and average OSNR penalty for each training group.

TABLE I: Data Used in Neural Network Training.

o Testing Performance. This is the group of samples that
is not used by the training procedure and provides an
independent measure of the NN generalized performance.

e Opverall Performance: The trained NN is used to predict
all data samples to show the overall performance, indi-
cating with MSE.

It is worth noting that:

e The graph of BR shows Training Performance in the
titles, while the Test Performance is manually reported
in the y-axis value of the graph at x = 100. For LM,
the titles of the graph report the Validation Performance,
while the Training Performance is reported in the tables.

o The results are rounded up to 3 decimals.

e The training stopping point for LM is as defined in
MATLAB R2021b. For BR, the training stops once the
pre-determined maximum number of epochs (100, in our
case) is reached.

We first investigate the effect of the numbers of the NN
hidden layers on the training performance and mean squared
error of the trained NN. We used 1, 2, and 4 hidden layers,
while keeping the total number of neurons at 256. Table II and
Table III contain the training results for BR and LM, respec-
tively. By increasing the number of NN hidden layers most

TABLE II: Training Results for BR Neural Network.

Training Group Total Number of | Average  OSNR
Samples Penalty (dB)

Whole Data 48258 2.899

[0,15] 47208 2.531

[0,10] 45173 2.101

[0,5] 38961 1.316

The training results use the following naming convention,
with NN representing either LM or BR training algorithm:

e 256xINN: 1 hidden layer with 256 neurons, NN trained
with Whole Data.

o 128x2NN: 2 hidden layers with 128 neurons each, NN
trained with Whole Data.

o 128x2NNS5: 2 hidden layers with 128 neurons each, NN
trained with OSNR penalties in [0,5] dB.

e 128x2NN10: 2 hidden layers with 128 neurons each, NN
trained with OSNR penalties in [0,10] dB.

o 128x2NN15: 2 hidden layers with 128 neurons each, NN
trained with OSNR penalties in [0,15] dB.

e 64x4NN: 4 hidden layers with 64 neurons each, NN
trained with Whole Data.

Fig. 6 shows MSE (y-axis) vs. number of epoches (x-axis)
for the two training algorithms (LM and BR) and three NN
structures listed in Tables II and III. MSE values are computed
using three datasets:

e Training Performance. This performance is based on the

samples of data presented to the NN during training. The
NN is adjusted based on this MSE.

o Validation Performance. This is the group of samples
used to measure the NN’s ability to generalize its es-
timates to samples that are not in the training dataset,
and to stop training when its estimates stop improving.

Training Training Per- | Test Overall
Mode formance Performance Performance
256x1BR 2.614 3.564 2.757
128x2BR 0.370 1.781 0.582
64x4BR 0.357 1.045 0.461

TABLE III: Training Results for LM Neural Network.

Training Training Per- | Validation Overall
Mode formance Performance Performance
256x1LM 2.350 3.423 2.677
128x2LM 1.030 3.332 2.057
64x4LM 0.251 3.711 1.855

performance indicators improve. Most performance gains are
already achieved by the two-hidden layer NN compared to the
single hidden layer NN, with more modest performance gains
being achievable by the four-hidden layer NN. In addition,
while 64x4BR has the best training results, for LM, 128x2LM
has the best Validation Performance of the three LM NNs. For
these reasons the remainder of the paper focuses on the NN
solutions that are based on 2 hidden layers, i.e., 128x2BR and
128x2LM.

To see the effect of dataset used on each training algorithm,
the 4 different sets of samples in Table I are applied. Fig. 7
shows the training procedures for different NN setups with
three training sets ([0,5], [0,10], [0,15]) and two algorithms
(LM, BR) listed in Table IV and V.

With Fig. 5 in mind, the training results show us that
the training performances of each algorithm depends on the
dataset used to train the NN. It appears that training NN
using data with higher OSNR penalties tends to yield higher
mean squared error on Training Performance, Validation or
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Best Training Performance is 2.6143 at epoch 100

Best Training Performance is 0.37043 at epoch 100

Best Training Performance is 0.3573 at epoch 100
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Fig. 6: Training evolution for different NN structures and algorithms.

TABLE 1V: Four types of BR NN training mode. that exceed 5 dB. Similarity, for scenarios in which the OSNR
Training Training Per- | Test Overall penalty is in the [5,10] dB range solution 128x2BR10 yields
IIV;gd;BR (f)";‘%aﬂce f‘;‘;‘l’rmance gesl'ngrmance the best performance, and so on. The results in this table can

X e . . .
38:x2BRT5 0.065 0391 0.099 be effectively leve'raged to compute the most accurate OSNR
128x2BR10 0.024 0112 0.037 penalty over a wide range of OSNR values, understanding
128x2BR5 0.005 0.023 0.008 that the NN structure that provides the most accurate value is
. determined by the estimated OSNR value itself.
TABLE V: Four types of LM NN training mode.
Training Training Per- | Validation Overall TABLE VI: Mean squared error breakdown for various OSNR
Mode formance Performance Performance penalty value (dB) ranges
128x2LM 1.030 3.332 2.057 —
T28x2LM15 0.141 1013 0475 33(‘1“‘“ [0,5] dB [5,10] dB (10,15] dB
128x2LM10 0.043 0.393 0.166 oce
128x2LM5 0.019 0.135 0.064 128x2BRS 0.0078 - -
128x2BR10 0.019 0.146 -
128x2BR15 0.036 0.208 0.966
. 128x2BR 0.141 1.010 2.903
Test Performance, and Overall Performance. Two main factors RN 0.0 - -
contribute to this outcome: 1) at higher OSNR values the 128x2LM10 0117 0471 N
absolute error is larger compared to lower OSNR values and 2) 128x2LM15 0.276 0.763 3.406
reaching a well trained NN is simpler over a narrowly defined 128x2LM 0929 2.548 5.856
range of OSNR values. Further investigation of this trend is The typical NN execution time — defined as the time

discussed next.

Table VI reports the NN training results when specific
samples in the dataset are used during training, i.e., samples
in the [0,5], [5,10], and [10,15] dB OSNR penalty range,
respectively. These results confirm and quantify an intuitive
conjecture according to which the NN trained using only
samples in the [0,5] dB range [128x128BRS5] is best suited
to estimate OSNR penalties that fall in this range of values.
However, they should not be used to estimate OSNR penalties

that is required by the NN to compute the OSNR penalty
— 1is another important performance indicator in real-time
applications. For completeness, the execution time is measured
for every sample in the Whole Data set. The mean execution
time using our computer is 3.380 us for 128x2 structure.

V. CONCLUSION

This study investigates the use of LM and BR trained NN
for estimating the OSNR penalty induced by a cascade of
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Best Training Performance is 0.0050749 at epoch 100

Best Training Performance is 0.02363 at epoch 100

Best Training Performance is 0.064673 at epoch 100
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Fig. 7: Training evolution for different NN structures and algorithms validated against different subsets of whole dataset.

WSS devices that are used to route a lightpath to its intended
receiver. The NN is trained using a dataset that is obtained
from an optical transmission simulator. The considered NN
solutions, and in particular 128x2BR15, may yield estimates
with less than 1 dB of mean squared error for OSNR penalties
up to 15 dB. The mean computation time required by the NN
to produce one OSNR penalty estimate is less than 5 us.

With its combined good accuracy and short computation
time NN is a suitable solution for Optical Layer Emulation
(OLE) engines, which must timely compute QoT performance
indicators in Virtual Optical Network (VON) platforms. Large
virtual optical networks with thousands of virtual lightpaths
can then be emulated for testing the scalability of single-
and multi-layer SDN controllers and orchestrators. These NN
solutions may also find good applications in network planning
tools and network controllers. Future work will investigate
other promising solutions like the 64x4BR NN.
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