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ABSTRACT: This work performs the first systematic comparison of
hydrogen- and halogen-bonded configurations of the HCN/HX
mixed dimer, where X = F, Cl, Br, and I. Eleven different minima have
been characterized for these four heterogeneous dimers near the
CCSD(T) complete basis set (CBS) limit. For each complex, two
different hydrogen-bonded minima were identified: the global
minimum where HX acts as the hydrogen bond donor and a local
minimum where HX acts as the hydrogen bond acceptor. A halogen-
bonded local minimum was also identified for all but the fluorine
mixed dimer. To the best of our knowledge, three of the minima are
identified here for the first time. The hydrogen- and halogen-bonded
local minima of each complex become more energetically competitive
with the global minimum as the atomic radius of the halogen atom
increases. CCSD(T) relative energies of the hydrogen-bonded local
minima computed near the CBS limit decrease from 4.5 kcal mol−1 for HCN/HF to 2.9, 2.4, and 1.2 kcal mol−1 for X = Cl, Br, and I,
respectively. Corresponding relative energies for the halogen-bonded local minima range from 4.0 kcal mol−1 for X = Cl to 2.7 kcal
mol−1 for X = Br and to as little as 0.5 kcal mol−1 X = I. Harmonic vibrational frequency shifts reported here suggest that it may be
feasible to differentiate between the various minima for X = Cl, Br, and I via spectroscopic analysis, as was the case for the HCN/HF
dimer.

■ INTRODUCTION
Studies on small molecular systems held together by weak
intermolecular interactions can highlight the interplay of
theory and experiment, since these types of systems can be
amenable to both high-resolution gas-phase experimental study
and high-accuracy computational analysis.1,2 One such system
that has been thoroughly characterized by both experimen-
tal3−13 and computational14−21 work is the hydrogen-bonded
dimer of hydrogen cyanide (HCN) and hydrogen fluoride
(HF). Two different hydrogen-bonded configurations of this
mixed dimer have been identified experimentally (using
rotational constants and H−F and C−H vibrational stretching
frequencies) and characterized computationally: a linear
structure with HF donating the hydrogen bond (HCN···HF,
top of Figure 1) and a bent, planar structure where HF acts as
the hydrogen bond (HB) acceptor (HF···HCN, bottom of
Figure 1). Both structures are minima, but the linear structure
is signficantly lower in energy (by approximately 5 kcal
mol−1)16,21 and therefore will be referred to as the hydrogen-
bonded global minimum (GMHB) while the bent HF···HCN
will be referred to as the hydrogen-bonded local minimum
(LMHB). A recent computational study also identified a planar
transition state that indicated an electronic barrier of ≈0.5 kcal
mol−1 exists for in-plane rearrangement of the HB topology
from LMHB to GMHB (HF···HCN → HCN···HF).21 In the

same study, MP2 and CCSD(T) computations were able to
accurately reproduce experimental properties such as funda-
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Figure 1. Linear global (top) and bent local (bottom) hydrogen-
bonded minima of the heterogeneous HCN/HF dimer denoted
GMHB and LMHB, respectively.
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mental vibrational frequencies, the dissociation energy, and the
length of the HB.
Other hydrogen halides can also participate in analogous HB

interactions with HCN. The linear HCN···HX configuration in
which the hydrogen halide is the HB donor has been detected
in the gas phase for X = Cl, Br, and I22−31 and has also been
characterized in a number of computational studies using
quantum mechanical electronic structure techniques and other
theoretical models.32−52 To the best of our knowledge, the
reversed HB arrangement where HCN is the HB donor (i.e.,
the HX···HCN configuration) has not been observed
experimentally for X = Cl, Br, or I, and it has only been
studied computationally for X = Cl.44,48

In addition to participating in hydrogen-bonding inter-
actions, the heavier halides (Cl, Br, and I) are also known to
form halogen bonds (XB): attractive interactions between the
electrophilic region, or σ-hole, of a halogen atom and a
nucleophile.53 Nitrogen is a common XB acceptor, and a few
computational studies have reported linear, halogen-bonded
configurations of the form HCN···XH for X = Br and I.54−56

Studies of the HCN/HX heterogeneous dimer focus
exclusively on either the HB or the XB configurations, and
to date no studies have looked more broadly at both
possiblilities for these systems. Both halogen and hydrogen
bonds are important to many fields, such as supramolecular
chemistry and biochemistry, and extensive research has been
done to investigate the relationship between these two
noncovalent interactions.57−63 Taking a look at how they
compete in a relatively simple dimer system that is both
computationally and experimentally accessible can give
researchers insight into their roles in more complex systems.
This study will provide the first systematic investigation of the
different HB and XB topologies in this series of HCN/HX
mixed dimers (X = F, Cl, Br, and I). Properties related to the
formation of the intermolecular bond, such as dissociation
energy and vibrational frequency shifts, will be compared
across the entire series.

■ COMPUTATIONAL DETAILS
The dimer configurations of HCN/HX (X = F, Cl, Br, and I)
and their associated monomers were fully optimized using both
MP264 and CCSD(T)65−67 with a series of correlation
consistent basis sets augmented with diffuse functions on all
atoms except hydrogen, i.e., cc-pVYZ for H; aug-cc-pVYZ for
F, C, N, Cl, and Br; and aug-cc-pVYZ-PP for I (which includes
a relativistic pseudopotential used for the 28 core electrons of
all I atoms).68−74 All basis sets are denoted heavy-aug-cc-pVYZ
or haYZ, where Y = T, Q, and 5. Harmonic vibrational
frequency computations were used to characterize each
stationary point as either a minimum, transition state, or
higher-order saddle point using the same series of methods and
basis sets.
Gaussian1675 was used for all MP2 computations and

CFOUR76 was used for all CCSD(T) computations. Gradients
were computed analytically for all geometry optimizations.
Hessians were computed analytically for all MP2 computations
and for all CCSD(T) computations that did not contain
iodine. CCSD(T) Hessians for all iodine-containing systems
were computed numerically from finite differences of analytic
gradients. The frozen-core approximation was used for all
computations, excluding from the correlation procedure the
two core electrons of C, N, and F, the ten core electrons of Cl,
and the 18 core electrons of Br. For I, 28 core electrons were

replaced by the 28MDF pseudopotential and 8 more electrons
were excluded from the correlation procedure (following the
default frozen-core approximation in Gaussian16 for aug-cc-
pVYZ-PP on I). Additional MP2 computations were carried
out on select systems containing Br and I to examine the
effects of using pseudopotentials and different frozen-core
approximations. The results have been relegated to the
Supporting Information because they did not significantly
affect the properties reported in this study.
Dissociation energies were computed for each system’s

global minimum. Computing electronic dissociation energies
using finite basis sets gives rise to an inconsistency known as
basis set superposition error (BSSE).77,78 In order to assess the
effect of BSSE on the systems examined here, the counterpoise
procedure (CP)79−81 was employed, following the procedure
outlined elsewhere.82

■ RESULTS

HCN/HX Structures. For each HCN/HX mixed dimer (X
= F, Cl, Br, and I), two different hydrogen-bonded minima
were identified: the linear global minimum (GM) where HX
donates the HB (HCN···HX, labeled GMHB) and a nonlinear
local minimum (LM) where HX becomes the HB acceptor
(HX···HCN, labeled LMHB). For the heavier halides (X = Cl,
Br, and I), a linear, halogen-bonded minimum was identified
(HCN···XH, labeled LMXB). An analogous LMXB stationary
point could not be identified for the HCN/HF dimer, which is
to be expected, as it is generally accepted that fluorine does not
participate in halogen bonding in the same manner as Cl, Br,
and I. This is due to fundamental differences in the underlying
noncovalent interactions, though the specifics of those
differences are to some extent dependent on the criteria used
to define a halogen bond.83−89 All three minima are depicted
for each halide in Figure 2: a schematic of CCSD(T)/ha5Z
relative electronic energies (ΔE) for the minima with respect
to each complex’s own GM. Table 1 contains the HB or XB
length for each structure and, specifically for LMHB, two

Figure 2. CCSD(T)/ha5Z relative electronic energies for the HCN/
HX dimer minima and dissociation energies of the global minima
(rightmost column) for X = F (light blue), Cl (green), Br (red), and I
(purple). In each column, the energetic ordering (from the bottom to
the top) consistently remains I < Br < Cl < F, with the exception of
LMXB, which has no equivalent configuration for X = F.
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intermolecular angles that help quantify deviations from
linearity. The LMXB stationary point for X = Cl is identified
in this work for the first time, along with the LMHB stationary
points for the bromine and iodine dimers. The majority of the
data presented for the fluorine complexes and monomers was
taken directly from ref 21, which performed similar
computations using the same methods and basis sets employed
in this work. The only new data presented here for HCN/HF
comes from a single harmonic vibrational frequency
computation that was run at the CCSD(T)/ha5Z level of
theory for the LMHB configuration.
For the GMHB configurations (left side of Table 1), the HB

distance increases with the atomic radius of the halogen atom
(F < Cl < Br < I), from 1.85 Å for HCN···HF to 2.25 Å for
HCN···HI. This trend for the computed HB length is
consistent with the experimental N···X distances of 2.8043 Å
for F,9 3.4047 Å for Cl,23 3.6104 Å for Br,25 and 3.9129 Å for
I,29 inferred from rotational parameters and rigid geometries of
the isolated monomers. The computed N···X separations
(tabulated in the Supporting Information for each level of
theory) are always within 0.1 Å of the corresponding
experimental data for the CCSD(T) structures, regardless of
the basis set used in the optimization. As with GMHB, the HB
distance for LMHB (center of Table 1) increases with
increasing halogen size, going from 2.13 Å for the F analogue
to 3.03 Å for the I analogue. For each halogen, the HB distance
is at least 0.3 Å larger for the LMHB configuration than for the
corresponding GMHB. The halogen atom is nearly colinear
with HCN in the LMHB configuration. The X···HC angle falls
between 170° and 176° degrees for each CCSD(T)/ha5Z
structure. In contrast, the HX···H angle is appreciably smaller
and indicates significant deviations from linearity. θ(HX···H) is
139° for X = F, and it decreases to 99°, 95°, and 92° for X =
Cl, Br, and I, respectively. The XB distances for the LMXB
structures are all similar to one another. The Cl analogue has
the longest XB at 3.30 Å, and Br and I have halogen bonds of
similar length: 3.24 and 3.26 Å, respectively.
The HCN and HX monomers undergo some structural

changes upon complexation. Table 2 details the most
significant changes in intramonomer bond length (Δr) for all
three dimer minima at the CCSD(T)/ha5Z level of theory.
Any changes that exceeded ±0.001 Å for at least one of the
minima are listed. The largest deformations were observed for
the HX bonds in the GMHB configuration, where Δr(HX)
consistently increased from +0.005 Å for HI to +0.012 Å for
HF. These GMHB minima also exhibited a much smaller
contraction of the CN bond in HCN that increased from
Δr(CN) = −0.001 Å for the iodine complex to Δr(CN) =
−0.003 Å for the fluorine complex. All bond length changes
were appreciably small for the LMHB minima, where HX plays
the role of the HB acceptor. Δr(HX) is only +0.001 or +0.002

Å, and the change to the donor CH bond length is only slightly
larger, with Δr(HC) values of either +0.002 or +0.003 Å. For
the halogen-bonded minima, only the HBr and HI bonds
changed by more than ±0.001 Å (Δr(HX) = +0.002 and
+0.005 Å, respectively). CCSD(T)/haYZ Cartesian coordi-
nates and selected geometrical parameters of the CCSD(T)/
ha5Z optimized structures are provided in the Supporting
Information for each minimum and the isolated monomers.
While searching for minima, additional stationary points

with one or more imaginary frequencies (ni ≥ 1) were
identified for each HCN/HX dimer. A planar transition state
analogous to that identified previously for X = F was identified
for X = Cl, Br, and I (labeled TS1 in the Supporting
Information). A second planar transition state, labeled TS2,
was also identified for the larger halides (X = Br and I). The Cs
structures of TS1 and TS2 are depicted in Figure S1 along with
selected optimized intermolecular geometrical parameters
(Table S3) and relative electronic energies with respect to
GMHB (Tables S4 and S5).
TS1 was previously reported as a transition state for HCN/

HF that connects LMHB to GMHB through an in-plane
pathway.21 For HCN/HF, electronic energies computed near
the CCSD(T) CBS limit indicate that TS1 provides a barrier
of approximately 0.5 kcal mol−1 for the in-plane pathway, along
which LMHB collapses to GMHB (HF···HCN → HCN···HF).
Although that barrier is sufficiently large to enable
experimental identification of both hydrogen-bonded struc-
tures when X = F,6,16 the corresponding electronic barrier
height decreases substantially for Cl, Br, and I (≤0.2 kcal
mol−1).
The second planar transition state has been identified for the

Br and I systems. TS2 likely represents the barrier for the
rearrangement between the halogen-bonded and hydrogen-
bonded structures along a planar pathway. This tentative
designation is consistent with the normal-mode displacements
associated with the imaginary vibrational frequency of TS2, as
well as the absence of this stationary point for the HCN/HF
system, which does not have a halogen-bonded minimum. For
Br, TS2 lies only ca. 0.3 kcal mol−1 above LMXB near the
CCSD(T) CBS limit. This barrier along the planar pathway
between the XB and HB structures increases to more than 1
kcal mol−1 for X = I. If there are not any other lower-energy
planar or nonplanar pathways for this rearrangement in the
HCN/HI dimer then it is likely that both the hydrogen-
bonded global minimum and the halogen-bonded local
minimum can be detected experimentally under appropriate
conditions. However, an exhaustive search for other rearrange-
ment mechanisms with robust ab initio methods lies beyond
the scope of this investigation.
An additional linear HX···HCN stationary point was

identified for all four halides via MP2 optimizations, and all

Table 1. Selected CCSD(T)/ha5Z Intermolecular Bond
Lengths (r in Å) and Angles (θ in degrees) for the HCN/HX
Minima

GMHB LMHB LMXB

r(N···H) r(X···H) θ(HX···H) θ(X···HC) r(N···X)

Fa 1.85 2.13 139 176 N/A
Cl 2.08 2.70 99 170 3.30
Br 2.12 2.83 95 172 3.24
I 2.25 3.03 92 175 3.26

aRef 21.

Table 2. CCSD(T)/ha5Z Intramolecular Bond Length
Changes (Δr in Å) upon Complexation That Exceed ±0.001
Å for the HCN/HX Minima

GMHB LMHB LMXB

Δr(HX) Δr(CN) Δr(HX) Δr(HC) Δr(HX)

Fa +0.012 −0.003 +0.002 +0.003 N/A
Cl +0.010 −0.002 +0.001 +0.002 +0.000
Br +0.008 −0.002 +0.001 +0.003 +0.002
I +0.005 −0.001 +0.001 +0.003 +0.005

aRef 21.
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were found to be higher-order saddle points (ni ≥ 2). As such,
additional CCSD(T) computations were not performed on
these relatively high-energy structures. The MP2/haYZ
energetics and Cartesian coordinates for these stationary
points and the other structures (GMHB, LMHB, LMXB, TS1,
TS2) are reported in the Supporting Information.
HCN/HX Energetics. The CCSD(T) relative electronic

energies for all of the minima are given in Table 3, along with

the electronic dissociation energy with and without harmonic
zero-point vibrational energy (ZPVE) corrections (D0 and De,
respectively) for the GM of each dimer. A larger De
corresponds to a stronger HB, and the HB strength decreases
with increasing halogen size. The De ranges from ca. 7.4 kcal
mol−1 for HCN···HF to ca. 3.2 kcal mol−1 for HCN···HI at the
CCSD(T)/ha5Z level of theory. The decrease in De is the
largest when moving from the fluorine to the chlorine dimer.
Dissociation energies with the CP procedure applied (De

CP) are
tabulated in the Supporting Information. For the smaller
halogens (fluorine and chlorine), De and De

CP differ by no more
than 0.1 kcal mol−1 at both the MP2 and CCSD(T) level of
theory using the ha5Z basis set. For bromine and iodine, the
two De values differ by no more than 0.5 kcal mol−1 at the
MP2/ha5Z level of theory and 0.4 kcal mol−1 at the
CCSD(T)/ha5Z level of theory. As expected, including
ZPVE decreases the magnitude of the dissociation energy
(D0 < De), though the overall trend of decreasing bond
strength stays the same. D0 ranges from ca. 5.4 kcal mol−1 for
HCN···HF to 2.3 kcal mol−1 for HCN···HI at the CCSD(T)/
ha5Z level of theory. MP2 consistently overestimates both De
and D0 for each mixed dimer, regardless of basis set size
(values tabulated in the Supporting Information).
Both of the local minima (LMHB and LMXB) become more

energetically competitive with the GM as the size of the
halogen atom increases. The fluorine LMHB, which has been
detected experimentally, lies 4.5 kcal mol−1 above the
corresponding global minimum, according to CCSD(T)/

ha5Z electronic energies. That difference decreases to 2.9,
2.4, and 1.2 kcal mol−1 for the chlorine, bromine, and iodine
analogues, respectively. The ΔE of the halogen-bonded
minimum at the CCSD(T)/ha5Z level of theory decreases
from 4.0 kcal mol−1 for Cl to 2.7 kcal mol−1 for Br and to only
0.5 kcal mol−1 for I. CCSD(T) ΔE values with the ZPVE
correction applied are tabulated in the Supporting Information.
The ZPVE corrected values are smaller than the noncorrected
values, up to 1.4 kcal mol−1 lower for the LMHB minima and
0.7 kcal mol−1 lower for the LMXB minima. Most importantly,
including ZPVE does not change the relative energetic
ordering of any of the minima. The MP2 ΔE values are
never more than 0.5 kcal mol−1 above their corresponding
CCSD(T) energies.

Vibrational Frequencies of the HCN/HX Minima. The
CCSD(T) hydrogen halide harmonic vibrational stretching
frequencies (ωHX) are presented for each isolated HX molecule
in Table 4. These stretching frequencies are shifted (ΔωHX)

upon formation of the mixed dimer as a result of the formation
of either a HB (for GMHB and LMHB) or a XB (for LMXB). The
ΔωHX values are well-converged at the CCSD(T)/ha5Z level
of theory with the haQZ and ha5Z frequency shifts presented
in Table 4 differing by no more than 8 cm−1 for the LMXB
configuration of the HCN/HI dimer and by no more than 3
cm−1 in every other case. Although the CCSD(T)/haQZ
vibrational frequency is anomalously large for the HI stretching
frequencies, the discrepancy vanishes when the corresponding
core−valence quadruple-ζ correlation consistent basis set90 for
I is adopted without the use of the frozen-core approximation
for MP2 (details in the Supporting Information).
For GMHB at the CCSD(T)/ha5Z level of theory, the

fluorine system undergoes the largest frequency shift upon
complexation (ΔωHF = −254 cm−1). The magnitude of the

Table 3. CCSD(T) Relative Electronic Energies in kcal
mol−1 of the Hydrogen- and Halogen-Bonded Minima for
the HCN/HX Dimers As Well As the Electronic
Dissociation Energy for the Global Minimum, with and
without ZPVE Corrections (D0 and De, Respectively, in kcal
mol−1)

GMHB LMHB LMXB De D0

Fa

haTZ 0.00 4.60 N/A 7.63 5.58
haQZ 0.00 4.55 N/A 7.52 5.49
ha5Z 0.00 4.48 N/A 7.43 5.44

Cl
haTZ 0.00 2.96 3.93 4.72 3.35
haQZ 0.00 2.92 3.98 4.67 3.33
ha5Z 0.00 2.87 3.95 4.61 3.32

Br
haTZ 0.00 2.42 2.51 4.33 3.06
haQZ 0.00 2.32 2.59 4.24 3.07
ha5Z 0.00 2.36 2.66 4.20 3.01

I
haTZ 0.00 1.44 0.32 3.26 2.23
haQZ 0.00 1.37 0.33 3.26 2.32
ha5Z 0.00 1.23 0.46 3.20 2.28

aRef 21.

Table 4. CCSD(T) Harmonic StretcHing Frequencies of the
Isolated HX Monomers and the Corresponding Frequency
Shifts (ωHX and ΔωHX, Respectively, in cm−1) Induced by
Hydrogen or Halogen Bonding in the Different Dimer
Minima

haTZ haQZ ha5Z

ωHX

Fa 4126 4142 4143
Cl 2989 2990 2995
Br 2685 2678 2673
I 2338 2377 2328

ΔωHX (GMHB)
Fa −247 −255 −254
Cl −112 −123 −124
Br −70 −88 −87
I −23 −34 −37

ΔωHX (LMHB)
F −22a −21a −21
Cl −11 −12 −12
Br −8 −7 −9
I −4 −5 −5

ΔωHX (LMXB)
F N/A N/A N/A
Cl −4 −4 −4
Br −11 −12 −12
I −15 −18 −26

aRef 21.
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shifts decreases with increasing hydrogen bond length, down to
a value of −37 cm−1 for ΔωHI. Shifts for the LM stationary
points (LMHB and LMXB) are not as large as the shifts for
GMHB. The LMHB configuration’s largest CCSD(T)/ha5Z
frequency shift is only −21 cm−1 for the fluorine minimum and
decreases to as little as −5 cm−1 for the iodine analogue. The
shifts follow the opposite trend for the LMXB configuration,
increasing from ΔωHCl = −4 cm−1 to ΔωHI = −26 cm−1.
The HC stretches (ωHC) in each LMHB structure have the

only other pronounced shifts associated with the harmonic
vibrational frequencies of the three minima. For all of the
LMHB stationary points, the HC frequency shifts (ΔωHC) are
very well converged at the CCSD(T)/ha5Z level of theory,
changing by no more than 3 cm−1 from the CCSD(T)/haQZ
values. The frequency shifts are all in a range from −29 to −39
cm−1 at the CCSD(T)/ha5Z level of theory, increasing only
moderately from the fluorine to the iodine dimer. The HC
stretch for the HCN monomer and corresponding frequency
shifts in the dimers are tabulated in the Supporting
Information.
Although these results are based on harmonic vibrational

frequency computations, the shifts discussed here and the IR
intensities in the Supporting Information do suggest that it
may be feasible to spectroscopically differentiate between the
various minima for X = Cl, Br, and I, as was the case for the
HCN/HF dimer.16 The CCSD(T) vibrational stretching
frequencies and corresponding IR intensities for the monomers
and dimer minima are reported in the Supporting Information,
along with equivalent MP2 data. MP2 overestimates all
frequency shifts for the mixed halide dimers, by as much as
60 cm−1 for ΔωHX and 9 cm−1 for ΔωHC.

■ CONCLUSIONS
Three different minima on the potential energy surface of the
HCN/HX dimer (X = Cl, Br, I) have been examined with
CCSD(T) near the complete basis set (CBS) limit. Two
HCN/HF minima characterized by a previous computational
study21 are also included in the examination. For each halide,
two hydrogen-bonded minima analogous to those identified
experimentally for the HCN/HF dimer16 (Figure 1) were
characterized: the global minimum where HX donates the
hydrogen bond (HCN···HX) and a nonlinear local minimum
where HX becomes the hydrogen bond acceptor (HX···HCN).
A halogen-bonded minimum (HCN···XH) was also identified
for X = Cl, Br, and I but not for X = F.
The hydrogen-bonded HX···HCN local minima are more

energetically competitive for X = Cl, Br, and I (ΔE = 2.9, 2.4,
and 1.2 kcal mol−1, respectively) than for X = F (ΔE = 4.5 kcal
mol−1). For X = Br and I, the halogen-bonded local minima,
LMXB, have relative electronic energies on par with the LMHB
structure (ΔE = 2.7 kcal mol−1 for Br) and even with the
GMHB structure (ΔE = 0.5 kcal mol−1 for I). Given that both
the hydrogen- and halogen-bonded local minima for the
chlorine, bromine, and iodine halides are relatively close in
energy to their respective GM, it is possible that they could be
identified experimentally. Vibrational frequency shifts for the
HX and HC stretches upon dimer formation are presented for
the different minima of each halide, and the IR intensities and
harmonic frequency shifts provide potential guides for
experimentally differentiating between the minima. Since
formation of the minima will also depend on energetic barriers
to move between the different structures, a more in-depth
analysis of the low-energy pathways connecting the different

minima would be a beneficial extension of this work. A
subsequent anharmonic treatment of the vibrational frequen-
cies for the minima would also be beneficial and aid in the
experimental interrogation of these small binary complexes.
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