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Approaches for FPGA Design Assurance

ELI CAHILL, BRAD HUTCHINGS, and JEFFREY GOEDERS, Brigham Young University, USA

Field-Programmable Gate Arrays (FPGAs) are widely used for custom hardware implementations, including

in many security-sensitive industries, such as defense, communications, transportation, medical, and more.

Compiling source hardware descriptions to FPGA bitstreams requires the use of complex computer-aided

design (CAD) tools. These tools are typically proprietary and closed-source, and it is not possible to easily

determine that the produced bitstream is equivalent to the source design.

In this work, we present various FPGA design flows that leverage pre-synthesizing or pre-implementing

parts of the design, combined with open-source synthesis tools, bitstream-to-netlist tools, and commercial

equivalence-checking tools, to verify that a produced hardware design is equivalent to the designer’s source

design.

We evaluate these different design flows on several benchmark circuits and demonstrate that they are effec-

tive at detecting malicious modifications made to the design during compilation. We compare our proposed

design flows with baseline commercial design flows and measure the overheads to area and runtime.
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1 INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) offer a “blank-slate” of programmable circuitry, al-
lowing designers to implement arbitrary digital circuits that have the potential to provide speed
and power improvements over commodity software processors, while providing faster time-to-
market and lower designs costs than ASICs. This enormous level of flexibility has led to FPGAs
being used in a diverse range of technology sectors, including several areas where design integrity
is key, including defense applications, biomedical devices, self-driving vehicles, communications
infrastructure, and more.

However, this great flexibility of FPGAs comes at a price: complex CAD tools are required
to map the designer-provided circuit description to a bitstream that can be used to configure
the FPGA. When used in a standard out-of-the-box configuration, these commercial CAD tools
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perform many transformations and make it nearly impossible for a designer to easily verify
on their own that the produced bitstream precisely implements their original design, without
unintended data leaks, back doors, or other compromising features. However, as we show in
this article, by combining commercial tools with recent advances in open-source FPGA tools
and equivalence-checking tools, it is possible to perform design-equivalence checking. However,
there remain significant limitations on synthesis optimizations, scalability to larger designs, and
portability to new FPGA families.

1.1 Motivation and Objectives

The FPGA CAD flow consists of many stages and connected tools, as the design is transformed step-
by-step from a textual behavioral description to a physical programming file. In general, these tools
are closed-source, and the produced bitstream is of proprietary format, leaving designers to trust
that their designs are implemented on the FPGA accurately and without compromising features.

While the software world offers many tools to inspect the compilation process and end-result
executable (open-source tools, dissasemblers, dynamic monitors), the compilation tools used in
the FPGA CAD process are almost exclusively closed-source, proprietary tools. These tools, which
are typically tens of gigabytes in size and can take hours to compile designs, are nearly black-box
systems. In addition, the produced configuration bitstream is proprietary, and the designer has
no way of knowing what is actually implemented in the circuitry specified by the bitstream. The
designer is forced to completely trust that the CAD tools implemented the design as requested.
Unfortunately, this leaves several vulnerabilities in the FPGA compilation process:

• A malicious actor within the company (or contracted company) responsible for the CAD
tools may be able to modify the tool to silently inject back doors, kill switches, or other
hardware Trojans into the design.
• An unknown bug in the complex CAD tools may produce a design where certain internal

signals, such as encryption keys or other sensitive data, are leaked and unintentionally ob-
servable to the larger system.
• Targeted malware on a designer’s computer may replace portions of an otherwise safe CAD

flow with malicious tools that inject hardware Trojans into the produced bitstream.
• The generated bitstream could be intercepted and modified post-compilation, without the

designer realizing it was changed after generation by the CAD tool. Again, this could be done
by compromised tools, or it could by modified on the filesystem by an internal malicious
actor, during file transfer, via network intrusion, and so on.

As expected, these vulnerabilities may be of great concern for many designers using FPGAs. For
example, defense contractors may be concerned with detecting hidden kill switches, communica-
tions companies may be unsure whether their design contains back doors that allow a foreign state
to monitor communications, producers of medical devices may wonder whether patient confiden-
tiality is sufficiently maintained, and designers of self-driving cars would be concerned with any
design modifications that could compromise the safety of the passengers.

While such scenarios may seem unlikely, there have been some cases of suspected hardware
Trojans in the wild [1, 2], as well as several academic works that have demonstrated the feasibility
of inserting hardware Trojans [3–5]. In fact, much research goes into ensuring that the source
description of designs are Trojan-free before being synthesized into actual hardware. It therefore
makes sense to expend some effort to ensure that these designs remain safe and secure through
the compilation process.

The end-goal of this work is to develop techniques to determine equivalence between the orig-
inal HDL circuit description and the low-level circuit produced by the closed-source FPGA CAD
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Fig. 1. Extracting and comparing circuit properties.

tools. The overarching approach taken in this project is illustrated in Figure 1 and consists of ex-
tracting properties and circuit details from the user-supplied design and comparing them against
properties extracted from the final FPGA bitstream.

1.2 Challenges and Strategies

While ideally one could simply provide the original design and the bitstream to a commercial
equivalence-checking tool, this is not feasible. Developing a full comparison flow, and associated
tools, capable of determining equivalence for arbitrary circuits is a monumental task, due to several
challenges:

• The bitstream is proprietary so cannot directly be input to commercial equivalence-checking
tools. In addition, even if the bitstream can be converted to an equivalent netlist, all signal
names from the original design are lost, making equivalence checking much more challeng-
ing.
• During the CAD flow, the design undergoes several transformations that make compari-

son difficult. For example, we created a simple 32-bit counter design that used the most-
significant bit to blink an LED. The FPGA CAD tools were able to optimize away a single
flip-flop, causing even this simple design to fail equivalence checking using Cadence Con-
formal (an ASIC-targeted formal verification tool).
• Modern equivalence-checking tools are limited in scalability; they cannot tackle modern

FPGA designs that can contain millions of logic gates.

Given these challenges, this work represents only the first steps towards the goal of arbitrary
FPGA design-equivalence checking and leverages some of the following concessions to make the
comparison process more manageable:

Disabling CAD Optimizations. Certain optimizations can be disabled in the CAD flow to
reduce the modifications made to the design during compilation. This includes disabling
optimizations such as retiming or applying code pragmas to prevent certain signals from
being optimized away. We expect this would reduce the final quality of result, but will make
equivalence checking easier.
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Leveraging Open-source CAD Tools. Some parts of the CAD process (e.g., synthesis) can be
performed on the source design prior to entering the commercial CAD flow. If trusted
open-source tools are used, then it may be sufficient to compare the design against this pre-
processed design (e.g., a pre-synthesized and optimized netlist), rather than the original RTL.

Only Check Certain IP. One alternative is to perform comparison on only a portion of the
design, such as certain sensitive IP modules like an encryption block. This reduces the size
of the circuit that needs to be compared and makes it feasible to use a commercial formal
verification tool.

Pre-bitstream Comparison. Rather than comparing against the final bitstream, one can instead
compare against the final netlist reported by the commercial CAD tool. While this means
we must trust the CAD tool to report the netlist accurately, and it is not useful to detect
post-generation modifications to the bitstream, it is still a step in the right direction.

Given these different approaches to the problem, it is possible to explore many different FPGA
compilation and comparison flows. In this article, we present a few different approaches we took
that can successfully determine equivalence between source design and compiled circuit and can
successfully detect malicious modifications to the design during synthesis and implementation.
Each of these approaches requires a non-standard FPGA CAD flow, and we evaluate the QoR of
the produced design against a standard commercial flow.

1.3 Organization

Our different approaches are summarized in this subsection and then detailed and evaluated in
subsequent sections of the article (Sections 3 to 5). Each of these sections discusses the details
of the proposed CAD flow and evaluates it in terms of QoR penalty versus a traditional commer-
cial CAD flow. Experiments are also performed to inject malicious design modifications to ensure
our proposed flows always detect the modification. Section 6 then provides a comparison of the
different design flows, discussing their respective strengths and limitations. Section 7 discusses
conclusions and future work.

1.3.1 IP-Level Physical Assurance (Section 3). In our first explored CAD flow, we limited the
scope to verifying equivalence for a single IP module in a design. While ideally one would be able
to verify equivalence for an entire design, there are still many cases where just determining equiv-
alence for a single IP module would be desirable. In modern FPGA design, third-party Intellectual

Property (IP) is often used to reduce the time and cost of the design process. However, the use of
third-party IP is not without risk: The inherent complexity of most third-party IP modules makes
it difficult for the user to determine whether or not the IP contains anything malicious, such as
hardware Trojans.

One step towards securing third-party IP would be to use IP only from trusted third-parties
who have verified and can vouch for the safety of the IP. However, even in this case, one may still
be concerned with how the IP is implemented by the CAD tools and whether it remains secure
through the CAD process. This is the problem we address in this compilation and comparison flow.

In this proposed flow, which we refer to as a Physical IP Assurance flow, we assume the IP module
is provided as a placed and routed physical partition that can be instanced in a user design. This
places the burden on the IP provider to ensure the placed and routed design is safe. However, the
comparison process is relatively simple, as we can ensure that every configuration element remains
identical to the original design. This may seem relatively uninteresting and straightforward, but
it serves as a good starting point, and even in this simple case the CAD tool can make some
unexpected optimizations that break equivalency. This work was first published in Reference [6].
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1.3.2 IP-level Functional Assurance (Section 4). The next CAD flow we explore also targets a
comparison process for individual IP modules. In this case, the source IP is a netlist that has already
undergone synthesis and logic optimizations. The IP is then instantiated in a user design with
constraints added to ensure the CAD flow does not modify this IP.

In this case, determining equivalency is done using a commercial tool, Cadence Conformal, and
some additional considerations are needed to deal with optimizations performed by the CAD flow.
This approach was also previously published in Reference [6].

1.3.3 Bitstream-level Assurance (Section 5). The previously mentioned techniques leverage the
CAD tool to request details of the implemented design. If the CAD tool were compromised or if the
generated bitstream were modified post-generation, then these approaches may not be effective.
In these cases, it is necessary to understand the contents of the produced bitstream and compare
it directly to the original circuit design.

In this section of our work, we use relatively new open-source tools that are capable of convert-
ing a proprietary FPGA bitstream to netlist form. This is done using Project Icestorm [7], which
is able to generate technology-mapped netlist files from Lattice iCE40 FPGA bitstream files. This
bitstream-reversed netlist is then compared against the original design, again leveraging commer-
cial equivalence-checking tools.

However, the comparison process is much more challenging at this point, as the reverse-
engineered netlist has no signal names from the original design. This also defeats the simplification
taken in our earlier work of just focusing on individual IP in the design, as it is very challenging to
extract individual IP logic out of a netlist with no signal names. Instead, we are forced to perform
comparison on the entire design.

Due to these challenges, our initial attempts at comparison failed, and we instead had to ex-
plore different CAD flows that would make comparison possible. To accomplish this, we created
a Python framework called the BYU FPGA Assurance Tools (bfasst), which allows for easily
composing different CAD flows combining different synthesis, implementation, bitstream rever-
sal, and formal verification tools to evaluate different design flows on a large set of benchmarks.
To date, our experiments have shown we can perform successful verification, assuming we use
open-source synthesis tools to pre-optimize the design, as well as using modern verification tools
targeted toward FPGAs [8].

2 BACKGROUND

2.1 Related Work

2.1.1 Trojan Detection. As the size, complexity, and use of digital circuits continues to grow,
concern is rising about the presence of undetected hardware Trojans [2]. Hardware Trojans are
malicious third-party modifications to circuits and can take the form of back doors into circuits,
kill switches, intentional leaks of sensitive information, or other harmful modifications. While
evidence of hardware Trojans in deployed systems is limited [1, 2], their potential for severe de-
structive capabilities has motivated much research into techniques to detecting them.

Most of these works rely upon a circuit behaving as normal, then entering some externally
triggered activation state. Techniques have investigated characterizing and detecting activation
logic [9, 10], using embedded circuitry to measure power and temperature fluctuations [11–13],
using external measurements such as monitoring supply voltage or electromagnetic effects [11, 14,
15], or a combination of these techniques [16].
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Fig. 2. FPGA compilation flow, demonstrating how the proposed fits together with existing work on Trojan

detection.

In general, these Trojan detection techniques fall into two categories: (1) those techniques that
inspect and analyze the netlist for suspected Trojans before synthesis [9, 10] and (2) those that
operate in real-time to monitor the active system [11, 11–16].

In the case of the former, these netlist analysis techniques are essential and can work in cooper-
ation with our techniques. That is, an organization would first use these published techniques to
determine that the hardware source code is free of Trojans, regardless of whether that code was
created in-house or as part of third-part IP. If the IP was obtained from a trusted party, then it may
not need to be vetted. Then, after the design is compiled to an FPGA bitstream, the techniques
proposed in this project could be leveraged to gain assurance that the final design remains safe
and untampered. This strategy is illustrated in Figure 2.

Without the techniques discussed in this work, one could employ the real-time detection tech-
niques proposed in these other works; however, this may not always be adequate. First, it may
not be possible to deploy the necessary monitoring equipment on-site and in every instance of
the system. Second, while detecting an attack is helpful, the attack could still render the system
inoperable, leak sensitive encryption data, and so on.

2.1.2 Attacking FPGAs. Our work is aimed at detecting cases where the produced FPGA bit-
stream is compromised, but the original circuit design remains safe and unchanged. As discussed
previously, these could occur with compromised CAD tools or if the FPGA bitstream was compro-
mised after generation. While these cases my seem improbable, recent work has shown both their
possibility and potential for significant consequences. In References [3] and [4] the authors show
how behavior of normal FPGA CAD tools can be exploited to insert Trojan activation switches
into the design during compilation. These changes are not detectable in the hardware source code
and require inspection of the FPGA bitstream. In Reference [5] the authors show that it is possi-
ble to locate which portions of an FPGA bitstream control certain elements of an AES encryption
module, thus allowing them to make modifications to the bitstream so the final circuit is much
easier to attack and the encryption key can be obtained.

Recent work has even shown techniques to recover a fully encrypted bitstream [17].

2.1.3 Open-source Bitstream Tools. The bitstream formats used by the commercial FPGA CAD
tools are proprietary, and it is not documented how changes to the bitstream affect the circuit
implemented on the FPGA. In a sense, this obfuscation provides some protection and makes it dif-
ficult to modify the bitstream to perform specific tasks (although not impossible, as demonstrated
in Reference [5]).

However, recent projects by many research groups have successfully documented the format
of several FPGA bitstreams [18]. The ability to arbitrarily modify the FPGA bitstream allows
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for more advanced bitstream-level attacks, such as those that insert short circuits or glitches
to draw huge amounts of power. This can have extreme effects, including shutting down the
system, accelerating circuit wear-out, broadcasting secret messages, or even melting the solder
and permanently damaging the system [19–22].

However, the recent availability of FPGA bitstream-level analysis tools is also what enables
this work to take place. Five years ago, the work presented here would not have been feasible.
However, with current open-source tools such as Project X-Ray [24], Project U-Ray [23], and Project

Icestorm [7], it is now possible to develop tools and techniques to determine equivalence between
hardware designs and the resulting bitstreams.

2.1.4 Other Approaches for FPGA Design Assurance. Several works have leveraged FPGA bit-
stream analysis to detect potentially malicious elements [25, 26] or to establish isolation between
design elements [27]. However, these works are designed to detect specific patterns in the bit-
stream circuit. To our knowledge, there are no previously published tools or studies that attempt
to explore general-purpose equivalence checking for the FPGA compilation process.

2.2 Threat Model

The FPGA assurance flows presented in this article involve three parties: (1) a trusted content
creator, (2) an end-user, and (3) a comparator as shown in Figure 1. Depending on the process,
these three roles may be played by the same individual or may be three separate entities.

Trusted Content Creator: The trusted content creator is responsible for creating and vetting
the source design. In assurance flows where we target individual IP (Sections 3 and 4), the content
creator is the provider of the IP library. In flows that seek to determine equivalence of the entire
design (Section 5), the content creator becomes both the provider of any third-party IP, as well as
the designer that is integrating these IP with their own content into a final combined design.

We assume the content creator has sufficiently inspected and tested the source design to deter-
mine that it is free from malicious inclusions before beginning compilation. For example, they may
employ the hardware Trojan detection and mitigation techniques described previously [9, 10].

User: The user represents the designer(s) that are compiling the final hardware design and are
interested in determining that the compiled design is equivalent to the original source hardware.
In cases where the user is separate from the content creator, such as when a user is implement-
ing trusted IP in their design, the user is not required to know hardware Trojan detection and
mitigation techniques, nor understand the details within the IP.

Comparator: The trusted IP files and the user’s final bitstream (or placed and routed design for
pre-bitstream processes) are provided to a party that performs the comparison. The comparison
between the trusted source hardware and the implementation of that hardware in the compiled
design is completely automated.

The party performing the comparison process could be the original content provider, the user,
or another trusted third party. There are a couple benefits to using a third party to perform the
comparison process. First, it mitigates scenarios where an organization was concerned that a user
could intentionally insert malicious hardware during compilation or post bitstream generation.
Second, the techniques presented in this article are meant to prevent attacks that could occur if
the CAD tools on a user’s system were compromised. In such a case, it may be possible for the
attackers to also compromise the equivalence-checking tools, making them falsely report equiva-
lence. Having a separate party perform the comparison makes it substantially more difficult for an
attacker, as they would have to compromise tools on two different systems, perhaps belonging to
different networks and/or organizations.
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Fig. 3. Physical assurance flow.

3 AN APPROACH FOR PHYSICAL-LEVEL IP ASSURANCE

This section discusses the first CAD flow we explored, which focuses on solving a narrow problem:
verifying design equivalence for a single trusted source IP when that IP is already a pre-placed and
pre-routed design partition. We explore the design flow where a user instantiates this IP in their
design and investigate whether the physical placement and routing remains completely untouched
in the final implemented design.

While this may seem relatively uninteresting and straightforward, it serves as a good starting
point, and interestingly, even when this high degree of restriction is placed on the source design,
the CAD flow transformations can still break equivalency.

3.1 Physical Assurance Process

The detailed steps of the process are outlined below and are illustrated in Figure 3.

3.1.1 Trusted IP.

(1) Trusted third party creates a Vivado project for a specific FPGA part using the Xilinx Vi-
vado Hierarchical Design (HD) flow. Vivado HD contains several different flows centered
around the idea of a partitioned design. In Xilinx terminology, a Pblock refers to a physical
partition of the chip containing a set number of resources.

(2) The trusted third party creates a Pblock, assigns their IP to this block, and performs synthesis
and implementation. It is important to recognize that this will be out-of-context synthesis,
meaning that the IP is synthesized independent from and without any knowledge of the
user circuit in which it will be instanced. This unfortunately prevents the synthesis tool
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from performing any cross-boundary optimizations. For example, if the user circuit did not
use certain output ports of the IP, then the synthesis tool could normally remove the logic
from the IP that drives these ports; however, without this knowledge, such an optimization
would not be possible.

(3) Once implemented, the IP is fully contained within this Pblock partition and can be exported
as a Vivado Design Checkpoint (.dcp file). This file is then provided to the user.

A major disadvantage of this approach is that the IP provider must choose the FPGA part and exact
Pblock location on the chip. This can be mitigated by providing multiple files for different parts
and a few different locations on the chip to give greater flexibility to the user, although this places
a larger burden on the content creator.

3.1.2 User Implementation.

(1) The user creates their full design in HDL and synthesizes it using Vivado.
(2) The user creates a Pblock in their design in the same location as the one chosen by the

trusted IP provider.
(3) The trusted IP (.dcp file) is assigned to the Pblock.
(4) The user design is implemented using Vivado, utilizing the IP from the trusted vendor.

3.1.3 Physical Comparison. The final phase of the process is the comparison flow. The user uses
Vivado to produce a checkpoint file (.dcp file) of the final placed and routed full design. This check-
point and the trusted IP checkpoint are both provided to the comparator party. The comparator
party then runs a series of Tcl commands in Vivado to extract design properties about both design
checkpoints. For the full design, the only design properties that are extracted are those from within
the IP partition Pblock.

We have fully automated the extraction and comparison process using TCL scripts developed
for this work. We assume the design tools accurately extract the trusted IP circuit elements. In
the event that the reported results were spoofed, it would be necessary to instead extract design
properties from the bitstream itself, bypassing any reporting from the untrusted CAD tool.

The extracted physical information used in the comparison process includes everything neces-
sary to fully reconstruct the design on the fabric. In detail, the extracted information includes:

• Sites: a list of all of the physical resources allocated to the Pblock.
• Cells: the name, primitive type, configuration (LUT programming bits, for example), location,

and a mapping of netlist pins to physical pins.
• Netlist, boundary nets: the names and pin locations of the nets connecting the IP to the

top-level logic.
• Netlist, internal nets: the name, wires (if applicable), routing switch configuration (if appli-

cable), and pin count, of nets internal to the IP.

The comparator party then compares these two sets of properties for equivalence. The goal of
physical assurance is to compare the trusted IP and instantiated IP based on physical implementa-
tion details. If two designs use the same physical resources in the same way, then the two designs
are guaranteed to be (barring slight process variations) functionally identical. If a difference is
detected, then it would indicate that tampering has occurred during the compilation process. In
reality, additional considerations need to be taken to remove false positives.

3.2 Challenges and Limitations of Physical Assurance

Physical assurance, as a research approach, was selected, as it provides a strict guarantee that
the IP is implemented in the exact same manner as provided by the trusted vendor, down to the
individual wiring of each net. Although this introduces some overheads, the prevailing notion was
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that, if functional assurance became impossible for some reason, then physical assurance could
serve as a final assurance back-stop that would work in most, if not all, cases.

As an idea, physical assurance is simple enough. However, in practice, due to inherent CAD
tool complexity, direct comparison of the physical manifestations of the trusted and instantiated
IP often failed and required workarounds. Some challenges we encountered were:

Global Resources: Locking down the placement and routing of the trusted IP block sometimes
leads to problems. Circuits would fail to route if the trusted IP contained a global resource such
as a clock buffer, as many global resources cannot be included in pBlock partitions. To avoid this
problem, the IP creator would be prevented from instantiating global resources in their pBlock and
would instead have to instruct the user to instantiate the resource in their surrounding design.

Pblock location: In certain cases routing would fail, likely because the location of the Pblock
increased congestion. This problem can be mitigated if the provider of the trusted IP generates
several versions of the trusted IP, each with different Pblock locations.

Subtle physical optimizations: Despite the fact that Pblock partitioning is meant to prevent
any changes, in some cases, Vivado would occasionally permute the inputs at the periphery of the
trusted IP Pblock. This problem caused most of the benchmarks to initially fail an equivalence test.
This problem was overcome by extracting the LUT pin mapping from the original trusted IP and
then locking these pins prior to routing the instantiated IP.

Finally, in one synthetic benchmark containing a pipelined version of the MD5 algorithm
(md5_pipelined), Vivado performed a minor optimization (again, near the periphery of the Pblock)
that occurred because two nets were aliases of one another. After manually inspecting the design,
it was determined that the trusted IP and the instantiated IP were indeed functionally equivalent;
however, they were not physically equivalent. After some experimentation, we found that this mi-
nor physical difference could be eliminated if the placement of the Pblock was modified. This is
somewhat similar to the problem where Pblock placement interfered with placement and routing
(though movement of the Pblock as a solution is probably not the best solution). This problem only
occurred in one synthetic benchmark.

3.3 Experiments with Physical Assurance

Experiments were conducted to answer the following questions for our physical assurance tech-
niques:

• Can the assurance approach successfully extract the IP from the user’s implemented design,
compare it against the original trusted IP, and determine that they are identical?
• Can the assurance approach successfully detect modifications to the trusted IP that may have

occurred anywhere in the insertion and implementation process?
• How does this assurance approach impact the timing constraints and area of the final imple-

mented design? Or in other words, what does the end user have to “pay,” in terms of speed
and area, to achieve assurance using this technique?

3.3.1 Benchmark Designs. Our experiments consist of several designs containing multiple IP
that are each in turn treated as a “trusted IP.” In total, 53 different IP modules were tested; these
53 IP were part of 22 different benchmark circuits. Of the 22, 21 are synthetic designs, created
by interconnecting various modules from Open-Cores (www.opencores.org) without regard for
circuit function. These designs represent a diverse set of module size, functionality, and HDL type.
The synthetic designs contain 43 of the IP of interest, as well as other hardware modules from
Open-Cores that were not tested, but serve as surrounding logic. The 22nd benchmark circuit is a
functional LEON3 processor (www.gaisler.com/leon3) from which 10 of the modules instantiated
at the top-level are included in our trusted IP set. In cases where benchmarks contained multiple
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Table 1. Benchmarks

Top-level

Benchmark IP Module LUTs FFs RAMB18 DSP48
leon3mp (top) 33,576 15,963 124 16

dsu3 517 407 4 0
irqmp 504 227 0 0
mctrl 207 150 0 0
leon3s 7,100 3,260 28 4
ahbuart 276 179 0 0
apbctrl 126 89 0 0
spimctrl 197 151 0 0
ahbctrl 353 53 0 0
ahbjtag 242 194 0 0
grethm 2,125 1,145 6 0

Synthetic1 (top) 9,391 7,661 440 0
aes128 3,583 3,533 344 0

Synthetic2 (top) 6,575 2,792 28 0
amber 6,011 2,333 28 0
basicrsa 540 459 0 0

Synthetic3 (top) 2,202 2,085 0 0
atahost 451 331 0 0

Synthetic4 (top) 1,088 1,143 0 0
bcd_adder 18 41 0 0
big_counter 581 201 0 0
bubblesort 402 901 0 0

Synthetic5 (top) 11 42 0 0
counter 1 33 0 0

Synthetic6 (top) 2,287 1,818 0 0
des3_area 535 64 0 0

Synthetic7 (top) 5,426 3,992 0 0
des3_perf 5,413 3,992 0 0

Synthetic8 (top) 9,545 6,358 98 0
dfadd 3,759 2,230 2 0

Synthetic9 (top) 3,230 1,071 0 43
cpu8080 1,020 244 0 0
fixed_point_sqrt 460 32 0 24
graphiti 1,368 689 0 19
hight 372 102 0 0
lfsr_randgen 2 4 0 0

Synthetic10 (top) 7,471 6,574 7 14
fm_3d_core 2,867 2,235 0 10

Synthetic11 (top) 35,188 32,686 2 240
jpegencode 35,187 32,686 2 240

Synthetic12 (top) 21,764 13,447 20 13
m32632 11,270 3,138 20 13
md5_pipelined 9,817 10,176 0 0
median 639 125 0 0

Synthetic13 (top) 12,713 15,202 49 20
mpeg2fpga 10,448 14,314 43 20
msp430_vhdl 1,387 298 0 0
natalius_8bit_risc 29 25 2 0
neo430 816 565 4 0

(Continued)
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Table 1. Continued

Top-level

Benchmark IP Module LUTs FFs RAMB18 DSP48
Synthetic14 (top) 3,235 2,239 4 2

pci_mini 216 291 0 0
pic 248 114 0 0
potato 2,400 1,665 4 0
pwm 228 145 0 0
quadratic_func 109 24 0 2

Synthetic15 (top) 6,775 3,176 0 0
pid 806 385 0 0

Synthetic16 (top) 899 390 0 0
pid_simple 886 390 0 0

Synthetic17 (top) 8,191 4,335 0 0
random_pulse_generator 4 33 0 0
sap 68 44 0 0
sha3_high_throughput 5,258 2,144 0 0
sha3_low_throughput 2,639 2,084 0 0
simon_core 48 27 0 0

Synthetic18 (top) 32,642 1,598 0 0
sudoku 32,285 1,367 0 0
tiny_encryption_algorithm 198 231 0 0

Synthetic19 (top) 1,532 1,285 0 2
uart2spi 483 414 0 0

Synthetic20 (top) 1,811 1,063 9 5
vga 632 508 1 0

Synthetic21 (top) 311 219 0 0
wb_lcd 107 79 0 0

trusted IP, multiple experiments were performed, each time selecting one IP module to play the
role of the trusted IP block.

The extracted sub-blocks serving as the trusted IP ranged in size from tens to tens of thou-
sands of logic cells. The benchmark statistics are provided in Table 1, and the full benchmarks are
available at GitHub (www.github.com/byuccl/ipassurance). To set a baseline for timing and slice
utilization, all benchmarks were implemented using a conventional synthesis, place, and route flow
to determine whether timing constraints are met and to measure slice utilization. These baseline
results are used to determine how much (if, at all) the Pblock-based assurance approach may affect
timing and area.

3.3.2 Equivalence of Unmodified Circuits. After improving our compilation flow to address the
issues discussed in Section 3.2, every benchmark/trusted IP in our suite could be run through our
physical assurance flow (Figure 3) and result in a perfect match between the trusted IP and the
instantiated IP. In other words, our technique to detect circuit modifications resulted in no false
positives.

3.3.3 Detecting Circuit Modifications. In addition to verifying that the original circuits could
be verified to be equivalent, we also wanted to ensure that any small modifications made to the
trusted IP would cause the equivalence checking to fail; or in other words, ensuring there were
no false negatives. Our automated tests performed each of the following modifications three times
for each trusted IP:

• Randomly select a cell from the instantiating circuit and move it into the trusted IP Pblock.
• Randomly select a cell from the trusted IP and change its location within the Pblock.
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Fig. 4. Impact of physical assurance flow on slice utilization. Synthetic IP benchmarks (blue) and LEON3 IP

benchmarks (orange).

• Randomly select a LUT or FF from the trusted IP and change its initialization equation/value.
• Randomly select a net, change the route it takes from its source to its sink.

These tests were chosen to mimic any change that might be made to the circuit, malicious or
otherwise. Every modification that was performed was caught by the assurance process, verifying
that the proposed physical assurance flow is extremely sensitive to tampering.

3.4 Impact of Physical Assurance on QoR

For each “trusted IP” and parent benchmark listed in Table 1, we performed compilation using
the previously described physical assurance flow. We then compared the slice utilization against a
standard compilation of the benchmark. All designs were targeted a Xilinx Artix-7 100T FPGA. The
results can be seen in Figure 4. In most cases, the additional restrictions imposed by the physical
assurance flow resulted in an increase in the total number of slices used. On average, slice usage
increased by 4.7%. This penalty is expected, as when the IP is synthesized out-of-context, it cannot
employ any cross boundary optimizations, such as constant propagation or unused logic removal.
In some cases the slice count decreased. While somewhat unexpected, this is not altogether surpris-
ing; the stochastic nature of CAD tools will naturally produce circuits of varying sizes across differ-
ent configurations, regardless of our assurance-based approach. In addition, changes in the circuit
can affect the clustering algorithm and change how many logic elements are placed into each slice,
meaning that while overall slice count could decrease, the internal slice utilization is higher.

We also explored the impact on timing results. Of the 10 experiments run on the LEON3 bench-
mark, all 10 passed the standard LEON3 timing constraints in both the baseline and Pblock-based
designs. For the synthetic benchmarks, the timing results are less meaningful, although to gain
some insight, we applied a 10 ns period constraint to all the synthetic designs. Of the 43 experi-
ments created from the synthetic benchmarks, only one Pblock-based design (dfadd) failed timing
after its baseline design had passed timing.

This suggests that while in some cases the Pblock approach will prevent the CAD tools from
meeting timing, in many cases the timing is not significantly impacted.

4 AN APPROACH FOR FUNCTIONAL-LEVEL IP ASSURANCE

This section describes the next major assurance process we explored, which we refer to as Func-

tional IP Assurance. Like the previously described flow, this approach also is targeted to verifying
individual IP instantiation within a larger design.
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Fig. 5. Functional assurance flow.

While the physical assurance process described in the previous section is effective, it places
a large burden on the IP creator, requiring vetted placed and routed instances of the IP for any
FPGA part the user wishes to use. In contrast, our functional assurance process described in this
section aims to compare the IP at a functional level, ensuring that the netlist behavior is equivalent
between the original IP specification and the final implemented design.

To determine equivalency between netlists, we leverage a commercial tool, Cadence Conformal.
Conformal works by trying to map key points (registers) between the two netlists and then ver-
ifies that the combinational logic between these registers is logically equivalent. This approach
alleviates much of the burden placed on the IP provider by the physical assurance flow, as it no
longer means the IP must be placed and routed for a specific part. Instead, the trusted IP can be
specified as a netlist.

While ideally this would mean that the trusted IP could be provided simply as RTL code, in
our testing, we found that the optimizations performed by the CAD flow during synthesis are too
significant, and Conformal will almost always report that the designs were non-equivalent. Instead,
we take the approach of pre-synthesizing the trusted IP and then having the user incorporate the
technology-mapped, optimized netlist into their full design. The full process is described next.

4.1 Functional Assurance Process

The functional assurance process is described below and is illustrated in Figure 5.

4.1.1 Trusted IP. In the trusted IP flow, the trusted content creator creates the IP as a module us-
ing Vivado Hierarchical Design. Using the standard out-of-context CAD flow, the IP is synthesized,
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optimized, and mapped to Xilinx FPGA primitives. Finally, the trusted content creator extracts a
Verilog netlist for their IP using the write_verilog command, which creates a netlist of Xilinx
primitives (LUTs, FFs, etc.). This technology mapped netlist would then need to be vetted by the
IP creator before being provided to the user.

4.1.2 User Implementation. Using the standard Vivado flow, the user incorporates the netlist
into their design. Because the trusted IP is in the form of a Verilog netlist, instantiating the IP
is a straightforward and simple task; the user can instantiate the Verilog module in their RTL
design in the same manner as any other Verilog module. In addition to instantiating the IP, the
user must also apply a few additional constraints to prevent the CAD design tools from making
further optimizations to the IP. This step makes it possible for the comparison flow to determine
equivalence between the trusted and instantiated IPs. We accomplished this step by applying the
DONT_TOUCH attribute to the following objects:

• The cells within the instantiated IP;
• The nets within the instantiated IP;
• The hierarchical cell that represents the instantiated IP.

For example, a user could apply these attributes to an IP named aes128_0 by adding the follow-
ing lines of code to their constraints file:

set_property DONT_TOUCH true [get_cells aes128_0/*]
set_property DONT_TOUCH true [get_nets aes128_0/*]
set_property DONT_TOUCH true [get_cells aes128_0]

Listing 1. Tcl commands to prevent further netlist optimization.

The DONT_TOUCH attribute prevents the Xilinx CAD tools from optimizing or changing anything
it is applied to. This forces the CAD tools to place and route the IP netlist without changing its
structure, and therefore its behavior. While this initially may seem drastic, it is important to rec-
ognize that the trusted IP has already undergone logic optimization in the trusted IP Flow. The
DONT_TOUCH attribute simply prevents further optimizations to the IP, such as cross-boundary op-
timizations. Furthermore, applying DONT_TOUCH to the target IP has little effect on the optimization
of the user’s surrounding circuitry. The user’s surrounding circuit will still be fully optimized, and
in fact, can still leverage knowledge of the content of the trusted IP.

Once the user has instantiated the trusted IP netlist in their design they can perform implemen-
tation (place & route) as usual. After implementation, the user uses the write_verilog command
to extract a Verilog netlist from the implemented design. Like the trusted IP netlist, this user de-
sign netlist contains Xilinx primitives. As in the Trusted IP Flow, we assume that Vivado faithfully
retrieves the correct netlist while acknowledging that a compromised version of Vivado could
potentially retrieve a spoofed netlist (addressed in Section 5).

4.1.3 Functional Comparison. The final phase of our implementation is the comparison flow,
where Cadence Conformal, a formal equivalence checker,1 is used to compare the trusted IP netlist
and the user’s netlist.

1For the purposes of this article, it is assumed that logical equivalence implies functional equivalence. Although logically

equivalent netlists may differ in treatment of certain don’t-care conditions, for example, it is assumed that these differences,

if they occur, do not affect the functional behavior of the IP in any meaningful way.
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4.2 Challenges and Limitations of Functional Assurance

One benefit of providing assurance at the functional level is that many of the challenges present
in the physical assurance process (discussed previously in Section 3.2), such as global resources or
Pblock location, no longer pose an issue. However, we did encounter a couple of new challenges:

Renaming Rules: When exporting the instantiated IP as Verilog netlists, Vivado would some-
times unexpectedly rename input and output ports. This happened to only a handful of ports
on only a few of the 53 instantiated IP blocks. This unexpected renaming caused problems down-
stream in the assurance process—because Conformal relies on the primary input and output names
of the trusted and instantiated IPs to match, such renaming breaks Conformal’s ability to deter-
mine equivalence. We overcame this challenge by writing a netlist parser that would find where
instances of renaming had occurred. The parser would then generate a list of TCL commands that
were issued to Conformal to inform it of equivalence between renamed ports.

Unused Outputs: One special case that we encountered was when certain outputs of the IP
were unused in the parent design. Normally in such a case Vivado would simply remove the unused
internal pins and associated logic; however, because we applied a DONT_TOUCH attribute to all pins,
the unused internal pin remained in the design, and Vivado drove this pin by a constant 0. However,
when processed by Conformal, this internal pin was optimized away, not driven by constant 0. This
subtle and harmless discrepancy was enough to cause equivalence checking to fail. To handle this,
we included a script in our flow that locates the unused IP outputs and auto-generates a list of
TCL commands that would instruct Conformal to ignore the unused outputs when making the
comparison.

4.3 Experiments with Functional Assurance

Similar to the experiments discussed in Section 3.3, we wanted to ensure that the proposed tech-
nique could reliably determine equivalence for an unmodified IP (i.e., no false positives) and reli-
ably detect non-equivalence for a modified IP (i.e., no false negatives).

For our experiments, we used the same set of designs as in the previous Section (LEON3 and a
collection of synthetic benchmarks, Table 1) and used the same approach of choosing one IP at a
time to serve as the “trusted IP.”

4.3.1 Equivalence of Unmodified Circuits. After improving our compilation flow to address the
issues discussed in Section 4.2, every benchmark/trusted IP in our suite could be run through our
functional assurance flow (Section 4.1/Figure 5) and result in a perfect match between the trusted
IP and the instantiated IP.

4.3.2 Detecting Circuit Modifications. Similar to the physical assurance testing, we developed
a sensitivity analysis to demonstrate that our functional assurance flow successfully detects un-
wanted modifications. We tampered with the netlist of the designs in the following ways:

• Pick a random Lookup Table (LUT) in the instantiated IP and modify its logic function.
• Leak a random wire in the instantiated IP to a secretly added backdoor port.

We tampered with each of our instantiated IPs once for each of the above modifications. This
gave us a total of 106 tampered designs that we used to test the sensitivity of our approach. Our
approach caught all of the malicious modifications that we made.

4.4 Impact of Functional Assurance on QoR

As with the physical assurance flow, for each “trusted IP” and parent benchmark listed in Table 1,
we performed compilation using our proposed flow and compared slice utilization against a stan-
dard Vivado compilation. The results are shown in Figure 6.
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Fig. 6. Impact of functional assurance flow on slice utilization.

In most cases, the resource utilization increases, which is expected due to the fact that the
flow prevents any cross-boundary optimization between the trusted IP and the rest of the design.
The DONT_TOUCH directives also likely prevent any physical optimizations that may have normally
taken place post-synthesis. On average, designs that used the functional assurance method used
2.8% more slices than the baseline design. The greatest performance decrease was observed with
the sudoku design, which was 27.7% larger than its baseline design. On the other end of the spec-
trum was the msp430_vhdl design, which was actually 7.6% smaller than its baseline design. Again,
this unexpected reduction can occur in some cases due to the stochastic nature of the CAD tools.
It makes sense the penalty varies from design to design as many optimizations, such as logic min-
imization based on constant or unconnected inputs, will depend on the surrounding design.

Of the 10 experiments run on the LEON3 benchmark, all 10 passed timing in both the baseline
and Pblock-based designs. Of the 43 experiments created from the synthetic benchmarks, no
designs failed our synthetic 10 ns timing constraint after its baseline design had passed timing.
This suggests that our approach does not readily cause a design to fail timing if its baseline
comparison design passed timing and that the effect of the functional assurance approach on
timing is likely small.

5 BITSTREAM-LEVEL DESIGN ASSURANCE

The physical and functional IP assurance techniques presented in Sections 3 and 4 relied upon the
CAD tool to report details of the implemented design. If the CAD tool were compromised or if the
generated bitstream were modified post-generation, then these approaches would not be effective.
This limitation has motivated our most recent work, described in this section, which is to explore
techniques to verify equivalence at the bitstream level.

This work aims to address this limitation by leveraging open-source bitstream tools that can
convert a binary bitstream back to a human readable netlist. This netlist is then compared against
the original design.

The reverse-netlist tool we employ in this section of our work is part of Project Icestorm [7],
which only supports Lattice iCE40 FPGAs. At the time of this work, and to our best knowledge,
this was the only FPGA bitstream to netlist tool available.2 As such, the tool flows discussed in
this section target the much smaller Lattice iCE40 family of FPGAs, rather than the Xilinx 7-series
FPGAs targeted in the earlier sections.

2At the time of publishing there is now another tool that supports Xilinx FPGAs, the Symbiflow fasm2bels tool, https://

github.com/SymbiFlow/symbiflow-xc-fasm2bels.
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5.1 New Challenges Imposed by Bitstream-level Assurance

Trying to perform comparison with a bitstream-reversed netlist introduces several new challenges
not present in our earlier work. The paramount challenge is that the reverse-engineered netlist has
no net names from the original design, nor does it have any semblance of logical partitioning or
separation between the different IP or submodules that made up the original design.

The lack of net names makes the equivalence checking challenging, as the formal verification
tools have no starting point on which to perform comparison. Fortunately, the placement con-
straints file can be leveraged to extract net names of the primary input and output pins. In fact,
bitstream reversal tools typically allow you to provide the file of original placement constraints,
and the produced netlist will automatically have primary input and output signal names restored.
However, all internal net names are inevitably lost.

Not being able to extract out IP or submodules from the reversed netlist means that equivalence
checking must now be performed on the entire design. This introduces a fundamentally different
problem that what we tackled in earlier sections. While our earlier work only focused on vetting
trusted IP that were inserted into a larger design, we are now forced to perform equivalence check-
ing on the entire design, including the user’s own logic.

Not only does this mean we are forced to tackle larger circuit sizes, it also defeats some of
the assumptions we made in our earlier work. For example, in our functional IP assurance flow
described in Section 4, our solution assumed that a trusted third party would pre-synthesize a
design and then vet that the optimized, technology-mapped netlist was safe. This assumption can
no longer be the case if we instead are trying to determine equivalence for the entire design, which
now contains user-created content.

In our initial testing, we explored a straightforward approach passing several of our benchmark
designs through the commercial Lattice FPGA compilation flow, iCECube2, to produce a bitstream,
and then using Project Icestorm to convert the bitstream back into a Verilog netlist. The original
RTL and reversed netlist are then compared using Cadence Conformal. This flow is illustrated
in Figure 8(a). Unfortunately, this basic approach did not work well, and very few of our RTL
benchmarks were reported as equivalent to the produced bitstream. This is not surprising, given
the significant transformations that take place during the CAD flow.

5.2 BYU FPGA Assurance Tools (bfasst) Framework

Given the fact that the basic commercial CAD flow broke our equivalence checking, we set out to
explore alternative CAD flows that would prove more effective. However, composing custom CAD
flows and running them for large sets of benchmark designs is very time-consuming. In earlier
sections, we presented two different custom CAD flows for IP assurance. These CAD flows required
significant manual effort to execute the custom CAD stages for large set of benchmarks. As such,
it was our goal to develop a more flexible framework that would allow us to programmatically
compose custom CAD flows and collect results on a large number of benchmarks automatically.

The framework we developed is implemented as a Python package, which we refer to as the
BYU FPGA Assurance Tools (bfasst) package. Figure 7 provides an overview of this frame-
work and illustrates how different modules can be plugged in to perform the various stages of
compilation. Our custom CAD flows all follow the same pattern: The user’s RTL design is synthe-
sized, optimized, and implemented to generate a bitstream. This bitstream is then processed with
an open-source tool, such as Project Icestorm, to generate a netlist representation of the bitstream.
We then use formal verification to validate the netlist against previous stages in the synthesis pro-
cess. Doing so allows us to identify if the bitstream is an accurate representation of the design at
these stages.
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Fig. 7. bfasst offers a modular approach to synthesis, bitstream reversal, and verification, allowing different

tools to be swapped in for the various validation steps.

While the primary motivation behind this framework is for design assurance purposes, it is
likely useful by others in the FPGA community who are interested in composing and evaluating
different CAD flows. The tool is open source and available at github.com/byuccl/bfasst.

BFASST is implemented as a Python package, the heart of which is a collection of classes that
are each responsible for executing one tool for a single stage of the FPGA CAD flow. These classes
are subclassed from base classes for each stage of the CAD flow, meaning that, for example, all
synthesis-type tools adhere to a common interface. This approach means that these tools can then
be stitched together to form custom CAD flows with relative ease. Stitching these tools together is
done by implementing a custom Python function that instances and connects the various chosen
tools. line 26 provides the Python code for creating the flow shown in Figure 8(a).

This custom flow function is then registered with BFASST, which provides command-line
scripts to invoke the CAD flow. Users can call a simple script (run_design.py <flow_name>
<design_path>) that executes a single benchmark circuit and CAD flow, or alternatively, users
can build experiment configuration files that specify a list of benchmarks and CAD flows to exe-
cute (run_experiment.py <config.yml>), which will run all flow/benchmark combinations and
generate a report to aggregate the results.

It is worth noting that while arbitrary CAD flows can be created, the selected tools must still
be compatible with each other. For example, the implementation and bitgen tool must receive a
netlist in compatible format from the logic optimization and mapping tool.

One challenge we encountered is that we wanted to use the same benchmark designs on multiple
different commercial and open-source tools (Lattice, Xilinx, Yosys, etc.); however, each of these
uses proprietary project management files to list design sources, properties, libraries, and so on.
As such, we also developed a simple configuration file (YAML format) that we use in our framework
to describe a design’s sources and properties. These design configuration files are parsed by our
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def flow_ic2_lse_conformal (design , build_dir):
# Run Icecube2 LSE synthesis
synth_tool = IC2_LSE_SynthesisTool(build_dir)
status = synth_tool.create_netlist(design)
if status.error:

return status

# Run Icecube2 implementation
impl_tool = IC2_ImplementationTool (build_dir)
status = impl_tool.implement_bitstream(design)
if status.error:

return status

# Run Project Icestorm bitstream reversal
reverse_bit_tool = Icestorm_ReverseBitTool (build_dir)
status = reverse_bit_tool.reverse_bitstream(design)
if status.error:

return status

# Run Cadence Conformal
compare_tool = Conformal_CompareTool (build_dir)
status = compare_tool.compare_netlists(design)

return status

Listing 2. BFASST Flow Example.

framework, populated into a Design class, and provided to the various tool wrappers. This means
that benchmark designs only need to be set up once in our framework and then can be processed
by all the supported tool flows.

5.3 Choosing an Effective CAD Flow for Equivalence Checking

We initially leveraged our BFASST framework to test a standard commercial flow, as shown in
Figure 8(a). As mentioned previously, this equivalence checking failed for the vast majority of our
benchmarks; only 12% of produced bitstreams were reported to be equivalent to their original RTL.

The primary issue here is that we are attempting to compare a netlist representation of the de-
sign against the RTL. When we use Cadence Conformal for comparison, Conformal tries to match
key points (registers, I/O, etc.) between the two designs and then compares the logic between key
points. However, the synthesis tools will make optimizations to the design during synthesis and
implementation that can change the logic between key points without changing the functionality
of the design (e.g., register retiming or removing redundant registers). Even without substantial
optimizations, it is entirely possible that the design representation in the RTL is different enough
from the design representation in the netlist that they cannot easily be compared.

We leveraged our BFASST framework to explore various CAD flows, in hopes of locating a CAD
flow that could effectively be used for verification. After testing several different CAD flows, we
settled on the flow shown in Figure 8(b), which consisted of the following modifications:
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Fig. 8. Two CAD flows created using the BFASST framework.

(1) Rather than comparing the reverse netlist against the original RTL, we compare it

against a netlist that has already undergone synthesis, logic optimization, and tech-

nology mapping. While it would be possible to export such a netlist out of the commercial
flow, a major motivation of this work is to establish an equivalence checking flow that does
not need to trust the closed-source commercial tools. As such, our general approach is to
use a open-source synthesis tool that can pre-synthesize and optimize the design prior to
entering the commercial CAD flow.
In our Lattice-based tool flow, we chose to use Yosys [28], an open-source synthesizer capable
of compiling Verilog HDL to a technology mapped netlist targeting Lattice iCE40 FPGAs.
While we recognize that using an open-source tool does not automatically mean it is free
from malicious behavior, it is a step in the right direction, and should an organization desire,
they could invest time into inspecting the source code and establishing some level of trust, or
alternatively, capable organizations could develop their own synthesis or bitstream reversal
tools if they did not trust existing open-source tools.

(2) We configured the Lattice toolchain to use the Synopsys Synplify synthesis tool (it
offers both Synplify and LSE synthesis tools). Even though the netlist provided by Yosys is
already synthesized and mapped to primitives, you must still use a synthesis front-end with
the iCECube2 toolchain. When using the Synplify front-end, more of our benchmark designs
passed the verification flow. While further investigation is required, it seems that this tool
was less likely to modify our already technology mapped netlist.

(3) To further enhance our equivalence checking flow, we elected to use a different com-

parison tool, OneSpin 360 EC-FPGA [8]. Unlike Conformal, this tool is specifically de-
signed to target FPGA design flows and is advertised as capable of determining equivalence
in the presence of additional optimizations, such as FSM re-encoding, pipelining, retiming,
and others.

Using this new flow, we were able to establish equivalence for 100% of our benchmark designs
(i.e., eliminate all false positives of design mismatches). While we believe this is a terrific result and
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Fig. 9. Injecting design modifications.

a key step forward toward building general-purpose bitstream-level equivalence-checking tools, a
few key limitations should be noted:

(1) Our flow is currently dependent upon having a tool to convert the bitstream back into a
netlist. This means that our work is limited to Lattice iCE40 FPGAs, a small fraction of the
entire FPGA market. However, many ongoing projects such as Project X-Ray [24] and Project
U-Ray [23] are working to establish such tools for larger families of FPGAs, and we are
currently working to expand our flow to include these tools.

(2) Our current flow uses the Yosys synthesis tool. Yosys only accepts Verilog HDL as input;
as such, the number of our benchmark designs we could pass through this flow is much
smaller than what we used in earlier Sections (Table 1). The Verilog benchmarks we used in
the bitstream-level assurance experiments in this section of the article are found in Table 2.
The Orig column in the table provides benchmark statistics for the baseline commercial flow
(flow from Figure 8(a)).

(3) The iCE40 FPGA family consists of very small FPGA parts. As can be seen in Table 2, our
benchmark designs are limited in size to only thousands of LUTs, orders of magnitude
smaller than what is available in the largest modern FPGAs. Even though the designs are
small, the comparison runtime is still significant (as discussed later in this section). As such,
we recognize that there are still significant scalability issues to tackle in future work.

(4) Our proposed flow relies heavily upon open-source tools, particularly to first perform initial
synthesis and logic optimization to produce a netlist used for later comparison, and second,
to produce a reversed netlist from the final bitstream. Many organizations may be hesitant
to trust and integrate these unverified open-source tools into their toolchain. In such cases
the organization may have to produce these tools in-house (for example, we know of a few
research groups that have created their own bitstream to netlist tools internally) or advocate
for this functionality to be provided by existing commercial parties.

5.4 Detecting Circuit Modifications

To validate this flow, we used a similar approach to earlier Sections (Sections 3.3.3 and 4.3.2), and
modified the design in some small but malicious way.

To do this, we modified our baseline CAD flow (Figure 8(b)) and added an additional step
that injects some modification into the design (Figure 9(a)). The error injection phase is inserted
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immediately after the Yosys synthesis stage, allowing us to make modifications to the design in the
Yosys netlist. By making design modifications to the Yosys netlist, we can simulate various types
of design modifications that may be performed by an attacker.

In our experiments, we explore three types of design modifications (Figure 9(b)):

(1) LUT Corruption. We corrupt a LUT in the design by flipping a bit in the LUT init string in
the netlist, changing the logic function of that LUT. We perform two variants of this error
injection—one where we modify a single LUT bit in the design and one where we select and
flip five bits in the design. This second test is done to increase the likelihood of meaningfully
impacting the design with this error type.

(2) Crossed Wires. We take two random signals and swap their sources, so their fanout is fed by
the wrong source.

(3) Signal Tapping. We pick a random non-I/O signal in the design and tap it by adding an extra
output port to the design that is driven by the selected signal.

As can be seen in Figure 9(a), we perform two equivalence checks with OneSpin 360 for every
injected error. First, we perform a comparison between the netlist generated by Yosys and the cor-
rupted netlist generated by the error injection tool. We then perform a second comparison between
the Yosys-generated netlist and the reverse-engineered netlist (created from the final bitstream).

The first comparison allows us to verify that the design modification meaningfully impacts the
design. Because the error injection tool injects its errors at random, it is possible for it to modify
the design in a way that does not actually affect the functionality of the design. For example, if
the sources of two wires are swapped, but the two wires are both part of the same AND reduction
operation, then the swap has no impact on design functionality. A second, more common example
is that flipping a bit in a LUT’s init string may not always affect the functionality of the design, as
not all LUT inputs are always used. The second functional comparison—between the Yosys netlist
and the reverse-engineered bitstream netlist—is the comparison the BFASST tool would perform
under normal operation.

Between the two comparisons, we can determine if a design modification actually impacts the
design, and if it does, whether or not we can detect the error once the design has been fully syn-
thesized and reverse-engineered.

For each benchmark in Table 2, we completed 20 instances of the design modification flow (five
each of single-bit LUT corruption, five-bit LUT corruption, crossed wires, and tapped signal). In
our testing, we were always able to detect circuit modifications that changed the functionality of
the design.

5.5 Impact of Bitstream-level Assurance on Runtime and QoR

5.5.1 Runtime. The first overhead we investigated was the runtime of performing the compar-
ison using the commercial equivalence-checking tool, across our suite of benchmarks. Figure 10
provides these results. The Golden series, colored in orange, provides the comparison runtime for
the various benchmarks without any design modifications. Runtimes vary from 3.2 s to 308 s, in-
dicating that for even these small designs, comparison runtime may be significant.

When designs are modified, the comparison runtimes become much larger. This is possibly be-
cause the tool must now exhaustively search across all possible mappings of internal state to con-
clude that there is no mapping that produces an equivalent result. The runtimes of the equivalence
checking, averaged across all design modification runs, is shown in the Modified Design series in
Figure 10. These averages range from 8.0 s to 18039 s (about 5 hours) (it should be noted that a
few designs are excluded from this figure, as they had instances where the equivalence checking
of the modified design never returned, even after more than a week of execution time). Runtimes
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Fig. 10. Comparison runtimes for the golden unmodified design and the modified design where a malicious

design modification is made. For the Modified Design series, the value represents the average runtime across

all design modification runs.

Fig. 11. Histogram showing distribution of runtimes. This includes the golden comparison, plus both com-

parisons (shown in Figure 9(a)) for each of the 20 design modification runs.

vary drastically from one design modification to the next; Figure 11(a) provides a histogram of
runtimes for all benchmarks. Figure 11(b) filters this data to only the y80_opencores benchmark
and demonstrates that even within the same benchmark, runtimes vary by over 100×, depending
on how the design is modified.

While the modified design runtimes are lengthy (and in a few cases never complete), this only
exists in the rare case when the design has been modified and the comparison tools struggle to
find an equivalence. In a normal design flow, the design would be unmodified and a designer could
gain assurance of equivalence in a much shorter runtime. It would typically only be in the case of
malicious design modification that these much longer runtimes would manifest.

5.5.2 Area Overhead. In most cases, pre-synthesizing the design to a technology mapped netlist
before entering the commercial flow comes at a cost. Table 2 provides the per-benchmark resource
usage, post-implementation, for the original commercial flow (Figure 8(a)) and our proposed flow
(Figure 8(b)). The LUT and FF usage values are also visualized in Figure 12. On average, our pro-
posed flow increases LUT usage by 15%–17% and FF usage by 11%–13%.
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Table 2. Area Overhead of Proposed Bitstream-level Assurance Flow

Benchmark # LUTs # FFs # CARRY # BRAM
Orig New Orig New Orig New Orig New

a25_coprocessor 219 254 171 171 0 0 0 0
counter 34 65 32 33 32 30 0 0
pid 1,505 1,308 394 396 0 0 0 0
pwm 372 570 145 146 75 150 0 0
random_pulse_gen 40 38 33 33 0 0 0 0
simon_core* 213 353 167 281 21 38 2 0
uart2spi 916 1,143 429 456 32 70 0 0
wb_lcd 206 242 85 97 19 18 0 0
LC3_bobby 568 687 187 187 45 44 1 1
natalius_processor 423 532 111 124 25 49 9 9
mips_16_fixed 863 931 298 300 23 43 1 1
uart_chisel 129 167 60 64 24 30 0 0
median_fixed 1,052 1,076 45 124 121 483 0 0
cpu8080* 2,466 2,349 243 243 331 337 1 0
pci_mini 565 715 340 369 5 8 0 0
y80_opencores 4,018 2,972 407 407 86 90 0 0
aes_opencores 3,149 3,202 924 922 31 34 0 0
Mean 476.2 554.8 160.9 181.4 51.2 83.8 0.8 0.6

+16.5% +12.7% +63.7% –25%
Mean (excluding *) 450.2 519.3 156.2 172.7 34.5 69.9 0.7 0.7

+15.3% +10.6% +102.6% 0%
Note: Orig indicates the original commercial flow (Figure 8(a)), while New indicates the proposed flow that

enables equivalence checking (Figure 8(b)). Means are provided using geometric mean for LUTs/FFs and

arithmetic for CARRY/BRAM (which contain zeros). The final row excludes the two benchmarks where the

flows differ in number of BRAMs used, as it appears in these cases the new CAD flow is implementing some

BRAM content with other resources.

6 COMPARING DIFFERENT ASSURANCE FLOWS

Table 3 provides a summarized comparison of the different assurance flows. The Physical IP As-

surance flow provides the greatest guarantee that the trusted IP is implemented correctly in the
design, as it guarantees that every placement and routing matches the provided implemented IP.
This prevents attacks that could bypass a functional equivalence check, such as creating very long
routing paths that violate timing constraints and cause the IP to not function correctly. However,
this guarantee comes at a price, as the IP provider must supply the IP already implemented. This
requires more burden on the IP provider to vet that the implemented design is correct and safe. It
also hinders use by the designer, as the IP would be locked to a certain location and FPGA part. In
all likelihood, those wanting to pursue this option would require that the IP provider implement
the IP for several chip locations and/or parts. This flow also has additional restrictions due to what
global resources can legally be placed within a Pblock; for example, the IP could not contain a
BUFG or other similar resources. In addition, the assurance flow comes at a cost. Our experiments
indicated that slice usage increases by almost 5% on average.

The Functional IP Assurance flow addresses some of these issues by allowing the IP provider to
create a pre-optimized netlist. Compared to Physical IP Assurance, this provides greater ease and
flexibility to the user, as they do not not have to physically partition their design, but can rather
just instantiate the trusted IP netlist. In addition to the ease of use improvements, it also incurs
less overhead; our experiments found just a 3% average increase to number of slices. However, it
should be noted that this additional flexibility comes at a price; it only protects against tampering
at the logical (i.e., RTL, gatelist, or netlist) level of the IP. It does not protect against tampering at
the implementation level of the design, i.e., placement and routing. For example, a malicious CAD
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Fig. 12. Resource usage.

tool or attacker could tamper with the IP by placing its cells unnecessarily far apart from each
other, thus slowing down timing and degrading the IP’s performance.

Both of these IP-centric assurance flows take the approach of having the CAD tool report the IP
as part of the implemented final design. This introduces some trust in the CAD flow and also
means that modifications to the bitstream post-generation would be undetected. Our final ap-
proach, Bitstream-level Assurance, addressed this limitation by leveraging open-source bitstream
to netlist tools to generate a netlist for comparison against the original design.

However, the reversed netlist no longer contains any internal net names, hierarchy, or module
partitions, meaning that the comparison processes must be performed on the entire design, and
the runtimes are significant for even small designs.

The overhead we measured for the bitstream-level assurance (15% increase to LUTs) is larger
than the other approaches; however, it is important to recognize that these earlier approaches only
protected a single IP in the overall design, while the bitstream-level assurance targets the entire
design. This would likely account for the larger overhead observed.

7 CONCLUSION AND FUTURE WORK

In conclusion, our different assurance flows demonstrate that with some modifications to the de-
fault FPGA CAD flow, it is possible to assure designers that their compiled hardware design is
equivalent to their trusted source design and/or IP. All of the processes we described in the article
are fully automated, suggesting that designers and engineers can easily determine the integrity of
their designs without needing hardware security expertise.

The different approaches discussed in the article have various strengths and weaknesses, and
organizations may choose different approaches based on their security goals and needs. Overall,
the different approaches all come at an area cost (3%–16% increase in logic); however, we believe
that in most cases this cost would be acceptable for the assurances that can be provided.
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Table 3. Comparison of Assurance Approaches

Goal
Area

Overhead Advantages Limitations/Disadvantages

Physical IP Assurance (Section 3)

Verify placement and rout-
ing of trusted IP in imple-
mented parent design.

+4.7% Slices — Detects malicious modifi-
cations to design during CAD
flow.
— Detects any discrepancy, in-
cluding physical-level attacks.
— Simple and fast comparison
process.

— Requires IP provider to provide
placed and routed Pblock.
— Provided IP restricted to imple-
mented location and target part.
— Restrictions on global resource
(e.g., BUFG cannot be placed
within Pblock).
— Does not detect modifications
to the bitstream post-generation.
— Trusts CAD tool to output true
implementation details.

Functional IP Assurance (Section 4)

Verify functional equiva-
lence of trusted IP in im-
plemented parent design.

+2.8% Slices — Detects malicious modifi-
cations to design during CAD
flow.
— IP provider creates optimized
netlist; more flexible than provid-
ing a placed and routed Pblock.

— Comparison process requires
commercial formal verification
tool.
— Does not detect modifications
to the bitstream post-generation.
— Trusts CAD tool to output true
implementation details.

Bitstream-Level Assurance (Section 5)

Verify equivalence of
bitstream to original
RTL design, leverag-
ing pre-synthesis with
open-source tool.

+15% LUTs — Detects malicious modifica-
tions to design during CAD flow
or to bitstream post-generation.
— Operates on entire design, not
just a single IP.
— Does not rely on trusting com-
mercial CAD flow.

— Comparison process requires
commercial equivalence-checking
tool.
— Requires a bitstream to netlist
tool, which have only been de-
veloped for certain FPGA vendors
and families.
— Trusts open-source CAD tool
to output true implementation de-
tails.
— Longer comparison runtimes;
performing equivalence checking
on entire design may not be scal-
able to larger design sizes.

Although the results we have obtained are promising, this is still only a step toward the larger
goal of assuring the FPGA design process for arbitrary designs and FPGA families. A number of
key challenges remain:

(1) The runtimes we encountered were significant, and novel approaches will be needed to scale
this work to larger designs. There is active work in developing better graph isomorphism
(graph matching) algorithms [29, 30] that will hopefully enable more scalable equivalence-
checking tools in the future.

(2) For certain benchmarks, the area overheads can be substantial, exceeding 20% overhead.
In some cases a designer may not have enough spare logic on their device to use these
techniques. It would be interesting to investigate what assurance techniques could be applied
in such resource-limited scenarios.
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(3) The functional and bitstream-level approaches we used required performing equivalence
checking against an optimized and mapped netlist, rather than the original RTL. While
capable organizations could ensure that this optimized netlist remains free from malicious
content, it requires time and effort. In future work it would be beneficial to explore whether
verification could be successful if attempted in smaller increments. For example, comparison
could be done before and after each individual stage of the flow, rather than our proposed
techniques that performed equivalence across many steps of the CAD flow.

(4) Bitstream documentation is limited, and further open-source tools will be required to
provide these assurances for a wider set of FPGA families.

(5) As hardware design shifts to higher abstraction levels (high-level synthesis tools, domain-
specific language compilers) the assurance problem grows, as it will become more
challenging to prove equivalency with these higher-level input descriptions.

While several challenges remain in the face of general FPGA design assurance, we believe the
outlook is still positive. The work presented in this article would not have been possible without
the advancements in open-source tools over the past few years, and we believe growing traction in
the open-source community will likely open the door to further verification efforts in the future.

REFERENCES

[1] S. Adee. 2008. The hunt for the kill switch. IEEE Spectrum 45, 5 (2008), 34–39. DOI: https://doi.org/10.1109/MSPEC.

2008.4505310

[2] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor. 2016. Hardware trojans: Lessons learned after one

decade of research. 22, 1 (2016), 6:1–6:23. DOI: https://doi.org/10.1145/2906147

[3] Christian Krieg, Clifford Wolf, Axel Jantsch, and Tanja Zseby. 2017. Toggle MUX: How x-optimism can lead to

malicious hardware. In Design Automation Conference (DAC) (2017-06). 1–6. DOI: https://doi.org/10.1145/3061639.

3062328

[4] Christian Krieg, Clifford Wolf, and Axel Jantsch. 2016. Malicious LUT: A stealthy FPGA trojan injected and triggered

by the design flow. In International Conference on Computer-aided Design (ICCAD) (2016-11). 1–8. DOI: https://doi.org/

10.1145/2966986.2967054

[5] Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar. 2015. FPGA trojans through detecting and

weakening of cryptographic primitives. 34, 8 (2015), 1236–1249. DOI: https://doi.org/10.1109/TCAD.2015.2399455

[6] Adam Hastings, Sean Jensen, Jeffrey Goeders, and Brad Hutchings. 2018. Using physical and functional comparisons

to assure 3rd-Party IP for modern FPGAs. In International Verification and Security Workshop (IVSW) (2018-07). 80–86.

DOI: https://doi.org/10.1109/IVSW.2018.8494874

[7] Clifford Wolf. 2020. Project IceStorm. Retrieved from http://www.clifford.at/icestorm/.

[8] OneSpin. 2020. 360 EC-FPGA – OneSpin Solutions. Retrieved from /products/360-ec-fpga.

[9] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. 2012. A novel technique for improving hardware

trojan detection and reducing trojan activation time. 20, 1 (2012), 112–125. DOI: https://doi.org/10.1109/TVLSI.2010.

2093547

[10] Jie Zhang, Feng Yuan, Linxiao Wei, Yannan Liu, and Qiang Xu. 2015. VeriTrust: Verification for hardware trust. 34, 7

(2015), 1148–1161. DOI: https://doi.org/10.1109/TCAD.2015.2422836

[11] Jiaji He, Yiqiang Zhao, Xiaolong Guo, and Yier Jin. 2017. Hardware trojan detection through chip-free electromag-

netic side-channel statistical analysis. 25, 10 (2017), 2939–2948. DOI: https://doi.org/10.1109/TVLSI.2017.2727985

[12] Paris Kitsos, Kyriakos Stefanidis, and Artemios G. Voyiatzis. 2016. TERO-based detection of hardware trojans on

FPGA implementation of the AES algorithm. In Euromicro Conference on Digital System Design (DSD) (2016-08). 678–

681. DOI: https://doi.org/10.1109/DSD.2016.47

[13] Lampros Pyrgas, Filippos Pirpilidis, Aliki Panayiotarou, and Paris Kitsos. 2017. Thermal sensor based hardware

trojan detection in FPGAs. In Euromicro Conference on Digital System Design (DSD) (2017–08). 268–273. https://doi.

org/10.1109/DSD.2017.36

[14] Maxime Lecomte, Jacques Fournier, and Philippe Maurine. 2017. An on-chip technique to detect hardware trojans

and assist counterfeit identification. 25, 12 (2017), 3317–3330. DOI: https://doi.org/10.1109/TVLSI.2016.2627525

[15] Seetharam Narasimhan, Dongdong Du, Rajat Subhra Chakraborty, Somnath Paul, Francis Wolff, Christos Papachris-

tou, Kaushik Roy, and Swarup Bhunia. 2010. Multiple-parameter side-channel analysis: A non-invasive hardware

trojan detection approach. In International Symposium on Hardware-oriented Security and Trust (HOST) (2010–06).

13–18. DOI: https://doi.org/10.1109/HST.2010.5513122

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 28. Pub. date: December 2021.

https://doi.org/10.1109/MSPEC.2008.4505310
https://doi.org/10.1145/2906147
https://doi.org/10.1145/3061639.3062328
https://doi.org/10.1145/2966986.2967054
https://doi.org/10.1109/TCAD.2015.2399455
https://doi.org/10.1109/IVSW.2018.8494874
http://www.clifford.at/icestorm/
/products/360-ec-fpga
https://doi.org/10.1109/TVLSI.2010.2093547
https://doi.org/10.1109/TCAD.2015.2422836
https://doi.org/10.1109/TVLSI.2017.2727985
https://doi.org/10.1109/DSD.2016.47
https://doi.org/10.1109/DSD.2017.36
https://doi.org/10.1109/TVLSI.2016.2627525
https://doi.org/10.1109/HST.2010.5513122


Approaches for FPGA Design Assurance 28:29

[16] Xuehui Zhang, Andrew Ferraiuolo, and Mohammad Tehranipoor. 2013. Detection of trojans using a combined ring

oscillator network and off-chip transient power analysis. 9, 3 (2013), 25:1–25:20. DOI: https://doi.org/10.1145/2491677

[17] Maik Ender, Amir Moradi, and Christof Paar. 2020. The unpatchable silicon: A full break of the bitstream encryption

of Xilinx 7-series FPGAs. In USENIX Conference on Security Symposium. USENIX Association, 1803–1819.

[18] Hoyoung Yu, Hansol Lee, Sangil Lee, Youngmin Kim, and Hyung-Min Lee. 2018. Recent advances in FPGA reverse

engineering. 7, 10 (2018), 246. DOI: https://doi.org/10.3390/electronics7100246

[19] Kaspar Matas, Tuan Minh La, Khoa Dang Pham, and Dirk Koch. 2020. Power-hammering through glitch

amplification—Attacks and mitigation. In International Symposium on Field-programmable Custom Computing Ma-

chines (FCCM) (2020–05). 65–69. DOI: https://doi.org/10.1109/FCCM48280.2020.00018

[20] Brad L. Hutchings, Joshua Monson, Danny Savory, and Jared Keeley. 2014. A power side-channel-based digital to

analog converter for Xilinx FPGAs. In Symposium on Field-programmable Gate Arrays (FPGA) (2014-02-26). 113–116.

DOI: https://doi.org/10.1145/2554688.2554770

[21] Ilija Hadžić, Sanjay Udani, and Jonathan M. Smith. 1999. FPGA viruses. In Conference on Field Programmable Logic

and Applications (FPL) (1999), Patrick Lysaght, James Irvine, and Reiner Hartenstein (Eds.). 291–300. DOI: https://doi.

org/10.1007/978-3-540-48302-1_30

[22] T. Gaskin, H. Cook, W. Stirk, R. Lucas, J. Goeders, and B. Hutchings. 2020. Using novel configuration techniques

for accelerated FPGA aging. In 30th International Conference on Field-programmable Logic and Applications (FPL)

(2020-08). 169–175. DOI: https://doi.org/10.1109/FPL50879.2020.00037 ISSN: 1946-1488.

[23] 2020. Symbiflow/Prjuray. https://github.com/SymbiFlow/prjuray.

[24] 2020. Symbiflow/Prjxray. https://github.com/SymbiFlow/prjxray.

[25] D. R. E. Gnad, S. Rapp, J. Krautter, and M. B. Tahoori. 2018. Checking for electrical level security threats in bitstreams

for multi-tenant FPGAs. In International Conference on Field-programmable Technology (FPT) (2018–12). 286–289. DOI:

https://doi.org/10.1109/FPT.2018.00055

[26] Tuan Minh La, Kaspar Matas, Nikola Grunchevski, Khoa Dang Pham, and Dirk Koch. 2020. FPGADefender: Malicious

self-oscillator scanning for Xilinx ultrascale + FPGAs. 13, 3 (2020), 15:1–15:31. DOI: https://doi.org/10.1145/3402937

[27] K. Kępa, F. Morgan, K. Kościuszkiewicz, L. Braun, M. Hübner, and J. Becker. 2010. Design assurance strategy and

toolset for partially reconfigurable FPGA systems. 4, 1 (2017), 4:1–4:26. DOI: https://doi.org/10.1145/1857927.1857931

[28] Clifford Wolf. 2021. Yosys Open SYnthesis Suite. Retrieved from https://github.com/YosysHQ/yosys.

[29] Brendan D. McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II. 60 (2014), 94–112. DOI: https://doi.org/

10.1016/j.jsc.2013.09.003

[30] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (sub)graph isomorphism algorithm for matching large

graphs. 26, 10 (2004), 1367–1372. DOI: https://doi.org/10.1109/TPAMI.2004.75

Received April 2021; revised August 2021; accepted October 2021

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 28. Pub. date: December 2021.

https://doi.org/10.1145/2491677
https://doi.org/10.3390/electronics7100246
https://doi.org/10.1109/FCCM48280.2020.00018
https://doi.org/10.1145/2554688.2554770
https://doi.org/10.1007/978-3-540-48302-1_30
https://doi.org/10.1109/FPL50879.2020.00037
https://github.com/SymbiFlow/prjuray
https://github.com/SymbiFlow/prjxray
https://doi.org/10.1109/FPT.2018.00055
https://doi.org/10.1145/3402937
https://doi.org/10.1145/1857927.1857931
https://github.com/YosysHQ/yosys
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1109/TPAMI.2004.75

