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Abstract

Task weighting, which assigns weights on the
including tasks during training, significantly
matters the performance of Multi-task Learn-
ing (MTL); thus, recently, there has been an
explosive interest in it. However, existing task
weighting methods assign weights only based
on the training loss, while ignoring the gap
between the training loss and generalization
loss. It degenerates MTL’s performance. To
address this issue, the present paper proposes a
novel task weighting algorithm, which automat-
ically weights the tasks via a learning-to-learn
paradigm, referred to as MetaWeighting. Ex-
tensive experiments are conducted to validate
the superiority of our proposed method in multi-
task text classification.

1 Introduction

Multi-task Learning (MTL) simultaneously learns
multiple related tasks and aims to achieve better
performance than learning each task independently
(Caruana, 1993; Baxter, 2000). It has achieved
great success in various applications; especially,
in the text classification context, MTL can signifi-
cantly outperform single task learning (Liu et al.,
2017; Mao et al., 2021).

In MTL, it is common for the including tasks
to be competing. If we cannot properly balance
these tasks, some tasks might dominate the training
process and hurt the performance of other tasks, a
phenomenon known as task imbalance. To address
the task imbalance, the most widely used method is
task weighting, which adaptively assigns weights
on the tasks during training to balance their im-
pacts. Various task weighting methods have been
proposed and can be used in multi-task text classi-
fication, such as (Kendall et al., 2018; Sener and
Koltun, 2018; Chen et al., 2018).

However, existing task weighting methods com-
pute the task weights only based on training losses
or corresponding gradients. They ignore the gap
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Figure 1: Illustration of the gap between training loss
and generalization loss in the training process of a four-
task topic classification experiment (500" , 1000%",
1500*" epochs respectively).

between the training loss and generalization loss.
To illustrate this gap, we report observations of our
four-task topic classification experiment in Figure
1. The detailed experimental settings are intro-
duced in the experiment section. Figure 1 demon-
strates that the training losses and generalization
losses (estimated by the test losses) have different
magnitudes; moreover, they have different patterns,
such as a task might have the largest training loss
but the lowest generalization loss among the tasks.

This gap causes a mismatch between the task
weights and tasks’ generalization performance,
which reduces effectiveness of the task weighting.
To tackle this issue, this paper proposes a novel task
weighting method based on a bi-level optimization
problem, which aims to find task weights that ex-
plicitly optimize the generalization performance.
Our proposed method computes task weights by
solving this bi-level optimization problem and per-
forms in a learning-to-learn manner; thus, dubbed
MetaWeighting. MetaWeighting can improve the
performance of multi-task text classification.

To verify our theoretical analysis and validate the
superiority of MetaWeighting, we conduct experi-
ments on two classical text classification problems:
sentiment analysis (on reviews) and topic classi-
fication (on news). The results demonstrate that
MetaWeighting outperforms several state-of-the-art
multi-task text classification methods.
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2 Related Works

Existing task weighting strategies can be divided
into two categories: weight adaptation methods
and Pareto Optimization (PO)-based methods. The
weight adaptation methods adaptively adjust the
tasks’” weights during training based on pre-defined
heuristic, such as uncertainty (Kendall et al., 2018),
task difficulty prioritization (Guo et al., 2018), gra-
dient normalization (Chen et al., 2018), weight
average (Liu et al., 2019) and task variance regular-
ization (Mao et al., 2021). These methods only use
training losses or their gradients to compute task
weights while ignores the gap between the training
loss and generalization loss.

Besides, the PO-based methods formulate MTL
as a multi-objective optimization problem and aim
to find an arbitrary Pareto stationary solution (Sener
and Koltun, 2018; Lin et al., 2019; Mahapatra and
Rajan, 2020; Lin et al., 2020; Ma et al., 2020; Mao
et al., 2020). However, in these methods, the learn-
ing objectives only involve training losses; thus,
they can only achieve Pareto stationary points w.r.t
training losses. They also ignore the gap between
the training loss and generalization loss. More-
over, (Lin et al., 2019) proposes that the PO-based
methods can be also regarded as weight adaptation
methods for they optimize the weighted sum of
training losses as well.

Overlooking the gap between the training loss
and generalization loss would degenerate the per-
formance of MTL. This paper proposes a novel
meta learning-based task weighting method to
solve this issue. There are some works adopt meta
learning-based weighting methods in multilingual
learning, e.g., (Wang et al., 2020) and (Tarunesh
et al., 2021). However, these works cannot solve
multi-objective optimization problems. By con-
trast, this paper proposes a novel method which
can solve multi-objective optimization problems.

3 Preliminaries

Consider a multi-task learning problem with T
tasks over an input space X and a collection of
task spaces {);}]_,. For each task, we have a
set of i.i.d. training samples D; = {x,yi}i_;.
The training samples are sampled from an iden-
tical distribution P;. Based on the training sets
{D:}I,, we learn an MTL model from a param-
eterized hypothesis class H, which shares some
parameters across tasks. Let 65 represent the pa-
rameters shared between tasks (task-sharing param-

eters), while 6, represent the task-specific param-
eters. h(-,0s,01,...,07) : X — {W}, € H
denotes an MTL model that learns from 7, while
h(-,05,0;) : X — ), denotes the task-specific
module in the MTL model.

The loss function is represented by (-, )
V! x Yt — [0,1]. For each task, the generaliza-
tion loss is £4(0) = Ey, y)~p, L (h(zt,05,01), yt),
and the training loss is defined as £!"(0, D;) =
ﬁ > (wewo)en; (@, 05, 60¢), y¢). In this paper,
each training set D; is randomly divided into two
subsets: support set D and query set D}. Corre-
spondingly; moreover, the support loss is defined as
L‘f(@, Dts) = ﬁ Z(:z:t,yt)eDf l(h(xtv Os, 075)7 yt)’
and the query loss is defined as £{(0,D}) =
ﬁ Z(mt,yz)eD? I(h(z¢,05,0:), yt)-

3.1 Hypergradient Descent

Hypergradient Descent (HD) (Almeida et al., 1998;
Baydin et al., 2018) provides an efficient way to
apply gradient descent on hyper-parameters. Here,
we take learning rate’s HD as an example to in-
troduce the basic form of HD. Given an objective
function f(6) and previous parameters #* !, gradi-
ent descent-based learning typically evaluates the
gradient V f(0¥~!) and moves against it to arrive
at updated parameters

o8 = 01 — v F(oF Y, )]

where 7) is the learning rate. HD derives an update
rule for the learning rate 7 itself. Based on Eq. (1)
and the chain rule, we have

af(6%)
on

_ Vf(@k) . 3(9k71*7évf(9k71))
— V%) (~VI(E),

with which we construct a update rule for 7:

2

"t =nF £ BV 0N - VO, 3)

introducing 3 as the hypergradient step size. In this
paper, we extend HD to a bi-level multi-objective
optimization problem.

3.2 Common Descent Direction for Multiple
Objectives

When using gradient descent to jointly optimize
multiple optimization objectives, we need to find
a descent direction common to all the objectives.
Based on the descent direction for each objective,
(Désidéri, 2012) proposes a way to obtain the com-
mon descent direction, as in Theorem 1. This paper
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proposes a method to simultaneously optimize the
tasks’ generalization loss based on Theorem 1.

Theorem 1 ((Désidéri, 2012)). Let A be a Hilbert
space of finite or infinite dimension N. Let f;(z)
(1 <i<n < N)ben smooth functions of the vec-
tor z € A. and 2° a particular admissible design-
point, at which the gradient-vectors are denoted
gi = Vfi(2°), and

U={acAla=> Xigshi>0(Vi) Yy A=1} 4
i=1 =1

Let ¢* = argmin,y; || a ||, where U consists of
the convex hull and closure of U. Then, if a* # 0,
a® is a descent direction common to all the objec-
tives.

4 MetaWeighting for MTL

In this section, we demonstrate the gap between
existing task weighting strategies and the general-
ization performance of MTL in Section 4.1. This
gap motivates us to proposed a MetaWeighting
problem, which aims to automatically learn a task
weighting strategy that can narrow this gap, in Sec-
tion 4.2. Moreover, we propose an algorithm to
solve the MetaWeighting problem in Section 4.3.

4.1 Gap Between Task Weighting and
Generalization Performance

MTL aims to improve the generalization perfor-
mance of all the including tasks, which can be
formulated via the following optimization problem.

min L(0) = (£1(6), .. Lr() " (5)

By contrast, existing task weighting strategies
train an MTL model via the following objective.

.1 ,
moln fwtﬁi (0, Dy), (6)

where the w; is adaptive during training and only
depends on the training losses or their gradients.
As the neural networks are usually heavily over-
parameterized (Allen-Zhu et al., 2019), the training
losses cannot properly estimate the generalization
losses. Thus, existing task weighting strategies,
which tunes weights only based on the training
losses, overlook the generalization losses. Obvi-
ously, there is a gap between these task weighting
strategies and the generalization performance of
MTL.

4.2 MetaWeighting Problem

To narrow the gap between task weighting strate-
gies and generalization performance, we propose
to automatically learn task weights that can re-
duce the generalization losses, namely learning
to weight. This learning to weight problem is form-
lated via the following bi-level optimization prob-
lem, dubbed MetaWeighting.

Problem 1.

min (£1(6"(w)), ... Lo(0*(w))) |

* : 1 = tr (7)
st. 0% (w) = argmin ;wtﬁt (0, Dy)

where w = (w1, wa, ..., wr). This bi-level op-
timization problem combines (5) and (6) together,
by solving which we can obtain task weights that
benefit the generalization performance of MTL.

However, the generalization loss is agnostic. To
properly estimate the generalization loss, we ran-
domly divide the training set D; into two subsets:
support set D and query set D, where D; is used
to train an MTL model, and D{ is used to estimate
generalization loss of the MTL model. In Section
5, we theoretically demonstrate that query loss is a
good estimator for the generalization loss; besides,
in Section 6.7, experimental analysis also supports
that query loss is a good estimator.

Based on the support-query split, the
MetaWeighting problem is transformed into
the following form.

Problem 2.

win (£1(6(0), DY), ... C4(6"(w), DE))T

* 1 d s s (8)
st 0% (w) = argmelnT;wtﬁt(H,Dt)

4.3 MetaWeighting Algorithm

In the MetaWeighting problem, the inner optimiza-
tion objective is embedded within the outer opti-
mization objective. In MTL, the inner optimiza-
tion objective is to minimize the weighted sum
of task-specific training losses, which is typically
optimized by means of iterative gradient descent;
thus, Problem 2 can be formulated by the following
problem in the k* learning iteration.
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Problem 3.

T
_ n s — s
st OF =gF1 — T ZthQ['t (ek 1>Dt)

t=1
©)
To solve Problem 3, we adopt the Hypergradi-
ent Descent (HD) method. However, the original
HD method (Almeida et al., 1998; Baydin et al.,
2018) is proposed for single objective optimization,
which can not used in our problem where a multi-
objective optimization problem involves. In this
section, this paper proposes a novel HD method for
the multi-objective optimization setting, as in the
following sections.

4.3.1 Task-Specific Descent Direction

The learning objective of Problem 3 involves T’
objectives. We aim to find a gradient direction,
moving against which all the objective can be op-
timized. To find this gradient direction, we first
find the hypergradient direction w.r.t w (denoted as
dy) for each task. d, is computed by the following
equation.

OL{(0*, DY) a (g 00"

e A Y pyy. 2

dy T VoLl (0%, D) % (10)
= — V(65 DY) VeLA (65", D).

where VoLé(0F—1, D*) =

(VoL5(05 1, D)1, ..., VoLy (651, D5) ).
Moving against d;, the generalization loss of task ¢
can be optimized.

4.3.2 Common Descent Direction

Base on d;, in this section, we find a common gra-
dient direction, moving against which all the ob-
jective can be optimized. Letd = (d]—, d;—, - d—Tr)
and d,. be the common gradient direction. Theorem
| presents that the following Eq. (11) is a common
descent direction.

de=\"d' (11
where
AF = argm)%n{” M2 AT =1,) =0},
(12)
where 1 = (1,1, ..., 1). Eq. (12) is a typical min-

imum Euclidean-norm point problem. We here
adopt the widely used Frank-Wolfe optimization
algorithm (Jaggi, 2013), a minimum-norm-point al-
gorithm, to solve it. The Frank-Wolfe optimization
algorithm is presented in Algorithm 2.

Algorithm 1: MetaWeighting Algorithm
Input: data {D;}7 | and {D]}]_,, Number
of learning iterations K, step size « for
updating w.
Initialize: w° = (1,1,...,1), 6°, .
for k = 1to K do
OF = 081 — F 3w Ve L (0571, D).
fort =1to 7 do
dy=—2LVoL](0%, DI)VoL* (051, D*).
end for
d=(d\",do",....dp")
N =argminy{| A" |3 |A\1T =1, > 0}

(calls Algorithm 2).

d.=X\d'.

whtl = wk — ad,.
end for

Algorithm 2: Frank-Wolfe Algorithm
Input: Number of Iterations N.

Initialize: \o = [+, ..., 7.
B=d'd.
for: =0to N do

v = arg min v B

vef{vT1=1,0-0}
v = arg min (A 4+ v(v — X)) T B(Ai+
~€[0,1]

(v = N)).
Aiv1 = (1 =)\ + .
end for
return: \y

4.3.3 MetaWeighting

Moving against d., all the objective can be opti-
mized; thus, the update rule of w is

whtl = wF — ad,, (13)

where « is the step size. Based on this update rule,
the task weights are automatically learnt oriented
by optimizing the generalization losses.

Overall, we propose the MetaWeighting algo-
rithm, which is presented in algorithmic form in
Algorithm 1. Our proposed method bridges the gap
between task weighting and generalization perfor-
mance of MTL.

5 Theoretical Analysis

In this section, we study the generalization error
bound for MTL; furthermore, we compare the
bound w.r.t training loss and the bound w.r.t the
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query loss. The comparison presents that the query
loss is a more accurate estimation of the general-
ization loss than the training loss.

Firstly, we derive the generalization error bound
w.r.t training loss for MTL.

Theorem 2. Assume we have n training samples
for each task. Let o = {{ot}"_}I_, be a se-
quence of binary random variables such that each
ol = +1isindependent with probability 1 /2. Then,
Vo € [0,1], for all h(-,6°,60,....0T) € H, with
probability of at least 1 — 6:

LSF L (L(0) — £ (0, Dy))

<2R(loH o D) + 44/ 280/,

(14)
where

T n
R(loHoD) = E, bup TanZafl yh).

t=1 i=1
(15)
is the Rademacher complexity for MTL.

Proof. The proof is provided in Appendix A. [

Next, we derive the generalization error bound
w.r.t query loss for MTL.

Theorem 3. Assume we have m training samples
Sor each task. Yo € [0, 1], with probability of at
least 1— 9, for all h(-,60°,0%, ....07) € H, we have

Ly ie

t=1

— L0, DY) <

log(2/6)
o (16)

Proof. The proof is provided in Appendix A. [

Comparing the bound (14) and (16), we can find
that the upper bound for the query loss is tighter
than that for the training loss. Taking m to be order
of n, the query loss is a more accurate estimate of
the generalization loss than the training loss by a
factor that depends on the Rademacher complexity.

6 Experiments

In this section, we perform experimental studies on
sentiment analysis to evaluate the performance of
our proposed MetaWeighting and verify our theo-
retical analysis.

6.1 Datasets

Sentiment Analysis |. We evaluate our algorithm
on product reviews from Amazon. The dataset
(Blitzer et al., 2007) contains product reviews from
14 domains, including books, DVDs, electronics,
kitchen appliances and so on. We consider each
domain as a binary classification task. Reviews
with rating > 3 were labeled positive, those with
rating < 3 were labeled negative, reviews with
rating = 3 are discarded as the sentiments were
ambiguous and hard to predict.

Topic Classification >. We select 16 newsgroups
from the 20 Newsgroup dataset, which is a col-
lection of approximately 20,000 newsgroup doc-
uments that is partitioned (nearly) evenly across
20 different newsgroups, then formulate them into
four 4-class classification tasks (as shown in Table
1) to evaluate the performance of our algorithm on
topic classification.

Table 1: Data Allocation for Topic Classification Tasks.

TASKS  NEWSGROUPS

COMP OS.MS-WINDOWS.MISC, SYS.MAC.HARDWARE,
GRAPHICS, WINDOWS.X

REC SPORT.BASEBALL, SPORT.HOCKEY
AUTOS, MOTORCYCLES

scI CRYPT, ELECTRONICS,
MED, SPACE

TALK POLITICS.MIDEAST, RELIGION.MISC,

POLITICS.MISC, POLITICS.GUNS

6.2 Baselines

We compare MetaWeighting with methods:

Single-Task Learning (STL): learning each
task independently.

Uniform: learning tasks simultaneously using
uniform task weights.

Uncertainty: using the uncertainty weighting
method proposed by (Kendall et al., 2018).

GradNorm: using the gradient normalization
method proposed by (Chen et al., 2018).

MGDA: using the MGDA-UB method proposed
by (Sener and Koltun, 2018).

AdvMTL: using the adversarial Multi-task
Learning method proposed by (Liu et al., 2017).

TchebycheffAdv: using the Adversarial
Tchebycheff procedure proposed by (Mao et al.,
2020).

BanditMTL: using the BanditMTL method pro-
posed by (Mao et al., 2021).

lhttps://www.cs.jhu.edu/~mdredze/
datasets/sentiment/
’http://qwone.com/~jason/20Newsgroups/
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Figure 2: Classification accuracy of Single Task Learning, Uniform Scaling, AdvMTL, MGDA, GradNorm,
Uncertainty, TchebycheffAdv, BanditMTL and MetaWeighting on TextCNN for the sentiment analysis dataset.
Each colored cluster illustrates the classification accuracy performance of a method over 10 runs. Our proposed
MetaWeighting outperforms all baselines on ten of the fourteen tasks; besides, its average performance is superior
to that of all baselines.
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Figure 3: Classification accuracy of Single Task Learning, Uniform Scaling, AdvMTL, MGDA, GradNorm,
Uncertainty, TchebycheffAdv, BanditMTL and MetaWeighting on TextCNN for the topic classification dataset.
Each colored cluster illustrates the classification accuracy performance of a method over 10 runs. Our proposed
MetaWeighting outperforms all baselines in all tasks.

6.3 Experimental Settings 6.4 Classification Performance

We adopt the hard parameter-sharing MTL frame-  We compare the proposed MetaWeighting with the
work (Mao et al., 2021), where the shared repre-  baselines and report the results over 10 runs by
sentation extractor is built with TextCNN or BERT;  plotting the classification accuracy of each task
besides, the task-specific module is formulated by ~ for both sentiment analysis and topic classification.
means of one fully connected layer ending witha  The results on TextCNN are shown in Fig. 2 and
softmax function. The detailed experimental set- 3. Due to space limitations, we provide the results
tings are introduced in the Appendix B. for BERT in the Appendix C. All experimental
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Figure 4: Task-average classification accuracy w.r.t dif-
ferent value of p (query-split radio) for sentiment analy-
sis and topic classification.
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Figure 5: Task-average classification accuracy w.r.t dif-
ferent value of « (step size) for sentiment analysis and
topic classification.

results show that our proposed MetaWeighting out-
performs all baselines and achieves state-of-the-art
performance.

6.5 The Impact of Query-Split Radio

Let n be the size of the entire training set and m
be the size of the query set. We define the query-
split radio as p = 7 to indicate the radio of query
samples to the entire training samples. From the
theoretical analysis of Section 5, we can see that the
query loss can estimate generalization loss more ac-
curately when p increases, but increasing p would
hurt the training process for the size of support set
decreases. Therefore, p faces a trade-off between
the performance estimation of generalization loss
and training performance.

To investigate the impact of p, we record the
changes in MetaWeighting’s average classification
accuracy w.r.t different values of p in Fig. 4, where
each boxplot visually illustrates the distribution of
results over ten runs through displaying the data
quartiles (first quartile and third quartile), mini-
mum/maximum value and median. These exper-
iments are conducted based on TextCNN. In this
figure, as p increases, the average accuracy of
MetaWeighting first increases and then decreases.
It verifies our theoretical analysis. For both sen-

Generalization Loss

Training Loss

Query Loss

Figure 6: Illustration of the gap between training loss,
query loss and generalization loss in the training process
of sentiment analysis (500" , 1000, 1500t" epochs
respectively).
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Figure 7: Illustration of the gap between training loss,
query loss and generalization loss in the training process
of topic classification (500" , 1000*", 1500*" epochs
respectively).

timent analysis and topic classification, setting
p = 0.1 provides satisfactory results.

6.6 Sensitive Study on «

In MetaWeighting, the step size « is a hyper-
parameter. To determine whether the performance
of MetaWeighting is sensitive to «, we conduct
experiments on the classification accuracy perfor-
mance of MetaWeighting w.r.t different values of «
based on the TextCNN model. The results of these
experiments are presented in Figure 5 (boxplots
over ten runs). As the figure shows, the perfor-
mance of our proposed method is not very sensitive
to @ when « is within the range of 0.05 to 0.1 for
sentiment analysis and 0.1 to 0.5 for topic classifi-
cation. The results demonstrate that MetaWeight-
ing can work well in a wide range of « values.

6.7 The Gap between the Training Loss,
Query Loss and Generalization Loss

To experimentally verify that the query loss is a
good estimator for generalization loss, we record
the generalization loss (estimated by test loss),
query loss and training loss for each task during
training and report the results in Fig. 6 and 7 for
sentiment analysis and topic classification respec-
tively. From these figures, we can see that there
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Figure 8: Comparison of task weight adaption processes between MetaWeighting, Uncertainty, Gradnorm, MGDA

and BanditMTL for sentiment analysis.
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Figure 9: Comparison of task weight adaption processes between MetaWeighting, Uncertainty, Gradnorm, MGDA

and BanditMTL for topic classification.

is a large gap between the training and general-
ization loss, while the gap between the query and
generalization loss is smaller than that between
the training and generalization loss. The results
verify our theoretical analysis in Section 5; further-
more, they experimentally support our motivation
for MetaWeighting.

In this section, TextCNN is used, and tasks have
uniform weights during training. Fig. 1 is obtained
under this setting as well.

6.8 The Evolution of Task Weights

In this section, we observe the changes in task
weights in the training process of MetaWeighting
and compare these changes with four baselines
(Uncertainty, Gradnorm, MGDA and BanditMTL).
The results for sentiment analysis and topic classi-
fication are reported in Fig. 8 and 9 respectively.
Due to space limitations, for sentiment analysis, we
only report the results of the first four tasks here,
and the results of the other ten tasks are presented
in the Appendix D.

From these figures, we can see that the weight

adaption process of MetaWeighting is different
with that of Uncertainty, Gradnorm, MGDA and
BanditMTL. In MetaWeighting, the task weights
are automatically learnt, and there is no pre-defined
heuristic involved. It is verified by the evolution
curves of task weights for MetaWeighting illus-
trated in Fig. 8 and 9, which fluctuate without any
regular patterns.

7 Conclusion

This paper presents that the gap between the train-
ing loss and the generalization loss, which is over-
looked by existing task weighting methods, is non-
negligible; furthermore, to narrow this gap, a novel
task weighting method (dubbed MetaWeighting)
is proposed. In MetaWeighting, multi-task text
classification is formulated as a multi-objective bi-
level programming problem, and then solved in
a learning-to-learn manner. MetaWeighting auto-
matically learns the task weights without any pre-
defined heuristic and achieves state-of-the-art per-
formance. It has the potential to forge new trends
in task weighting research.
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A Proof of the Theorem 2 and Theorem 3

Lemma 1 (McDiarmid’s Inequality). Let V' be
some set and let f : V™ — R be a function of n
variables such that for some ¢ > 0, for all i € [n]
and for all z1, ..., zn, z, € V we have

|f(z1a EE) Z’n)if(zla ceey Zi—15 Z;; Zit 1y eens ZTL)‘ <ec.
17)
Let Zy, ..., Z,, be n independent random variables

taking values in V. Then, with probability of at
least 1 — § we have

|f(Z17 E) Zn)_E[f(Zh E) Zn)” <c

2
(18)
Lemma 2 (Hoeffding’s Inequality). Let z1, ..., 2m
be a a sequence of i.i.d. random variables and
assume that for all i, B(z;) = pand P(a < z; <
b) = 1. Then, for any ¢ > 0

m
1
72 Zi —
m <

=1

—2me?

b—ap

19)

Lemma 3. Assume that.V(xg,yg),.(xg,yf)
[(h(=i,0°,60%), y;) — (], 0°,0"), 1) < c. Let

> e] < 2exp(

T
1
Rep(H, D) = sup > (Li(0) — LI (9. Dy)),
nen ' =
(20)
then Y6 € [0, 1], with probability of at least 1 — §:

Rep(H, D) < EpRep(H, D) + ¢y 22820)
" an
Proof. Let s = (z8, ). The
training set for MTL is D =
{{(s%,...,s’f}7...,{s%?...,s?},.;.,{s%p,...,s%}}.
For Vt,i, replace s; with u} = (z},y;) €
D; and create a new dataset D
(st oy 8T}, o {8y oy uly oy 8T oy {s lT
Let hi(-) = h(-,0%,0"). As V(xt,yt),( Iy ) :
|l(h(x21559870t)7yz) - l(h(xtvas et) g)‘ <c

have

Rep(H, D) —
< sup 7|y (27, yf')
heH

Rep(H, D)

(22)

nlog(2/5)'

ST}}

= U(he(27), )| < 757

Using the McDiarmid’s Inequality (Lemma 1), we
have

Rep(H, D) < EpRep(H, D)+ 25/ Ts0)

=EpRep(H, D) + cy/ 21%(5/6)
(23)
We conclude our proof. O

Proof of Theorem 2.

Proof. Using the standard symmetrization argu-

ment (for example, see Lemma 2.3.1 of (Aad

van der Vaart, 1996) ), we have
EpRep(H,D) < 2EpR(loH o D). (24)

Combining Eq. (21) and Eq. (24), with probability
1—46/2:

L0, Dy))
/2log(4/9)
Tn

Obviously, with probability of at least 1 — ¢ /2, for
all h € H, we have

LS (Lu(0) - L (9, Dy))

26
ngDR(onoD)ﬂ\/@_ (26)

T
SUPpren % Zt:1(£t<

) (25)
<2BpR(loHoD)+c

Let s (28, yb). The train-
ing set for MTL s D =
{{(s1, oo 8T}, s {1 ey ST}, vy {85, oy s 3)

For Vt, i, replace si with ui = (z},y;) € Dy
and create a new dataset D = {{(s1,...,s7}, ...,
{5%,...,%,...,s?}7...,{s%p,...,s%}}. A o

Let ht() = h(_'vesvgt) As v(‘rtvyt) (xwyt) :
1R}, 6%,0"), 57) — U(h(x,0%,0"),4)| < e we
have

Rep(H, D) — Rep(H, D) <
sup 7 [1(he(27), 9i") — 1(he(2}), yi)| < 757
heH
27)
Using the McDiarmid’s Inequality (Lemma 1), we
have that: with probability of at least 1 — 0/2:

EpR(loHoD) < R(loHo D)+2¢y/ 280/,
(28)
Based on Eq. (28) and the union bound, we have

that - with probability of at least 1 — 4:

LS (L(0) — £ (0, Dy))

< 2R(lo H o D) + 4ey/ 208040,

(29)
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In our setting, [(+,-) : V! x V! —
‘We have

LT (£4(0) — L7 (0, Dy))
< 2R(loHoD)+4\/@.

We conclude our proof. O

[0,1], then ¢ = 1.

(30)

Based on the Hoeffding’s Inequality (Lemma 2),
we have the following theorem.

Proof of Theorem 3.

Proof. Based on the Hoeffding’s Inequality
(Lemma 2) and [(,-) : V! x V' — [0, 1], for each
h(-,0%,0") € H!, we have

P|L4(0) = L7(0, Dy)| > ] < 2eap(—2me?).
(€1))
Then, with probability of at least 1 —2exp(—2me?),
we have
1£4(0) — L0, Dy)| < e. (32)

Let 6 = 2exp(—2me?), we have that with proba-
bility of at least 1 — 6,

log(2/9)

|£:(0) — L0, Dy)| </ —F——.  (33)
Thus, for each task,
log(2/6
Lo(0) - L0, D) < % (34)

Since the bound for each task are independent, we
have

T
1 log(2/6
2 5°00) - £10.) </ 220 )
t=1
We conclude our proof. O

B Detailed Experimental Settings

We adopt the hard parameter-sharing MTL frame-
work (Mao et al., 2021), where the shared repre-
sentation extractor is built with TextCNN or BERT;
besides, the task-specific module is formulated
by means of one fully connected layer ending

with a softmax function. The TextCNN module
is structured with three parallel convolutional lay-
ers with kernels size of 3, 5, 7 respectively. For
TextCNN, we adopt Pre-trained GloVe (Penning-
ton et al., 2014) word embeddings. By contrast,
the BERT module is formulated via a pre-trained
BERT-base model provided by Hugging Face(Wolf
et al., 2020), with a hidden size of 768, 12 Trans-
former blocks and 12 self-attention heads.

We train the deep MTL network model in line
with Algorithm 1. We set « to be 0.1 and 0.5 for
sentiment analysis and topic classification respec-
tively, and the query-split radio (radio of query
samples to entire training samples) to be 0.1 for
both sentiment analysis and topic classification. We
use the Adam optimizer (Kingma and Ba, 2015).
We train over 3000 epochs for TextCNN and fine-
tune over 50 epochs for BERT. For TextCNN,
the learning rate is le — 3 and the batch size is
256. For BERT, the learning rate is 2e — 5 , the
batch size is 32, and the max sequence length is
256. For the baselines, we search over the set
{le—5,2¢—5,5e—5,1le—4,5e—4,1e—3, 5e—3}
learning rates and choose the model with best per-
formance.

C Classification Performance on BERT

For the BERT-based MTL model, we compare the
proposed MetaWeighting with the baselines and
report the results over 10 runs by plotting the clas-
sification accuracy of each task for both sentiment
analysis and topic classification in Fig. 10 and 11.
AdvMTL and TchebycheffAdv are not available
for BERT; thus, we do not compare with AdvMTL
and compare with Tchebycheff which is Tcheby-
cheffAdv without aversarial module (Mao et al.,
2021). From these figures, we can see that our
proposed MetaWeighting outperforms all baselines
and achieves state-of-the-art performance.

D The Evolution of Task Weights for
Sentiment Analysis

Fig. 12 illustrates the changes in task weights in
the training process of MetaWeighting for all the
tasks of sentiment analysis.
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Figure 10: Classification accuracy of Single Task Learning, Uniform Scaling, MGDA, TchebycheffAdv, Uncertainty,
GradNorm, BanditMTL and MetaWeighting on BERT for the sentiment analysis dataset. Each colored cluster
illustrates the classification accuracy performance of a method over 10 runs. Our proposed MetaWeighting
outperforms all baselines on eleven of the fourteen tasks; besides, its average performance is superior to that of all
baselines.
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Figure 11: Classification accuracy of Single Task Learning, Uniform Scaling, MGDA, TchebycheffAdv, Uncertainty,
GradNorm, BanditMTL and MetaWeighting on BERT for the topic classification dataset. Each colored cluster
illustrates the classification accuracy performance of a method over 10 runs. Our proposed MetaWeighting
outperforms all baselines on three of the four tasks; besides, its average performance is superior to that of all
baselines.
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Figure 12: Comparison of task weight adaption processes between MetaWeighting, Uncertainty, Gradnorm, MGDA
and BanditMTL for sentiment analysis.
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