
Self-supervised Regularization for Text Classification

Meng Zhou∗

Shanghai Jiao Tong University,

China

zhoumeng9904@sjtu.edu.cn

Zechen Li∗
Northeastern University,

li.zec@northeastern.edu

Pengtao Xie†
UC San Diego, United States

p1xie@eng.ucsd.edu

Abstract

Text classification is a widely studied problem

and has broad applications. In many real-world

problems, the number of texts for training

classification models is limited, which renders

these models prone to overfitting. To address

this problem, we propose SSL-Reg, a data-

dependent regularization approach based on

self-supervised learning (SSL). SSL (Devlin

et al., 2019a) is an unsupervised learning

approach that defines auxiliary tasks on input

data without using any human-provided labels

and learns data representations by solving

these auxiliary tasks. In SSL-Reg, a supervised

classification task and an unsupervised SSL

task are performed simultaneously. The SSL

task is unsupervised, which is defined purely

on input texts without using any human-

provided labels. Training a model using an

SSL task can prevent the model from being

overfitted to a limited number of class labels

in the classification task. Experiments on 17

text classification datasets demonstrate the

effectiveness of our proposed method. Code

is available at https://github.com
/UCSD-AI4H/SSReg.

1 Introduction

Text classification (Korde and Mahender, 2012;

Lai et al., 2015; Wang et al., 2017; Howard

and Ruder, 2018) is a widely studied problem

in natural language processing and finds broad

applications. For example, given clinical notes

of a patient, judge whether this patient has heart

diseases. Given a scientific paper, judge whether

it is about NLP. In many real-world text clas-

sification problems, texts available for training

are oftentimes limited. For instance, it is difficult

to obtain many clinical notes from hospitals due

∗Equal contribution.
†Corresponding author.

to concern of patient privacy. It is well known

that when training data is limited, models tend to

overfit to training data and perform less well on

test data.

To address overfitting problems in text classi-

fication, we propose a data-dependent regularizer

called SSL-Reg based on self-supervised learning

(SSL) (Devlin et al., 2019a; He et al., 2019; Chen

et al., 2020) and use it to regularize the training

of text classification models, where a supervised

classification task and an unsupervised SSL task

are performed simultaneously. SSL (Devlin et al.,

2019a; He et al., 2019; Chen et al., 2020) is

an unsupervised learning approach that defines

auxiliary tasks on input data without using any

human-provided labels and learns data repre-

sentations by solving these auxiliary tasks. For

example, BERT (Devlin et al., 2019a) is a typical

SSL approach where an auxiliary task is defined

to predict masked tokens and a text encoder is

learned by solving this task. In existing SSL

approaches for NLP, an SSL task and a target task

are performed sequentially. A text encoder is first

trained by solving an SSL task defined on a large

collection of unlabeled texts. Then this encoder is

used to initialize an encoder in a target task. The

encoder is finetuned by solving the target task.

A potential drawback of performing SSL task

and target task sequentially is that text encoder

learned in SSL task may be overridden after being

finetuned in target task. If training data in the

target task is small, the finetuned encoder has a

high risk of being overfitted to training data.

To address this problem, in SSL-Reg we per-

form SSL task and target tasks (which is classi-

fication) simultaneously. In SSL-Reg, an SSL

loss serves as a regularization term and is opti-

mized jointly with a classification loss. SSL-Reg

enforces a text encoder to jointly solve two tasks:

an unsupervised SSL task and a supervised text

classification task. Due to the presence of the SSL

task, models are less likely to be biased to the

classification task defined on small-sized training
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data. We perform experiments on 17 datasets,

where experimental results demonstrate the

effectiveness of SSL-Reg in alleviating overfitting

and improving generalization performance.

The major contributions of this paper are:

• We propose SSL-Reg, which is a data-

dependent regularizer based on SSL, to re-

duce the risk that a text encoder is biased to

a data-deficient classification task on small-

sized training data.

• Experiments on 17 datasets demonstrate the

effectiveness of our approaches.

The rest of this paper is organized as follows.

Section 2 reviews related works. Section 3 and 4

present methods and experiments. Section 5 con-

cludes the paper and discusses future work.

2 Related Works

2.1 Self-supervised Learning for NLP

SSL aims to learn meaningful representations of

input data without using human annotations. It

creates auxiliary tasks solely using input data and

forces deep networks to learn highly effective

latent features by solving these auxiliary tasks.

In NLP, various auxiliary tasks have been pro-

posed for SSL, such as next token prediction

in GPT (Radford et al.), masked token prediction

in BERT (Devlin et al., 2019a), text denoising in

BART (Lewis et al., 2019), contrastive learning

(Fang et al., 2020), and so on. These models have

achieved substantial success in learning language

representations. The GPT model (Radford et al.) is

a language model based on Transformer (Vaswani

et al., 2017). Different from Transformer, which

defines a conditional probability on an output

sequence given an input sequence, GPT defines a

marginal probability on a single sequence. In GPT,

conditional probability of the next token given a

historical sequence is defined using a Transformer

decoder. Weight parameters are learned by max-

imizing likelihood on token sequences. BERT

(Devlin et al., 2019a) aims to learn a Trans-

former encoder for representing texts. BERT’s

model architecture is a multi-layer bidirectional

Transformer encoder. In BERT, Transformer uses

bidirectional self-attention. To train the encoder,

BERT masks some percentage of input tokens at

random, and then predicts those masked tokens by

feeding hidden vectors (produced by the encoder)

corresponding to masked tokens into an output

softmax over word vocabulary. BERT-GPT (Wu

et al., 2019) is a model used for sequence-to-

sequence modeling where a pretrained BERT is

used to encode input text and GPT is used to gen-

erate output texts. In BERT-GPT, pretraining of

BERT encoder and GPT decoder is conducted sep-

arately, which may lead to inferior performance.

Auto-Regressive Transformers (BART) (Lewis

et al., 2019) has a similar architecture as BERT-

GPT, but trains BERT encoder and GPT decoder

jointly. To pretrain BART weights, input texts are

corrupted randomly, such as token masking, token

deletion, text infilling, and so forth, then a network

is learned to reconstruct original texts. ALBERT

(Lan et al., 2019) uses parameter-reduction meth-

ods to reduce memory consumption and increase

training speed of BERT. It also introduces a self-

supervised loss that models inter-sentence coher-

ence. RoBERTa (Liu et al., 2019a) is a replication

study of BERT pretraining. It shows that BERT’s

performance can be greatly improved by carefully

tuning training processes, such as (1) training

models longer, with larger batches, over more

data; (2) removing the next sentence prediction

objective; (3) training on longer sequences, and so

on. XLNet (Yang et al., 2019) learns bidirectional

contexts by maximizing expected likelihood over

all permutations of factorization order and uses a

generalized autoregressive pretraining mechanism

to overcome the pretrain-finetune discrepancy of

BERT. T5 (Raffel et al., 2019) compared pretrain-

ing objectives, architectures, unlabeled datasets,

transfer approaches on a wide range of language

understanding tasks and proposed a unified frame-

work that casts these tasks as a text-to-text task.

ERNIE 2.0 (Sun et al., 2019) proposed a continual

pretraining framework which builds and learns

incrementally pretraining tasks through constant

multi-task learning, to capture lexical, syntactic

and semantic information from training corpora.

Gururangan et al. (2020) proposed task adaptive

pretraining (TAPT) and domain adaptive pretrain-

ing (DAPT). Given a RoBERTa model pretrained

on large-scale corpora, TAPT continues to pre-

train RoBERTa on training dataset of target task.

DAPT continues to pretrain RoBERTa on datasets

that have small domain differences with data in

target tasks. The difference between our proposed

SSL-Reg method with TAPT and DAPT is that

SSL-Reg uses a self-supervised task (e.g., mask

token prediction) to regularize the finetuning of
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RoBERTa where text classification task and self-

supervised task are performed jointly. In contrast,

TAPT and DAPT use self-supervised task for

pretraining, where text classification task and self-

supervised task are performed sequentially. The

connection between our method and TAPT is that

they both leverage texts in target tasks to perform

self-supervised learning, in addition to SSL on

large-scale external corpora. Different from SSL-

Reg and TAPT, DAPT uses domain-similar texts

rather than target texts for additional SSL.

2.2 Self-supervised Learning in General

Self-supervised learning has been widely applied

to other application domains, such as image classi-

fication (He et al., 2019; Chen et al., 2020), graph

classification (Zeng and Xie, 2021), visual ques-

tion answering (He et al., 2020a), and so forth,

where various strategies have been proposed

to construct auxiliary tasks, based on temporal

correspondence (Li et al., 2019; Wang et al.,

2019a), cross-modal consistency (Wang et al.,

2019b), rotation prediction (Gidaris et al., 2018;

Sun et al., 2020), image inpainting (Pathak et al.,

2016), automatic colorization (Zhang et al., 2016),

context prediction (Nathan Mundhenk et al.,

2018), and so on. Some recent works studied

self-supervised representation learning based on

instance discrimination (Wu et al., 2018) with

contrastive learning. Oord et al. (2018) proposed

contrastive predictive coding, which predicts

the future in latent space by using powerful

autoregressive models, to extract useful repre-

sentations from high-dimensional data. Bachman

et al. (2019) proposed a self-supervised repre-

sentation learning approach based on maximizing

mutual information between features extracted

from multiple views of a shared context. MoCo

(He et al., 2019) and SimCLR (Chen et al., 2020)

learned image encoders by predicting whether two

augmented images were created from the same

original image. Srinivas et al. (2020) proposed to

learn contrastive unsupervised representations for

reinforcement learning. Khosla et al. (2020) inves-

tigated supervised contrastive learning, where

clusters of points belonging to the same class

were pulled together in embedding space, while

clusters of samples from different classes were

pushed apart. Klein and Nabi (2020) proposed

a contrastive self-supervised learning approach

for commonsense reasoning. He et al. (2020b);

Yang et al. (2020) proposed an Self-Trans ap-

proach which applied contrastive self-supervised

learning on top of networks pretrained by transfer

learning.

Compared with supervised learning that re-

quires each data example to be labeled by humans

or semi-supervised learning which requires part of

data examples to be labeled, self-supervised learn-

ing is similar to unsupervised learning because

it does not need human-provided labels. The key

difference between SSL and unsupervised learn-

ing is that SSL focuses on learning data repre-

sentations by solving auxiliary tasks defined on

un-labeled data while unsupervised learning is

more general and aims to discover latent struc-

tures from data, such as clustering, dimension re-

duction, manifold embedding (Roweis and Saul,

2000), and so on.

2.3 Text Classification

Text classification (Minaee et al., 2020) is one

of the key tasks in natural language processing

and has a wide range of applications, such as sen-

timent analysis, spam detection, tag suggestion,

and so forth. A number of approaches have been

proposed for text classification. Many of them are

based on RNNs. Liu et al. (2016) use multi-task

learning to train RNNs, utilizing the correlation

between tasks to improve text classification per-

formance. Tai et al. (2015) generalize sequential

LSTM to tree-structured LSTM to capture the syn-

tax of sentences for achieving better classification

performance. Compared with RNN-based mod-

els, CNN-based models are good at capturing lo-

cal and position-invariant patterns. Kalchbrenner

et al. (2014) proposed dynamic CNN, which uses

dynamic k-max-pooling to explicitly capture

short-term and long-range relations of words and

phrases. Zhang et al. (2015) proposed a character-

level CNN model for text classification, which

can deal with out-of-vocabulary words. Hybrid

methods combine RNN and CNN to explore the

advantages of both. Zhou et al. (2015) proposed a

convolutional LSTM network, which uses a CNN

to extract phrase-level representations, then feeds

them to an LSTM network to represent the whole

sentence.

3 Methods

To alleviate overfitting in text classification,

we propose SSL-Reg, which is a regularization
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Figure 1: Illustration of SSL-Reg. Input texts are fed

into a text encoder. Encodings of these texts and their

corresponding labels are fed into the head of a target

task (e.g., classification) which yields a classification

loss. In a self-supervised task, inputs are encodings of

texts and outputs are constructed on original texts (e.g.,

masked tokens). The classification task and SSL task

share the same text encoder and losses of these two

tasks are optimized jointly to learn the text encoder.

approach based on self-supervised learning (SSL),

where an unsupervised SSL task and a supervised

text classification task are performed jointly.

3.1 SSL-based Regularization

SSL-Reg uses a self-supervised learning task to

regularize a text classification model. Figure 1

presents an illustration of SSL-Reg. Given train-

ing texts, we encode them using a text encoder.

Then on top of text encodings, two tasks are

defined. One is a classification task, which takes

the encoding of a text as input and predicts the

class label of this text. Prediction is conducted

using a classification head. The other task is

SSL. The loss of the SSL task serves as a data-

dependent regularizer to alleviate overfitting. The

SSL task has a predictive head. These two tasks

share the same text encoder. Formally, SSL-Reg

solves the following optimization problem:

L(c)(D,L;W(e),W(c)) + λL(p)(D,W(e),W(p))
(1)

where D represents training texts and L represents

their labels. W(e), W(c), and W(p) denote text

encoder, classification head in classification task,

and prediction head in SSL task, respectively. L(c)

denotes classification loss and L(p) denotes SSL

loss. λ is a tradeoff parameter.

At the core of SSL-Reg is using SSL to learn a

text encoder that is robust to overfitting. Our meth-

ods can be used to learn any text encoder. In this

work, we perform the study using a Transformer

encoder, while noting that other text encoders are

also applicable.

3.2 Self-supervised Learning Tasks

In this work, we use two self-supervised learning

tasks—masked token prediction (MTP) and sen-

tence augmentation type prediction (SATP)—to

perform our studies while noting that other SSL

tasks are also applicable.

• Masked Token Prediction (MTP) This task

is used in BERT. Some percentage of input

tokens are masked at random. Texts with

masked tokens are fed into a text encoder

that learns a latent representation for each

token including the masked ones. The task

is to predict these masked tokens by feeding

hidden vectors (produced by the encoder)

corresponding to masked tokens into an

output softmax over word vocabulary.

• Sentence Augmentation Type Prediction
(SATP) Given an original text o, we apply

different types of augmentation methods to

create augmented texts from o. We train a

model to predict which type of augmenta-

tion was applied to an augmented text. We

consider four types of augmentation opera-

tions used in Wei and Zou (2019), including

synonym replacement, random insertion,

random swap, and random deletion. Syn-

onym replacement randomly chooses 10%

of non-stop tokens from original texts and

replaces each of them with a randomly

selected synonym. In random insertion, for

a randomly chosen non-stop token in a text,

among the synonyms of this token, one ran-

domly selected synonym is inserted into a

random position in the text. This operation is

performed for 10% of tokens. Synonyms for

synonym replacement and random insertion

are obtained from Synsets in NLTK (Bird and

Loper, 2004) which are constructed based

on WordNet (Miller, 1995). Synsets serve as

a synonym dictionary containing groupings

of synonymous words. Some words have

only one Synset and some have several. In

synonym replacement, if a selected word

in a sentence has multiple synonyms, we

randomly choose one of them, and replace

all occurrences of this word in the sentence
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Domain Dataset Label Type Train Dev Test Classes

BIOMED
CHEMPROT relation classification 4169 2427 3469 13

RCT abstract sent. roles 180040 30212 30135 5

CS
ACL-ARC citation intent 1688 114 139 6

SCIERC relation classification 3219 455 974 7

NEWS
HYPERPARTISAN partisanship 515 65 65 2

AGNEWS topic 115000 5000 7600 4

REVIEWS
HELPFULNESS review helpfulness 115251 5000 25000 2

IMDB review sentiment 20000 5000 25000 2

Table 1: Statistics of datasets used in (Gururangan et al., 2020). Sources: CHEMPROT (Kringelum et al.,

2016), RCT (Dernoncourt and Lee, 2017), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan et al., 2018),

HYPERPARTISAN (Kiesel et al., 2019), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley et al., 2015),

IMDB (Maas et al., 2011). This table is taken from (Gururangan et al., 2020).

CoLA RTE QNLI STS-B MRPC WNLI SST-2 MNLI QQP AX

(m/mm)

Train 8551 2490 104743 5749 3668 635 67349 392702 363871 –

Dev 1043 277 5463 1500 408 71 872 9815/9832 40432 –

Test 1063 3000 5463 1379 1725 146 1821 9796/9847 390965 1104

Table 2: GLUE dataset statistics.

with this synonym. Random swap randomly

chooses two tokens in a text and swaps their

positions. This operation is performed for

10% of token pairs. Random deletion ran-

domly removes a token with a probability of

0.1. In this SSL task, an augmented sentence

is fed into a text encoder and the encoding is

fed into a 4-way classification head to predict

which operation was applied to generate this

augmented sentence.

3.3 Text Encoder

We use a Transformer encoder to perform the

study while noting that other text encoders are

also applicable. Different from sequence-to-

sequence models (Sutskever et al., 2014) that are

based on recurrent neural networks (e.g., LSTM

[Hochreiter and Schmidhuber, 1997], GRU

[Chung et al., 2014]), which model a sequence

of tokens via a recurrent manner and hence are

computationally inefficient, Transformer eschews

recurrent computation and instead uses self-

attention which not only can capture dependency

between tokens but also is amenable for parallel

computation with high efficiency. Self-attention

calculates the correlation among every pair of

tokens and uses these correlation scores to create

‘‘attentive’’ representations by taking weighted

summation of tokens’ embeddings. Transformer

is composed of building blocks, each consisting

of a self-attention layer and a position-wise feed-

forward layer. Residual connection (He et al.,

2016) is applied around each of these two sub-

layers, followed by layer normalization (Ba et al.,

2016). Given an input sequence, an encoder—

which is a stack of such building blocks—is

applied to obtain a representation for each token.

4 Experiments

4.1 Datasets

We evaluated our method on the datasets

used in Gururangan et al. (2020), which are

from various domains. For each dataset, we

follow the train/development/test split specified

in Gururangan et al. (2020). Dataset statistics are

summarized in Table 1.

In addition, we performed experiments on the

datasets in the GLUE benchmark (Wang et al.,

2018). The General Language Understanding

Evaluation (GLUE) benchmark has 10 tasks,

including 2 single-sentence tasks, 3 similarity and
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paraphrase tasks, and 5 inference tasks. For each

GLUE task, labels in development sets are pub-

licly available and those in test sets are not

released. We obtain performance on test sets by

submitting inference results to GLUE evaluation

server.1 Table 2 shows the statistics of data split

in each task.

4.2 Experimental Setup
4.2.1 Baselines
For experiments on datasets used in Gururangan

et al. (2020), text encoders in all methods are

initialized using pretrained RoBERTa (Liu et al.,

2019a). For experiments on GLUE datasets, text

encoders are initialized using pretrained BERT

(Liu et al., 2019a) or pretrained RoBERTa.

We compare our proposed SSL-Reg with the

following baselines.

• Unregularized RoBERTa (Liu et al., 2019b).

In this approach, the Transformer encoder

is initialized with pretrained RoBERTa.

Then the pretrained encoder and a clas-

sification head form a text classification

model, which is then finetuned on a tar-

get classification task. Architecture of the

classification model is the same as that in

Liu et al. (2019b). Specifically, representa-

tion of the [CLS] special token is passed to a

feedforward layer for class prediction. Non-

linear activation function in the feedforward

layer is tanh. During finetuning, no SSL-

based regularization is used. This approach is

evaluated on all datasets used in Gururangan

et al. (2020) and all datasets in GLUE.

• Unregularized BERT. This approach is the

same as unregularized RoBERTa, except that

the Transformer encoder is initialized by pre-

trained BERT (Devlin et al., 2019a) instead

of RoBERTa. This approach is evaluated on

all GLUE datasets.

• Task adaptive pretraining (TAPT)
(Gururangan et al., 2020). In this approach,

given the Transformer encoder pretrained

using RoBERTa or BERT on large-scale

external corpora, it is further pretrained by

RoBERTa or BERT on input texts in a

target classification dataset (without using

class labels). Then this further pretrained

encoder is used to initialize the encoder in

1https://gluebenchmark.com/leaderboard.

the text classification model and is finetuned

to perform classification tasks which use

both input texts and their class labels. Sim-

ilar to SSL-Reg, TAPT also performs SSL

on texts in target classification dataset. The

difference is: TAPT performs SSL task and

classification task sequentially while SSL-

Reg performs these two tasks jointly. TAPT

is studied for all datasets in this paper.

• Domain adaptive pretraining (DAPT)
(Gururangan et al., 2020). In this approach,

given a pretrained encoder on large-scale

external corpora, the encoder is further pre-

trained on a small-scale corpora whose do-

main is similar to that of texts in a target

classification dataset. Then this further pre-

trained encoder is finetuned in a classification

task. DAPT is similar to TAPT, except that

TAPT performs the second stage pretrain-

ing on texts T in the classification dataset

while DAPT performs the second stage pre-

training on external texts whose domain is

similar to that of T rather than directly on T .

The external dataset is usually much larger

than T .

• TAPT+SSL-Reg. When finetuning the clas-

sification model, SSL-Reg is applied. The

rest is the same as TAPT.

• DAPT+SSL-Reg. When finetuning the clas-

sification model, SSL-Reg is applied. The

rest is the same as DAPT.

4.2.2 Hyperparameter Settings
Hyperparameters were tuned on development

datasets.

Hyperparameter settings for RoBERTa on
datasets used in Gururangan et al. (2020). For a

fair comparison, most of our hyperparameters are

the same as those in Gururangan et al. (2020). The

maximum text length was set to 512. Text encoders

in all methods are initialized using pretrained

RoBERTa (Liu et al., 2019a) on a large-scale

external dataset. For TAPT, DAPT, TAPT+SSL-

Reg, and DAPT+SSL-Reg, the second-stage

pretraining on texts T in a target classification

dataset or on external texts whose domain is simi-

lar to that of T is based on the pretraining approach

in RoBERTa. In SSL-Reg, the SSL task is masked

token prediction. SSL loss function only considers
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Epoch Learning Regularization

Task Rate Parameter

CoLA 10 3e-5 0.2

SST-2 3 3e-5 0.05

MRPC 5 4e-5 0.05

STS-B 10 4e-5 0.1

QQP 5 3e-5 0.2

MNLI 3 3e-5 0.1

QNLI 4 4e-5 0.5

RTE 10 3e-5 0.1

WNLI 5 5e-5 2

Table 3: Hyperparameter settings for BERT on

GLUE datasets, where the SSL task is MTP.

the prediction of masked tokens and ignores the

prediction of non-masked tokens. Probability for

masking tokens is 0.15. If a token t is chosen to be

masked, 80% of the time, we replace t with a spe-

cial token [MASK]; 10% of the time, we replace

t with a random word; and for the rest 10% of the

time, we keep t unchanged. For the regularization

parameter in SSL-Reg, we set it to 0.2 for ACL-

ARC, 0.1 for SCIERC, CHEMPROT, AGNEWS, RCT,

HELPFULNESS, IMDB, and 0.01 for HYPERPARTISAN.

For ACL-ARC, CHEMPROT, RCT, SCIERC, and

HYPERPARTISAN, we trained SSL-Reg for 10 epochs;

for HELPFULNESS, 5 epochs; for AGNEWS, RCT and

IMDB, 3 epochs. For all datasets, we used a batch

size of 16 with gradient accumulation. We used

the AdamW optimizer (Loshchilov and Hutter,

2017) with a warm-up proportion of 0.06, a weight

decay of 0.1, and an epsilon of 1e-6. In AdamW,

β1 and β2 are set to 0.9 and 0.98, respectively. The

maximum learning rate was 2e-5.

Hyperparameter settings for BERT on GLUE
datasets. The maximum text length was set to

128. Since external texts whose domains are sim-

ilar to those of the GLUE texts are not available,

we did not compare with DAPT and DAPT+SSL-

Reg. For each method applied, text encoder is

initialized using pretrained BERT (Devlin et al.,

2019a) (with 24 layers) on a large-scale external

dataset. In TAPT, the second-stage pretraining

is performed using BERT. As we will show

later on, TAPT does not perform well on GLUE

datasets; therefore, we did not apply TAPT+SSL-

Reg on these datasets further. In SSL-Reg, we

studied two SSL tasks: masked token prediction

(MTP) and sentence augmentation type predic-

Epoch Learning Regularization

Task Rate Parameter

CoLA 6 3e-5 0.4

SST-2 3 3e-5 0.8

MRPC 5 4e-5 0.05

STS-B 10 4e-5 0.05

QQP 5 3e-5 0.4

MNLI 4 3e-5 0.5

QNLI 4 4e-5 0.05

RTE 8 3e-5 0.6

WNLI 5 5e-5 0.1

Table 4: Hyperparameter settings for BERT on

GLUE datasets, where the SSL task is SATP.

Epoch Learning Regularization

Task Rate Parameter

CoLA 10 1e-5 0.8

SST-2 3 1e-5 1.0

MRPC 10 1e-5 0.01

STS-B 10 2e-5 0.01

QQP 10 1e-5 0.1

MNLI 3 1e-5 0.1

QNLI 3 1e-5 0.1

RTE 10 2e-5 0.1

WNLI 10 2e-5 0.02

Table 5: Hyperparameter settings for RoBERTa

on GLUE datasets, where the SSL task is MTP.

tion (SATP). In MTP, we randomly mask 15%

of tokens in each text. Batch size was set to 32

with gradient accumulation. We use the AdamW

optimizer (Loshchilov and Hutter, 2017) with

a warm-up proportion of 0.1, a weight decay of

0.01, and an epsilon of 1e-8. In AdamW, β1 and β2
are set to 0.9 and 0.999, respectively. Other hyper-

parameter settings are presented in Table 3 and

Table 4.

Hyperparameter settings for RoBERTa on
GLUE datasets. Most hyperparameter settings

follow those in RoBERTa experiments performed

on datasets used in Gururangan et al. (2020).
We set different learning rates and different

epoch numbers for different datasets as guided by

Liu et al. (2019b). In addition, we set different

regularization parameters for different datasets.

These hyperparameters are listed in Table 5.
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Dataset RoBERTa DAPT TAPT SSL-Reg TAPT+SSL-Reg DAPT+SSL-Reg

CHEMPROT 81.91.0 84.20.2 82.60.4 83.10.5 83.50.1 84.40.3

RCT 87.20.1 87.60.1 87.70.1 87.40.1 87.70.1 87.70.1

ACL-ARC 63.05.8 75.42.5 67.41.8 69.34.9 68.12.0 75.71.4

SCIERC 77.31.9 80.81.5 79.31.5 81.40.8 80.40.6 82.30.8

HYPERPARTISAN 86.60.9 88.25.9 90.45.2 92.31.4 93.21.8 90.73.2
AGNEWS 93.90.2 93.90.2 94.50.1 94.20.1 94.40.1 94.00.1

HELPFULNESS 65.13.4 66.51.4 68.51.9 69.40.2 71.01.0 68.31.4
IMDB 95.00.2 95.40.1 95.50.1 95.70.1 96.10.1 95.40.1

Table 6: Results on datasets used in Gururangan et al. (2020). For vanilla (unregularized) RoBERTa,

DAPT, and TAPT, results are taken from Gururangan et al. (2020). For each method on each dataset, we

run it for four times with different random seeds. Results are in ms format, where m denotes mean and

s denotes standard derivation. Following Gururangan et al. (2020), for CHEMPROT and RCT, we report

micro-F1; for other datasets, we report macro-F1.

4.3 Results

4.3.1 Results on the Datasets used in
Gururangan et al. (2020)

Performance of text classification on datasets used

in Gururangan et al. (2020) is reported in Table 6.

Following Gururangan et al. (2020), for CHEMPROT

and RCT, we report micro-F1; for other datasets,

we report macro-F1. From this table, we make

the following observations. First, SSL-Reg out-

performs unregularized RoBERTa significantly

on all datasets. We used a double-sided t-test

to perform significance tests. The p-values are

less than 0.01, which indicate strong statistical

significance. This demonstrates the effectiveness

of our proposed SSL-Reg approach in allevi-

ating overfitting and improving generalization

performance. To further confirm this, we measure

the difference between F1 scores on the training

set and test set in Table 7. A larger difference

implies more overfitting: performing well on the

training set and less well on the test set. As can

be seen, the train-test difference under SSL-Reg

is smaller than that under RoBERTa. SSL-Reg

encourages text encoders to solve an additional

task based on SSL, which reduces the risk of

overfitting to the data-deficient classification task

on small-sized training data. In Figure 2, we

compare the training dynamics of unregularized

RoBERTa and SSL-Reg (denoted by ‘‘Regular-

ized"). As can be seen, under a large regularization

parameter λ = 1, our method achieves smaller

Dataset RoBERTa SSL-Reg

CHEMPROT 13.05 13.57

ACL-ARC 28.67 25.24
SCIERC 19.51 18.23
HYPERPARTISAN 7.44 5.64

Table 7: Difference between F1 score on training

set and F1 score on test set with or without SSL-

Reg (MTP). Bold denotes a smaller difference,

which means overfitting is less severe.

differences between training accuracy and valida-

tion accuracy than unregularized RoBERTa; our

method also achieves smaller differences between

training accuracy and test accuracy than unreg-

ularized RoBERTa. These results show that our

proposed SSL-Reg indeed acts as a regularizer

which reduces the gap between performances on

training set and validation/test set. Besides, when

increasing λ from 0.1 to 1, the training accuracy

of SSL-Reg decreases considerably. This also

indicates that SSL-Reg acts as a regularizer which

penalizes training performance.

Second, on 6 out of the 8 datasets, SSL-Reg

performs better than TAPT. On the other two

datasets, SSL-Reg is on par with TAPT. This

shows that SSL-Reg is more effective than TAPT.

SSL-Reg and TAPT both leverage input texts in

classification datasets for self-supervised learn-

ing. The difference is: TAPT uses these texts to

pretrain the encoder while SSL-Reg uses these

texts to regularize the encoder during finetuning.

In SSL-Reg, the encoder is learned to perform
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Figure 2: Training dynamics of unregularized RoBERTa and SSL-Reg (denoted by ‘‘Regularized’’) on

HYPERPARTISAN and ACL-ARC. In SSL-Reg, we experimented with two values of the regularization parameter λ:

0.1 and 1.

classification tasks and SSL tasks simultaneously.

Thus the encoder is not completely biased to

classification tasks. In TAPT, the encoder is first

learned by performing SSL tasks, then finetuned

by performing classification tasks. There is a risk

that after finetuning, the encoder is largely biased

to classification tasks on small-sized training data,

which leads to overfitting.

Third, on 5 out of the 8 datasets, SSL-Reg

performs better than DAPT, although DAPT

leverages additional external data. The reasons

are two-fold: 1) similar to TAPT, DAPT performs

SSL task first and then classification task sepa-

rately; as a result, the encoder may be eventually

biased to classification task on small-sized train-

ing data; 2) external data used in DAPT still has a

domain shift with target dataset; this domain shift

may render the text encoder pretrained on external

data not suitable for target task. To verify this, we

measure the domain similarity between external

texts and target texts by calculating cosine similar-

ity between the BERT embeddings of these texts.

The similarity score is 0.14. As a reference, the

similarity score between texts in the target data-

set is 0.27. This shows that there is indeed a do-

main difference between external texts and target

texts.

Fourth, on 6 out of 8 datasets, TAPT+SSL-Reg

performs better than TAPT. On the other two

datasets, TAPT+SSL-Reg is on par with TAPT.

This further demonstrates the effectiveness of

SSL-Reg.

Fifth, on all eight datasets, DAPT+SSL-Reg

performs better than DAPT. This again shows that

SSL-Reg is effective.

Figure 3: How regularization parameter in SSL-Reg

affects text classification F1 score.

Sixth, on 6 out of 8 datasets, TAPT+SSL-Reg

performs better than SSL-Reg, indicating that it

is beneficial to use both TAPT and SSL-Reg:

first use the target texts to pretrain the encoder

based on SSL, then apply SSL-based regularizer

on these target texts during finetuning.

Seventh, DAPT+SSL-Reg performs better than

SSL-Reg on 4 datasets, but worse on the other

4 datasets, indicating that with SSL-Reg used,

DAPT is not necessarily useful.

Eighth, on smaller datasets, improvement

achieved by SSL-Reg over baselines is larger.

For example, on HYPERPARTISAN which has only

about 500 training examples, improvement of

SSL-Reg over RoBERTa is 5.7% (absolute per-

centage). Relative improvement is 6.6%. As

another example, on ACL-ARC which has about

1700 training examples, improvement of SSL-Reg

over RoBERTa is 6.3% (absolute percentage).
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CoLA SST-2 RTE QNLI MRPC
(Matthew Corr.) (Accuracy) (Accuracy) (Accuracy) (Accuracy/F1)

The median result
BERT, Lan et al. 2019 60.6 93.2 70.4 92.3 88.0/–
BERT, our run 62.1 93.1 74.0 92.1 86.8/90.8

TAPT 61.2 93.1 74.0 92.0 85.3/89.8

SSL-Reg (SATP) 63.7 93.9 74.7 92.3 86.5/90.3

SSL-Reg (MTP) 63.8 93.8 74.7 92.6 87.3/90.9

The best result
BERT, our run 63.9 93.3 75.8 92.5 89.5/92.6
TAPT 62.0 93.9 76.2 92.4 86.5/90.7

SSL-Reg (SATP) 65.3 94.6 78.0 92.8 88.5/91.9

SSL-Reg (MTP) 66.3 94.7 78.0 93.1 89.5/92.4

Table 8: Results of BERT-based experiments on GLUE development sets, where results on MNLI and

QQP are the median of five runs and results on other datasets are the median of nine runs. The size of

MNLI and QQP is very large, taking a long time to train on. Therefore, we reduced the number of runs.

Because we used a different optimization method to re-implement BERT, our median performance is

not the same as that reported in Lan et al. (2019).

Relative improvement is 10%. In contrast, on

large datasets such as RCT which contains about

180000 training examples, improvement of SSL-

Reg over RoBERTa is 0.2% (absolute percentage).

Relative improvement is 0.2%. On another large

dataset AGNEWS which contains 115000 train-

ing examples, improvement of SSL-Reg over

RoBERTa is 0.3% (absolute percentage). Relative

improvement is 0.3%. The reason that SSL-Reg

achieves better improvement on smaller datasets

is that smaller datasets are more likely to lead

to overfitting and SSL-Reg is more needed to

alleviate this overfitting.

Figure 3 shows how classification F1 score

varies as we increase regularization parameter λ
from 0.01 to 1.0 in SSL-Reg. As can be seen,

starting from 0.01, when the regularizer parameter

is increasing, F1 score increases. This is because a

larger λ imposes a stronger regularization effect,

which helps to reduce overfitting. However, if λ
becomes too large, F1 score drops. This is be-

cause the regularization effect is too strong, which

dominates classification loss. Among these 4 da-

tasets, F1 score drops dramatically on HYPER-

PARTISAN as λ increases. This is probably because

this dataset contains very long sequences. This

makes MTP on this dataset more difficult and

therefore yields an excessively strong regulariza-

tion outcome that hurts classification performance.

Compared with HYPERPARTISAN, F1 score is less

sensitive on other datasets because their sequence

lengths are relatively smaller.

4.3.2 Results on the GLUE Benchmark
Table 8 and Table 9 show results of BERT-based

experiments on development sets of GLUE. As

mentioned in (Devlin et al., 2019b), for the 24-

layer version of BERT, finetuning is sometimes

unstable on small datasets, so we run each method

several times and report the median and best per-

formance. Table 10 shows the best performance on

test sets. Following Wang et al. (2018), we report

Matthew correlation on CoLA, Pearson correla-

tion and Spearman correlation on STS-B, accuracy

and F1 on MRPC and QQP. For the rest of the

datasets, we report accuracy. From these tables, we

make the following observations. First, SSL-Reg

methods including SSL-Reg-SATP and SSL-Reg-

MTP outperform unregularized BERT (our run)

on most datasets: 1) on test sets, SSL-Reg-SATP

performs better than BERT on 7 out of 10 datasets

and SSL-Reg-MTP performs better than BERT on

9 out of 10 datasets; 2) in terms of median results

on development sets, SSL-Reg-SATP performs

better than BERT (our run) on 7 out of 9 datasets

and SSL-Reg-MTP performs better than BERT

(our run) on 8 out of 9 datasets; 3) in terms of

best results on development sets, SSL-Reg-SATP

performs better than BERT (our run) on 8 out of 9

datasets and SSL-Reg-MTP performs better than
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MNLI-m/mm QQP STS-B WNLI
(Accuracy) (Accuracy/F1) (Pearson Corr./Spearman Corr.) (Accuracy)

The median result
BERT, Lan et al. 2019 86.6/– 91.3/– 90.0/– –

BERT, our run 86.2/86.0 91.3/88.3 90.4/90.0 56.3

TAPT 85.6/85.5 91.5/88.7 90.6/90.2 53.5

SSL-Reg (SATP) 86.2/86.2 91.6/88.8 90.7/90.4 56.3

SSL-Reg (MTP) 86.6/86.6 91.8/89.0 90.7/90.3 56.3

The best result
BERT, our run 86.4/86.3 91.4/88.4 90.9/90.5 56.3

TAPT 85.7/85.7 91.7/89.0 90.8/90.4 56.3

SSL-Reg (SATP) 86.4/86.5 91.8/88.9 91.1/90.8 59.2
SSL-Reg (MTP) 86.9/86.9 91.9/89.1 91.1/90.8 57.7

Table 9: Continuation of Table 8.

BERT TAPT SSL-Reg (SATP) SSL-Reg (MTP)

CoLA (Matthew Corr.) 60.5 61.3 63.0 61.2

SST-2 (Accuracy) 94.9 94.4 95.1 95.2
RTE (Accuracy) 70.1 70.3 71.2 72.7
QNLI (Accuracy) 92.7 92.4 92.5 93.2
MRPC (Accuracy/F1) 85.4/89.3 85.9/89.5 85.3/89.3 86.1/89.8
MNLI-m/mm (Accuracy) 86.7/85.9 85.7/84.4 86.2/85.4 86.6/86.1
QQP (Accuracy/F1) 89.3/72.1 89.3/71.6 89.6/72.2 89.7/72.5
STS-B (Pearson Corr./Spearman Corr.) 87.6/86.5 88.4/87.3 88.3/87.5 88.1/87.2

WNLI (Accuracy) 65.1 65.8 65.8 66.4
AX(Matthew Corr.) 39.6 39.3 40.2 40.3

Average 80.5 80.6 81.0 81.3

Table 10: Results of BERT-based experiments on GLUE test sets, which are scored by the GLUE

evaluation server (https://gluebenchmark.com/leaderboard). Models evaluated on AX

are trained on the training dataset of MNLI.

BERT (our run) on 8 out of 9 datasets. This fur-

ther demonstrates the effectiveness of SSL-Reg

in improving generalization performance.

Second, on 7 out of 10 test sets, SSL-Reg-

SATP outperforms TAPT; on 8 out of 10 test

sets, SSL-Reg-MTP outperforms TAPT. On most

development datasets, SSL-Reg-SATP and SSL-

Reg-MTP outperform TAPT. The only exception

is: on QQP development set, the best F1 of TAPT

is slightly better than that of SSL-Reg-SATP. This

further demonstrates that performing SSL-based

regularization on target texts is more effective

than using them for pretraining.

Third, overall, SSL-Reg-MTP performs better

than SSL-Reg-SATP. For example, on 8 out of 10

test datasets, SSL-Reg-MTP performs better than

SSL-Reg-SATP. MTP works better than SATP

probably because it is a more challenging self-

supervised learning task that encourages encoders

to learn more powerful representations.

Fourth, improvement of SSL-Reg methods over

BERT is more prominent on smaller training

datasets, such as CoLA and RTE. This may be

because smaller training datasets are more likely

to lead to overfitting where the advantage of SSL-

Reg in alleviating overfitting can be better played.

Tables 11 and 12 show results of RoBERTa-

based experiments on development sets of GLUE.

From these two tables, we make observations that

are similar to those in Table 8 and Table 9. In

terms of median results, SSL-Reg (MTP) per-

forms better than unregularized RoBERTa (our
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CoLA SST-2 RTE QNLI MRPC
(Matthew Corr.) (Accuracy) (Accuracy) (Accuracy) (Accuracy/F1)

The median result
RoBERTa, Liu et al. 2019 68.0 96.4 86.6 94.7 90.9/–
RoBERTa, our run 68.7 96.1 84.8 94.6 89.5/92.3

SSL-Reg (MTP) 69.2 96.3 85.2 94.9 90.0/92.7

The best result
RoBERTa, our run 69.2 96.7 86.6 94.7 90.4/93.1

SSL-Reg (MTP) 70.2 96.7 86.6 95.2 91.4/93.8

Table 11: Results of RoBERTa-based experiments on GLUE development sets, where the median

results are the median of five runs. Because we used a different optimization method to re-implement

RoBERTa, our median performance is not the same as that reported in (Liu et al., 2019b).

MNLI-m/mm QQP STS-B WNLI
(Accuracy) (Accuracy) (Pearson Corr./ (Accuracy)

Spearman Corr.)

The median result
RoBERTa, Liu et al. 2019 90.2/90.2 92.2 92.4/– –

RoBERTa, our run 90.5/90.5 91.6 92.0/92.0 56.3

SSL-Reg (MTP) 90.7/90.7 91.6 92.0/92.0 62.0

The best result
RoBERTa, our run 90.7/90.5 91.7 92.3/92.2 60.6

SSL-Reg (MTP) 90.7/90.5 91.8 92.3/92.2 66.2

Table 12: Continuation of Table 11.

CoLA SST-2 RTE QNLI MRPC STS-B

SR+RD+RI+RS 63.6 94.0 74.8 92.2 86.8/90.6 90.6/90.3
SR+RD+RI 63.4 93.8 72.8 92.1 86.9/90.8 90.6/90.2

SR+RD 61.6 93.6 72.5 92.2 87.2/91.0 90.6/90.3

Table 13: Ablation study on sentence augmentation types in SSL-Reg (SATP), where

SR, RD, RI, and RS denotes synonym replacement, random deletion, random insertion,

and random swap respectively. Results are averaged over 5 runs with different random

initialization.

run) on 7 out of 9 datasets and achieves the same

performance as RoBERTa (our run) on the rest 2

datasets. In terms of best results, SSL-Reg (MTP)

performs better than RoBERTa (our run) on 5 out

of 9 datasets and achieves the same performance

as RoBERTa (our run) on the rest 4 datasets.

This further demonstrates the effectiveness of

our proposed SSL-Reg approach which uses an

MTP-based self-supervised task to regularize the

finetuning of RoBERTa.

In SSL-Reg (SATP), we perform an ablation

study on different types of sentence augmenta-

tion. Results are shown in Table 13, where SR,

RD, RI, and RS denote synonym replacement, ran-

dom deletion, random insertion, and random swap,

respectively. SR+RD+RI+RS means that we apply

these four types of operations to augment sen-

tences; given an augmented sentence a, we predict

which of the four types of operations was applied

to an original sentence to createa. SR+RD+RI+RS

and SR+RD hold similar meanings. From this

table, we make the following observations.

First, as the number of augmentation types

increases from 2 (SR+RD) to 3 (SR+RD+RI) then
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to 4 (SR+RD+RI+RS), the performance increases

in general. This shows that it is beneficial to

have more augmentation types in SATP. The

reason is that more types make the SATP task

more challenging and solving a more challenging

self-supervised learning task can enforce sentence

encoders to learn more powerful representations.

Second, SR+RD+RI+RS outperforms SR+RD

+RI on 5 out of 6 datasets. This demonstrates that

leveraging random swap (RS) for SATP can learn

more effective representations of sentences. The

reason is: SR, RD, and RI change the collection

of tokens in a sentence via synonym replacement,

random deletion, and random insertion; RS does

not change the collection of tokens, but changes

the order of tokens; therefore, RS is complemen-

tary to the other three operations; adding RS can

bring in additional benefits that are complemen-

tary to those of SR, RD, and RI.

Third, SR+RD+RI performs much better than

SR+RD on CoLA and is on par with SR+RD on

the rest five datasets. This shows that adding RI

to SR+RD is beneficial. Unlike synonym replace-

ment (SR) and random deletion (RD) which do

not increase the number of tokens in a sentence, RI

increases token number. Therefore, RI is comple-

mentary to SR and RD and can bring in additional

benefits.

5 Conclusions and Future Work

In this paper, we propose to use self-supervised

learning to alleviate overfitting in text classifica-

tion problems. We propose SSL-Reg, which is a

regularizer based on SSL and a text encoder is

trained to simultaneously minimize classification

loss and regularization loss. We demonstrate the

effectiveness of our methods on 17 text classi-

fication datasets.

For future work, we will use other self-

supervised learning tasks to perform regulariza-

tion, such as contrastive learning, which predicts

whether two augmented sentences stem from the

same original sentence.
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