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Abstract

Text augmentation is an effective technique

in alleviating overfitting in NLP tasks. In ex-

isting methods, text augmentation and down-

stream tasks are mostly performed separately.

As a result, the augmented texts may not be

optimal to train the downstream model. To

address this problem, we propose a three-level

optimization framework to perform text aug-

mentation and the downstream task end-to-

end. The augmentation model is trained in

a way tailored to the downstream task. Our

framework consists of three learning stages.

A text summarization model is trained to per-

form data augmentation at the first stage. Each

summarization example is associated with a

weight to account for its domain difference

with the text classification data. At the second

stage, we use the model trained at the first

stage to perform text augmentation and train

a text classification model on the augmented

texts. At the third stage, we evaluate the text

classification model trained at the second stage

and update weights of summarization exam-

ples by minimizing the validation loss. These

three stages are performed end-to-end. We

evaluate our method on several text classifica-

tion datasets where the results demonstrate the

effectiveness of our method. Code is available

at https://github.com/Sai-Ashish
/End-to-End-Text-Augmentation.

1 Introduction

Data augmentation (Sennrich et al., 2015; Fadaee

et al., 2017; Wei and Zou, 2019) is an effec-

tive technique for mitigating the deficiency of

training data and preventing overfitting. In natu-

ral language processing, many data augmentation

methods have been proposed, such as back transla-

tion (Sennrich et al., 2015), synonym replacement

(Wang and Yang, 2015), random insertion (Wei

and Zou, 2019), and so on. In existing approaches,
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data augmentation and downstream tasks are per-

formed separately: Augmented texts are created

first, then they are used to train a downstream

model. The downstream task does not influence

the augmentation process. As a result, the aug-

mented texts may not be optimal for training the

downstream model.

In this paper, we aim to address this problem.

We propose an end-to-end learning framework

based on multi-level optimization (Feurer et al.,

2015), which performs data augmentation and

downstream tasks in a unified manner where not

only augmented texts influence the training of the

downstream model, but also the performance of

downstream task affects how data augmentation

is performed.

In our framework, we use a text summarization

(Gambhir and Gupta, 2017) model to perform data

augmentation. Given an original text t with class

label c, we feed t into the summarization model

to generate a summary s. We set the class label

of s to be c. (s, c) is treated as an augmented

text-label pair of (t, c). The motivation of using

a summarization model for text augmentation is

two-fold. First, the major semantics of an original

text is preserved in its summary; therefore, it is

sensible to assign the class label of the original

text to its summary. Second, the summary ex-

cludes non-essential details in the original text;

as a result, the semantic diversity between the

summary and the original text is rich, which well

serves the purpose of creating diverse augmenta-

tions. The summarization model is trained on a

summarization dataset {(ti, si)}Mi=1 where ti is an

original text and si is the corresponding summary.

For the downstream task, we assume it is text

classification. We assume there is a text classifi-

cation training set {(x(tr)
i , y

(tr)
i )}N (tr)

i=1 where x
(tr)
i

is an input text and y
(tr)
i is the corresponding class

label, and there is a text classification validation

set {(x(val)
i , y

(val)
i )}N (val)

i=1 .
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Our framework consists of three learning stages

that are performed end-to-end. We train a text sum-

marization model G on the summarization dataset

at the first stage. Considering a domain difference

between the summarization data and text classi-

fication data, we associate each summarization

training pair with a weight a ∈ [0, 1]. A smaller

a indicates a large domain difference between

this summarization pair and the text classifica-

tion data, and this pair should be down-weighted

during the training of the summarization model.

These weights are tentatively fixed at this stage

and will be updated later. At the second stage, we

use the trained summarization model to perform

text augmentation for the classification dataset

and train a text classification model on the aug-

mented and original datasets. At the third stage, we

validate the classification model trained at the sec-

ond stage and update weights of summarization

training examples by minimizing the validation

loss. The three stages are performed end-to-end

where they mutually influence each other. We

evaluate our framework on several text classifi-

cation datasets. Various experiments demonstrate

the effectiveness of our method.

The major contributions of this work include:

• We propose a three-level optimization frame-

work to perform text augmentation in an

end-to-end manner. Our framework con-

sists of three learning stages that mutually

influence each other: 1) training text summa-

rization model; 2) training text classification

model; 3) updating weights of summarization

data by minimizing the validation loss of the

classification model.

• Experiments on various datasets demonstrate

the effectiveness of our framework.

The rest of the paper is organized as follows.

Section 2 reviews related work. Section 3 intro-

duces the method. Section 4 gives experimental

results. Section 5 concludes the paper.

2 Related Work

2.1 Data Augmentation in NLP

As an effective way of mitigating the deficiency

of training data, data augmentation has been

broadly studied in NLP (Feng et al., 2021).

Sennrich et al. (2015) proposed a back translation

method for data augmentation, which improves

the BLEU (Papineni et al., 2002a) scores in ma-

chine translation (MT). The back translation tech-

nique first converts the sentences to another

language. It again translates it back to the original

language to augment the original text.

Fadaee et al. (2017) propose a data augmen-

tation method for low-frequency words. Specif-

ically, the method generates new sentence pairs

that contain rare words. Kafle et al. (2017) intro-

duce two data augmentation methods for visual

question answering. The first method uses se-

mantic annotations to augment the questions.

The second technique generates new questions

from images using an LSTM network (Hochreiter

and Schmidhuber, 1997). Wang and Yang (2015)

propose an augmentation technique that replaces

query words with their synonyms. Synonyms are

retrieved based on cosine similarities calculated

on word embeddings. Kolomiyets et al. (2011)

propose to augment data by replacing the tem-

poral expression words with their corresponding

synonyms. They use the vocabulary from the La-

tent Words Language Model (LWLM) and the

WordNet.

Şahin and Steedman (2019) propose two text

augmentation techniques based on dependency

trees. The first technique crops the sentences by

discarding dependency links. The second tech-

nique rotates sentences by tree fragments that are

pivoted at the root. Chen et al. (2020) propose

augmenting texts by interpolating input texts in

a hidden space. Wang et al. (2018) propose aug-

menting sentences by randomly replacing words

in input and target sentences with words from the

vocabulary. SeqMix (Guo et al., 2020) proposes

to create augments by softly merging input/target

sequences.

EDA (Wei and Zou, 2019) uses four operations

to produce data augmentation: synonym replace-

ment, random insertion, random swap, and random

deletion. Kobayashi (2018) proposes to replace

words stochastically with words predicted by a

bi-directional language model. Andreas (2020)

proposes a compositional data augmentation ap-

proach that constructs a synthetic training example

by replacing text fragments in a real example with

other fragments appearing in similar contexts.

Kumar et al. (2021) apply pretrained Transformer

models including GPT-2, BERT, and BART for

conditional data augmentation, where the conca-

tenation of class labels and input texts are fed into
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these pretrained models to generate augmented

texts. Kumar et al. (2021) propose a language

model-based data augmentation method. This ap-

proach first finetunes a language model on limited

training data, then feeds class labels into the fine-

tuned model to generate augmented sentences.

Min et al. (2020) explore several syntactically

informative augmentation methods by applying

syntactic transformations to original sentences

and showed that subject/object inversion could

increase robustness to inference heuristics.

2.2 Bi-level Optimization

Many NLP applications (Feurer et al., 2015;

Baydin et al., 2017; Finn et al., 2017; Liu et al.,

2018; Shu et al., 2019; Zheng et al., 2019) are

based on bi-level optimization (BLO), such as

neural architecture search (Liu et al., 2018), data

selection (Shu et al., 2019; Ren et al., 2020; Wang

et al., 2020), meta learning (Finn et al., 2017),

hyperparameter tuning (Feurer et al., 2015), la-

bel correction (Zheng et al., 2019), training data

generation (Such et al., 2019), learning rate adap-

tation (Baydin et al., 2017), and so forth. In these

BLO-based applications, model parameters are

learned by minimizing a training loss in an in-

ner optimization problem while meta parameters

are learned by minimizing a validation loss in an

outer optimization problem. In these applications,

meta parameters are neural architectures, weights

of data examples, hyperparameters, and so on.

3 Method

This section proposes a three-level optimiza-

tion framework to perform end-to-end text

augmentation.

3.1 Overview

We assume the target task is text classification. We

train a BERT-based (Devlin et al., 2018) text clas-

sifier on a training set D(tr)
c = {(x(tr)

i , y
(tr)
i )}N (tr)

i=1

where x
(tr)
i is an input text and y

(tr)
i is the

corresponding class label. Meanwhile, we have

access to a classification validation set D(val)
c =

{(x(val)
i , y

(val)
i )}N (val)

i=1 . In many application sce-

narios, the training data is limited, which incurs

a high risk of overfitting. To address this prob-

lem, we perform data augmentation of the training

data to enlarge the number of training examples.

We use a text summarization model to perform

Figure 1: Overview of our framework.

data augmentation. Given an original training pair

(x
(tr)
i , y

(tr)
i ), we feed the input text x

(tr)
i into the

text summarization model and get a summary

si. Because si preserves the major semantics

of x
(tr)
i , we can assign the class label y

(tr)
i of

x
(tr)
i to si. In the end, we obtain an augmented

training pair (si, y
(tr)
i ). This process can be ap-

plied to every original training example and create

corresponding augmented training examples.

To enable the text summarization model and

the text classifier to influence and benefit from

each other mutually, we develop a three-level

optimization framework to train these two mod-

els end-to-end. Our framework consists of three

learning stages performed in a unified manner. At

the first stage, we train the text summarization

model. At the second stage, we use the summa-

rization model trained at the first stage to perform

text augmentation and train the classifier on the

augmented examples. At the third stage, we eval-

uate the classifier on a validation set and update

weights of summarization training examples by

minimizing the validation loss. Figure 1 shows an

overview of our framework. Next, we describe the

three stages in detail.

3.2 Stage I

At the first stage, we train the text summariza-

tion model. We use BART (Lewis et al., 2019)

to perform summarization. BART is a pretrained

Transformer (Vaswani et al., 2017) model con-

sisting of an encoder and a decoder. The encoder

takes a text as input, and the decoder generates a

summary of the text. Let S denote the summariza-

tion model. The training data is Ds = {(ti, si)}Mi=1

where ti is an input text and si is the correspond-

ing summary. Often, the summarization datasetDs

has a domain shift with the classification dataset

Dc. For example, in Ds, if its domain difference
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with the classification dataset is large, the summa-

rization model trained by this example may not be

suitable to perform data augmentation for Dc. To

address this problem, we associate each example

in Ds with a weight a ∈ [0, 1]. If a is close to 0,

it means that the domain difference between

this example and Ds is large, and this example

should be down-weighted during training the

summarization model.

At this stage, we solve the following optimiza-

tion problem:

S∗(A) = min
S

M∑

i=1

ail(S, ti, si) (1)

where A = {ai}Mi=1 and l(·) is the teacher-forcing

loss. The loss of (ti, si) is weighted by the weight

ai of this example. If (ti, si) has large domain

difference with Ds, ai should be close to 0, then

ail(S, ti, si) is made close to 0, which effectively

excludes (ti, si) from the training process. The

optimally trained model S∗ depends on A since

S∗ depends on the loss function, and the loss

function depends on A. A is tentatively fixed at

this stage and will be updated at a later stage.

A cannot be updated at this stage. Otherwise, a

trivial solution will be yielded where all values in

A are 0.

3.3 Stage II
At the second stage, we use the summarization

model S∗(A) trained at the first stage to perform

data augmentation of D(tr)
c = {(x(tr)

i , y
(tr)
i )}N (tr)

i=1 .

For each x
(tr)
i in D(tr)

c , we feed it into S∗(A)
to generate a summary g(x

(tr)
i , S∗(A)). In the

end, we obtain an augmented dataset G(D(tr)
c ,

S∗(A)) = {(g(x(tr)
i , S∗(A)), y(tr)i )}N (tr)

i=1 . We

train a BERT-based text classifier C on

the original data D(tr)
c and augmented data

G(D(tr)
c , S∗(A)).

At this stage, we solve the following optimiza-

tion problem:

C∗(S∗(A)) =
minC L(C,D(tr)

c ) + γL(C,G(D(tr)
c , S∗(A)))

(2)

where L(·) denotes a cross-entropy classification

loss and γ is a tradeoff parameter. The first loss

term is defined on the original training dataset, and

the second loss term is defined on the augmented

training dataset. The optimally trained classifier

C∗ depends on S∗(A) since C∗ depends on the

training loss, which depends on S∗(A).

3.4 Stage III

At the third stage, we evaluate the classifier trained

at the second stage on the classification validation

set D(val)
c = {(x(val)

i , y
(val)
i )}N (val)

i=1 and update the

weights A by minimizing the validation loss. At

this stage, we solve the following optimization

problem:

min
A

L(C∗(S∗(A)),D(val)
c ) (3)

3.5 A Three-Level Optimization Framework

Putting all pieces together, we have the following

three-level optimization framework.

minA L(C∗(S∗(A)),D(val)
c )

s.t. C∗(S∗(A)) = minC L(C,D(tr)
c )+

γL(C,G(D(tr)
c , S∗(A)))

S∗(A) = minS

M∑

i=1

ail(S, ti, si) (4)

There are three optimization problems in this

framework, each corresponding to a learning

stage. From bottom to top the optimization prob-

lems correspond to learning stages I, II, and III,

respectively. The first two optimization problems

are nested on the constraint of the third optimiza-

tion problem. These three stages are conducted

end-to-end in this unified framework. The solution

S∗(A) obtained in the first stage is used to per-

form text augmentation in the second stage. The

classification model trained in the second stage

is used to make predictions at the third stage.

The importance weights A updated in the third

stage change the training loss in the first stage and

consequently changes the solution S∗(A), which

subsequently changes C∗(S∗(A)).

3.6 Optimization Algorithm

In this section, we develop a gradient-based opti-

mization algorithm to solve the problem defined

in Eq. (4). Drawing inspiration from Liu et al.

(2018), we approximate S∗(A) using one step

gradient descent update of S:

S∗(A) ≈ S′ = S − ηs∇S

M∑

i=1

ail(S, ti, si) (5)
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We plug S∗(A) ≈ S′ into the objective func-

tion at the second stage and get an approximate

objective. We approximate C∗(S∗(A)) using

one-step gradient descent update of C:

C∗(A) ≈ C ′ = C − ηc∇C(L(C,D(tr)
c )

+ γL(C,G(D(tr)
c , S′)))

(6)

Finally, we plug C∗(A) ≈ C ′ into the validation

loss and get an approximated objective. Then we

update A by gradient descent:

A ← A− ηa∇AL(C
′,D(val)

c ) (7)

where

∇AL(C
′,D(val)

c )) = ∂S′
∂A

∂C ′
∂S′

∂L(C ′,D(val)
c )

∂C ′

= ηsηcγ∇2
A,S

M∑
i=1

ail(S, ti, si)

∇2
S′,CL(C,G(D(tr)

c , S′))∇C ′L(C ′,D(val)
c )

(8)

Eq. (8) involves an expensive matrix-vector prod-

uct, whose computational complexity can be

reduced by a finite difference approximation.

Eq. (8) can be approximated as:

≈ ηsηcγ
2α {[∇S′L(C+,G(D(tr)

c , S′))−
∇S′L(C−,G(D(tr)

c , S′))]∇2
A,S

M∑
i=1

ail(S, ti, si)}
(9)

where

α =
0.01∥∥∥∇C ′L(C ′,D(val)

c )
∥∥∥
2

,

C± = C ± α∇C ′L(C ′,D(val)
c )

The matrix-vector multiplication in Eq. (9) can be

further approximated by:

1

α±
S

{∇A

M∑

i=1

ail(S
+
± ,ti, si)−∇A

M∑

i=1

ail(S
−
± ,ti, si)}

(10)

where

α±
S =

0.01∥∥∥∇S′L(C±,G(D(tr)
c , S′))

∥∥∥
2

,

S+
± = S ± α+

S∇T ′L(C+,G(D(tr)
c , S′))

S−
± = S ± α−

S∇T ′L(C−,G(D(tr)
c , S′))

Algorithm 1 Optimization algorithm

while not converged do
Update weight parameters S using Eq. (5)

Update weight parameters C using Eq. (6)

Update meta parameters A using Eq. (7)

end while

Dataset Train Validation Test
IMDB 6.7k 6.7k 25k

Yelp Review 10k 10k 38k

SST-2 10k 10k 872

Amazon Review 10k 10k 10k

Table 1: Split statistics of the classification

datasets.

These update steps iterate until convergence. The

overall algorithm is summarized in Algorithm 1.

4 Experiments

In this section, we report experimental results.

The key takeaways include: 1) our proposed

end-to-end augmentation method performs bet-

ter than baselines that conduct augmentation and

classification separately; 2) our framework is ag-

nostic to the choices of classification models and

can be applied to improve a variety of classifiers;

3) our framework is particularly effective when

the number of training examples is small; 4) our

framework is more effective when the length of

input texts is large.

4.1 Dataset

For the text summarization data, we use the

CNN-DailyMail dataset (See et al., 2017). It con-

tains summaries of around 300k news articles.

The full CNN-DailyMail training set is used for

training the summarization model. We used four

text classification datasets: 1) IMDB containing

movie reviews (Maas et al., 2011), 2) Yelp Re-

view: a binary sentiment classification dataset

(Zhang et al., 2015), 3) SST-2: Stanford Sen-

timent Treebank (Socher et al., 2013), and 4)

Amazon Review: a product review dataset from

Amazon (McAuley and Leskovec, 2013). The

split statistics of these datasets are summarized

in Table 1.

4.2 Baseline

We compare our method with the following

baseline methods.
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• No-Aug: No data augmentation is applied.

• EDA (Wei and Zou, 2019): Augmented sen-

tences are created by randomly applying the

following operations: synonym replacement,

random insertion, random swap, and random

deletion.

• GECA (Andreas, 2020): A compositional

data augmentation approach that constructs

a synthetic training example by replacing

text fragments in a real example with other

fragments appearing in similar contexts.

• LAMBADA (Kumar et al., 2021): A

language model based data augmentation

method. This approach first finetunes a lan-

guage model on real training data, then

feeds class labels into the finetuned model

to generate augmented sentences.

• Sum-Sep: Summarization-based augmenta-

tion and text classification are performed

separately. We first train a summarization

model, use it to perform data augmentation,

then train the classification model on the

augmented training data.

• Multi-task learning (MTL): In this baseline,

the summarization model and classification

model are trained by minimizing a single

objective function, which is the weighted

sum of the summarization and classification

losses. The corresponding formulation is:

minA L(C∗(A),D(val)
c )

s.t. C∗(A) = minC,S L(C,D(tr)
c )+

γL(C,G(D(tr)
c , S)) + λminS

M∑

i=1

ail(S, ti, si)

4.3 Hyperparameter Settings

For the text classification model, we use the one

in EDA (Wei and Zou, 2019). It contains an in-

put layer, a bi-directional hidden layer with 64

LSTM (Hochreiter and Schmidhuber, 1997) units,

a dropout layer with a probability of 0.5, another

bi-directional layer with 32 LSTM units, another

dropout layer with a probability of 0.5, ReLU ac-

tivation, a dense layer with 20 hidden units, and

a softmax output layer. We set the maximum text

length to 150. The loss function is cross-entropy

loss. Model parameters are optimized using the

Adam (Kingma and Ba, 2014) optimizer, with an

epsilon of 10−8. In Adam, β1 and β2 are set to

0.9 and 0.999, respectively. The learning rate is

a constant 10−3. The batch size used is 8. For

the importance weights A of summarization data

examples, we optimize them using an Adam opti-

mizer, with a weight decay of 10−3. Epsilon, β1,
and β2 are set to 10−8, 0.5, and 0.999, respec-

tively. The learning rate is 3× 10−4. The tradeoff

parameter γ is set to 1 for all experiments, unless

otherwise stated.

For the summarization model, we use the dis-

tilled BART model (Shleifer and Rush, 2020).

It has six encoder layers and six decoder layers.

We set the maximum text length for the article

to 1024 and the summary to 75. We use an SGD

optimizer with a momentum of 0.9 and a learning

rate of 10−3. We use a cosine annealing learning

rate scheduler with the minimum learning rate

set to 5× 10−4. We randomly sample a subset of

CNN/DailyMail to train the summarization model.

We balance the CNN/DailyMail data and the

classification data by making the number of sam-

pled CNN/DailyMail examples roughly the same

as the classification data examples.

Accuracy is used as the evaluation metric. Each

experiment runs five times with random initializa-

tions. We report the mean and standard deviation

of the results. The experiments are conducted on

1080Ti GPUs.

4.4 Main Results

Following Wei and Zou (2019), for each classifi-

cation dataset, we randomly sample x percentage

of training data for model training. Tables 2, 3, 4,

and 5 show the average accuracies on the Yelp

Review, IMDB, Amazon Review, and SST-2

datasets, under different percentages.

From these tables, we make the following ob-

servations. First, our method works better than

Sum-Sep. The reason is that our method performs

the summarization-based augmentation and text

classification in an end-to-end framework while

Sum-Sep performs these two tasks separately.

In our end-to-end framework, the summarization

and classification models mutually influence each

other. The performance of the classification model

guides the training of the summarization model.

If the classification accuracy is not high, it indi-

cates that the augmented data generated by the

summarization model is not useful. When this
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Perc. No-Aug EDA GECA LAMBADA Sum-Sep MTL Ours
5% 63.45±4.21 68.45±2.49 69.72±1.72 69.30±1.38 72.53±0.44 72.94±0.52 74.58±0.37

10% 68.15±3.77 74.46±1.82 74.91±2.07 75.03±1.45 76.73±0.57 76.35±0.51 78.62±0.73

20% 72.43±3.16 75.07±4.22 78.29±0.95 76.25±2.57 81.29±0.09 80.47±0.25 81.66±0.13

50% 81.78±1.76 81.57±2.44 83.61±0.93 82.18±1.82 84.90±0.19 84.29±0.22 85.55±0.15

75% 84.52±1.55 82.70±2.30 85.02±0.94 83.71±0.71 86.18±0.25 86.07±0.28 87.10±0.31

100% 85.42±1.52 84.66±1.36 86.45±0.26 85.08±0.49 87.46±0.10 87.15±0.13 87.79±0.07

Table 2: Classification accuracy (%) on Yelp Review. Perc. denotes percentage.

Perc. No-Aug EDA GECA LAMBADA Sum-Sep MTL Ours
5% 52.86±3.22 61.42±1.75 61.58±0.94 61.03±1.46 63.74±0.27 63.27±0.41 64.79±0.32

10% 56.76±3.38 64.06±1.92 63.27±2.76 64.95±1.83 68.42±0.11 67.92±0.14 68.75±0.08

20% 59.54±1.68 67.18±3.20 65.36±0.83 67.61±1.94 69.82±0.61 68.47±0.69 72.04±0.52

50% 66.90±1.98 71.67±1.33 72.89±0.58 71.52±1.57 72.86±0.31 72.40±0.19 73.98±0.25

75% 72.25±1.05 74.23±0.72 73.69±0.55 74.02±0.73 74.78±0.25 74.63±0.41 75.78±0.37

100% 73.96±0.85 75.75±0.27 75.38±0.44 76.45±0.03 76.70±0.08 76.11±0.09 77.00±0.05

Table 3: Classification accuracy (%) on IMDB.

Perc. No-Aug EDA GECA LAMBADA Sum-Sep MTL Ours
5% 63.46±1.51 62.59±2.35 64.82±0.93 63.21±1.07 65.44±0.31 64.81±0.69 67.53±0.42

10% 66.03±1.44 66.20±2.91 68.49±0.82 66.15±1.35 69.76±0.21 69.33±0.26 70.84±0.11

20% 68.04±2.26 68.36±1.05 69.04±1.94 70.96±2.45 72.64±0.58 72.51±0.99 75.28±0.73

50% 76.03±0.75 75.39±1.69 77.02±0.50 76.31±0.37 77.07±0.88 77.05±0.19 78.80±0.62

75% 77.40±1.09 76.30±1.82 78.52±0.52 77.02±0.81 78.78±0.52 78.93±0.37 80.46±0.62

100% 78.36±1.02 78.13±1.38 80.16±0.32 78.94±0.69 81.43±0.12 81.22±0.33 82.01±0.25

Table 4: Classification accuracy (%) on Amazon Review.

Perc. No-Aug EDA GECA LAMBADA Sum-Sep MTL Ours
5% 57.22±2.07 63.42±1.24 58.44±0.57 59.31±0.99 59.05±0.91 60.51±0.32 63.76±0.85

10% 62.04±1.44 66.86±0.73 64.92±0.49 65.79±0.75 65.15±0.37 64.86±0.66 68.23±0.51

20% 64.45±1.99 68.00±0.49 67.48±0.55 66.12±0.87 67.09±1.27 67.84±0.49 69.61±0.21

50% 71.90±1.51 74.77±0.39 72.40±0.55 73.35±0.64 72.25±0.27 74.02±0.44 75.23±0.26

75% 73.74±0.59 75.80±0.81 75.03±0.33 74.29±0.28 75.34±0.07 74.25±0.10 76.00±0.14

100% 77.75±1.49 77.64±0.30 77.10±0.42 75.41±0.85 75.80±0.21 75.39±0.43 77.92±0.05

Table 5: Classification accuracy (%) on SST-2, γ is set to 0.5 for 5% and 20%.

occurs, the summarization model will adjust its

network weights and data weights to generate use-

ful augmentations in the next round of learning. In

contrast, in Sum-Sep, such a feedback loop (from

classification to summarization) does not exist.

Therefore, its performance is inferior.

Second, our method works better than MTL. In

MTL, the summarization model and classification

model are trained simultaneously by minimizing

a single objective function, which is the weighted

sum of the summarization loss and classification

loss. This incurs a competition between these two

tasks: seeking for more decrease of the loss of

one task leads to less decrease of the loss of the

other task. Our method avoids task competition

by performing these two tasks sequentially and

minimizing two different objective functions. The

summarization model is trained by minimizing the

summarization loss. Then the classification model

is trained by minimizing the classification loss. In

this way, there is no competition between these

two tasks. Though performed in two stages, these

two tasks can still mutually influence each other

in our end-to-end framework.

Third, our method performs better than No-Aug.

This shows that the augmented data generated by

our method has good utility for model training.

Fourth, the improvement of our method over

baselines is more prominent when the number

of training examples is smaller (i.e., when the
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Perc. Ours EDA No-Aug
5% 48.36±3.72 40.16±1.94 44.40±5.26

20% 64.24±2.14 51.48±2.44 58.00±4.10

100% 72.36±1.29 57.96±1.21 69.52±2.43

Table 6: Classification accuracy (%) on TREC.

percentage is small). Under the 5% percentage,

we observe an improvement of 11.13%, 11.9%,

4.07%, and 6.59% on Yelp, IMDB, Amazon,

and SST-2 datasets, respectively, over No-Aug.

When the training dataset size is smaller, the

necessity of data augmentation is more significant.

As the percentage increases, the impact of data

augmentation decreases. For the 100% percentage,

we observe an improvement of 2.37%, 3.04%, and

3.65% on Yelp, IMDB, and Amazon, respectively,

over No-Aug.

Fifth, our method works better than EDA,

GECA, and LAMBADA. Again, the reason is

that our method performs data augmentation and

classification end-to-end while these baselines

perform them separately. Compared to EDA, un-

der the 5% percentage, we observe an accuracy

gain of 6.13%, 3.37%, and 4.94% on Yelp, IMDB,

and Amazon, respectively. EDA augments each

input sentence to produce 8-16 new sentences.

Our method achieves a better accuracy (on Yelp,

IMDB, and Amazon) or a similar accuracy (on

SST-2) than EDA with just one augmentation per

input sentence.

EDA uses simple and heuristic rules to generate

augmented sentences which may be noisy and lack

semantic meaningfulness. These noisy augmenta-

tions may render the classification model trained

on them to perform worse. To verify this, we per-

formed experiments on the TREC (Li and Roth,

2002; Hovy et al., 2001) dataset (which is split

into a train/validation/test set with 3000, 2000, and

500 examples respectively). Table 6 shows the

results. As can be seen, with EDA as augmenta-

tion, the classification performance becomes much

worse (compared with No-Aug). In contrast, our

method trains a summarization model to gener-

ate semantically meaningful augmentations and

perform much better than EDA.

Sixth, our method is more effective on long

texts. For example, our framework outperforms

EDA under all percentages on datasets where

the input texts are relatively long, including Yelp,

IMDB, and Amazon (the average number of words

Original sentence: This review is for the Kindle edition of what is

supposedly the Christopher Gill translation of Plato’s Symposium.

However, it turns out if you download it that it is the same as the

Benjamin Jowett translation which is available for free, whereas

here you have to pay upwards of $8 for it. I also checked Penguin

Classics web site and they do not indicate that a eBook version of

this book is available. So be careful when purchasing the Kindle

edition. I had to return my purchase for this Kindle book.

Augmentation: Critically reviewed the Christopher Gill trans-

lation of Plato’s Symposium. An online version of the book is

currently available for free. However, if you download it it is

the same as the Benjamin Jowett translation. In contrast, you pay

upwards of $8.

Original sentence: My issue is not with anything Tom Robbins

wrote, but with narrator Barret Whitener: a white male who

opts to read all the dialogue from Japanese characters in a bad,

generic ‘‘Asian’’ accent. It’s unbearable to listen to. In addition,

Whitener can’t even pronounce the simplest of Japanese words,

like ‘‘sake.’’ How many more years must transpire before an

Asian person can have a voice without being mocked?

Augmentation: The book is written by a white male who reads it

in a bad, generic ‘‘Asian’’ accent. He can’t even pronounce the

simplest of Japanese words, like ‘‘sake’’ Movie is currently being

played by Playmakers’ weekly series .series

Table 7: Two augments generated by our method

for Amazon Review.

per input text in Yelp, IMDB, and Amazon are

133, 234, and 75, respectively). On SST-2, where

the texts are relatively short, our method per-

forms marginally better than EDA under certain

percentages. In CNN-DailyMail, which is used

for training the summarization model, the input

texts are also long. As a result, the summarization

model trained on CNN-DailyMail can generate

good-quality summaries for Yelp, IMDB, and

Amazon. The generated summaries preserve the

major information in the input texts, discard redun-

dant information, and align well with the original

sentences semantically. Table 7 shows some ex-

amples. In this case, it is meaningful for the

summary to inherit the class label of the orig-

inal sentence, and the resulting (augmentation,

label) pairs are useful for training the classifi-

cation model. In contrast, in SST-2, the average

number of words per input text in training data

is only 10. When a short sentence is fed into the

summarization model, the model tends to perform

open text generation by treating the input short

sentence as a prompt. The generated text may

deviate from the original sentence in semantics.

Table 8 shows some examples. In this case, assign-

ing the class label of the original sentence to the

summary introduces labeling noises. Therefore,

the improvement of our method over baselines

may not be substantial. We performed statistical

significance tests using double-sided t-tests. In
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Original sentence: An object lesson in period filmmaking.

Augmentation: An object lesson in period filmmaking is a

time-saving technique. The film was shot by the crew of the late

1960s and early 1980s. It’s been produced since then, with some

scenes being filmed on location . A few years later, it has become

an important part of this type of cinema.

Original sentence: Mean-spirited lashing.

Augmentation: Critically ill-tempered lashing. ‘‘I feel like I’m

going to get out of my own way,’’ says one person. An angry

person lashed out at him for being unprovoked and hateful.

demonstrated anger over the use of alcohol.

Table 8: Two augmentation generated by our

method for SST-2.

most cases, the p-values of our method against

baselines are less than 1e − 3. This shows that

our method is significantly better than baselines

in general.

4.5 Ablation Studies

To evaluate the effectiveness of our proposed

method, we compare with the following ablation

settings.

• Aug-Only. We train the text classification

model on augmented texts only, without us-

ing the original classification data, which

amounts to solving the following problem:

minA L(C∗(S∗(A)),D(val)
c )

s.t. C∗(S∗(A))=minCL(C,G(D(tr)
c , S∗(A)))

S∗(A) = minS

M∑

i=1

ail(S, ti, si)

(11)

• Ablation on classification models. In this

study, we investigate whether our framework

is effective for other classifiers, including

CNN and RoBERTa (Liu et al., 2019). Fol-

lowing Wei and Zou (2019), the CNN model

consists of input layer, 1D convolutional

layer with 128 filters (kernel size is 5),

global 1D max-pooling layer, ReLU acti-

vation function, dense layer (with 20 hidden

units), softmax output layer. For RoBERTa,

we use a batch size of 16 and a learning rate

of 2 × 10−6 to train the model. The maxi-

mum classification text length is set to 128.

γ is set to 1 for all datasets. The rest of the

hyperparameters remain the same.

• Ablation on γ. In this study, we investi-

gate how the test accuracy is affected by the

hyperparameter γ.

Dataset Ours Aug-Only
IMDB 68.75±0.08 66.69±0.37

Yelp Review 78.62±0.73 77.94±0.91

Amazon Review 70.84±0.11 70.14±0.44

SST-2 68.23±0.51 66.17±0.42

Table 9: Comparison with Aug-Only, on 10% of

the classification datasets.

Dataset Ours EDA No-Aug
IMDB 69.84±0.15 69.33±0.08 65.57±0.52

Yelp 78.95±0.69 77.25±0.56 76.85±0.90

Amazon 73.46±0.22 72.86±0.48 70.62±0.79

SST-2 67.32±0.18 66.74±0.05 62.38±0.44

Table 10: Comparison of our method with EDA

and No-Aug, with CNN as the text classifier,

trained on 10% of the classification datasets.

Dataset Ours EDA No-Aug
IMDB 78.38±0.19 77.26±3.31 77.33±0.62

Yelp 88.25±0.28 85.30±0.44 87.13±0.14

Amazon 83.85±0.34 81.36±0.23 82.54±0.24

SST-2 76.34±0.34 74.38±2.18 75.76±1.09

Table 11: Comparison of our method with EDA

and No-Aug, with CNN as the text classifier,

trained on 100% of the classification datasets.

Table 9 compares our method with Aug-Only.

As can be seen, our full method outperforms

Aug-Only. In Aug-Only, only augmented texts

train the classification model without leveraging

the original human-written texts. Because the aug-

mented data is noisier than human-provided data,

using augmented data only may lead to noisy

classification models.

Tables 10 and 11 compare our method with

EDA and No-Aug, with CNN as the text classi-

fier, trained on 10% and 100% of the classification

datasets, respectively. Tables 12 and 13 com-

pare our method with EDA and No-Aug, with

RoBERTa as the text classifier, trained on 10%

and 100% of the classification datasets, respec-

tively. As can be seen, with CNN and RoBERTa

as classifiers, our method still outperforms EDA

and No-Aug. This shows that our method is ag-

nostic to text classifiers and can be leveraged to

improve different text classifiers.

Figure 2 shows how test accuracy changes with

γ, where the model is trained on 10% of IMDB.

As can be seen, when γ increases from 0 to 0.5,
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Dataset Ours EDA No-Aug
IMDB 84.40±0.37 84.35±0.35 83.89±0.64

Yelp 91.12±0.29 90.38±0.39 90.23±0.39

Amazon 90.56±0.37 89.90±0.41 89.60±0.36

SST-2 87.73±0.86 87.10±0.83 87.57±0.74

Table 12: Comparison of our method with EDA

and No-Aug, with RoBERTa as the text classifier,

trained on 10% of the classification datasets.

Dataset Ours EDA No-Aug
IMDB 89.06±0.07 88.59±0.10 88.50±0.14

Yelp 93.60±0.11 93.12±0.05 92.97±0.37

Amazon 92.71±0.04 92.33±0.06 92.20±0.14

SST-2 91.28±0.06 91.09±0.03 91.05±0.07

Table 13: Comparison of our method with EDA

and No-Aug, with RoBERTa as the text classifier,

trained on 100% of the classification datasets.

the classification accuracy increases. This is be-

cause a larger γ renders the classification model

to be trained more by the augmented data. The

augmented data provides additional training re-

sources, which can mitigate the lack of original

data. However, as γ continues to increase, the ac-

curacy decreases. This is because an excessively

large γ renders too much emphasis on augmented

data and less attention paid to original data. Orig-

inal data is less noisy than augmented data and

therefore is more valuable than augmented data

for training high-quality models. Similar results

can be observed in Figure 3, where the model is

trained on 10% of Amazon, SST-2, and Yelp.

We also perform an ablation study which re-

places the summarization data with paraphrase

data. The model S remains the same, which is

still distill-BART. The paraphrase data contains

3,900 sentence pairs from Microsoft Research

Paraphrase Corpus (MRPC) (Dolan and Brockett,

2005). These pairs are labeled as paraphrases by

human. To ensure a fair comparison, we ran-

domly sample 3,900 data examples from CNN-

DailyMail, denoted by CNNDM-3900. Table 16

shows the results. As can be seen, CNNDM-3900

yields better performance than MRPC. This shows

that using the summarization model for sentence

augmentation is more effective than using the

paraphrase model. The possible reason is that a

Figure 2: How test accuracy changes with γ, where the

model is trained on 10% of IMDB.

summarization model discards less important in-

formation of the input text while a paraphrasing

model preserves most information of the input

text; as a result, augmentations generated by the

summarization model are less noisy and have a

larger semantic diversity to the input texts.

4.6 Analysis of Learned Weights of
Summarization Data

Table 14 shows some randomly sampled summa-

rization data examples whose weights learned by

our framework are close to zero when the classifi-

cation dataset is SST-2. Due to the space limit, we

only show the summaries. As can be seen, these

data are primarily about healthcare, energy, law,

and politics, which have a large domain discrep-

ancy with SST-2, which is about movie reviews.

This shows that our framework is able to success-

fully identify out-of-domain summarization data

and exclude them from training the summariza-

tion model.

Table 15 shows some randomly sampled sum-

marization data examples whose weights learned

by our framework are close to one when the clas-

sification dataset is SST-2. Due to the space limit,

we only show the summaries. As can be seen, these

summarization data are primarily about movies,

recreation, and media, which are close to SST-2

in terms of domain similarity.

When the classification dataset is IMDB, the

weights of examples in Table 14 are also close

to zero, and the weights of examples in Table 15

are also close to one. This is because IMDB and

examples in Table 15 are about movies while

examples in Table 14 are not.

Given the learned weights, we split the sum-

marization data into two subsets: ONE, which

contains examples whose weights are > 0.5, and
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Figure 3: How test accuracy changes with γ, where the model is trained on 10% of Amazon, SST-2, and Yelp.

Half of states will expand Medicaid under Obamacare; half

refuse or are on the fence. Low-income citizens and their

advocates say Medicaid expansion necessary. States like Texas,

Florida say a Medicaid expansion is costly and will fail. Politics

at play and most states will eventually expand the program,

political experts say.

The country plans to remove all subsidies in five years. The

price of gasoline goes up four-folds. Iran has trillions of dollars

in natural resources but still struggles, experts say. The changes

aim to dampen domestic demand for fuel and oil, and bolster

overall revenues.

Attorneys for three kidnapped women have ‘‘confidence and

faith’’ in prosecution. Indictment lists use of chains, tape,

vacuum cord against women. Castro also faces 139 counts of

rape, 177 counts of kidnapping, one aggravated murder charge.

A prosecutor’s committee will later consider whether seeking

death penalty is appropriate.

North Korea’s announcement of a planned satellite launch has

provoked alarm. Other countries say it is a way of testing

missile technology. The Japanese defense minister orders the

preparation of missile defenses.

Table 14: Some summarization data examples

whose weights learned by our framework are

close to 0. The classification dataset is SST-2.

Hollywood often misrepresents careers and the workplace in

movies. Work is portrayed as easy or non-existent, and any

outfit is appropriate. This can have a negative effect on younger

generations deciding on careers.

Hollywood bringing back box-office juggernauts Iron Man,

Batman and Spider-Man. 2012 may be a peak year for super-

heroes on film, with much more to come. Writer-director: DC

Comics characters often face more challenges than Marvel.

’‘‘The genre has been popular for decades and is here to stay,’’

Boxofficeguru.com editor says.

Sam Smith wins best new artist, best pop vocal album. Beyonce

now has 20 Grammys, passing Aretha Franklin.

Ted Turner turns 75 years old this month. He founded CNN,

the first 24-hour cable news network, in 1980. In 1990, Turner

hired Wolf Blitzer, host of CNN’s ‘‘The Situation Room’’.

Blitzer reflects on what he learned from his former boss.

Table 15: Some summarization data examples

whose weights learned by our framework are

close to 1. The classification dataset is SST-2.

ZERO, which contains examples whose weights

are ≤ 0.5. For each subset, we use it to train

a summarization model (no reweighting of data

during training), use the summarization model

Data No-Aug Summarize Paraphrase
Yelp 68.15±3.77 75.06±0.62 74.33±0.47

IMDB 56.76±3.38 64.94±0.15 64.13±0.07

Amazon 66.03±1.44 67.36±0.08 66.39±0.14

SST-2 62.04±1.44 67.44±0.27 66.72±0.11

Table 16: Classification accuracy (%) on 10%

of different datasets, when using summarization

data and paraphrase data to train the augmentation

model.

Data No-Aug ONE ZERO
Yelp 68.15±3.77 77.27±0.96 69.92±2.09

IMDB 56.76±3.38 66.94±0.23 57.85±0.41

Amazon 66.03±1.44 69.24±0.15 67.74±0.22

SST-2 62.04±1.44 67.50±0.34 63.69±0.46

Table 17: Classification accuracy (%) on 10% of

different datasets, in the study of how summari-

zation data weights affect downstream classifi-

cation performance.

to generate augmentations, and train the classifi-

cation model on augmented data (together with

real data). Table 17 shows the results. As can be

seen, augmentations generated by the summariza-

tion model trained on ONE improve classification

performance in most cases. In contrast, augmen-

tations generated by the summarization model

trained on ZERO are not helpful.

Using In-domain Data to Train a Summariza-
tion Model. We conduct an experiment that uses

in-domain data to train the summarization model.

Specifically, we replace the CNN-Dailymail

dataset with a movie summarization (MovSum)

dataset crawled from IMDB. The MovSum dataset

contains 135K (movie synopsis, movie summary)

pairs where the summary (shorter) is treated as

a summarization of the synopsis (longer). Mov-

Sum is in the same domain as SST-2 since they

are both about movies. We randomly sample

135K examples from CNN-Dailymail (denoted

by CNNDM-135K) and train the summarization
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Summarization Classification Percentage
Data Accuracy of ones
MovSum 67.72±0.36 84.5

CNNDM-135K 67.15±0.21 39.3

Table 18: Results of our proposed method

on SST-2 (10%) under different summarization

datasets.

model on this subset for a fair comparison. Clas-

sification is conducted on SST-2 (using 10%

training examples).

Table 18 shows the results. As can be seen, using

MovSum to train the summarization model leads

to better classification performance on SST-2.

This is because, compared with CNNDM-135K,

MovSum has a higher domain similarity with

SST-2. A summarization model trained using

in-domain data can generate in-domain augmen-

tations, which are more suitable to train the

classification model. In addition, we measure the

percentage of ones in the learned weights of sum-

marization data examples. Under MovSum, the

percentage is larger. This is because more data

examples in MovSum are in the same domain as

SST-2, compared with CNNDM-135K.

4.7 Analysis of Generated Augmentations

We measure the diversity of generated augmenta-

tion. Two types of diversity measures are used: I)

how different the generated augmentation is from

the input text; and II) how different sentences in

a generated augmentation are. We measure type-I

diversity in the following way: Given an input

text t and an augmentation s generated from t,
calculate the BLEU (Papineni et al., 2002b) score

between s and t. We measure type-II diversity in

the following way: for each pair of sentences in

a generated augmentation, calculate their BLEU

score, then take the average over all pairs. In the

BLEU score, the number of grams is set to 4.

Table 19 shows the results. As can be seen, the

BLEU scores are low for both types of diversity,

which indicates that the augmentations generated

by our method are diverse.

We also check whether generated augmenta-

tions are abstractive. We randomly sample 300

generated augmentations and ask 5 undergrad-

uates to manually annotate whether they are

abstractive (with score 1) or extractive (score 0).

Table 20 shows the results. The average score

Dataset Type-I Type-II
Yelp 0.15 0.07

IMDB 0.22 0.06

Amazon 0.11 0.04

SST-2 0.13 0.06

Table 19: Diversity of generated augmentations.

Dataset Score
Yelp 0.83

IMDB 0.79

Amazon 0.88

SST-2 0.92

Table 20: Abstractiveness of

generated augmentations.

Model Rouge-2 F1 Rouge-L F1
GPT-2 (Radford et al., 2019) 8.27 26.58

Sum-Sep 16.06 34.07

MTL-SST2 11.06 28.44

Ours-SST2 12.77 30.27

MTL-IMDB 10.79 29.20

Ours-IMDB 13.06 30.72

MTL-Yelp 12.15 29.43

Ours-Yelp 12.97 30.62

MTL-Amazon 11.73 29.16

Ours-Amazon 13.13 30.71

Table 21: Evaluation of summarization models.

is close to 1, indicating that the augmentations

generated by our method are abstractive.

4.8 Performance of Summarization Models

We report the performance of the summarization

models in Table 21. For our method and MTL,

the reported scores are averages for different per-

centages of classification training data, where the

classification model is LSTM. From this table, we

make two observations. First, our method outper-

forms GPT2 (Radford et al., 2019), a competitive

model used for text summarization. This shows

that our method can generate meaningful sum-

maries. Second, our method performs worse than

Sum-Sep. The reason is that in our method, the

summarization model is trained for the sake of

generating good augmentations for the classifi-

cation model while Sum-Sep is trained solely to

maximize the summarization performance. Our
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goal is not to generate best summaries, but rather

generating best augmentations for classification

using the summarization model.

5 Conclusions and Discussion

In this paper, we propose a three-level optimiza-

tion framework to perform text augmentation and

classification end-to-end. Our framework consists

of three learning stages performed end-to-end:

1) training a text summarization model; 2) train-

ing a text classification model; and 3) updating

weights of summarization examples by minimiz-

ing the validation loss of the classification model.

Each learning stage corresponds to one level of the

optimization problem in the framework. The three

levels of optimization problems are nested and

solved in a unified way. Our framework enables

the augmentation process to be influenced by the

performance of the text classification task so that

the augmented texts are specifically suitable for

training the classification model. Experiments on

various datasets demonstrate the effectiveness of

our method.

Our framework can be extended to other down-

stream tasks beyond classification, including but

are not limited to text-to-image generation, visual

question answering, dialog generation, etc. To

extend our framework to a downstream task T ,

we need to change the loss functions in Eq. (2)

and Eq. (3) to the loss of task T . For example,

to apply our framework for text-to-image genera-

tion, given each text-image (t, i) pair, we perform

augmentation of the input text t using the sum-

marization model trained in Eq. (1), to get an

augmented text t̂. (t̂, i) would be treated as an

augmented data pair. Then we define GAN-based

losses (Goodfellow et al., 2014) on each (t̂, i)
and each (t, i) to train a text-to-image genera-

tion model. We plan to study such extensions in

future work.

Our current framework has the following limi-

tations. First, it incurs additional computation and

memory costs due to the usage of a summarization

model. Second, currently, our method uses a text

summarization model to generate augmentations.

Publicly available summarization datasets are lim-

ited in size, limiting the augmentation model’s

quality. We plan to address these limitations in

future works. To reduce memory and computa-

tion costs, we will perform parameter sharing

where the encoder weights of the summariza-

tion model and those of the classification model

are tied together. We plan to leverage data-rich

text generation tasks for augmentation to address

the second limitation, such as using machine

translation models to perform back translation.
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