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Transverse instability and dynamics of nonlocal bright solitons
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We study the transverse instability and dynamics of bright soliton stripes in two-dimensional nonlocal
nonlinear media. Using a multiscale perturbation method, we derive analytically the first-order correction to
the soliton shape, which features an exponential growth in time—a signature of the transverse instability. The
soliton’s characteristic timescale associated with its exponential growth is found to depend on the square root
of the nonlocality parameter. This, in turn, highlights the nonlocality-induced suppression of the transverse
instability. Our analytical predictions are corroborated by direct numerical simulations, with the analytical results
being in good agreement with the numerical ones.
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I. INTRODUCTION

Wave instabilities play an important role in the evo-
lution of nonlinear systems, as they are associated with
symmetry-breaking effects resulting in the formation of co-
herent structures or leading to chaotic states [1]. A pertinent
example is the modulational instability (MI) of plane waves
in media governed by the focusing nonlinear Schrödinger
(NLS) equation, with MI resulting in a variety of important
nonlinear processes, such as the formation of envelope bright
solitons, envelope shock waves, and rogue waves [2]. An-
other example is the transverse instability, which refers to the
growth of transverse modulations of quasi-one-dimensional
(1D) (stripe) bright and dark solitons, for focusing [3,4] and
defocusing [5,6] NLS models, respectively. In the elliptic 2D
focusing NLS, the norm of the soliton stripes is infinite, as
they extend to infinity in the transverse direction. Hence,
the bright soliton stripes, being subject to the onset of col-
lapse, break up, through a width modulation, into individual
2D lump-shaped structures. In such a case, the transverse
instability is of the so-called “necking” type [7]. However,
bright solitons of the hyperbolic 2D focusing NLS, as well
as dark solitons of the elliptic 2D defocusing NLS, undergo
undulations of the location of their center, due to the trans-
verse instability, and eventually decay; due to this so-called
“snaking” instability, bright soliton stripes decay into bright
lumps, while dark solitons decay into vortices or dark lumps
[8,9]. It is important to note that this is a popular experimental
technique for observing the instability outcome and subse-
quent pattern formation both in atomic physics [10] and in
nonlinear optics [11,12].

Arrest or substantial suppression of the transverse insta-
bility of solitons has been proved to be a topic of great
interest, and various physical mechanisms have been proposed
to suppress this instability. These mechanisms include the

coupling of solitons with another soliton component [13,14],
making the soliton sufficiently incoherent along the transverse
direction [15], as well as using periodic lattice potentials
[16,17] or localized barrier potentials [18]. In addition, non-
local nonlinearities, occurring, e.g., in plasmas [19], atomic
vapors [20], lead glasses [21], nematic liquid crystals [22], as
well as dipolar Bose-Einstein condensates [23], are known to
play a key role on the stability of solitons. In particular, in
settings with focusing nonlocal nonlinearities, the transverse
instability of 1D bright nonlocal solitons can be substantially
suppressed [24]. Furthermore, the catastrophic self-focusing
effect in local media described by higher-dimensional NLS-
type equations is suppressed by nonlocality, and it is thus
absent in nonlocal media [25,26] (see also the review in
Ref. [27]); as a result, stable 2D and 3D solitons can be formed
[20,21,26–29]. However, in settings with defocusing nonlocal
nonlinearities, the transverse instability of dark nonlocal soli-
tons [30–33] can be suppressed [26,34].

In this work, we revisit the problem of the transverse
instability and dynamics of bright solitons in nonlocal non-
linear media. The considered nonlocal NLS model, namely
a Schrödinger type paraxial wave equation, coupled with a
diffusion-type equation governing the nonlocal response of
the medium, is relevant to a variety of physical contexts. These
include optical media with a thermal nonlinearity (e.g., atomic
vapors [20,21] and liquid solutions [35,36]), plasmas [19,37],
and nematic liquid crystals [38,39]. The considered nonlocal
NLS possesses a sech2-shaped exact analytical bright soliton
solution, which cannot be reduced—in the local nonlinearity
limit—to the usual sech-shaped bright soliton of the NLS;
hence, one cannot exploit this limit to study the effect of
nonlocality on the transverse instability of nonlocal soliton
stripes, as has been done, e.g., in Ref. [24].

Here, we analyze the problem by employing a perturba-
tion method, similar to the one used in Ref. [40] (see also
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Ref. [41]), which uses a perturbation ansatz relying on the
sech2 nonlocal soliton, with a center and a phase becoming
unknown functions of slow time and transverse coordinate.
We find an approximate solution of the nonlocal NLS, where
the correction to the soliton shape is shown to feature an expo-
nential growth in time, which is a signature of the transverse
instability. The latter is of the necking type and is induced
by the soliton phase, which is shown to obey an elliptic par-
tial differential equation (PDE). We show that the instability
growth rate (i.e., the inverse characteristic timescale associ-
ated with the exponential growth of the phase) depends on
the inverse square root of the nonlocality parameter, a fact
highlighting the substantial, nonlocality-induced suppression
of the transverse instability of the bright soliton stripes (in a
similar vein as earlier works [24]). The analytical estimation
for the growth rate, as well as the derived approximate analyti-
cal solution, are found to be in good agreement with respective
results obtained by means of direct simulations. Despite the
prolongation of the lifetime of the solutions obtained herein,
our results do not support the scenario of a complete stabi-
lization of the relevant bright soliton stripes, irrespectively of
the value of nonlocality parameter ν, for the range considered
herein.

The presentation of the manuscript is organized as follows.
In Sec. II, we introduce the model and its exact soliton solu-
tion and present the results of our perturbation method; these
include the derivation of the evolution of the soliton param-
eters, the derivation of the instability growth rate, as well as
the first-order correction of the soliton shape. Section III is
devoted to the presentation of our numerical results and com-
parison with the analytical approximations. Finally, in Sec. IV
we summarize our conclusions and discuss possibilities for
relevant future research.

II. MODEL AND STABILITY ANALYSIS

A. The model and its exact 1D soliton solutions

We consider the propagation of an optical beam in a non-
local nonlinear medium. Let u be the complex electric field
envelope of the light beam satisfying a paraxial, Schrödinger-
type equation, and the real function θ be the nonlinear,
generally nonlocal, medium’s response, assumed to obey a
diffusion-type equation [29]. Then, the evolution of the beam
is governed by the following dimensionless nonlocal NLS
model:

iut + d

2
�u + 2gθu = 0, (1)

ν�θ − 2qθ + 2g|u|2 = 0, (2)

where subscripts denote partial derivatives. Here, the evolu-
tion variable t represents the propagation distance (assumed to
be along the z direction), � ≡ ∂2

x + ∂2
y is the transverse Lapla-

cian, while g and d are coupling and diffraction coefficients,
assumed to be positive; this case corresponds to a focusing
nonlinearity. In addition, q > 0 is a constant and, finally, the
parameter ν, which measures the diffusion length (assumed
to be large compared to the operating wavelength), describes
the strength of nonlocality: indeed, large ν corresponds to a
highly nonlocal response while in the limit ν → 0, Eqs. (1)

and (2) reduce to the following NLS equation with a local
cubic (Kerr-type) nonlinearity:

iut + d

2
�u + 2g2

q
|u|2u = 0. (3)

The model Eqs. (1) and (2) are relevant to a variety of nonlocal
media. These include: (a) optical media featuring a thermal
nonlinearity—such as atomic vapors [20,21] and liquid solu-
tions, with θ being the nonlinear correction to the refractive
index [35,36]; (b) ionized plasmas, with θ being the relative
electron temperature perturbation, and q ∝ m/M being the
relative energy that an electron of mass m delivers to a heavy
particle of mass M during a single collision [19,37]; (c) ne-
matic liquid crystals [38,39], with θ denoting the perturbation
of the optical director angle from its static value due to the
light beam, and q being related to the applied static field which
pretilts the nematic dielectric [22,42].

It is now convenient to rescale the independent variables
and the function θ in Eqs. (1) and (2), so as to reduce the
number of parameters involved. For this purpose, we use the
scalings

r �→ g√
qd

r, t �→ g2

q
t, θ �→ g

q
θ,

where r = (x, y), and cast Eqs. (1) and (2) into the form

iut + 1

2
�u + 2θu = 0, (4)

ν�θ − 2θ + 2|u|2 = 0, (5)

with the sole remaining parameter being the nonlocality pa-
rameter ν �→ (q2d/g2)ν. Notice that, in the context of nematic
liquid crystals, this parameter is large, taking values of the or-
der of O(102) [22,38,39,42]. However, for thermal nonlinear
media, such as liquid solutions [35,36], as well as for partially
ionized plasmas [37], the nonlocality parameter takes values
in the interval 0.1 � ν � 10.

As explained in the Introduction, our scope is to study the
transverse dynamics of 1D bright soliton stripes in the 2D
setting and investigate, in particular, the role of nonlocality. It
is thus convenient to start by presenting such 1D bright soliton
solutions of Eqs. (4) and (5), which were first found in the
pioneering work [43] (see also Ref. [44]). This bright soliton
solution can be found upon using the following ansatz:

u = q0(ξ ) exp[iω(t + σ0)], θ = θ0(ξ ), (6)

where q0 is an unknown real function depending on ξ = k(x −
x0), k is an unknown constant, ω is the unknown frequency
of the solution, while x0 and σ0 are arbitrary real parameters
representing, respectively, the initial location and the phase of
the soliton. Substituting Eqs. (6) into Eqs. (4) and (5), it can
be found that the resulting equations become

k2q0ξξ − 2ωq0 + 4q0θ0 = 0, (7)

νk2θ0ξξ − 2θ0 + 2q20 = 0. (8)

Then, observing that if

θ0 =
√

1

2ν
q0, and ω = 1

ν
, (9)
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then the system Eqs. (7) and (8) reduces to a single ordinary
differential equation (ODE):

q0ξξ − 2

νk2
q0 + 4√

2νk2
q20 = 0. (10)

The latter possesses the exact soliton solution

q0(ξ ) = 3

2
√
2ν

sech2[k(x − x0)], k =
√

1

2ν
, (11)

which implies that the soliton solutions of Eqs. (4) and (5) are
of the form

u0(x, t ) = 3

2
√
2ν

sech2[k(x − x0)] exp[iω(t + σ0)], (12)

θ0(x, t ) = 3

4ν
sech2[k(x − x0)]. (13)

Here it is interesting to note that, while the system of Eqs. (4)
and (5) reduces to the local NLS Eq. (3), the exact solution
Eq. (12) cannot be reduced to the soliton solution of Eq. (3)
(which features a sech-profile and is characterized by a free
parameter); this becomes clear by the fact that limν→0 u0 →
∞. It is also mentioned that Eqs. (12) and (13) represent a
stationary solution of the problem; traveling solutions exist as
well and can easily be constructed by means of a Galilean
boost.

B. Perturbation theory

In order to study the stability of solutions of Eqs. (12) and
(13) in two dimensions, we consider solutions of Eqs. (4) and
(5) in the form of the following asymptotic expansions:

u(ξ, t,Ti,Yi ) =
∞∑
j=0

ε jq j (ξ ) exp {iω[t + σ0(Ti,Yi )]}, (14)

θ (ξ,Ti,Yi ) =
∞∑
j=0

ε jθ j (ξ,Ti,Yi ), (15)

ξ = k[x − x0(Ti,Yi )], (16)

where Ti = εit , Yi = εiy and 0 < ε � 1 is a formal small pa-
rameter. The above perturbation ansatz is actually inspired by
the form of the exact solution of Eq. (6) of the 1D problem but,
now, with the soliton’s center x0 and phase σ0 becoming un-
known functions of the slow variables Ti and Yi. Substituting
the perturbation expansions Eqs. (14) and (15) into Eqs. (4)
and (5) we obtain the following results.

First, at O(ε0), we obtain the system of Eqs. (7) and (8),
which provides the exact soliton solution of Eq. (11) [that
eventually leads, together with Eq. (9), to the solution of
Eqs. (12) and (13)].

At the next orders of approximation, the presence of deriva-
tives of x0 and σ0 with respect to the slow variables renders the
inhomogeneous parts Fj of the resulting equations for q j (with
j = 1, 2, . . .) complex, i.e., Fj = F (r)

j + iF (i)
j ; this implies that

q j itself must be complex, i.e., q j = q(r)j + iq(i)j . Thus, sepa-
rating real and imaginary parts of the resulting equations, we
obtain, at each order, a set of three equations, two of which are

coupled. To be more specific, the resulting equations at orders
O(ε j ) for j = 1, 2, . . . take the following form:(

k2∂2
ξ − 2ω + 4θ0

)
q(r)j + 4q0θ j = F (r)

j , (17)(
k2∂2

ξ − 2ω + 4θ0
)
q(i)j = F (i)

j (18)(
νk2∂2

ξ − 2
)
θ j + 4q0q

(r)
j = Gj . (19)

The inhomogeneous parts at the order O(ε) are given by

F (r)
1 = 2ωσ0T1q0, F (i)

1 = 2kx0T1q0ξ , G1 = 0, (20)

while at the order O(ε2) they read

F (r)
2 = − 4q(r)1 θ1 − k2x20Y1q0ξξ + kx0Y1Y1q0ξ

+ω2σ 2
0Y1q0 + 2ωσ0T2q0 + 2ωσ0T1q

(r)
1

+ 2q(i)1T1 − 2vx0T1q
(i)
1 , (21)

F (i)
2 = − 4q(i)1 θ1 + 2kωx0Y1σ0Y1q0ξ − ωσ0Y1Y1q0

+ 2kx0T2q0ξ + 2ωσ0T1q
(i)
1 − 2q(r)1T1

+ 2kx0T1q
(r)
1ξ , (22)

G2 = −νk2x20Y1θ0ξξ + νkx0Y1Y1θ0ξ − 2
(
q(r)21 + q(i)21

)
. (23)

To proceed further, it is useful to make a few observations.
First, differentiating Eqs. (7) and (8) with respect to ξ , one
obtains the homogeneous part of Eqs. (17)–(19). This implies
that the homogeneous solutions of Eqs. (17)–(19) are of the
form

q(r)jh = q0ξ , q(i)jh = q0, θ jh = θ0ξ . (24)

Second, having found the above homogeneous solutions, we
may derive the solvability conditions of the full inhomoge-
neous problem, Eqs. (17)–(19). To do this, first we consider
the coupled Eqs. (17) and (19). We multiply both sides of
Eqs. (17) by the homogeneous solution q(r)jh , as well as both
sides of Eq. (19) by the homogeneous solution θ jh. Then, we
add the resulting equations and integrate with respect to ξ

from −∞ to +∞. This yields the following integral relation:∫ ∞

−∞

(
q(r)jhF

(r)
j + θ jhG j

)
dξ = 0, (25)

which is the solvability condition of Eqs. (17) and (19). To
obtain the solvability condition for Eq. (18), we follow a
similar procedure, namely, we multiply both sides of Eq. (18)
by the homogeneous solution q(i)jh and integrate from −∞ to
+∞; this yields ∫ ∞

−∞
q(i)jhF

(i)
j dξ = 0. (26)

Importantly, the above solvability conditions will lead to
evolution equations for the soliton center x0 and phase σ0

which—as we will see—will provide the necessary informa-
tion for characterizing the stability of the 1D soliton solutions.
Furthermore, solving Eqs. (17)–(19) (for j = 1) will provide
us the form of the solution to Eqs. (4) and (5) up to O(ε), and
for short times—up to the onset of the instability. This will be
particularly relevant for our direct numerical simulations as
well.
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C. Evolution of the soliton parameters

First we consider the problem at the order O(ε). In this
case, the solvability conditions, Eqs. (25) and (26) lead to the
following results, respectively:∫ ∞

−∞
q0ξ (2ωσ0T1q0)dξ = 2ωσ0T1

∫ ∞

−∞
(q0q0ξ )dξ = 0 (27)

and∫ ∞

−∞
q0(2kx0T1q0ξ )dξ = 2kx0T1

∫ ∞

−∞
(q0q0ξ )dξ = 0. (28)

The above results indicate that the solvability conditions at
this order, O(ε), are always satisfied, regardless of the specific
form of the soliton parameters x0 and σ0. Thus, we may pro-
ceed by solving Eqs. (17)–(19) (see details for the derivation
of these solutions in the Appendix), and find the following
exact solutions for the soliton correction q1:

q(i)1 = 3

2
x0T1ξsech

2(ξ ), (29)

q(r)1 = − 3

16
√
2ν

σ0T1 sech
3(ξ )[−9 cosh(ξ )

+ cosh(3ξ ) + 12ξ sinh(ξ )]. (30)

Notice that q(r)1 → − 3
16

√
2ν

σ0T1 as |ξ | → ∞, a fact that is
associated with the emergence of a shelf, i.e., a linear wave
adjacent to the soliton. Shelves were first found in the context
of perturbed Korteweg-de Vries (KdV) equations [41] and
later were also studied for both focusing [45] and defocusing
[46] NLS models with a local nonlinearity. Generally, the
emergence of shelves leads to the breakdown of the perturba-
tion theory at a higher order approximation in the perturbation
scheme [41]. While this issue, along with the appearance
of the shelf, are interesting by themselves, they will not be
considered here; in our case, the instability induced by the
presence of σ0T1 in Eq. (30) (see below) plays the dominant
role in the evolution of the soliton.

To proceed further, we apply the solvability condition at
O(ε2), in which case Eqs. (25) and (26), respectively, read∫ ∞

−∞

[
q0ξ

(
kx0Y1Y1q0ξ + 2ωσ0T2q0

+ 2q(i)1T1
) + θ0(νkx0Y1Y1θ0ξ )

]
dξ = 0

⇒ x0T1T1 − 3

5ν
x0Y1Y1 = 0 (31)

and ∫ ∞

−∞

[
q0

(−ωσ0Y1Y1q0 + 2kx0T2q0ξ − 2q(r)1T1

)]
dξ = 0

⇒ σ0T1T1 + 4

3ν
σ0Y1Y1 = 0. (32)

The set of Eqs. (31) and (32), which is one of the main results
of our analytical approach, must be satisfied in order for our
original system of Eqs. (17)–(19) to be solvable, up to the or-
der O(ε2). We note that, in the above equations, no nonlinear
terms in x0 [in Eq. (31)] and σ0 [in Eq. (32)] are involved, since
such terms vanish when applying the solvability condition;
thus, Eqs. (31) and (32) do not involve any approximations,
up to this order of approximation.

Evidently, Eq. (31) is a hyperbolic PDE (having the form of
the usual second-order wave equation) and, thus, its solutions
corresponding to bounded initial data never blow up. On the
contrary, Eq. (32) is an elliptic PDE (of the Laplace type) and,
thus, any bounded initial condition features an exponential
growth. As a consequence, the exponential growth of σ0 will
result in an exponential growth of q(r)1 as indicated by Eq. (30);
in other words, any initial condition of the form Eqs. (12) and
(13) is unstable in the 2D setting. Notice that the fact that
x0(Y1,T1) obeys a hyperbolic PDE, while σ0(Y1,T1) obeys an
elliptic PDE, bears resemblance to the case of the instability of
bright soliton stripes of the elliptic NLS equation, with local
cubic nonlinearity in (2 + 1)-dimensions [9,41].

D. Instability and instability growth rate

To investigate the instability-induced soliton dynamics,
first we note that, in practice, the instability is anticipated to
manifest itself at finite time. This means that there exists a
characteristic timescale τ for the manifestation of the insta-
bility leading the bright soliton stripe to decay into purely 2D
structures (similarly to the case of the elliptic 2D NLS [9]).
To calculate this timescale, we need to consider some specific
initial conditions for the PDEs (31) and (32). In particular,
without loss of generality, we supplement Eq. (31) with the
following initial data

x0(0,Y1) = δ cos(KY1), x0T1 (0,Y1) = 0, (33)

and Eq. (32) with the initial data

σ0(0,Y1) = δ cos(KY1), σ0T1 (0,Y1) = 0, (34)

where δ and K represent the perturbation amplitude and
wavenumber, respectively. Then, the solutions of Eqs. (31)
and (32) take, respectively, the following form:

x0(T1,Y1) = δ

2

{
cos

[
K

(
Y1 −

√
3

5ν
T1

)]

+ cos

[
K

(
Y1 +

√
3

5ν
T1

)]}
, (35)

σ0(T1,Y1) = δ

2

[
exp

(
K

√
4

3ν
T1

)
cos (KY1)

+ exp

(
−K

√
4

3ν
T1

)
cos (KY1)

]
. (36)

Obviously, Eq. (35) represents the usual D’Alembert solution
composed by a right- and a left-going wave; this solution is
always bounded and never grows. This, however, is not the
case of the solution Eq. (36), which grows exponentially. In
fact, it can be inferred from Eq. (36) that the solution grows in
time as σ0 ∝ exp(t/τ ), where the characteristic timescale τ is
given by

τ = 1

�
≡ 1

εK
√

4
3ν

=
√
3

2εK

√
ν, (37)

with � = 1/τ being the instability growth rate. It is impor-
tant to point out that Eq. (37) reveals that, for fixed ε and
K , the characteristic time τ scales according to the

√
ν law,
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meaning that the instability manifests itself for longer times
as the nonlocality becomes stronger. As mentioned in the
Introduction, suppression of instabilities is a generic feature of
nonlocality; this occurs in our case as well, but the transverse
instability of the bright soliton stripe cannot be completely
arrested. Nevertheless, strong nonlocality (i.e., large ν) is able
to significantly prolong the soliton lifetime.

To further quantify the above results, and as a preamble for
our numerical simulations, it is now convenient to write down
the soliton solution, up to O(ε), namely,

u(x, y, t ) = u0(ξ ) + εu1(ξ,T1,Y1) + O(ε2),

with ξ = k[x − x0(T1,Y1)]. Substituting Eqs. (29), (30), and
(12) into the expression above the soliton solution takes the
form

u(x, y, t ) =
{

3

2
√
2ν

sech2(ξ ) + ε

[
− 3

16
√
2ν

σ0T1

×sech3(ξ )(−9 cosh(ξ ) + cosh(3ξ )

+ 12ξ sinh(ξ )) + i
3

2
x0T1ξsech

2(ξ )

]}

× exp[iω(t + σ0)] + O(ε2), (38)

with ω given in Eq. (9). It is now clear that the soliton solution
u(x, y, t ) grows exponentially due to the presence of the term
σ0T1 and eventually will break up. In the next section, we will
present numerical results to study the instability dynamics,
check the validity of the solution of Eq. (38), as well as
the estimation for the growth rate [Eq. (37)] against direct
numerical simulations.

III. NUMERICAL RESULTS

We now proceed with results obtained by means of dy-
namical simulations of the system’s evolution. The latter are
performed by numerically integrating Eqs. (4) and (5) using
a high accuracy spectral method [47]. The initial condition
is borrowed from the soliton solution of Eq. (38), for t = 0,
using the initial conditions of Eqs. (33) and (34). In particular,
the initial condition for the field u is taken to be

u(x, y, 0) =
(

3

2
√
2ν

sech2{k[x − δ cos(εKy)]}
)

× exp[iωδ cos(εKy)]. (39)

It is clear that the terms ∝δ above describe small perturba-
tions in the initial soliton center position and phase, while the
argument of the soliton’s phase, which is ∝ε, implies that the
relevant perturbation is a long-wavelength one.

The parameter values used in the simulations are

K = 3, ε = δ = 0.1, (40)

while the nonlocality parameter ν was varied in the interval
[1,20]; such values of ν are relevant to thermal nonlinear
media, such as liquid solutions [35,36], and partially ionized
plasmas [37]. Notice that both ε and δ, which were considered
as small parameters in our perturbation scheme, were assumed
to take relatively large values; nevertheless, as we will see,

FIG. 1. Contour plots showing the evolution of the soliton mod-
ulus, |u(x, y, t )|, for ν = 1 (left panels) and ν = 10 (right panels); in
addition, δ = 0.1, and other parameter values are given in Eq. (40).
Panels (a) and (b) show the initial condition [Eq. (39) for t = 0],
while the other panels show characteristic snapshots of u. Eventually,
the soliton decays into a chain of 2D structures (see also Fig. 2).

even for such a choice, the analytical results are found to be
in good agreement with the results of the simulations. It is
also noticed that other choices for the rest of the parameter
values led to results qualitatively similar to the ones that will
be presented below.

First, we present results showcasing the instability-induced
dynamics of solitons. In Fig. 1, we show contour plots de-
picting the evolution of the soliton modulus, |u(x, y, t )|, for
different times. In the left panels we use the value of the nonlo-
cality parameter ν = 1, while in the right panels we showcase
the larger nonlocality strength of ν = 10; other parameter
values are given in Eq. (40). Figures 1(a) and 1(b) show the
initial condition (t = 0), as given in Eq. (39), while the other
panels show characteristic snapshots of u for t 
= 0; observe
that for the weaker nonlocality (ν = 1), the soliton width, 1/k
[with k given in Eq. (11)], is shorter.

As is clearly seen, in both cases, the soliton stripes are
prone to the instability, which is of the necking type [7].
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FIG. 2. Contour plots showing the modulus (a) and the phase
(b) of u(x, y, t ) at t = 80, for nonlocality parameter ν = 10; other
parameters are kept fixed, as given in Eq. (40). This state consists of
a chain of vorticity-free 2D structures, as is also seen in the bottom
zoom (c), (d).

Nevertheless, the soliton in the setting with ν = 10 (right pan-
els) takes a longer time to break up. Hence, nonlocality leads
to a substantial suppression of the transverse instability of the
soliton stripes, similarly to what was found for the branch of
solutions arising from the standard local NLS soliton of ν = 0
in Ref. [24]. However, it is seen that eventually, in either case,
the solitons decay into a chain of 2D localized structures, as
is also shown in Fig. 2; there, the modulus and the phase of
such a chain is depicted at t = 80, for a nonlocality parameter
of ν = 10. Notice that the phase profile of the emerging 2D
structures, depicted in the right panel of the figure, show that
these waveforms are long-lived, vorticity-free ones.

At this point, it should also be pointed out that Figs. 2(c)
and 2(d) clearly indicate the saturation of the transverse in-
stability into a (chain of) “solitonic” 2D structure(s). This is
in accordance with the analysis of Ref. [26], where it is rig-
orously proved that nonlocality eliminates collapse in higher
dimensions, for a nonlocal response function with a positive
definite Fourier spectrum, as is our case [48]. Thus, the satura-
tion of the transverse instability of the soliton stripe is actually
due to the suppression of the self-focusing effect in nonlocal
media. Notice that, for the local case, it was demonstrated by
higher-order perturbations that the transverse instability will
lead to self-focusing “blobs” [49]. It would be thus interesting
to follow an analysis similar to that of Ref. [49] in the nonlocal
case under consideration. However, such an analysis is beyond
the scope of this work.

Next, it is relevant to test the validity of the analytical esti-
mation for the growth rate � = 1/τ , with τ given by Eq. (37).
To do this, in Fig. 3, we show the logarithm of the modulus of
the difference

D(t ) = log |unum(0, 0, t ) − u0(0, 0, t )|, (41)

where unum is the numerical solution and u0 is the exact
analytical soliton solution [see Eq. (12)], evaluated at x = 0,

FIG. 3. The logarithm of the modulus of the difference D(t ) [see
Eq. (41)] as a function of time, for different values of the nonlocal
parameter ν; here, unum is the numerical solution, and u0 is the
exact analytical soliton solution. The dashed lines correspond to the
numerical results for each value of ν, while the solid lines to their
corresponding linear fits (once the instability sets in and, indeed, after
an initial transient stage). The latter are in good agreement with the
predicted growth rates of Eq. (37) (see Table I).

y = 0, as a function of time; shown are curves corresponding
to different nonlocality parameters, namely, ν = 1, ν = 5,
ν = 10, ν = 15, and ν = 20. The idea here is that, subtracting
the exact soliton solution from the numerical one, one seeks
to isolate the predicted exponential growth of the soliton cor-
rection, and investigate whether it agrees with the analytical
prediction of exp(t/τ ) dependence.

The numerical results, depicted by the dashed curves, show
that at the early stage of the evolution (t � 2 for ν = 1 up to
t � 7 for ν = 20), the considered function undergoes a tran-
sient stage until the instability gets activated. Once the latter
activation materializes, the relevant plot of the logarithmic
diagnostic of choice features a linear growth. This is obviously
a signature of the exponential growth of the solution that was
predicted above, while the slopes of the pertinent straight
lines should correspond to the growth rates for the different
values of ν [see Eq. (37)]. Indeed, the slopes of the relevant
linear fits (solid lines) are close to the analytically predicted
growth rates � = 1/τ for each value of ν, as shown in Table I.
As seen in the table, the resulting relative error between the
numerical result and the analytical prediction ranges between
8% to 12%, for all considered values of ν, signaling the good
agreement between the two.

TABLE I. Comparison between the slopes of the linear fits of the
numerical data of Fig. 3 and the analytical prediction for the growth
rate, � = 1/τ , for various values of ν.

ν Linear fit slope � = 1/τ Approximate % error

1 0.38 0.35 8
5 0.17 0.15 10
10 0.12 0.11 9
15 0.10 0.09 10
20 0.09 0.08 12
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FIG. 4. The maximum growth rate γ [see Eq. (43)] as a function
of the nonlocality parameter ν. Here, (blue) circles correspond to the
numerical results, while the (red) solid line is the best fit correspond-
ing to a curve ∝1/

√
ν (see text).

We note in passing that we have also compared the above
results, relying on the use of the local parameter D(t ), with an
averaged growth rate D̄(t ) integrated over the spatial coordi-
nates x and y, namely,

D̄(t ) = 1

L2

∫ L
2

− L
2

∫ L
2

− L
2

log |unum(x, y, t ) − u0(x, y, t )|dxdy,
(42)

where L × L is our computational domain (here, we use L =
30). We found that the time-dependence of D̄(t ) is almost
identical to the one of D(t ), modulo a displacement (results
not shown here); this displacement, is expected by the fact
that D̄(0) 
= D(0).

We have also calculated numerically the growth rate γ (t ),
as defined in Refs. [50,51], namely,

γ (t ) = 1

2�t
ln

[
N (t + �t )

N (t )

]
, (43)

where �t is the time step (here, we use �t = 0.5) and

N (t ) =
∫ L

2

− L
2

∫ L
2

− L
2

|u1(x, y, t )|2dxdy,

is the norm of the soliton correction (i.e., of the soliton’s
perturbation). The result for the maximum value γmax of γ (t )
is shown in Fig. 4 as a function of the nonlocality parame-
ter ν, for ν ∈ [1, 10]. The maximum growth rate γmax was
determined for each value of ν as follows: we numerically
calculated γ (t ), and then found its maximum value, which
was obtained after an initial transient stage, similarly to the
situation observed in Fig. 3. In Fig. 4, the numerical result
for γmax [(blue) circles] is compared with the best fit with
the function Aν p + B [solid (red) line]; this corresponds to
p = −0.5, A = 0.1814, and B = −0.032. It can readily be
observed that the maximum growth rate clearly follows the
1/

√
ν law that was analytically predicted in the previous

Section. Hence, given that the maximum growth decreases as
1/

√
ν, the transverse instability of the bright soliton stripe is

suppressed according to this law.
It is also relevant to provide an additional test for the

validity of our analytical result concerning the solution given

FIG. 5. Solid (white) isocontour lines of constant modulus, cor-
responding to the analytical solution Eq. (38), are “superimposed” on
top of contour plots showing the modulus of the numerical solution,
for t = 2, 4, 6, 8, and for ν = 1.

in Eq. (38), against results of the numerical simulations. In
Fig. 5, solid (white) isocontour lines of constant modulus, cor-
responding to the approximate analytical solution Eq. (38), are
“superimposed” on top of contour plots showing the modulus
of the numerical solution, for ν = 1. In Figs. 5(a)– 5(d), corre-
sponding to t = 2, 4, 6, 8, a qualitative agreement between the
numerical and the analytical solution is observed, especially
around the soliton maximum. Naturally, discrepancies occur
at the soliton tails as contributions beyond our analysis of
O(ε) [such as, e.g., ones atO(ε2)] become progressively more
important. Notice that the discrepancy between the numerical
and the analytical solution becomes larger as time increases,
due to the exponential growth of the instability, which is only
captured via the O(ε) terms in the approximate analytical
solution of Eq. (38). Finally, and as is naturally expected, past
the time t = 8 [Fig. 5(d)], the analytical result fails, as the
soliton has already been destroyed.

IV. CONCLUSIONS

In this work, we studied the transverse dynamics and, in
particular, the transverse instability of bright soliton stripes
in media with a spatially nonlocal nonlinear response. The
considered nonlocal nonlinear Schrödinger (NLS) model de-
scribes beam propagation in different types of nonlocal
nonlinear media, including thermal media, plasmas, and ne-
matic liquid crystals.

Starting with an exact 1D bright soliton solution of the
system (which, however, had no analog in the (local) case
of nonlocality parameter ν = 0), we employed a direct mul-
tiscale perturbation method to study the transverse dynamics
of solitons. Assuming that the soliton’s center x0 and phase σ0

become functions of a slow time T1 = εt and a slow transverse
coordinateY1 = εy (with 0 < ε � 1), we found the following.
First, x0 and σ0 obey, respectively, a hyperbolic and an elliptic
second-order PDE (with respect to T1 and Y1), namely, a
second-order wave equation and a Laplace-type equation. The
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solution of these evolution equations, together with the solu-
tion for the first-order correction to the soliton shape, led to
an approximate solution of the original nonlocal NLS model,
valid up to O(ε). It was found that the transverse instability,
caused by the exponential growth of the phase σ0, is of the
necking type, and leads to the breakup of soliton stripes. The
instability growth rate was found to scale with the nonlocality
parameter ν according to the law 1/

√
ν. This fact indicates

the nonlocality-induced suppression (but not full arrest) of the
transverse instability of the bright soliton stripes, in line with
results for different solitonic structures (bearing a ν = 0 limit)
within the model, as reported in previous works [24].

Direct numerical simulations were found to be in good
agreement with the analytical predictions. As concerns the
analytically found instability growth rate, it was shown that it
is in good agreement with the numerical one (past an initial
transient stage), for values of the nonlocality parameter in
the interval 1 � ν � 20. In fact, the relative percentage error
between pertinent analytical and numerical results was found
to be around 10% for all the cases that were considered.
Furthermore, we have also calculated the averaged growth rate
γ , as defined in Refs. [50,51], as a function of the nonlocality
parameter ν. We found that, for moderate values of ν [in
the interval (6,15)], γ clearly follows the 1/

√
ν law that was

predicted analytically.
In addition, the approximate analytical soliton solution

[valid up to O(ε)] was found to follow the numerical one,
with the agreement between the two being better near the the
soliton center. The discrepancy between the two, especially
near the soliton tails and at later times, was attributed to the
fact that our analytical approximation cannot capture higher-
order effects [of order O(ε j ), with j � 2], and it completely
fails after the initial solitonic stripe deforms into a sequence
of two-dimensional (nonvortical) solitonic “blobs.”

Our work paves the way for interesting future studies. For
instance, our perturbative approach could also be applied in
the case of a defocusing nonlocal nonlinearity, which sup-
ports dark solitons, both in 1D [30–33] and 2D [52–54]. In
such a defocusing setting, it would be interesting to study
analytically the suppression of the transverse (snaking) insta-
bility of dark soliton stripes (see relevant numerical results in
Ref. [34]). Furthermore, the analytical study of the transverse
dynamics of solitons in multicomponent nonlocal systems
(see, e.g., Ref. [55]) is another interesting and relevant theme.
This is due to the fact that that there exists a plethora of vector
solitons in such settings [56–58], while studies on the trans-
verse dynamics of solitons are mainly numerical ones [59]. It
would, therefore, be particularly interesting to investigate the
combined effect of nonlocality and soliton coupling on the
soliton instability dynamics. Finally, it would be interesting to
investigate the possibility of—and conditions for—complete
stabilization of the stripe soliton structures in nonlocal me-
dia. Such studies are in progress and relevant results will be
reported elsewhere.
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APPENDIX: SOLUTION OF O(ε) PERTURBATION
EQUATIONS

Here, we provide a solution of the system of Eqs. (17)–
(19), at the order O(ε) (i.e., for j = 1). As is observed,
Eq. (18) is decoupled from Eqs. (17) and (19) and can be
solved separately. Having found the solution of the homo-
geneous equation, q(i)1h = q0 [see Eq. (24)], we seek for the
solution of the full, inhomogeneous, equation in the form

q(i)1 (ξ,T1,Y1) = q0(ξ ) f (ξ,T1,Y1), (A1)

where f (ξ ) is an unknown function, to be determined. Substi-
tuting Eq. (A1) into Eq. (18), and employing the reduction of
order method, we find

q(i)1 = q0

[ ∫
1

q20

(∫
1

k2
q0F

(i)
1 dξ

)
dξ

+
∫

A1(T1,Y1)

q20
dξ + A2(T1,Y1)

]
, (A2)

where A1 and A2 are unknown functions of the slow variables
T1 and Y1. Next, imposing the boundary condition q(i)1 → 0 as
ξ → ±∞, we obtain A1(Ti,Yi ) = 0 and we choose, without
loss of generality, A2(Ti,Yi ) = 0 too; indeed, the term involv-
ing A2 is of the form εA2(Ti,Yi )q0 in the asymptotic expansion
and can be absorbed in the O(1) solution. This way, upon
performing the relevant integrations, we derive from Eq. (A2)
the solution Eq. (29).

The next step is to solve the system of Eqs. (17) and (19).
To do so, first we solve Eq. (17) for the field θ1 and find

θ1 = 1

6
√
2ν

{
3

√
2

ν
σ0T1 + [−6 + 4 cosh2(ξ )]q(r)1

− cosh2(ξ )q(r)1ξξ

}
, (A3)

where we have substituted the expression q0 from Eq. (11).
Obviously, once q(r)1 is found (see below), Eq. (A3) can be
used for the determination of θ1.

Next, we substitute Eq. (A3) into Eq. (19), and using the
expressions for θ0 and q0 from Eqs. (13) and (11), we find the
following fourth-order ODE for q(r)1 :

q(r)1ξξξξ + 4 tanh(ξ )q(r)1ξξξ − 4[1 − sech2(ξ )]q(r)1ξξ

− 16 tanh(ξ )q(r)1ξ − [16sech2(ξ ) + 72sech4(ξ )]q(r)1

+ 12

√
2

ν
σ0T 1sech

2(ξ ) = 0. (A4)

To solve the above equation, first we note that a homoge-
neous solution of Eq. (A4) is q0ξ [see Eq. (24)]. Furthermore,
we can deduce that via a variation of constants method that
q0ξ

∫
(1/q20ξ )dξ is another homogeneous solution of Eq. (A4).

Having at hand two homogeneous solutions, we introduce the
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following transformation:

q(r)1 (ξ ) =
(
q0ξ

∫
1

q20ξ
dξ

)(∫
q0ξw(ξ )dξ

)

− q0ξ

∫ (
q0ξ

∫
1

q20ξ
dξ

)
w(ξ )dξ, (A5)

where w(ξ ) is an unknown function to be determined. Sub-
stituting Eq. (A5) into Eq. (A4) we obtain the following

second-order ODE for w(ξ ):

wξξ + 4 tanh(ξ )wξ − 8sech2(ξ )w

+ 12

√
2

ν
σ0T1 sech

2(ξ ) = 0. (A6)

It is easy to check that a partial solution of Eq. (A6) is

w(ξ ) = 3

2

√
2

ν
σ0T1 . (A7)

Finally, substituting Eq. (A7) back to Eq. (A5), we derive the
solution for q(r)1 (ξ ), namely, Eq. (30).
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