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A B S T R A C T   

As an active performance evaluation method, the fluid-based queueing model plays an important 
role in traffic flow modeling and traffic state estimation problems. A critical challenge in the 
application of traffic state estimation is how to utilize heterogeneous data sources in identifying 
key interpretable model parameters of freeway bottlenecks, such as queue discharge rates, 
system-level bottleneck-oriented arrival rates, and congestion duration. Inspired by Newell’s 
deterministic fluid approximation model, this paper proposes a spatial queue model for over
saturated traffic systems with time-dependent arrival rates. The oversaturated system dynamics 
can be described by parsimonious analytical formulations based on polynomial functional 
approximation for virtual arrival flow rates. With available flow, density and end-to-end travel 
time data along traffic bottlenecks, the proposed modeling framework for estimating the key 
traffic queueing state parameters is able to systematically map various measurements to the 
bottleneck-level dynamics and queue evolution process. The effectiveness of the developed 
method is demonstrated based on three case studies with empirical data in different metropolitan 
areas, including New York, Los Angeles, and Beijing.   

1. Introduction 

Many regional planning organizations and transportation management authorities throughout the world face enormous challenges 
to mitigate heavy traffic congestion to enable a high level of services for citizens. For example, according to the 2019 Global Traffic 
Scorecard Report released by INRIX (2020), the traffic congestion costs Americans approximately $1,377 per driver or $88 billion in 
total in 2019. Estimating accurately traffic states is of great importance for traffic control and management to reduce traffic jams (Seo 
et al., 2017). A critical challenge in the application of traffic state estimation is how to perform congestion and bottleneck identifi
cation (CBI) (Hale et al., 2016, 2021). A number of analytical tools, including CBI tools (FHWA, 2018), are developed to analyze, 
visualize, and further compare traffic bottlenecks in great details. Given widely available traffic measurements, for example, from the 
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Regional Integrated Transportation Information System (RITIS) hosted by the University of Maryland (CATT Lab, 2021), many new 
approaches are developed for real-time large-scale system modeling and diverse data synthesis. By monitoring the state of the traffic 
system at all times, it would be possible to apply proactive traffic control actions in real-time to best utilize available unused road 
capacity. 

Generally, traffic state estimation approaches can be divided into categories, i.e., the model-driven approach and the data-driven 
approach. Although the data-driven approach enables an automated process of estimating a large number of model parameters, the 
estimation process is data driven and might be built based on complex or black-box models without interpretability. Without 
embedding a traffic-flow-oriented model structure, a purely data-driven model might fail to systematically account for spatial and 
temporal interaction in traffic systems. In addition, parsimonious analytical models are critically needed to strive for least complex 
explanation for (imperfect) observations, as well as offer real-time computational efficiency for large-scale real-time network appli
cations. Therefore, this paper aims to propose a theoretically rigorous spatial queue model to analytically estimate a number of critical 
traffic state parameters (e.g., queue discharge rates, system-level bottleneck-oriented arrival rates, congestion duration, and time- 
dependent delays and travel times) and capture system dynamics at bottlenecks with queue evolution processes. 

1.1. Literature review on queueing models with time-dependent arrival rates 

Before presenting the proposed model, we will first review the queueing-theoretic model for oversaturated traffic systems. In 
generally, congestion exists in traffic and transportation systems when the demand temporarily and spatially exceeds the supply. 
Vickrey (1969) developed the bottleneck model to describe traffic dynamics during rush hours. The focus of many following 
bottleneck-related studies (e.g., Arnott et al., 1990) is on the network equilibrium and optimal toll problem, and the arrival rate (or 
inflow rate) in their bottleneck model is assumed to be a step function, which may be inconsistent with empirical observations with 
complex nonlinear patterns. To analyze the queue evolution process, Newell (1968a, 1968b, 1968c, 1982) analytically investigated the 
fluid-based queues in a traffic system with time-dependent arrival rates by linear or quadratic functions. It should be remarked that, 
linear time-dependent arrival rates cannot fully capture nonlinear system dynamics. As for the formula using quadratic arrival rate 
assumptions, Newell (1968c) also raised an important modeling issue of possible negative flow rates (which is clearly contrary to 
realism), especially for heavily congested conditions as the arrival rates could decrease sharply on the right-hand-side of the curve. As a 
result, the analytical functional forms provided by Newell should be applied carefully. Other attempts along the direction include 
pointwise stationary approximation functions (Green et al., 2007) for service networks with Mt/G/∞ queueing systems. In this study, 
we will extend Newell’s classic fluid-based queue model and propose a family of polynomial-function-approximated arrival rates 
(which can be used for over-congested traffic systems) to estimate the queue profile for the system performance evaluation, including 
the time-dependent queue lengths and delays, and the average delays and travel times. 

1.2. Numerical methods for describing queueing characteristics 

With discretized time and space dimensions (such as the cell transmission model and link transmission model), dynamic traffic 
assignment models also need to address many computational challenges due to the introduced finer resolution. The bottleneck model 
has been used to investigate the dynamic traffic assignment problem (e.g., Drissi-Kaïtouni and Hameda-Benchekroun, 1992; Kuwahara 
and Akamatsu, 1997; Li et al., 2000). Nie and Zhang (2005) compared the bottleneck model with three other discrete link models 
(including the Merchant and Nemhauser (1978a, b) model, the delay function model, and the cell transmission model) in the dynamic 
network loading process. Ban et al. (2012) formulated the bottleneck model as a continuous-time model with differential comple
mentarity systems. Han et al. (2013a, b) extended Vickrey’s bottleneck model to a generalized Vickrey model, which allows the inflow 
rate to be a distribution. Jin (2015) proposed a unified approach to study the bottleneck model. However, all these bottleneck models 
are based on virtual queue length. In order to obtain the spatial quantities, Lawson et al. (1997) proposed an input-output diagram 
approach to calculate the spatial queue length and distance, and we will also use their input-output diagram approach to transfer the 
virtual queue length to spatial queue distance to calibrate the proposed model in this paper. 

Other standard traffic modeling tools include partial-differential-equation (PDE)-based numerical analysis approaches and 
customized simulation packages to capture microscopic interactions between the demand and supply (Behrisch et al., 2011; Marshall, 
2018) are at a very fine resolution. In particular, mesoscopic models (Mahmassani and Herman, 1984; Zhou and Taylor, 2014) are used 
to represent spatial extents of congestion building up and dissipating with individual agents following a macroscopic flow density 
relationship while ignoring detailed lane-changing and car-following behavior. From a macroscopic aggregated traffic flow modeling 
perspective, some studies (e.g., Ramezani et al., 2015; Han et al., 2020; Johari et al., 2021) used the macroscopic fundamental diagram 
to model and control traffic flows through ramp metering, signal control, and perimeter control, etc. 

1.3. Objectives and potential contributions 

In this paper, we propose a spatial queueing-theoretic PDE model based on a polynomial functional approximation for virtual 
arrival rates at bottlenecks. This simplified PDE model aims to answer the question that how to analytically estimate the queue profile 
and capture system dynamics (such as the time-dependent queue length, delay, and travel time, etc.) at bottlenecks with queue 
evolution processes, and provide a building block for traffic state estimation with heterogeneous real-world data sources. We would 
like to illustrate the contributions of this work: (1) The vehicular space-time trajectories during congestion are mapped to a set of 
dynamical queueing system equations with a family of polynomial-approximated time-dependent arrival rates. (2) A number of system 
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performance evaluation measures, including the time-dependent queue length, delay, and travel time, as well as the average delay and 
link travel time, are analytically derived. (3) For heavy congestion cases, we explicitly define the oversaturation ratio (or the queue 
building-up ratio) to analytically derive the queue profile with cubic arrival rate functions. (4) With some key interpretable model 
parameters of freeway bottlenecks, such as queue discharge rates, system-level bottleneck-oriented arrival rates, and congestion 
duration, the traffic state can be easily estimated based on our proposed modeling framework with heterogeneous real-world data 
sources. 

The remainder of this paper is organized as follows: Section 2 describes the core problem with a general fluid queueing model and 
introduces the deterministic queueing theory by a set of dynamical system equations. The queueing-theoretic model with approxi
mated time-dependent arrival rates and constant approximated discharge rates is formulated in Section 3, followed by the calibration 
methods and results in Section 4 and 5, respectively. Finally, discussions and conclusions are conducted in Sections 6 and 7, 
respectively. 

2. Background on fluid queueing model 

Consider a dynamic system with a bottleneck restricting the passing of moving vehicles; a queue forms upstream of the bottleneck 
when the arrival rate temporarily and spatially exceeds the discharge rate (or capacity) μ. Table 1 summarizes the notations and 
explanations used in this paper. 

Fig. 1 illustrates the deterministic queueing model with the virtual queue evolution process: Fig. 1(a) illustrates the vehicle tra
jectories in the time-space plane across the queue extent along a single bottleneck. The blue curve depicts the physical queue extent, 
while the green line is the trajectory of a typical vehicle with a free-flow speed vf and a speed-at-capacity vμ. Fig. 1(b) illustrates the 
multisource data that can be used to calibrate the bottleneck model, including the loop detector data, the probe vehicle data, etc. Fig. 1 
(c) describes the time-dependent arrival rates for the oversaturated traffic systems. The red horizontal line is a constant discharge rate 
μ, and the blue curve is a time-dependent virtual arrival rate function λ(t) at the bottleneck. It is obvious that λ(t0) = λ(t2) = μ. Because 
the queue dissipates at t3, the yellow area before t2 should be equal to the green area after t2. Fig. 1(d) draws the time-dependent queue 
evolution process. The blue curve is the queue length evolution process, with a maximal queue length at time t2 and zero queue length 
at times t0 and t3. Fig. 1(e) illustrates the cumulative counts in the system. The red line D(t) with a slope of μ is the cumulative departure 
curve during the peak period, and the blue curve A(t) is the cumulative arrival curve. Before time t0, there is no congestion; thus, the 
cumulative arrival count equals the cumulative departure count, and during the peak period from t0 to t3, the cumulative arrival count 
is larger than the cumulative departure count due to the congestion effect. The vertical difference between the cumulative arrival and 
departure curves at time t is the queue length Q(t), and due to the constant slope of the cumulative departure curve, we can easily 
obtain its corresponding delay w(t). The model introduced here can be summarized as the TULIP model, where T represents the time- 
space network, U represents the arrival rate λ(t) and discharge rate μ, L represents the queue length, and IP stands for the input-output 
diagram or cumulative arrival and departure curves. 

The fluid approximated dynamic system illustrated in Fig. 1 can be formulated by a set of dynamical system equations: 

Table 1 
Notations and explanations used in this paper.  

Notations Explanations 

t0  start time of congestion period 
t1  time with maximum arrival rate 
t2  time with maximum queue length 
t3  end time of congestion period 

t  another root besides for t0 and t2 of the cubic net flow rate function  

m scale parameter, m = (t2 − t0)/(t3 − t0)

tf  free flow travel time 
vf  free flow speed 
vμ  speed at capacity 
γ  shape parameter for the cubic arrival rate function 
μ  capacity (or discharge rate), assumed to be a constant value 
D  total demand during the whole peak period 
P  congestion period, P = t3 −t0  

λ(t) arrival rate function at time t 
Q(t) virtual queue length at time t 
Qp(t) physical queue length at time t 
w(t) traffic delay departing at time t 
w  average delay during the whole peak period 
tt  average travel time during the whole peak period 
A(t) cumulative arrival curve at time t 
D(t) cumulative departure curve at time t  
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dA(t)
dt

= λ(t) (1)  

dD(t)
dt

= μ(t) (2)  

dQ(t)
dt

= λ(t) − μ(t) (3)  

dW(t)
dt

= Q(t) (4)  

with the boundary conditions of 

λ(t0) = μ(t0) (5)  

λ(t2) = μ(t2) (6)  

λ(t) − μ(t) > 0, t0 < t < t2 (7)  

λ(t) − μ(t) < 0, t2 < t < t3 (8)  

dλ(t1)

dt
= 0 (9)  

Q(t0) = 0 (10)  

Q(t3) = 0 (11) 

Fig. 1. Model illustration based on the fluid approximation model and spatial queue model.  
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where λ(t), μ(t), and Q(t) are the time-dependent arrival rate, discharge rate, and queue length at time t, respectively. In addition, 
λ(t) −μ(t) is the time-dependent net flow rate at time t. A(t), D(t), and W(t) are the cumulative arrival count, cumulative departure 
count, and the total delay from time t0 to t, respectively, and t0, t1, t2, and t3 are the first time that the arrival rate exceeds the discharge 
rate, the time with the maximum arrival rate, the time with the maximum queue length, and the time that the congestion dissipates, 
respectively. With the dynamical system equations for the fluid-approximated queueing system formulated here, we can map vehicle 
trajectories to the fluid approximated dynamic system as shown in Fig. 1(a). 

The integrals of the first-order variable of the time-dependent arrival rate and the discharge rate are the cumulative arrival and 
departure counts, respectively. The integral of the first-order variable of the time-dependent net flow rate is the second-order variable 
of queue length, and the integral of the second-order variable of time-dependent queue length is the third-order variable of total delay. 
Their relationships are similar to that of the common case with the acceleration, speed, and displacement in physics. 

3. Derivation of system state dynamics based on spatial queue with polynomial arrival rates 

The polynomial functional form is viable to approximate the smoothly changing phenomena at different orders in the real world. 
Generally, the discharge rate of a bottleneck is assumed to be a constant to capture the essential cumulative input and output flow 
balance in the queueing system (Newell, 1982). To analyze the dynamic queueing system, we make the following two assumptions 
throughout this paper: (1) the virtual arrival rate λ(t) at the bottleneck can be approximated by a polynomial function, and (2) the 
discharge rate μ(t) is constant. With these two assumptions, we can analytically derive a family of formulations under different orders 
of arrival rate functions and analyze the queueing system with time-dependent and averaged system measures. We present the core 
results with cubic-function-approximated arrival rates, while the results for other polynomial function approximated models are 
summarized in Appendix A. 

3.1. Derivation of system state dynamics based on the cubic arrival rate function 

First, let us compare Newell’s classic model using the quadratic arrival rates with the proposed system dynamics equation with the 
assumption of cubic arrival rates. Increasing the order of the arrival rate function from quadratic to cubic results in another root 
(denoted as t in this paper), which is unobservable in traffic systems. To eliminate the unobservable t, we defined a new parameter (i.e., 
oversaturation factor) m by the ratio between the time duration from the start of congestion to the time with maximum queue length 
and the whole congestion duration. With such a treatment, then we can obtain the time-dependent queue length and system dynamics 
with the cubic arrival rate function. 

Assume that λ(t) during a congestion period can be approximated by a cubic polynomial function, i.e., λ(t) =
∑3

i=0γiti, where γi are 
the coefficients of the i-th order variables. Considering the boundary conditions of λ(t0) = λ(t2) = μ in the dynamical system equations, 
we can rewrite the time-dependent arrival rate function by the factored form of the net flow rate function as: 

λ(t) − μ = γ(t − t0)(t − t2)(t − t) (12)  

where t0 is the start time of congestion, t2 is the time with maximal queue length, t is a root in addition to t0 and t2 of the cubic net flow 
rate function, and γ is the shape parameter. 

Substitute Eq. (12) into Eq. (3), and then integrate the result to obtain the general form of time-dependent queue length as: 

Q(t) =

∫ t

t0
[λ(τ) − μ]dτ =

∫ t

t0
[γ(τ − t0)(τ − t2)(τ − t)]dτ (13) 

To derive the time-dependent queue length, we need to define the oversaturation factor m by the ratio between the time duration 
from the start of congestion to the time with maximum queue length and the whole congestion duration, i.e., 

m =
t2 − t0

t3 − t0
, 0 < m < 1 (14) 

Then, with some simple algebraic operations (see Appendix B), we can obtain the time-dependent queue length as: 

Q(t) = γ ⋅ (t − t0)
2 ⋅

[
1
4

(t − t0)
2

−
1
3

⋅
(

3 − 4m
4 − 6m

+ m
)

(t3 − t0)(t − t0) +
1
2

⋅
(3 − 4m)m

4 − 6m
(t3 − t0)

2
]

(15) 

The maximum queue length Q(t2) can be derived as follows: 

Q(t2) = γ ⋅
m3(m − 1)

2

8 − 12m
⋅ (t3 − t0)

4 (16) 

With the time-dependent queue length function, we can expediently calculate the time-dependent delay as follows: 

w(t) =
γ ⋅ (t − t0)

2

μ ⋅
[

1
4
(t − t0)

2
−

1
3

⋅
(

3 − 4m
4 − 6m

+ m
)

(t3 − t0)(t − t0) +
1
2

⋅
(3 − 4m)m

4 − 6m
(t3 − t0)

2
]

(17) 

The total delay between time t0 and t3 can be calculated by integration of Eq. (15) as follows: 
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W(t3) =

∫ t3

t0
Q(t)dt

= γ ⋅
∫ t3

t0

[
1
4
(t − t0)

4
−

1
3

⋅
(

3 − 4m
4 − 6m

+ m
)

(t3 − t0)(t − t0)
3

+
1
2

⋅
(3 − 4m)m

4 − 6m
(t3 − t0)

2
(t − t0)

2
]

dt

= γ ⋅
∫ t3−t0

0

[
1
4
u4 −

1
3

(
3 − 4m
4 − 6m

+ m
)

(t3 − t0)u3 +
1
2

⋅
(3 − 4m)m

4 − 6m
(t3 − t0)

2u2
]

du

= γ ⋅ (t3 − t0)
5 ⋅

[
1
20

−
1
12

(
3 − 4m
4 − 6m

+ m
)

+
1
6

⋅
(3 − 4m)m

4 − 6m

]

= γ ⋅ g(m) ⋅ (t3 − t0)
5

(18)  

where the conversion factor g(m) is: 

g(m) =
1
20

−
1
12

(
3 − 4m
4 − 6m

+ m
)

+
1
6

⋅
(3 − 4m)m

4 − 6m
(19) 

The average delay is w = W/D, and the congestion duration t3 −t0 = D/μ. Then, we can obtain the average delay function as 
follows: 

w =
W
D

=
γ ⋅ g(m)

μ ⋅
(

D
μ

)4

(20) 

The unit of the shape parameter γ is the vehicle per fourth-power of unit time in the cubic form, and g(m) is dimensionless since m is 
dimensionless. 

3.2. Physical queue length and link travel time function 

In the point queue model to analyze the traffic system performance, all vehicles travel at a free-flow speed for the whole road 
segment (i.e., link), and they may queue at the end of the link if the available discharge rate of the downstream link is restricted by its 
physical capacity. We first assume that the vehicles’ physical lengths are zero; thus, all vehicles are accumulated at the end of the link 
when a queue forms, and the virtual queue length Q(t) can be calculated with Eq. (15). According to Lawson et al. (1997), the physical 
queue length can be calculated in terms of the virtual queue length Q(t), the free-flow speed vf , and the speed at capacity vμ based on 
the vehicle trajectories in the time-space plane. The mapping between the spatial queue representation and point queue is explained in 
Fig. 2, in which the red curve shows the physical queue extent, and the green curve is a vehicle trajectory entering the link of interest at 
time t and encountering the congestion at time t′ . The spatial queue distance at time t′ is d(t′

) = vf ⋅
(
tf + t − t′ )

=

vμ ⋅
(
tf + t − t′

+ w(t)
)
, and we can obtain that d(t′

) = w(t) ⋅
(

1
vμ

− 1
vf

)

=
w(t)⋅vμ

1−
vμ
vf 

after eliminating tf + t −t′ . Since the physical queue 

length at time t′ is the number of vehicles existing in the link from the back of the queue to the bottleneck location, we can calculate the 
physical queue length as: 

bottleneck Time

Distance w(t)tf

tt(t)

tt0
t3

d(t')
Spatial queue 
distance: 

vμ

vfse
gm

en
t o

f i
nt

er
es

t

t'

Fig. 2. Relationship between the physical queue length and virtual queue length.  
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Qp(t
′

) =
d(t′

)

vμ
⋅ μ =

w(t) ⋅ μ
1 −

vμ
vf

=
Q(t)

1 −
vμ
vf

(21) 

In a congested traffic system, the delay is calculated by Eq. (17), and the time-dependent travel time when entering the link of 
interest at time t can be obtained as: 

tt(t) = tf + w(t) = tf +
γ ⋅ (t − t0)

2

μ ⋅
[

1
4

(t − t0)
2

−
1
3

⋅
(

3 − 4m
4 − 6m

+ m
)

(t3 − t0)(t − t0) +
1
2

⋅
(3 − 4m)m

4 − 6m
(t3 − t0)

2
]

(22)  

where tt(t) is the travel time for vehicles entering the link at time t. 

Since the average delay is w =
γ⋅g(m)

μ ⋅
(

D
μ

)4
, we can obtain the average travel time tt during the entire peak period by: 

tt = tf + w = tf

[

1 +
γ ⋅ g(m)

μ ⋅ tf
⋅

(
D
μ

)4
]

(23)  

which reveals that the average travel time on the link is a fourth-power polynomial function of D/μ when the arrival rates are 
approximated by a cubic function. Table 2 summarizes different orders of arrival rates for vehicles and their average travel time 
functions. 

The classical BPR (acronym of the Bureau of Public Roads) link travel time function is tt = tf ⋅
[
1 + α ⋅ (V/μ)

β
]
, where V is the 

traffic volume per unit time during a modeling period T and the parameters are usually valued as α = 0.15 and β = 4. From the 
perspective of functional form, it is interesting that the proposed average travel time functions in this paper shed light on how the BPR 
function can be interpreted from the queueing theory with the polynomial assumption of the arrival rates. More specifically, the 
parameter α in the BPR function is related to the shape parameter γ, the oversaturation factor m, and the free-flow travel time tf . This is 
consistent with the experiential calibration results in the literature (Horowitz, 1991; Mannering et al., 1990) that the parameters in the 
BPR function vary with the capacity and speed limit (which restricts the free-flow speed and travel time). The parameter β in the BPR 
function is related to the order of arrival rate function plus one. The notational differences between our model and the BPR function are 
as follows: (1) We use the ratio of excess demand over the congestion period to the discharge rate D/μ, rather than V/μ in the BPR 
function. Note that D in the queuing model represents the demand over the whole congestion period, while V used in the BPR function 
is the traffic volume per unit time during a modeling period T. Planners should be aware of such potential inconsistent definitions for 
modeling periods. Besides, in the BPR function, V/μ is dimensionless, while in our model, D/μ = t3 −t0 is the entire congestion duration 
in which a queue exists. To maintain the conservation of units, it can be easily derived that the unit of the shape parameter γ should be 
the vehicle per fourth-power of unit time in the cubic form. (2) The parameter μ in our model is the congestion discharge rate, which might 
be much smaller than the assumed maximal-flow or practical capacity μ used in the typical BPR function. 

3.3. Discussion on the oversaturation factor m 

In a cubic form with γ < 0, the condition t −t0⩽0 should be held; because m = (t2 − t0)/(t3 − t0), we can combine this with the 
definition of t to obtain the range of m: 

m ∈

(
2
3
,
3
4

]

, γ < 0 (24) 

Similarly, the condition t −t3⩾0 should be held when γ > 0; then, we can obtain that 

Table 2 
The arrival rates of vehicles and corresponding travel time functions.  

Arrival rate form Arrival rate function Average travel time function 

Constant form 
λ(t) =

{
π1 > μ, t0⩽t < t2
π2 < μ, t2⩽t⩽t3  

tt = tf ⋅
[

1 +
(π1 − μ)(μ − π2)

2μ(π1 − π2) ⋅ tf
⋅

(
D
μ

) ]

Linear form λ(t) = −κ(t − t2) + μ, κ > 0  
tt = tf ⋅

[

1 +
κ

12μ ⋅ tf
⋅

(
D
μ

)2
]

Quadratic form λ(t) = −ξ(t − t0)(t − t2) + μ, ξ > 0  
tt = tf ⋅

[

1 +
ξ

36μ ⋅ tf
⋅

(
D
μ

)3
]

Cubic form λ(t) = γ(t − t0)(t − t2)(t − t) + μ  
tt = tf ⋅

[

1 +
γ ⋅ g(m)

μ ⋅ tf
⋅

(
D
μ

)4
]
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m ∈

[
1
2
,
2
3

)

, γ > 0 (25) 

In summary, the range of the oversaturation factor m is 

m ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
1
2

,
2
3

)

, γ > 0

(
2
3

,
3
4

]

, γ < 0
(26)  

and the range of the conversion factor g(m) is 

g(m) ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
1

120
, +∞

)

, γ > 0

(

− ∞, −
1
80

]

, γ < 0
(27) 

When m = 2/3, the shape parameter γ in the cubic arrival rate function will be zero; thus, the arrival rate function will be reduced 
to a quadratic form, which is consistent with the description given by Newell (1982, Chapter 2). 

It is worth noting that not all of the above formulations are applicable for oversaturated dynamic queueing systems. For example, as 
shown in Fig. 3, λ′

(t) and λ′′(t) are the arrival rates for the overcongested and slightly congested queueing systems, respectively. For the 
overcongested queueing systems, the arrival rate at the end of the congestion duration λ′

(t3) is significantly less than the discharge rate 
μ because λ′

(t) decreases sharply near t3. The estimated λ′

(t3) could very likely be a negative value, which violates the positive flow 
assumption. On the other hand, for a slightly congested queueing system, the arrival rate at the end of the congestion duration λ′′(t3) is 
also below the discharge rate μ, but with larger values than λ′

(t3) in the overcongested case. Therefore, it is applicable only for slight- 
congested queueing systems when γ < 0 with m ∈ (2/3, 3/4], while both are applicable for slightly saturated and oversaturated 
queueing systems when γ > 0 with m ∈ [1/2,2/3). The same situations exist in the quadratic arrival rate forms. 

Three special cases, including (1) γ < 0, m = 3/4, (2) γ > 0, m = 1/2, and (3) γ = 0, m = 2/3 are discussed as follows:  

(1) Case 1: γ < 0 and m = 3/4 

When γ < 0 and m = 3/4, we can see that t = t0, which means the cubic net flow function has a repeated root at t = t0. Then, we 
can obtain the time-dependent queue length, time-dependent delay, total delay, and average delay by: 

Fig. 3. Illustration of the cubic arrival rate function with a negative shape parameter (i.e., γ < 0).  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(t) =
1
4

γ(t − t0)
3
(t − t3)

w(t) =
1

4μ γ(t − t0)
3
(t − t3)

W(t3) = −
1
80

γ(D/μ)
5

w = −
γ

80μ ⋅ (D/μ)
4

(28)    

(2) Case 2: γ > 0 and m = 1/2 

When γ > 0 and m = 1/2, the arrival rate function is symmetric around the point (t2,μ), and t = t3. Then, we can obtain the time- 
dependent queue length, time-dependent delay, total delay, and average delay by: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(t) =
1
4

γ(t − t0)
2
(t − t3)

2

w(t) =
1

4μ γ(t − t0)
2
(t − t3)

2

W(t3) =
1

120
γ(D/μ)

5

w =
γ

120μ(D/μ)
4

(29)    

(3) Case 3: γ = 0 and m = 2/3 

When m = 2/3, the cubic form is not applicable because we would have t0 = t3 and γ = 0 with the condition of Q(t3) = 0, which 
violates the definition of t0 and t3; then, it would be reduced to a concave quadratic form. The description for the quadratic form of the 
arrival rate function is given by Newell (1982, Chapter 2). This case is applicable only to slightly congested queueing systems. 

4. Calibration method 

In this section, a two-step calibration method is proposed to calibrate the parameters in the proposed spatial queue model. Spe
cifically, the first-step calculates the discharge rate μ based on the observations of the cumulative departure flows from the downstream 
link of the bottleneck, while the second-step calibrates the shape parameter γ and the oversaturation factor m with the observations of 
the time-dependent queue length and/or delay. The details are presented as follows. 

4.1. Calibrating the discharge rate μ 

This study assumes that the discharge rate of a bottleneck is a constant, which is consistent with empirical observations in Cassidy 
and Bertini (1999). Combining with the boundary conditions that the queue forms at time t0 and dissipates at time t3, one can simply 
calculate the discharge rate μ by: 

μ =
N(t3) − N(t0)

t3 − t0
(30)  

where N(t), t ∈ [t0, t3] is the cumulative number of vehicles from t0 to t. 

4.2. Calibrating the shape parameter γ and the oversaturation factor m 

As for the calibration of γ and m in the proposed model, the objective is set to minimize the sum of squared residuals (SSR), 
mathematically expressed as follows: 

min Z
(γ,m)

=
∑|P|

t=1

{
(Y(t) − Ŷ (t))

2 }
(31)  

where |P| is the number of time intervals in the peak period; Y(t) and Ŷ(t) are the estimated values and observations at time interval t, 
respectively. Y(t) and Ŷ(t) can be the (virtual/physical) queue length or delay in terms of the available data. Without loss of generality, 
we use the virtual queue length Q(t) to illustrate the calibration procedures. Thus, the objective function becomes: 
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min Z
(γ,m)

=
∑|P|

t=1

{
(Q(t) − Q̂(t))

2 }
(32)  

subject to 

λ(t) = γ(t − t0)(t − t0 − m(t3 − t0))

(

t − t0 −
(3 − 4m)(t3 − t0)

4 − 6m

)

+ μ⩾0 (33)  

where Q(t) and Q̂(t) are the estimated values and observations of the virtual queue length at time interval t, respectively. Q(t) is a 
function of λ(t), and constraint (33) ensures the non-negativity of λ(t). 

With some simple calculations, one can derive that ∂
∂m

(
3−4m
4−6m + m

)

=
3(6m2−8m+3)

2(2−3m)
2 and ∂

∂m

(
(3−4m)m

4−6m

)

= 6m2−8m+3
(2−3m)

2 . Substituting these 

derivations into Eq. (15), one can further calculate the first- and second-order partial derivatives of Q(t) with respect to γ and m as 
follows: 

∂Q
∂γ

= (t − t0)
2 ⋅

[
1
4
(t − t0)

2
−

1
3

⋅
(

3 − 4m
4 − 6m

+ m
)

(t3 − t0)(t − t0) +
1
2

⋅
(3 − 4m)m

4 − 6m
(t3 − t0)

2
]

(34)  

∂Q
∂m

= γ(t3 − t0)(t3 − t)(t − t0)
2 ⋅

6m2 − 8m + 3
2(2 − 3m)

2 (35)  

∂2Q
∂γ∂m

= (t3 − t)(t − t0)
2 ⋅

6m2 − 8m + 3
2(2 − 3m)

2 (36)  

∂2Q
∂γ2 = 0 (37)  

∂2Q
∂m2 = γ(t3 − t0)(t3 − t)(t − t0)

2 ⋅
1

(2 − 3m)
3 (38) 

To obtain the optimal parameter values in Eq. (31), one can rewrite Eq. (31) as follows: 

min Z
(γ,m)

=
∑|P|

t=1

{
(Q(t) − Q̂(t))

2 }
=

∑|P|

t=1

{
Q2(t) − 2Q(t)Q̂(t) + Q̂

2
(t)

}
(39) 

Substituting Eqs. (34)–(38) into Eq. (39), we can analytically derive the first- and second-order partial derivatives of Z with respect 
to γ and m as follows: 

∂Z
∂γ

=
∑|P|

t=1

{

2(Q(t) − Q̂(t)) ⋅
∂Q
∂γ

}

(40)  

∂Z
∂m

=
∑|P|

t=1

{

2(Q(t) − Q̂(t)) ⋅
∂Q
∂m

}

(41)  

∂2Z
∂γ∂m

=
∑|P|

t=1

{

2(1 + Q(t) − Q̂(t)) ⋅
∂2Q

∂γ∂m

}

(42)  

∂2Z
∂γ2 =

∑|P|

t=1

{

2(1 + Q(t) − Q̂(t)) ⋅
∂2Q
∂γ2

}

= 0 (43)  

∂2Z
∂m2 =

∑|P|

t=1

{

2(1 + Q(t) − Q̂(t)) ⋅
∂2Q
∂m2

}

(44) 

With the Jacobian matrix J =

[
∂Z
∂γ,

∂Z
∂m

]

and the Hessian matrix H =

⎡

⎢
⎢
⎢
⎢
⎣

∂2Z
∂γ2

∂2Z
∂γ∂m

∂2Z
∂γ∂m

∂2Z
∂m2

⎤

⎥
⎥
⎥
⎥
⎦

, one can solve the problem in Eq. (39) by some 

nonlinear optimization algorithms, which will be introduced in the next subsection. 

Q. Cheng et al.                                                                                                                                                                                                         



Transportation Research Part C 137 (2022) 103596

11

4.3. Nonlinear optimization algorithms 

Although the optimization model in Eq. (39) seems simple, solving it to obtain a global optimum is not an easy task due to the 
highly nonlinear, nonconvex, and multimodal characteristics of the objective function. In this study, different algorithms, including the 
Newton’s method, the sequential least squares programming (SLSQP) algorithm, the adaptive moment estimation (Adam) algorithm, 
the Bayesian optimization algorithm, are tested and compared for solving the optimization model. The details of these algorithms are 
summarized as follows.  

• The Newton’s method, also known as the Newton-Raphson method, is a recursive solution algorithm to approximate the root of a 
differentiable function. Thus, one can use the Newton’s method to the derivative of a twice-differentiable function to obtain the 
root(s) of the derivative. The solution(s) may be (local) minima, maxima, or saddle points. The details on this algorithm can be 
found in Nocedal and Wright (2006).  

• The SLSQP algorithm, also known as the sequential quadratic programming algorithm (Nocedal and Wright, 2006), is a widely used 
solution algorithm for constrained nonlinear optimization problems. In each iteration, it approximates the original problem by a 
quadratic model subject to a linearization of constraints. Based on such an approximation, one can solve for the extreme value point 
with the Newton’s method. The quality of the solutions is very sensitive to the selection of the initial point, and the result may be a 
local optimum.  

• The Adam algorithm (Kingma and Ba, 2014) is a stochastic optimization algorithm which only needs the first-order gradients with 
little memory requirements. It is designed by combining the advantages of two popular algorithms (i.e., the adaptive gradient 
algorithm proposed by Duchi et al. (2011) and the root mean square propagation algorithm proposed by Tieleman and Hinton 
(2012), and now it has been widely used for the optimization problems in deep learning. The theoretical analyses on the Adam 
algorithm are referred to Kingma and Ba (2014).  

• The Bayesian optimization algorithm (Pelikan et al., 1999; Snoek et al., 2012) is a simulation-based optimization algorithm, and it 
is especially applicable to the problem where its objective function is difficult to evaluate. A surrogate function is usually built for 
the objective function, and uncertainty is quantified with Bayesian method and Gaussian process. Based on the surrogate function, 
an acquisition function can be obtained to decide where to sample. Similar to the Adam algorithm, the Bayesian optimization 
algorithm has been widely used in the deep learning. 

Due to the complexity of the optimization problem with a highly nonlinear, nonconvex, and multimodal objective function, the 
corresponding multi-start versions for the Newton’s method, SLSQP and Adam algorithms are also considered in this study to avoid the 
local optimum issue. (Note that the Bayesian optimization algorithm is a simulation-based optimization algorithm with multiple initial 
solutions, thus there is no need to design a multi-start version for it). Besides, a parallel grid search scheme is designed to obtain the 
(nearly) global optimum, which can be deemed as the benchmark for the data fitting strategy in this manuscript. 

5. Estimation results on different bottlenecks 

5.1. Empirical data sets and algorithm settings 

The proposed performance model with a cubic arrival rate function can be calibrated with only three parsimoniously selected 
parameters (i.e., the discharge rate μ, the shape parameter γ, and the oversaturation factor m). We use three empirical data sets (DSs) 
with the descriptions in Table 3 to verify the proposed model and parameter fitting strategies. The areas in these three cases with 
empirical data sets are shown in Fig. 4. 

The three data sets DS1–DS3 are from Los Angeles, Beijing, and New York, respectively. Set DS1 is freeway sensor data that records 
the traffic flow, speed, and occupancy in a 5-min interval. The original data can be accessed from http://pems.dot.ca.gov, which is a 
real-time freeway performance measurement system developed by the California Department of Transportation. We choose a single 

Table 3 
Description of empirical data sets.  

Data 
set 

Queueing system Object Data type and information Collected time and location 

DS1 Traffic system Vehicle 22 freeway detectors with traffic flow, speed, and 
occupancy data. 

Collected from the Northbound direction of I-405 freeway 
between absolute postmile 8.97 to 14.77 mile in Los 
Angeles in the month of April 2019, from 11:00 a.m. to 
20:00 p.m. weekdays. 

DS2 Traffic system Vehicle 20 remote traffic microwave sensors with the traffic flow, 
and 47 detector locations of probe taxi (around 5% of 
population traffic) with averaged traffic speed data. 

Collected from the west-third-ring of Beijing City on June 
8, 2018, from 6:00 a.m. to 12:00 a.m. weekday. 

DS3 Transportation 
system 

Taxi 30,794 taxi trip record data with trip ID, pickup time and 
location, drop off time and location, etc. 

Collected from the Midtown Center of Manhattan to the 
John F. Kennedy International Airport in New York City in 
the month of October 2018, provided by the New York 
City Taxi and Limousine Commission  

Q. Cheng et al.                                                                                                                                                                                                         

http://pems.dot.ca.gov


Transportation Research Part C 137 (2022) 103596

12

recurrent bottleneck, which is located in the northbound direction of the I-405 freeway between absolute postmile 8.97 and mile 14.77 
in Los Angeles, and the time duration covers from 11:00 a.m. to 20:00 p.m. for weekdays in the month of April 2019. The number of 
lanes is four at the bottleneck location in DS1. Set DS2 contains the remote traffic microwave sensor data with the traffic flow in
formation and the probe vehicle data with the averaged traffic speed information. Although the remote traffic microwave sensor data 
also record the occupancy and speed information, the quality of these data are very poor; thus, we use the probe vehicle data as 
supplementary, high-quality data of speed information. The data are collected from the west-third-ring of Beijing City on June 8, 2018, 
from 6:00 a.m. to 12:00 a.m., to analyze the morning peak traffic system. There are three lanes at the bottleneck location; however, one 
of the lanes is a bus-only lane during the morning peak hours (7:00 a.m. ~ 9:00 a.m.). Set DS3 is the New York taxi data, which contain 
each trip ID number, its corresponding pick-up time and location, and its drop-off time and location. The data can be accessed from 
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, which is free and open-source for downloading. We choose one 
origin–destination pair, in which passengers are picked up at the center of midtown Manhattan and dropped off at John F. Kennedy 
International Airport in the month of October 2018. With the pick-up and drop-off time, we can obtain the en-route travel time for each 
trip; then, we can calculate the delay time after subtracting the en-route travel time by a free-flow travel time, which can be assumed to 
be the average travel time during the nonpeak period, such as 6:00 a.m. to 6:30 a.m. 

As for the solution algorithms, the configurations of parameters are set as follows. To illustrate our proposed methodology and 
solution algorithms, we provide the DS1 and corresponding algorithms in https://github.com/ChengTraffic/Polynomial-Arrival- 
Queue-PAQ. 

W
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t 3
rd
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g 
R
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d 

(B
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jin
g)

Midtown Center of Manhattan to 
JFK International Airport

I-405 (Northbound)
 Postmile (Abs) 8.97~14.77 Mile

Fig. 4. Areas of the traffic queueing systems used in the calibration. (a) DS1; (b) DS2; (c) DS3.  

0 13:10t
3 19 : 45t

Fig. 5. Speed profile with DS1. It is clear that the bottleneck is located at Abs = 13.51 mile. In this case, we analyze only one single bottleneck with 
one peak period from t0 = 13 : 10 to t3 = 19 : 45. 
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• Newton’s method. The maximum iteration is set as 103, and the termination tolerances on the decision variables and function value 
are both set as 10-12.  

• SLSQP. The maximum iteration is set as 103, and the termination tolerances on the decision variables and function value are both 
set as 10-12.  

• Adam. The maximum iteration is set as 103, and the hyperparameters of the step size and two exponential decay rates for the 
moment estimates are set as 0.001, 0.9, and 0.999, respectively. 

• Bayesian optimization. The Gaussian process regression is used to describe the prior/posterior distribution of the objective func
tion. The maximum iteration is set as 200, the number of points for each sampling is set as 10, the variance of the error term in the 
Gaussian process is set as 10-8, and the precision tolerance of the objective value is set as 10-8. 

5.2. Calibration results 

As for the DS1, we first draw the speed profile as shown in Fig. 5 to obtain the location of the bottleneck. It is clear that there are two 
bottlenecks in DS1, and we analyze only the second bottleneck, with more severe traffic congestion. Second, we draw a speed and 
occupancy plot (see Fig. 6) to determine t0, t3 and the free-flow speed vf . The blue curves depict the speed, while the red curves depict 
the occupancy, which can be converted to density values through May (1990, see Chapter 7, page 193). The speed downstream of the 
bottleneck remained almost stable over 45 mile/hour during the peak period, while the speeds at the bottleneck and upstream of the 
bottleneck were reduced sharply during the peak period. Similarly, the occupancy downstream of the bottleneck reaches almost below 
0.11 during the peak period, while the occupancies at the bottleneck and upstream of the bottleneck reach up to 0.25 during the peak 
period. 

There are three measurements in DS1, including the cumulative departure count, the queue length, and the delay time. In the first- 
step calibration, the cumulative traffic count adjacently downstream of the bottleneck location is used as the measurement of the 
observed cumulative departure count. According to Eq. (30), the discharge rate in DS1 can be calculated as μDS1 = 3936 veh/hour or 
μDS1 = 984 veh/hour/lane. 

As for the second-step calibration, the observed time-dependent delay time is calculated by the travel time of the total influence 
length of the bottleneck after subtracting the free-flow travel time. With regard to the time-dependent queue length, we need to first 
obtain the critical occupancy with the flow-occupancy plot (in which the critical occupancy for DS1 is close to 0.13), then transfer the 
occupancy to density, and finally calculate the observed time-dependent queue length with the density data (May, 1990). 

As mentioned in Section 4, the optimization problem in Eq. (39) is highly nonlinear, nonconvex, and multimodal. Fig. 7 illustrates 
these characteristics with the objective value by changing the parameters of γ and m. It is clear that the objective function has multiple 
(local) optima, and obtaining a global optimum is very difficult. We first use the parallel grid search with multiprocessing technique by 

Fig. 6. Speed and occupancy with DS1.  
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changing γ from 1 to 20 with an increment of 0.0095 and m from 0.5 to 0.666 with 0.001, thus a total of 334,167 combinations are 
evaluated in the parallel grid search stage. The result of the minimal objective value in the parallel grid search is 409,795, which will be 
the benchmark for the data fitting strategies with Newton’s method, SLSQP, Adam, and also the Bayesian optimization algorithms. 
Table 4 compares the performance of different algorithms in the second-step calibration for DS1. As we can see from it, the multi-start 
Adam algorithm outperforms others in terms of all the performance metrics of the relative error (RE) with respect to the minimal 
objective value output by the parallel grid search algorithm, the mean squared error (MSE), and the R2, with the results of γDS1 =

11.536 veh/hour4 and mDS1 = 0.533. Besides, we can also see that even without the multi-start, the Adam is the best in fitting the 
empirical data in DS1. The SLSQP algorithm is very sensitive to the given initial value, it may perform much worse than other al
gorithms if a bad initial value (which is the same to other algorithms) is chosen. The calibration result of the time-dependent queue 
length is shown in Fig. 8(a), and the calibrated arrival rate and discharge rate for DS1 is shown in Fig. 9(a). 

For DS2, the calibration procedures are similar with that of DS1; however, there are only two measurements, namely, the cu
mulative departure count and the delay time, in DS2. The traffic condition is more complicated than that of DS1 because of the ex
istence of a spatial queue spillback and temporal queue connection phenomena in DS2 (see Fig. 10). In this paper, we focus on a single 
bottleneck (which may have the temporal queue connection) and do not consider the queue spillback in the model. To explain the 
system with a temporal queue connection, we build a two-peak model, in which the queue during the first peak period does not 
completely dissipate at time t3, and the new queue during the second peak appears at time t3. The details on the two-peak model can be 
found in Appendix C, and it is worth noting that there is no need to guarantee the condition of m⩾0.5 in the two-peak model. According 
to the comparison results of the algorithms used for fitting empirical data in DS1, we select the multi-start Adam to calibrate for the 
DS2. The final results for DS2 are μDS2 = 1815 veh/hour or μDS2 = 907.5 veh/hour/lane, γDS2 = 1126.23 veh/hour4 and mDS2 = 0.527. 
The performance metrics for DS2 are MSE = 0.881 and R2 = 0.905 for the time-dependent delay. The calibration result of the time- 

Fig. 7. Illustration of the highly nonlinear, nonconvex, and multimodal characteristics of the objective function.  

Table 4 
Comparison of the performance of different algorithms in the second-step calibration for DS1.  

Algorithms Calibration results Performance metrics 

γ  m  RE MSE R2 

Newton’s method  9.999  0.547  0.088  5644.322  0.934 
Multi-start Newton’s method  10.510  0.542  0.039  5390.922  0.937 
SLSQP  10.000  0.580  11.296  63782.352  0.257 
Multi-start SLSQP  10.918  0.539  0.015  5266.788  0.939 
Adam  11.240  0.536  0.003  5203.907  0.939 
Multi-start Adam  11.536  0.533  0.000  5186.960  0.940 
Bayesian optimization  11.906  0.529  0.020  5289.024  0.938  
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dependent delay is shown in Fig. 8(b), and the calibrated arrival rate and discharge rate for DS2 is shown in Fig. 9(b). When comparing 
Fig. 9(a) with 9(b), it is clear that the discharge rate in DS1 shows smaller variation than that in DS2, as DS1 covers highway roads with 
a higher speed limit, but the elevated urban expressways in DS2 more frequently exhibit stop-and-go phenomena. For the particular 
period of analysis, the effective discharge rate during heavy congestion in DS1 is higher than that in DS2, but both values are 
significantly lower than the theoretical maximum flow capacity, typically due to prevailing traffic density at bottlenecks, complex road 
geometry, and driving behavior. In DS2, the queue does not dissipate at the end of the first peak period as a bus-only lane opens to 
general-purpose vehicles at 9 AM, which attracts another wave of demand. 

For DS3, we first choose one origin–destination pair (from the center of midtown Manhattan to John F. Kennedy International 
Airport) and draw the cumulative arrival and departure curves and then shift the cumulative arrival curve to the right to reach the 
cumulative departure curve (with the moving distance taken as the free-flow travel time). The obtained new curve is the virtual 
cumulative arrival curve. Based on the virtual cumulative arrival curve and the cumulative departure curve, we can calculate the 
observed time-dependent delay time. Similarly, we use the multi-start Adam algorithm to calibrate for the DS3. The final results for 
DS3 are μDS3 = 33.705 trip/hour, γDS3 = 0.271 veh/hour4, and mDS3 = 0.500. The performance metrics for DS3 are MSE = 0.877 and 
R2 = 0.908 for the time-dependent delay. The calibration result of the time-dependent queue length is shown in Fig. 8(c), and the 
calibrated arrival rate and discharge rate for DS3 is shown in Fig. 9(c). 

One of the very important features of our proposed model is the quantification of the peak demand λ(t) over the supply μ at the 
signature timestamp t1 for this oversaturated process, which can be denoted as the system utilization ratio ρ = λ(t1)/μ. The results 
show that ρDS1 = 1.059, ρDS2 = 1.232, and ρDS3 = 1.252. Congestion in the Los Angeles data set DS1 is associated with long-period 
accumulation of excess demand even though it only marginally exceeds the discharge rate. On the other hand, the congestion in the 
Beijing case DS2 is most likely due to a sharp surge of the incoming flow, which holds the full potential for demand spreading stra
tegies. 

6. Discussion on queueing state dynamics in demand and supply curves 

In real-world oversaturated dynamic queueing systems, the demand and supply curves may have many distinct ways of pattern 
dynamics. Fig. 11 depicts the different approximation forms of the arrival rate function, and Fig. 12 depicts different patterns of the 
cumulative departure curve in dynamic oversaturated queueing systems. Based on the framework used in the above study, one could 
select one of the most likely demand and supply patterns that match real-world observations and could utilize critical control points 

(c) DS3(b) DS2(a) DS1

Fig. 8. Calibration results with different data sets.  

(c) DS3(b) DS2(a) DS1

Fig. 9. Comparisons of the calibrated arrival rate and discharge rate between different data sets.  
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(a) Speed profile of Beijing West 3rd Ring on June 8, 2018 

(b) Speed profile of a typical bottleneck 
Fig. 10. Speed profile with DS2. The upper figure is the speed profile of the West 3rd Ring (from the south to the north direction) of Beijing City in 
the morning of June 8, 2018. We do collect raw data across 2 weeks, but the data from this typical weekday have been systematically verified across 
different sections to ensure that all the related loop detectors are working properly. The bottom figure is a typical bottleneck. This case is much more 
complicated than the case in DS1. 
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along the time horizon t0, t1, t2, t3, and the oversaturation factor m to analytically derive the resulting queueing and travel time. From 
the decision makers’ perspective, we should not only collect more measurements to observe the queue extent and average delay as part 
of the system performance but also understand the root causes of traffic congestion by uncovering and identifying the underlying 
demand flow dynamics. 

7. Conclusion 

Recognizing the needs for interpretable models in traffic state estimation applications, we propose a queueing-theoretic model for 
oversaturated traffic systems with time-dependent demand rates, and average demand-delay function forms are established from time- 
dependent queueing systems based on the polynomial functional approximation for virtual arrival rates. The space-time trajectories 
during congestion are mapped to a set of dynamical queueing system equations with a family of polynomial-approximated time- 
dependent arrival rates. 

For heavy congestion cases, we explicitly define the oversaturation ratio (or the queue building-up ratio) to analytically derive the 
system state dynamics equations with cubic arrival rate functions. With parsimonious selection of a small number of parameters, this 
proposed model can be easily calibrated with real-world data. Calibration results with different data sets, including the open-source 
PeMS data set, the open-source New York taxi data set, and the Beijing probe vehicle and sensor data set, validated the effectiveness of 
the proposed model. The proposed model in this paper analytically reveals the system evolution process and makes the extremely 

Fig. 11. Different patterns of the arrival rate function in dynamic oversaturated queueing systems. The red horizontal line is the constant discharge 
rate μ, and the blue line or curve is the arrival rate function λ(t) with diverse patterns. The shadow area between t0 and t2 is the maximal queue 
length; thus, the shadow area before and after t2 should be equal, indicating a flow conservation condition. Specifically, (a) depicts the arrival rate 
with step constants; (b)~(f) approximate the arrival rate by different types of piecewise linear functions. (g) draws the arrival rate by a quadratic 
function, and it is symmetric at t = t1. The symmetric quadratic form is adopted to analyze the mildly congested traffic system in the literature 
(Newell, 1982). (h)-(i) approximate the arrival rate by a cubic function, which is a discussion focus in this paper. The cubic arrival rate function can 
be used to analyze the asymmetry of the arrival rate. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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complex system more observable with approximated analytical formulations. 
With this line of simplified analytical approach, decision makers can systematically interpret/explain the key queueing parameters, 

and further optimize an integrated set of demand- and supply-side congestion mitigation strategies for complex and oversaturated 
dynamic queueing systems at different scales. In the future, more advanced queueing models (e.g., Huang et al., 2016, 2017; Smith 
et al., 2019; Jin, 2021) should be compared with our proposed model in terms of the computational efficiency and solution accuracy. 
This work can be extended from a single bottleneck to a network-wide bathtub model (Jin, 2020; Vickrey, 2019, 2020) to investigate 
the overall system performance. In addition, automatically identifying bottlenecks is critical for the proposed methodology to be 
reliable and replicable in estimating parameters. As for the task of automatically identifying bottlenecks, a tentative idea is to construct 
the space-time speed profile (e.g., the speed profile in Fig. 5), and then identify the bottleneck location and congestion period through 
image recognition with deep residual learning approach (He et al., 2016). 
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Appendix A. Summary of the results for queueing system performance  
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Fig. 12. Different patterns of the cumulative departure curve in dynamic oversaturated queueing systems. The red line or curve D(t) is the cu
mulative departure curve, the blue curve A(t) is the cumulative arrival curve, and the dashed line is an imaginary cumulative departure curve with a 
slope of μ. (a) approximates the discharge rate by a constant value of μ; thus, the cumulative departure curve is a line with a slope of μ; (b)~(c) 
approximate the cumulative departure curve by piecewise linear curves upon and below the dashed line with a slope of μ, respectively; (d)~(e) 
approximate the cumulative departure curve by polynomial curves upon and below the dashed line with a slope of μ, respectively; (f) approximates 
the cumulative departure curve by a piecewise linear curve with a zero-discharge rate in between. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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Appendix B. Derivation of the time-dependent queue length 

Set u = τ −t0; then, τ = t0 corresponds to u = 0, τ = t corresponds to u = t −t0, and dτ = du. Therefore, we can derive the time- 
dependent queue length function as follows: 

Q(t) =

∫ t

t0
[γ(τ − t0)(τ − t2)(τ − t)]dτ

= γ ⋅
∫ t−t0

0
[u(u + t0 − t2)(u + t0 − t)]du

= γ ⋅ (t − t0)
2 ⋅

[
1
4
(t − t0)

2
+

1
3

(2t0 − t2 − t)(t − t0) +
1
2

(t0 − t2)(t0 − t)
]

(62) 

Because the queue will dissipate at time t3, we can calculate t3 by setting Q(t3) = 0, which gives t3 as follows: 
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1
4
(t3 − t0)

2
+

1
3

(2t0 − t2 − t)(t3 − t0) +
1
2

(t0 − t2)(t0 − t) = 0 (63) 

Then, we can obtain the relationship between t0, t2, t3 and t as: 

t − t0 =
3(t3 − t0)

2
− 4(t2 − t0)(t3 − t0)

4(t3 − t0) − 6(t2 − t0)
(64) 

Denote the oversaturation factor m by the ratio between the time duration from the start of congestion to the time with maximum 
queue length and the whole congestion duration, i.e., 

m =
t2 − t0

t3 − t0
, 0 < m < 1 (65)  

then we can obtain the time-dependent queue length function after substituting Eqs. (64) and (65) into Eq. (62): 

Q(t) = γ ⋅ (t − t0)
2 ⋅

[
1
4

(t − t0)
2

+
1
3

(2t0 − t2 − t)(t − t0) +
1
2

(t0 − t2)(t0 − t)
]

= γ ⋅ (t − t0)
2 ⋅

[
1
4
(t − t0)

2
−

1
3

(
3(t3 − t0)

2
− 4(t2 − t0)(t3 − t0)

4(t3 − t0) − 6(t2 − t0)
+ t2 − t0

)

(t − t0) +
1
2

(t2 − t0)

(
3(t3 − t0)

2
− 4(t2 − t0)(t3 − t0)

4(t3 − t0) − 6(t2 − t0)

)]

= γ ⋅ (t − t0)
2 ⋅

[
1
4

(t − t0)
2

−
1
3

⋅
(

3 − 4m
4 − 6m

+ m
)

(t3 − t0)(t − t0) +
1
2

⋅
(3 − 4m)m

4 − 6m
(t3 − t0)

2
]

(66)  

Appendix C. Two-peak model 

In some cases, the queue during the first peak period does not completely dissipate at time t3, and the new queue during the second 
peak appears at time t3. For example, in the Beijing data set analyzed in this paper, there are two lanes open to general-purpose vehicles 
and one lane open only to buses during 07:00 AM to 09:00 AM, while after 09:00 AM, the bus-only lane opens to general-purpose 
vehicles and attracts another wave of demand. 

We also assume that the arrival rate at time t during each period can be approximated by a cubic polynomial function, i.e., λ(t) =
∑3

i=0γiti, where γi are the coefficients of the i-th order variables. Denote t1
0(t20), t1

2(t22), t1
(t2), and μ1(μ2) as the time that the arrival rate 

exceeds the discharge rate for the first (second) time, the time with a maximum queue length during the first (second) peak period, the 
time that the arrival rate rises to the discharge rate for the second (third) time, and the constant discharge rate during the first (second) 
peak period, respectively (see Fig. B1 for a detailed model illustration). It is clear that t1

= t20. The time-dependent arrival rate function 
can be approximated by the following piecewise cubic function: 

λ(t) =

{
γ1

(
t − t1

0

)(
t − t1

2

)(
t − t1)

+ μ1, t ∈
[
t1
0, t1]

γ2
(
t − t2

0

)(
t − t2

2

)(
t − t2)

+ μ2, t ∈
[
t2
0, t2

3

] (67) 
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Fig. B1. Illustration of the two-peak model. (a) Illustration of the arrival rate in the two-peak model. (b) Illustration of the virtual queue length in 
the two-peak model. (c) Illustration of the cumulative arrival and departure curves in the two-peak model. 
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When μ1 = μ2, we can obtain the net flow function as 

λ(t) − μ =

{
γ1

(
t − t1

0

)(
t − t1

2

)(
t − t1)

, t ∈
[
t1
0, t1]

γ2
(
t − t2

0

)(
t − t2

2

)(
t − t2)

, t ∈
[
t2
0, t2

3

] (68) 

The queue length can be calculated by Q(t) =
∫ t

t10
[λ(t) − μ]dt. Thus, we have the queue length function as 

Q(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1
(
t − t1

0

)2

⎡

⎢
⎢
⎢
⎣

1
4

(
t − t1

0

)2
+

1
3

(
2t1

0 − t1
2 − t1)(

t − t1
0

)

+
1
2

(
t1
0 − t1

2

)(
t1
0 − t1)

⎤

⎥
⎥
⎥
⎦

, t ∈
[
t1
0, t1]

Q(t1
) + γ2

(
t − t2

0

)2

⎡

⎢
⎢
⎢
⎣

1
4
(
t − t2

0

)2
+

1
3

(
2t2

0 − t2
2 − t2)(

t − t2
0

)

+
1
2

(
t2
0 − t2

2

)(
t2
0 − t2)

⎤

⎥
⎥
⎥
⎦

, t ∈
[
t2
0, t2

3

]

(69) 

With the time-dependent queue length function, we can derive the time-dependent delay and the total delay functions as in Section 
3.1, which are omitted here. In this two-peak model, the observed time indexes are t1

0, t1
= t2

0, and t2
3, while the parameters to be 

calibrated are μ, γ1, γ2, t1
2, t2

2, and t2. 
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