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A B S T R A C T   

A variant of the traditional multiple discrete-continuous extreme value (MDCEV) model that 
obviates the need to have budget information, labeled as the Lγ-profile MDCEV model, has been 
proposed recently. This new model structure breaks the strong linkage between the discrete and 
continuous choice dimensions of decision-making. But recent studies show that this Lγ-profile 
model may not work well in situations when, even if the budget is unobserved, the budget is 
known to be finite and small in magnitude. The reason is that the formulation, while ensuring the 
positivity of consumptions of the inside goods (that may or may not be consumed), does not 
guarantee, within the model formulation and estimation itself, the positivity of the consumption 
of the essential outside good. In this paper, we develop a formulation based on a reverse Gumbel 
structure for the stochastic terms in the utility functions of alternatives that develops a closed- 
form probability expression, while also accommodating the positivity requirement for the 
outside good. The ability of our proposed Budget-based Reverse Generalized Lγ-profile model 
(labeled the BR-GLγ-profile model) to recover true underlying model parameters is assessed. Our 
results clearly point to the benefit of employing the proposed model (relative to extant linear 
outside utility profile models in the literature) in empirical contexts when there is reason to 
believe that a finite ceiling applies to the budget (even if the budget is unobserved) or if the 
budget is actually available. In the latter case when the budget is available, our proposed model is 
a serious contender to the traditional γ-profile-MDCEV model and will generally outperform the 
traditional γ-profile-MDCEV when the consumption share of the outside good is high.   
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1. Introduction 

Many consumer choice situations involving a portfolio or package choice of elemental alternatives, along with the amount of a 
continuous quantity to allocate to the chosen elemental alternatives, lend themselves nicely to analysis using a direct utility maxi
mization approach (see Wales and Woodland, 1983). Bhat (2005, 2008) coined the term multiple discrete-continuous (MDC) choices 
for such situations, because these situations allow for the possibility of the choice of multiple elemental alternatives, including both a 
discrete element as well as a continuous element. A particularly appealing closed-form model structure following the MDC paradigm is 
the MDC extreme value (MDCEV) model (Bhat, 2005, 2008), which has now been applied in a wide variety of choice contexts (see, for 
example, Ma et al., 2019; Shin et al., 2019; Varghese and Jana, 2019; Mouter et al., 2021). 

In recent years, a variant of the MDCEV, based on employing a linear utility structure for one or more outside goods (that are 
essential and always consumed), has received increasing attention (see Bhat, 2018; Bhat et al., 2020; Saxena et al., 2021). Such a 
structure has the advantage of not needing the budget quantity, which indeed may be unobserved in many situations, as well as fa
cilitates the modeling of multiple discrete-grouped (MDG) data where the amounts of consumptions are observed in grouped cate
gories rather than in continuous form. It also loosens the strong tie between the discrete and continuous choice dimensions embedded 
in the traditional MDCEV model. This linear utility form (for the outside good) MDCEV model is a neat structure, but, as indicated in 
Saxena et al. (2021), may not work well in terms of data fit and prediction ability when the overall budget amount, even if unobserved, 
is known to be small. On the other hand, the formulation does very well when the budgets are large. The reason is that the formulation, 
while ensuring the positivity of consumptions of the inside goods (that may or may not be consumed), does not guarantee, within the 
model formulation and estimation itself, the positivity of the consumption of the essential outside good.1 In addition, the estimators 
used thus far for the formulation with a linear utility form for the outside good do not explicitly recognize the budget constraint during 
estimation. But the probability that the consumption of the outside good will be positive (and that the budget constraint is met) in
creases as the total value of the budget increases, and tends to the value of 1 for the situation when the budget tends to infinity. 

In a related effort, Mondal and Bhat (2021) recently proposed a reverse Gumbel distribution for the stochastic elements in the 
utility of alternatives (that is, a Type-1 extreme value Gumbel form based on the limiting distribution of the minimum of random 
variables rather than the traditional Type-1 extreme value Gumbel form based on the limiting distribution of the maximum of random 
variables), while maintaining a linear utility structure for the outside good. The main motivation for the use of the reverse Gumbel with 
the linear outside good utility structure is that it leads to a closed-form probability expression for the MDC consumption pattern, 
regardless of the number of linear budget constraints that dictate the MDC choice. Again, this formulation is useful for the case when 
budgets are not observed for each (or any) of the constraints. However, the same issues of bias in parameter estimates, poor fit to data, 
and poor prediction ability permeate through this alternative formulation if the budgets along any of the constraints determining 
choice are small in magnitude. 

In this paper, we develop a formulation, also based on the reverse Gumbel structure for the stochastic terms in the utility functions 
of alternatives, that develops a closed-form probability expression while also accommodating the positivity requirement for the outside 
good. This is done through a truncation scheme that still yields a compact and closed-form likelihood expression. Importantly, the 
procedure works with both observed and unobserved budgets. In the case of observed budgets, a linear utility profile for the outside 
good can provide better results than the traditional MDCEV in cases when a very high proportion of the budget is allocated to the 
outside good (see Bhat, 2018 for a detailed explanation). And, in the case of unobserved budgets, it can place a finite limit value (a 
ceiling) on what a reasonable budget may be. 

The rest of this paper is structured as follows: The next section lays out the microeconomic framework and statistical specification 
of the proposed model. Section 3 presents the forecasting approach for the model, while Section 4 examines the performance of the 
proposed model using simulation experiments. Section 5 presents an empirical application of the proposed model. Section 6 sum
marizes the paper and identifies future research directions. 

2. The linear outside good utility profile MDCEV model structure 

Assume without any loss of generality that the essential Hicksian composite outside good is the first good. Consider the generalized 
version of theLγ-profile utility functional form (which we will refer to as the GLγ profile) as presented in Eq. (19) of Bhat et al. (2020) 
(this variant helps provide additional flexibility than would be possible otherwise, as discussed later in Section 2.5). Assuming that the 
budget information and the continuous consumption values for a sample are available, the MDC formulation is written as: 

U(x) = ψ1−α
1 x1 +

∑K

k=2

γk

αψ1−α
k

{(
xk

γk
+ 1

)α

− 1
}

s.t. x1 +
∑K

k=2
pkxk = E,

(1) 

1 It is not necessary that the outside good consumption must be above zero in all consumption situations. However, most MDC choice modeling 
applications in the literature involve situations where the outside good is essential (in that some part of the budget is always allocated to it). 
Therefore, it is important to formulate models that ensure a positive consumption for the outside good. 
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where the utility function U(x) is quasi-concave, increasing and continuously differentiable, x ≥ 0 is the consumption quantity (x is a 
vector of dimension (K × 1) with elements xk), and ψk and γk are parameters associated with good k. The parameter α is a fixed satiation 
parameter across all the inside goods (however, note that the effective satiation is different across the inside goods because of the 
presence of the good-specific γk parameter). The constraint in Eq. (1) is the linear budget constraint, where E is the total expenditure 
across all goods k (k = 1, 2, ..., K) and pk > 0 is the unit price of good k (with p1 = 1 to represent the numeraire nature of the first 
essential good). The function U(x) in Eq. (1) is a valid utility function if ψk > 0 and γk > 0 for all k, and α ≤ 1 (As discussed in detail in 
Bhat, 2008, Section 6.1, α can take negative values, but this creates instability in estimation; thus, it is common practice to require α to 
be positive, which implies that 0 ≤ α ≤ 1). ψk represents the baseline marginal utility, and γk is the vehicle to introduce corner solutions 
(that is, zero consumption) for the inside goods (k = 2, 3, ..., K), but also serves the role of a satiation parameter through translation 
(higher values of γk imply less satiation). The α term represents an exponential satiation effect that is held fixed across all the inside 
goods (as explained in Bhat, 2008, it is difficult empirically to identify a separate α satiation effect for each inside good, while also 
having separate γk satiation effects; further, the α satiation effect in the utility profile form of Eq. (1) would not be identifiable unless 
there is price variation across the goods, as discussed later). Even so, for stability, in specific empirical contexts, it may be necessary to 
normalize α to a specific value (such as, say α → 0, in which case the expression in Eq. (1) takes the usual Lγ profile for the inside 
goods).2 There is no γ1 term for the first outside good because it is, by definition, always consumed. Further, as in the traditional 
MDCEV, we maintain the assumption that there are no cost economies of scale in the purchase of goods; that is, we will continue to 
retain the assumption that the unit price of a good remains constant regardless of the quantity of good consumed. 

2.1. Optimal allocation and identification issues 

To ensure the non-negativity of the baseline marginal utility, while also allowing it to vary across individuals based on observed 
and unobserved characteristics, ψk is usually parameterized as follows: 

ψk = exp(β
′

zk + εk), k = 1, 2, ..., K, (2)  

where zk is a set of attributes that characterize alternative k and the decision maker (including a constant), and εk captures the 
idiosyncratic (unobserved) characteristics that impact the baseline utility of good k. A constant cannot be identified in the β term for 
one of the K alternatives. Similarly, individual-specific variables are introduced in the vector zk for (K–1) alternatives, with the 
remaining alternative serving as the base. 

To find the optimal allocation of goods, the Lagrangian is constructed and the first order equations are derived based on the Karush- 
Kuhn-Tucker (KKT) conditions. The Lagrangian function for the model, when combined with the budget constraint, is: 

L = U(x) + λ

(

E −
∑K

k=1
pkxk

)

, (3)  

where λ is a Lagrangian multiplier for the constraint. The KKT first order conditions for optimal consumption allocations (x*
k) are as 

follows: 

ψ1−α
1 − λ = 0;

[

ψk

(
x*

k

γk
+ 1

)−1
]1−α

− λpk = 0 if consumption = x*
k

(
x*

k > 0
)
, k = 2, 3, ⋯, K,

[ψk]
1−α

− λpk < 0 if x*
k = 0, k = 2, 3, ..., K

(4) 

Substituting ψ1−α
1 = λ into the latter two equations, using the statistical specification for the baseline preference functions from Eq. 

(2), defining σ = (1 − α), and taking logarithms, we get: 

lnψk − ln
(

x*
k

γk
+ 1

)

= lnψ1 +
1
σ lnpk if consumption = x*

k

(
x*

k > 0
)
, k = 2, 3, ⋯, K,

lnψk < lnψ1 +
1
σ lnpk if x*

k = 0, k = 2, 3, ..., K.

(5) 

After some additional algebraic operations, Eq. (5) may be written in terms of error differences between each inside good and the 
outside good as: 

2 The Lγ profile function form for inside good k takes the form γkψkln
(

xk
γk

+ 1
)

. 
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ηk = V
̅→←̅

k − V
̅→←̅

1, ηk = εk − ε1, if consumption is equal to x*
k(k = 2, 3, ⋯, K), where x*

k > 0

ηk < V
̅→←̅

k0 − V
̅→←̅

1, ηk = εk − ε1, if x*
k = 0(k = 2, 3, ⋯, K), where

Vk = ln
(

x*
k

γk
+ 1

)

− β’zk, V
̅→←̅

k = Vk +
1
σ lnpk, Vk0 = −β’zk, V

̅→←̅
k0 = Vk0 +

1
σ lnpk (k = 2, 3, ⋯, K), and

V
̅→←̅

1 = V
̅→←̅

10 = V1 = −β’z1.

(6) 

An important note based on the above equation system is that, if there is no price variation across the inside goods (that is, pk = 1 for 
all inside goods (k = 2, 3, ..., K), in addition to the numeraire price p1 = 1 of the outside good), the (1/σ)ln pk drops out entirely from 
the KKT conditions. This implies that, in our linear outside good utility structure, σ will be estimable only if there is price variation. An 
obvious normalization, in the absence of price variation, is to set σ=1, which is equivalent to setting the parameter α in the GLγ profile 
of Eq. (1) to the value of 0. But, in the presence of price variation, the reciprocal of σ is the coefficient on the ln pk parameter, allowing 
estimation of σ = 1 − α in our utility profile (even so, it may be necessary in some contexts to pre-set σ=1 (that is, α = 0) for stability). 

2.2. Condition for positive allocations for consumed goods 

The linear outside good utility basis of the model above has the advantage of model estimation when there is no budget infor
mation. This is because the outside good consumption, x*

1, does not appear in the KKT conditions of Eq. (4). The GLγ-profile MDCEV 
formulation above guarantees the positivity of the consumed inside goods. To see this, from Eq. (4), we can write: 

x*
k =

(

ψk
ψ1(pk)

(1/σ) − 1

)

γk if x*
k > 0 (k = 2, 3, ..., K). But, from the inequality condition of Eq. (4), it should also be true that 

(

ψk
ψ1(pk)

(1/σ) > 1

)

, because otherwise x*
k = 0 (k = 2, 3, ..., K). Thus, if the model predicts that x*

k > 0 (k = 2, 3, ..., K), the predicted con

sumption value will be positive. However, there is no guarantee in the formulation above that x*
1 will be positive for finite budgets. The 

implicit assumption in the linear profile outside good MDCEV models, made explicit in Mondal and Bhat (2021) and Saxena et al. 
(2021), is that the budget, while being unobserved, is very large and tends toward infinity. This is in contrast to Bhat’s (2008) original 
non-linear utility MDCEV Model, where the primal feasibility condition of positive consumption of all goods (including the outside 
good), given a budget, is immediately satisfied based on the complementary slackness KKT first-order stochastic conditions (see 
footnote eight of Pinjari and Bhat, 2021). Further, in the case of finite observed budgets, the linear profile outside good MDCEV model 
structures used thus far in the literature do not accommodate the positivity requirement on the outside good (notwithstanding the fact 
that the LγMDCEV model structure was conceived for the case of unobserved budgets, with an implicit assumption of very large 
budgets). To show this, if the budget were E and only the first M inside goods are consumed, the consumption of the inside good in the 
GLγ-profile model would be given by: 

x*
1 = E −

∑M+1

k=2
pk

(
ψk

ψ1(pk)
(1/σ)

− 1

)

γk . (7) 

If the above outside good consumption is to be positive, it must be true that 

ψ1 >

∑M+1

k=2
ψkγk(pk)

δ

E +
∑M+1

k=2
pkγk

, where δ =
σ − 1

σ =
−α

1 − α. (8) 

However, there is nothing in the KKT conditions of Eq. (4) that maintains this restriction. Essentially, when budgets are observed 
(or even when budgets are unobserved, but there is some reasonable ceiling for the budgets), the likelihood expression in all the linear 
utility outside good profile MDCEV model will be based on stochastic KKT conditions that provide a possible optimal solution (this 
solution being the set of estimated model parameters) that then has to be checked for primal feasibility to be declared as the true 
optimal point (primal feasibility here refers to the requirement that the outside good consumption be strictly positive; that is, that Eq. 
(8) holds). In effect, the model estimation is one step toward optimal consumption determination, which then needs to be vetted 
through a back-end forecasting stochastic truncation process to satisfy primal feasibility and obtain true optimal consumptions. Of 
course, when the budgets are large (moving toward infinity), the denominator of the expression in Eq. (8) also moves toward infinity, 
and the condition of Eq. (8) will be immediately met in the estimation process because of the already existing requirement that ψ1>0 
(as maintained through the exponential specification for ψ1). Thus, as budgets become large, there is less need to consider any error 
truncation operations (for the error term ε1 in the inside good utility, given the error terms εk for the consumed inside good utilities) 
during forecasting, because positivity of the outside good will be near-guaranteed during the estimation step itself. On the other hand, 
when budgets are tight, there would be more need for truncation operations during forecasting. Thus, while positivity of the outside 
good can also be guaranteed during forecasting, this is done post-estimation. This can, and generally will, lead to biased parameter 
estimates, relatively poor model fit and poor predictions, because the likelihood of observed consumptions is maximized (in the 
maximum likelihood estimation process) while allowing a non-zero probability of infeasible consumptions (see Saxena et al., 2021). 
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For instance, the maximization process in estimation may provide parameters that are such that it assigns non-zero probability density 
values to consumption patterns that drive the outside good consumption to zero or negative values (that is, non-zero and potentially 
high likelihood of infeasible consumption patterns). So, while this issue can be corrected in forecasting when budgets are observed, the 
model parameters themselves would not be as appropriate as when only the feasible consumption patterns are explicitly considered in 
the estimation phase itself (thus providing parameter estimates that correctly assign non-zero probability density values to only the 
feasible consumption patterns). 

To summarize, we then need to develop a likelihood function based on the stochastic KKT conditions of Eq. (4), but while also 
maintaining the restriction of Eq. (8). Note that maintaining this restriction automatically ensures that the budget constraint is met 
(during estimation), for the restriction is obtained from a combination of two primal feasibility constraints – the budget constraint in 
Eq. (7) and the positivity of the consumption value of the outside good. 

2.3. Statistical specification 

The specification of the model is completed once assumptions are made regarding the joint distribution of the εk terms. The 
LγMDCEV specification of Bhat (2018) and Bhat et al. (2020) uses the Type-1 extreme value (or Gumbel) distribution with 
non-standardized scale (based on the limiting distribution of the maximum of random variables). Unfortunately, doing so makes it 
difficult to maintain the restriction of Eq. (8) and certainly does not result in a closed-form expression. However, it is possible to 
develop a closed-form model accommodating the restriction of Eq. (8) if we assume a Gumbel distribution based on the limiting 
distribution of the minimum of random variables for the εk terms, and assume a standardized scale. That is, assume that the error terms 
εk are independent and identically distributed (IID) with a standard reverse-Gumbel distribution. The density functions of the standard 
Gumbel and standard reverse-Gumbel are plotted in Fig. 1a and b; as can be observed from these two figures, the reverse-Gumbel is 
obtained by reflection of the Gumbel about the y-axis. The probability density function and the cumulative density function of the 
standard reverse-Gumbel distribution are provided below. 

f εk
(u) = e−eu

.eu and Fεk (u) = Prob(εk < u) = 1 − e−eu for k = 1, 2, 3, ..., K. (9) 

Based on the above reverse Gumbel distribution form for each error term, it is easy to see that one can write the joint multivariate 
survival distribution function (SDF) for the error terms ηk = εk − ε1 as follows (see Appendix A for the derivation through straight
forward integration)3: 

Sη(w2, w3, ..., wK) = Prob(η2 > w2, η3 > w3, ..., ηK > wK) =
1

(
1 +

∑K
k=2ewk

). (10) 

The multivariate cumulative distribution function (CDF) of the η vector can be written as a function of the SDFs corresponding to 
the random variates as follows: 

Fη(w2, w3, ..., wK) = Prob(η2 < w2, η3 < w3, ..., ηK < wK) = 1 +
∑

D⊂{2,...K},|D|≥1

( − 1)
|D|SD(wD) , (11)  

where SD(.) is the SDF of dimension D, D represents a specific combination of the η terms (representing a specific sub-vector of the η 
vector; there are a total of (K − 2) + C(K − 2, 2) + C(K − 2, 3) + ...C(K − 2, K − 2) = 2K − 2 − 1 possible combinations, |D| is the 

Fig. 1. (a) Type-1 extreme value (Maximum) or Gumbel distribution; (b) Type-1 extreme value (Minimum) or reverse-Gumbel distribution.  

3 The ηk error terms are essentially multivariate logistically distributed with a correlation of 0.5, with the SDF expression as given below. 
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cardinality of the specific combination D, and wD is a sub-vector of the vector w = (w3,w4,..., wK) with the appropriate elements 
corresponding to the combination D extracted. 

2.4. Probability expressions ignoring positivity of outside good (the reverse-GLγMDCEV model or the R-GLγMDCEV model) 

For presentation compactness, define Ṽk0 = ↔
V k0 − ↔

V 10 and Ṽk = ↔
V k − ↔

V 1 (k = 2, 3, ..., K). If the restriction in Eq. (8) is ignored, 
based on the KKT conditions, we get the expression below in the Reverse Gumbel-GLγ(or the R-GLγ) MDCEV model for the con
sumption pattern where the first M inside goods are consumed at levels x*

k (k = 2, 3, ..., M + 1): 

P
(
x*

2, …, x*
M+1, 0, 0, …, 0

)

= |J|

∫ηM+2=ṼM+2,0

ηM+2=−∞

∫ηM+3=ṼM+3,0

ηM+3=−∞

…
∫ηK =ṼK,0

ηK =−∞

f η(Ṽ2, Ṽ3, …, ṼM+1, ηM+2, ηM+3, …, ηK) dηM+2dηM+2, …, dηK

= |J|
∂MFη

(
η2, η3, …, ηM+1, ṼM+2,0, ṼM+3,0, …, ṼK,0

)

∂η2∂η3…∂ηM+1

⃒
⃒
⃒
⃒
⃒

η2=Ṽ2 ,η3=Ṽ3 ,…,ηM+1=ṼM+1

= |J|M!

⎡

⎢
⎢
⎢
⎣

exp
(

∑M+1

i=1

↔
V k

)

(
∑M+1

k=1
exp

(
↔
V k

))M+1 +
∑

D⊂{M+2,M+3,...,K},|D|≥1

( − 1)
|D|

exp
(

∑M+1

i=1

↔
V k

)

(
∑M+1

k=1
exp

(
↔
V k

)

+
∑

k∈D
exp

(
↔
V k0

))M+1

⎤

⎥
⎥
⎥
⎦

,

(12)  

where 
⃒
⃒
⃒
⃒J

⃒
⃒
⃒
⃒ = [

∏M+1

i=2
fi], fi =

(
1

x*
i +γi

)

. The probability that all the inside goods are consumed at levels x*
2, x*

3, ..., x*
K is: 

P
(
x*

2, x*
3, …, x*

K

)

= |J|f η(V2, V3, V4, …, VK) = |J|M!

exp
(

∑K

i=1

↔
V k

)

(
∑K

k=1
exp

(
↔
V k

))K .
(13) 

As one would expect, the expression in Eq. (13) is the same probability as what would have been obtained had the traditional 
Gumbel distribution been used for the εk rather than our reverse Gumbel, because the density function of the differenced Gumbel error 
terms remains the same (which is the multivariate logistic distribution with 0.5 correlation). However, the probability expression is the 
same only for the probability of all goods being consumed (that is, only for the case represented by Eq. (13)). For the cases where some 
inside goods are consumed and some are not (as in Eq. (12)), or all inside goods are not consumed (see below), the probability ex
pressions will differ between using the traditional Gumbel and the reverse Gumbel, because of the integration spaces being different. 
The probability that none of the inside goods are consumed is: 

P(0, …, 0) = 1 +
∑

D⊂{2,…,K},|D|≥1

( − 1)
|D| 1

(

1 +
∑

kεD
e↔

V k0 − ↔
V 10

) = 1 +
∑

D⊂{2,…,K},|D|≥1

( − 1)
|D| e↔

V 10
(

e↔
V 10 +

∑

kεD
e↔

V k0

) (14)  

2.5. Probability expressions considering positivity requirement of outside good (the budget-based R-GLγ or BR-GLγMDCEV model) 

Taking the logarithm of Eq. (8), we get the condition for the positivity of the outside good as follows, given that the first M inside 
goods are consumed: 

−V1 + ε1 > ln

(
∑M+1

k=2
[exp( − Vk0 + εk)]γkpδ

k

)

− ln

(

E +
∑M+1

k=2
pkγk

)

. (15) 

Substituting hk = [exp( − Vko)](γkpδ
k)and re-arranging, the condition may be re-written as: 

[

ε1 − ln

(
∑M+1

k=2
[hkeεk ]

)]

> G, where G = V1 − ln

(

E +
∑M+1

k=2
pkγk

)

. (16) 

The probability of the condition above is: 
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P
(
x*

1 > 0
)

= P

{[

ε1 − ln

(
∑M+1

k=2
[hkeεk ]

)]

> G

}

. (17) 

Interestingly, the above probability has a closed-form solution. This is because of a surprisingly elegant property that the survival 
distribution function (SDF) of the difference between a reverse Gumbel distribution and the logarithm of the weighted sum of inde
pendent exponentially distributed random variables (note that exp (εk) is exponentially distributed, as long as εk is standard reverse- 
Gumbel) has a closed form (see Appendix B for the derivation).4 That is, 

P
(
x*

1 > 0
)

= P

{[

ε1 − ln

(
∑M+1

k=2
[hkeεk ]

)]

> G

}

=
1

∏M+1

k=2

[
1 + hkeG)

]
. (18) 

Finally, we can write the probability expressions for the consumption pattern with positive outside good consumption by a simple 
truncation mechanism as follows (for a derivation of the expressions below, please see Appendix C): 

P
(
x*

2, x*
3, ..., x*

M+1, 0, ..., ... , 0, 0
)
|x*

1 > 0 =
P

(
x*

2, x*
3, ..., x*

M+1, 0, ..., 0, 0
)

P(x*
1 > 0

)

P
(
x*

2, x*
3, ..., x*

M+1, x*
M+2, ..., x*

K

)
|x*

1 > 0 =
P

(
x*

2, x*
3, ..., x*

M+1, x*
M+2, ..., x*

K

)

P(x*
1 > 0

)

P(0, 0, 0, ..., 0,..., 0,..., 0..., 0,...0)|x*
1 > 0 = P(0, 0, 0, ..., 0,..., 0,..., 0..., 0,...0).

(19) 

Substituting the expression from earlier for the untruncated probabilities in the numerator of the expressions above provides the 
necessary closed-form expressions. 

2.6. Revisiting the truncation condition 

The linear outside good utility function in Bhat (2018) and Bhat et al. (2020) is valuable as a model in the case when budgets are not 
observable. However, as discussed in Saxena et al. (2021), this linear outside good utility model will perform well only when there is 
reasonable support for budgets being very large, or equivalently, for the investment in the outside good(s) being much larger than the 
investment in the inside goods. The reason for this should be clear from the truncation probability in Eq. (18). As the budget along the 
constraint becomes larger (that is, as E becomes larger), so does ln(E +

∑M+1
k=2 pkγk). And, correspondingly, G becomes negative and 

larger and larger in magnitude. Thus, when the budget E tends toward infinity (becomes very large), G → −∞. From Eq. (18), P(x*
1 >

0) → 1. Thus, estimating without any truncation correction will not affect the accuracy of the model results with very high (tending 
toward infinity) budgets. Effectively, when the budget is high and allocation to the inside goods is relatively small, there is little need 
for truncation. On the other hand, with small overall budgets, the truncation correction probability P(x*

1 > 0) will be sizeable, and thus 
estimation without truncation can create problems. 

As just discussed, in cases when the budget information is not available, but it also is not reasonable to assume that the budget is 
very large, the linear outside good utility function will not perform well. In such a case, one way to proceed would be to set a finite 
upper limit value as an approximation to the budget within the context of the proposed BR-GLγMDCEV model. 

2.7. Discrete consumption probability expressions 

The discrete consumption probability expressions are useful when comparing, after the models are estimated, the discrete con
sumption performance of our proposed BR-GLγMDCEV profile models with the traditional γ-profile MDCEV model of Bhat (2008). We 
first present the discrete consumption probability expression for the R-GLγMDCEV Model for each possible consumption bundle. For 
the R-GLγMDCEV Model, we may write: 

P(d2 = 1, d3 = 1, ⋯, dM+1 = 1, dM+2 = 0, ⋯, dK−1 = 0, dK = 0)

=

∫η2=∞

η2=Ṽ2,0

∫η3=∞

η3=Ṽ3,0

...

∫ηM+1=∞

ηM+1=ṼM+1,0

∫ηM+2=ṼM+2,0

ηM+2=−∞

...

∫ηK−1=ṼK−1,0

ηK−1=−∞

∫ηK =ṼK,0

ηK =−∞

f(η2, η3, ..., ηK) dηKdηK−1, ..., dη2,
(20)  

where f(η2,η3,..., ηK) represents the multivariate density function (pdf) of the random variates η2,η3,..., ηK. The above expression may be 
expressed as: 

4 The property here applies only if each εk (k = 1, 2, ..., K) is standard reverse-Gumbel. But, by including an extra parameter α in the utility 
function of Eq. (1) (rather than pre-imposing the traditionalLγ-MDCEV profile that constrains α = 0), we recover a level of flexibility in the model 
through the α parameter, even as we constrain the scale to be standardized. Of course, as discussed in Section 2.1, α is estimable in our formulation 
only if there is price variation across the inside goods. 
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P(d2 = 1, d3 = 1, ⋯dM+1 = 1, dM+2 = 0, ⋯dK−1 = 0, dK = 0)

= SM
(
Ṽ2,0, Ṽ3,0, ..., ṼM+1,0

)
+

∑

D⊂{M+2,...,K−1,K},|D|≥1

( − 1)
|D| SM+|D|

(

Ṽ2,0, Ṽ3,0, ..., ṼM+1,0, V
∼

D,0

)

, (21)  

where SN(.) for any dimension N is the multivariate survival distribution function given by Eq. (10), D represents a specific combi
nation of the non-consumed goods (there are a total of 2K − M − 1 − 1 possible combinations of the non-consumed goods), |D| is the 
cardinality of the specific combination D, and ṼD,0 is a vector with elements Ṽjd ,0 of the non-consumed goods jD appearing in com
bination D. The discrete consumption probability for the case of none of the inside goods being consumed is already provided in Eq. 
(14), while the discrete consumption probability for the case of all the inside goods being consumed is given by: 

P(d2 = 1, d3 = 1, ⋯dM+1 = 1, dM+2 = 1, ⋯dK−1 = 1, dK = 1) = SK−1
(
Ṽ2,0, Ṽ3,0, ..., ṼK,0

)
. (22) 

The corresponding expressions for the BR-GLγMDCEV model may then be obtained by dividing the expressions above by P(x*
1 > 0). 

3. Forecasting procedure 

The forecasting procedure described in this section is based on the BR-GLγMDCEV model. 
Given: The input data zk and pk, and estimates of the model parameters (β′, γ2,γ3,..., γK,σ)′, where σ = 1 − α. As earlier, δ =

σ−1
σ = −α

1−α.  

• Step 1: Draw K independent realizations of εk (say μk), one for each good k (k = 1, 2, ..., K) from the reverse extreme value 
distribution with location parameter of 0 and the scale parameter equal to one; label this distribution as REV(0,1).  

• Step 2: Compute Hk,0 = μk − Ṽk,0 for each inside good k = 2, 3, ..., K using the inputs, and set H1,0 for the outside good to be an 
arbitrary value higher than the maximum of the Hk,0 values across the inside goods.  

• Step 3: Re-order the goods in descending order of Hk,0; let G be the vector of the re-ordered indices of the outside and inside goods 
(with the outside good appearing as the first entry and the ordering of the inside goods starting from position 2); set a new index m 
(m = 1, 2, ..., K) for this new ordering of the outside and inside goods. Let H̃0 be the re-ordered vector of values of Hk,0 so that H̃0 =

(H1,0,H̃2,0, ...,H̃m,0, ...H̃K−1,0,H̃K,0), where H̃m,0 = Max
k

k∕=G[1:m−1]

(Hk,0) for m = 2, 3, ..., K. The notation k ∕= G[1: m − 1] denotes all goods k 

that are not in locations from the first spot (for the outside good) to the spot m–1 in the vector G.  
• Step 4: Set M = 2.  
• Step 5: If μ1 > H̃M,0 , set the consumptions of all the re-ordered inside goods m = M to m = K to zero. STOP.  
• Step 6: If μ1 < H̃M,0 ,compute ψM = exp (β′zM + μM).  

• Step 7: If μ1 > ln

(∑M
k=2

ψkγk(pk)
δ

E+
∑M

k=2
pkγk

)

− β’z1, declare the inside good M as being selected for consumption and forecast the continuous 

value of consumption as follows: x*
M = [exp(μM −μ1 −ṼM0) − 1] γM. Set M = M + 1. Go to Step 5.  

• Step 8: If μ1 < ln

(∑M
k=2

ψkγk(pk)
δ

E+
∑M

k=2
pkγk

)

− β’z1, declare the inside good M as not being selected for consumption. STOP. 

In cases when the budget information is not available, but is known to be finite, the analyst may set a finite upper limit value as an 
approximation to the budget not only in estimation (see Section 2.6), but also set that same finite value for E in the forecasting al
gorithm above. 

An interesting insight from the forecasting procedure is that, unlike the case of the Lγ-profile utility with infinite budgets where the 
consumption intensity of any inside good is independent of the price or attributes of other inside goods (see Saxena et al., 2021), there 
is cross-alternative demand dependency in our proposed BR-GLγMDCEV model. That is, a change in price (or any other attribute) of 
one inside good will impact the demand of the other inside goods in both the discrete and continuous dimensions of consumption. This 
is straightforward to note for the discrete dimension from Step 7 of the forecasting procedure above. In the following discussion, we 
will focus on a price increase, though the discussion is equally relevant to changes in other alternative attributes. First, for 0 ≤ σ ≤ 1, 

δ<0. Now consider the case of M = 3 at step 7. The discrete consumption condition for M = 3 is μ1 > ln
(

ψ2γ2(p2)
δ
+ψ3γ3(p3)

δ

E+p2γ2+p2γ2

)

− β’z1. An 

increase in the price p2 of the first consumed inside good decreases the numerical value of the right side (note that, because δ<0, when 
p2 increases, the numerator in the first part of the above expression decreases, while the denominator of the first part of the same 
expression increases). Thus, the likelihood that the condition above will hold increases, implying that an increase in the price of one 
inside good will increase the discrete consumption probability of other inside goods. To show the cross price-demand effects for the 

continuous consumptions, from the optimality conditions, it should be true that x*
k =

(

ψk
ψ1(pk)

(1/σ) − 1

)

γk if x*
k > 0 (k = 2,3, ..., K). 

Following the notation in the forecasting algorithm, let the discrete consumption condition in step 7 hold for M = 2. Then, using the 
index m for the ordered listing of goods as in step 3, and x*

m for the continuous consumption of the mth ordered good if consumed, 
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x*
2 =

(
ψ2

ψ1(p2)
(1/σ)

− 1

)

γ2.

Thus, as p2 increases, (p2)(1/σ) increases (because 0 < σ < 1, given σ = (1 − α) and 0 ≤ α ≤ 1), and therefore, as expected, x*
2 

decreases. Also, 

p2x*
2 = p2

(
ψ2

ψ1(p2)
(1/σ)

− 1

)

γ2.

The first derivative of p2x*
2 with respect to price p2 is: 

∂
(
p2x*

2

)

∂p2
=

(
ψ2

ψ1(p2)
(1/σ)

(

1 −
1
σ

)

− 1

)

γ2.

The right side of the expression above is negative because 0 < σ < 1. In other words, as p2 increases, p2x*
2 decreases. Now let M = 3 

be selected for consumption based on the discrete consumption condition of the first part of Step 7. Then the budget constraint will be: 

p2x*
2 + p3x*

3 < E.

As p2x*
2 decreases when p2 increases, a larger quantity of x*

3 can now be consumed at a given price p3. Another way to see this 
directly in the forecasting procedure is that, with an increase in p2, a higher draw of μ3 is possible in step 6 (thus increasing ψ3), while 
still adhering to the discrete consumption condition in step 7 for M = 3. Then, the continuous consumption value of x*

3 

= [exp(μ3 −μ1 −Ṽ30) − 1] γ3 can be higher than earlier. Therefore, an increase in price of one of the inside goods (with no changes in 
prices in any of the other inside goods) will lead to an increase in both the discrete and continuous consumptions of other inside goods. 

4. Simulation evaluation 

The simulation exercises undertaken in this section examine the effect of varying budgets (implicitly changing the proportion of 
consumption of the outside good relative to the combined consumption on the inside goods) on the performance of different models, as 
discussed below. 

4.1. Experimental design 

In the design, we generate a sample of 3000 observations with four alternatives and two independent variables in the zqk vector in 
the baseline utility for each alternative (we introduce the subscript q for individuals here; q = 1, 2, ..., 3000).5 For this simulation 
experiment, we consider a constant, but only in the baseline preference for the outside good. We set the coefficient on this constant to 
0.75 (that is, β0 = 0.75). Of the two independent variables, the first is a dummy variable, while the other is a continuous variable (the 
use of alternative specific variables in the inside goods are suppressed to allow for a parsimonious specification for the ease of pre
sentation of the simulation results). That is, consider the following for the zqk vectors (k = 1 is the outside good): 

zq1 = [1, 0, 0], zq2 =
[
0, yq, z̃q2

]
, zq3 =

[
0, yq, z̃q3

]
, and zq4 =

[
0, yq, z̃q4

]
. (23) 

For the dummy variable (yq) in zqk (k = 2, 3, 4), we treat this as an individual-specific variable (that does not vary across 
alternatives). To construct this dummy variable, 3000 independent values are drawn from the standard uniform distribution. If the 
value drawn is less than 0.5, the value of ‘0’ is assigned to the dummy variable. Otherwise, the value of ‘1’ is assigned. The coefficients 
on this dummy variable are specified to be 0 for the first two inside alternatives (k = 2,3) and 1.0 for the third inside good (k = 4). Thus, 
a single parameter β1 (=1.0) is to be estimated for the dummy variable. The values for the continuous variable ̃zq2 are drawn from a 
standard univariate normal distribution, while the corresponding values ̃zq3 and ̃zq4 are drawn from a univariate normal distribution 
with mean 0.5 and standard deviation of 1. The parameter β2 on this continuous variable is specified to be 1.25 (β2 = 1.25). We will 
consider the case of no price variation in this paper, and so the value of α is normalized to zero (and not estimated; doing so implies that 
our budget-based reverse-GLγ model and the reverse-Lγ profile model but with a given finite budget E are identical, because the scale of 
the error terms is set to 1 in the reverse-Lγ profile). Furthermore, the satiation parameter for the first inside good is set to e0.75 (that is, 
γ2 = 2.117). The corresponding satiation parameter values for the second and third inside goods are set at e1 (that is, γ3 =

2.718 and γ4 = 2.718 ). Once generated, the independent variable values are held fixed in the entire rest of the simulation 
exercise. 

5 To keep the discussion tight in terms of the data generation process and also to avoid clutter in the presentation of the detailed simulation 
results, we have limited the number of alternatives to four and the number of independent variables to two. However, we have also undertaken a 
similar simulation exercise with eight alternatives and 19 independent variables. The substantive results from this more extended simulation ex
ercise are the same as those from the four-alternative case discussed here. These results are available upon request from the authors. 

C.R. Bhat et al.                                                                                                                                                                                                         



Transportation Research Part B 156 (2022) 28–49

37

4.2. Comparing the reverse GLγ-profile (or the R-GLγ-profile) with the budget-based R-GLγ-profile (or the BR-GLγ-profile) 

As a recap, the reverse GLγ-profile (or the R-GLγ-profile) MDCEV model employs a linear baseline utility for the outside good and 
uses a reverse Gumbel stochastic term in the baseline utilities of the goods. We compare this R-GLγ-profile model with the budget-based 
R-GLγ-profile (or the BR-GLγ-profile) of this paper, which accommodates the case of observed budgets or the case of unobserved but 
“known-to-be finite” budgets, while also expressly recognizing the positivity constraint for the consumption of the outside good at the 
estimation stage. For the comparison of these two models, the budget values are varied from a low of 50 units to a high of 1000 units, 
with intermediate values of 250, 500, and 750 units (for a total of five budget values). Since the R-GLγ-profile model does not explicitly 
consider the positive consumption of the outside good, we should expect a deterioration in the performance of the R-GLγ-profile 
MDCEV model at the low budget values while the BR-GLγ-profile MDCEV model, which recognizes the budget constraint, should do 
reasonably well at all the budget values. 

Using the design presented in the previous section, we generate the consumption quantity vector x*
q for each individual using the 

forecasting algorithm for the BR-GLγ-profile MDCEV model (as discussed in Section 3). The parameters to be estimated from the data 
generating process correspond to θ = [β0 = 0.75, β1 = 1.0, β2 = 1.25, γ2= 2.117, γ3= 2.718, γ4= 2.718]′. For each of the five values 
of total budget considered (ranging from 50 units to 1000 units), the data generation process is undertaken 500 times with different 
realizations of the εk vector (for each individual) to generate 500 different data sets (for a total of 2500 data generations of 3000 
observations each). For each of the 2500 datasets, we estimate the R-Lγ-profile and the BR-Lγ-profile models. The performances of the 
models in recovering the “true” parameters, their standard errors, as well as predicting the consumption values are evaluated as 
discussed in Section 4.4.6 

4.3. Performance metrics 

The performances of the models in recovering the “true” parameters, their standard errors, as well as predicting the consumption 
values are evaluated as follows:  

(1) For each of the two simulation experiments, estimate the parameters using each of the two models for each of the 2500 data sets. 
Estimate the standard errors. For each model in each simulation experiment, and for each budget level (in the first experiment) 
and each outside good constant value (in the second experiment), do the following:  

(2) Compute the mean estimate for each model parameter across the 500 data sets to obtain a mean estimate. Compute the absolute 
percentage (finite sample) bias (APB) of the estimator as: 

APB(%) =

⃒
⃒
⃒
⃒
mean estimate − true value

true value

⃒
⃒
⃒
⃒ × 100.

(3) Compute the standard deviation of each parameter estimate across the 500 datasets, and label this as the finite sample standard 
deviation or FSSD (essentially, this is the empirical standard error). Compute the FSSD as a percentage of the true value of each 
parameter.  

(4) Compute the mean standard error for each model parameter across the 500 datasets, and label this as the asymptotic standard 
error or ASE (essentially this is the standard error of the distribution of the estimator as the sample size gets large, and is a 
theoretical approximation to the FSSD).  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula, compute the APB associated with the ASE of the 
estimator as: 

APBASE(%) =

⃒
⃒
⃒
⃒
ASE − FSSD

FSSD

⃒
⃒
⃒
⃒ × 100    

(6) Examine the data fit at a disaggregate level by comparing the log-likelihood values at convergence of the models. A rigorous 
statistical test of data fit cannot be undertaken using traditional nested likelihood ratio tests, because the models are not nested 
forms of each other. But the model with the higher log-likelihood value is to be preferred, because all the models have the same 
number of estimated parameters. Based on the log-likelihood values for each of the 500 runs (corresponding to the 500 
datasets), compute a mean log-likelihood value. A comparison of the mean log-likelihood values at convergence provides an 
evaluation of the overall multiple discrete-continuous (MDC) component of fit.  

(7) In addition to the MDC component of fit, for each of the 500 datasets, compute the effective log-likelihood value for the pure 
multiple discrete consumption component using Eqs. (14), (21), and (22) for the R-GLγ-profile model, and by dividing the R- 

6 The budget allocation to the inside goods (as a percentage of the total budget) varied approximately between a mean value (across the 500 data 
sets) of 31% for the budget of 50 to 7% for the budget of 1000 (the specific mean values for the other budget values were as follows: 21% for the 
budget of 250, 16% for the budget of 500, and 11% for the budget of 750). 
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GLγ-profile expressions by P(x*
1 > 0) for the BR-Lγ-profile model. Compute the predicted probability of the observed discrete 

choice for each observation (which can be one of eight discrete choice combinations based on whether or not each of the inside 
goods (k = 2,3,4) is consumed or not) at the converged values, and compute the corresponding predictive log-likelihood 
function value for the pure discrete component. Again, based on the log-likelihood values for each of the 500 runs (corre
sponding to the 500 datasets), compute a mean predictive discrete consumption-based log-likelihood value. A comparison of the 
mean log-likelihood values at convergence provides an evaluation of the discrete component of fit. At the disaggregate level, 
compute the average probability of correct prediction for the discrete consumption for each individual, and then compute an 
average across all individuals. This average probability of correct prediction at a dataset-level is then averaged across the 500 
datasets to obtain a single average probability of correct prediction.  

(8) Finally, at the aggregate level, examine model fit at both the discrete consumption level as well as the continuous consumption 
level. For the discrete level, for each dataset, predict the aggregate share of individuals participating in each of the eight possible 
discrete outcomes, and compare these predicted shares with the actual percentages of individuals in each combination (using 
the weighted mean absolute percentage error or MAPE statistic, which is the MAPE for each combination weighted by the actual 
percentage shares of individuals participating in each combination). Next, compute the average of the weighted MAPE statistic 
across the 500 datasets. For the continuous consumption level, for each dataset, compute an aggregate mean (across obser
vations) of the observation-level continuous consumptions for each of the goods using step (7) of the forecasting algorithm with 
1000 error vector replications per individual observation), and compute an MAPE by comparing the mean of the predicted 
aggregate consumption of each of the goods with the corresponding actual mean value of consumption of the good (ignoring 
zero consumptions based on the discrete choice, so this MAPE corresponds to consumption conditional on a positive discrete 
consumption decision). Then, average the dataset-level MAPE (across the 500 datasets) to obtain an overall MAPE for the 
continuous consumption quantity. 

4.4. Simulation results 

Table 1 provides the parameter recovery results for the comparative study between the R-GLγ-profile with the BR-GLγ-profile. For 
each of the six parameters to be estimated, the first row provides the true value, followed by the estimate obtained and the following 
metrics for each estimate: APB, FSSD, ASE, and APBASE. The first set of numeric columns refers to the BR-GLγ-profile, while the last set 
of columns corresponds to the R-GLγ-profile (each sub-column corresponds to one of the five different budgets). The results from the 
table indicate that the BR-GLγ-profile model (that recognizes the positivity condition on the outside good during estimation) 
consistently outperforms the R-GLγ-profile model (that ignores the positivity of the outside good during estimation). As one would 
expect, this difference is particularly discernible at lower budget levels; in particular, the mean APB for the BR-GLγ-profile model (of 
15.752%; see penultimate row of Table 1) in the case of the budget with 50 units is about half the mean APB for the corresponding R- 
GLγ-profile (of 28.941%). This is, because, as discussed earlier, the truncation correction probability term becomes more sizeable (and 
discernibly less than the value of one) at low budget values.7 The APBASE term across both the models are comparable, although the 
BR-GLγ-profile model again performs slightly better overall, and in particular in the lower budget cases. 

In addition to evaluating the model’s ability to accurately recover parameters, we also provide data fit measures at an aggregate as 
well as disaggregate level. Table 2 presents the results of the likelihood-based data fit measures (first row panel) and the non-likelihood 
based data fit measures (second row panel). Across all such metrics, the proposed BR-GLγ-profile model outperforms the R-GLγ-profile 
model. This is particularly observable, as expected, for the metrics corresponding to the budget level of 50 units. The likelihood metric 
at convergence is far superior to the BR-GLγ-profile at 50 units. The other entries in Table 2 indicate that the difference in the two 
models is particularly so for the continuous consumption values. For example, at the aggregate level of continuous consumptions, the 
MAPE is 19.74% for the case of a budget level of 50 for the BR-GLγ-profile model, while the corresponding MAPE is 38.60% for the R- 
GLγ-profile model. On the other hand, the discrete consumption predictions, based on the likelihood or non-likelihood data fit 
measures, are not very different between the two models for any budget value, reflecting the fact that all the linear profile-based 
models loosen the tie between the discrete and continuous consumptions. 

Overall, in terms of parameter recovery ability as well as likelihood and non-likelihood fit measures, the proposed BR-GLγ-profile 
model performs definitively better than the non-budget based R-GLγ-profile model, particularly for low budget scenarios. 

7 The difference in APB between the budget of 50 and the budget of 250 within each of the BR-GLγ-profile and R-GLγ-profile models may appear 
quite large. The difference in performance between the budget of 50 and 250 for the R-GLγ-profile model is to be expected, because, with the budget 
of 50 and no correction for negative outside good consumptions (that is, no correction for infeasible consumption patterns), the parameters are 
likely to be way off relative to the case of the higher budget of 250. But it might seem surprising that this happens even for the BR-GLγ-profile, which 
only allows for a feasible solution space. In fact, there is a pattern of consistent reduction in the APB going from a budget of 50 to a budget of 1000 
even for the BR-GLγ-profile model. The reason is that, as discussed in Section 2.6, with small overall budgets, the truncation correction probability 
P(x*

1 > 0) will be sizeable. And as the truncation correction probability increases, there is more non-linearity introduced in the likelihood function, 
making it more difficult to accurately recover the parameters, leading to the higher APB at lower budgets even for the BR-GLγ-profile model. 
Nonetheless, it is clear that not only does the BR-GLγ-profile model outperform the R-GLγ-profile models at all budgets, but also that the BR-GLγ- 
profile model performs much more respectably than the R-GLγ-profile even at low budget levels. 
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5. Empirical application 

In this section, we demonstrate an application of our proposed model to the case of employed individuals’ weekly activity 
participation. 

5.1. Sample description 

The data source for the empirical application is drawn from the Dutch Longitudinal Internet Studies for the Social Sciences (LISS) 
panel, which is a probability sample of Dutch households based on the country’s population register. The panel, administered via the 
internet by CentERdata (www.lissdata.nl), is a standard social monthly survey undertaken in 2009, 2010, and 2012. In this study we 
focus on the data from the last wave (October 2012). The survey included questions about individuals’ week-long activity participation 
and respondents’ reported time allocation to various activities (including work) during the immediate seven days prior to the survey 
(Cherchye et al., 2012). The weekly time use data is complemented with socio-demographic information drawn from the LISS panel. 

The sample used in our analysis includes individuals who are the sole workers within their respective households. The time-use 
decisions of such individuals are likely to be distinctly different from other unemployed individuals or employed individuals in a 
multi-worker household. Several consistency checks were performed to obtain the estimation sample of 1193 workers, the details of 
which can be found in Astroza et al. (2017). The focus of our analysis is the weekly time-use decisions of these individuals, subject to 
the weekly time budget constraint of 168 hours. We consider the following five non-work, non-education, and non-sleep activities as 
the inside goods (the percentage of individuals participating in each of these five activities, and the average weekly hours for those who 
participate in each of the activities, is also provided next to the activities):  

(1) Household chores, such as cleaning, laundry, shopping, cooking, gardening, odd jobs, car washing, and care for children or 
parents, but not personal care. (98.1% participation rate, with an average of 16.85 weekly hours among participants) 

Table 1 
Parameter recovery results for experiment 1.  

Parameters Metrics BR-GLγ-profile R-GLγ-profile 

Budget 50 250 500 750 1000 50 250 500 750 1000 

β0 True value 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Estimate 0.920 0.833 0.801 0.780 0.756 1.152 0.918 0.844 0.816 0.799 
APB (%) 22.667 11.067 6.800 4.000 0.800 53.663 22.403 12.516 8.857 6.471 
FSSD 0.032 0.030 0.031 0.031 0.029 0.032 0.029 0.027 0.031 0.029 
ASE 0.035 0.033 0.032 0.032 0.032 0.038 0.034 0.033 0.032 0.032 
APBASE (%) 9.250 9.315 4.109 3.173 8.107 17.974 14.012 18.578 5.382 10.515 

β1 True value 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Estimate 0.889 0.942 0.965 0.978 1.001 0.731 0.887 0.937 0.960 0.965 
APB (%) 11.100 5.800 3.500 2.200 0.100 26.896 11.254 6.317 4.027 3.525 
FSSD 0.052 0.047 0.049 0.045 0.047 0.050 0.046 0.048 0.044 0.048 
ASE 0.045 0.045 0.046 0.046 0.046 0.045 0.045 0.045 0.046 0.046 
APBASE (%) 13.205 3.464 5.820 1.725 2.586 11.264 1.812 4.486 2.947 4.044 

β2 True value 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 
Estimate 1.132 1.180 1.205 1.239 1.246 0.971 1.138 1.188 1.207 1.217 
APB (%) 9.440 5.600 3.617 0.880 0.320 22.351 8.972 4.934 3.407 2.650 
FSSD 0.022 0.023 0.021 0.020 0.021 0.018 0.022 0.022 0.019 0.020 
ASE 0.021 0.020 0.020 0.020 0.019 0.021 0.020 0.020 0.019 0.019 
APBASE (%) 5.689 14.836 8.289 2.711 6.866 16.854 9.505 12.395 0.721 4.268 

γ2 True value 2.117 2.117 2.117 2.117 2.117 2.117 2.117 2.117 2.117 2.117 
Estimate 2.462 2.335 2.264 2.205 2.155 2.547 2.276 2.230 2.182 2.164 
APB (%) 16.300 10.300 6.928 4.153 1.816 20.295 7.528 5.344 3.060 2.220 
FSSD 0.050 0.046 0.046 0.043 0.046 0.058 0.045 0.046 0.043 0.046 
ASE 0.047 0.045 0.044 0.044 0.044 0.048 0.045 0.044 0.044 0.044 
APBASE (%) 5.420 1.624 4.335 3.127 2.985 18.118 1.077 3.591 3.750 5.031 

γ3 True value 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 
Estimate 3.133 3.000 2.929 2.860 2.843 3.299 2.989 2.876 2.824 2.814 
APB (%) 15.270 10.385 7.760 5.223 4.582 21.375 9.972 5.814 3.905 3.547 
FSSD 0.046 0.044 0.039 0.044 0.043 0.050 0.043 0.038 0.043 0.041 
ASE 0.044 0.042 0.041 0.041 0.041 0.044 0.041 0.041 0.041 0.041 
APBASE (%) 5.495 6.587 6.628 5.471 3.749 12.674 5.159 7.797 4.623 0.354 

γ4 True value 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 
Estimate 3.254 3.122 3.020 2.914 2.881 3.508 3.083 2.948 2.866 2.849 
APB (%) 19.734 14.878 11.100 7.205 6.011 29.068 13.417 8.476 5.458 4.829 
FSSD 0.049 0.045 0.043 0.038 0.044 0.046 0.051 0.042 0.037 0.046 
ASE 0.044 0.042 0.042 0.042 0.043 0.043 0.042 0.042 0.042 0.042 
APBASE (%) 11.844 6.794 1.517 12.158 2.256 5.046 17.500 0.323 13.259 8.708  
Mean APB 15.752 9.672 6.618 3.943 2.272 28.941 12.258 7.233 4.786 3.874  
Mean APBASE 8.484 7.104 5.116 4.727 4.425 13.655 8.177 7.862 5.113 5.487  

C.R. Bhat et al.                                                                                                                                                                                                         

http://www.lissdata.nl


TransportationResearchPartB156(2022)28–49

40

Table 2 
Data fit measures for simulation experiment.  

Data Fit Measure BR-GLγ-profile R-GLγ-profile 

50 250 500 750 1000 50 250 500 750 1000 

Likelihood based data fit measures           
Log-likelihood value at convergence -13,446.90 -18,282.60 -19,364.70 -19,801.50 -20,103.30 -13,616.50 -18,386.70 -19,429.10 -19,847.80 -20,139.90 
Predictive log-likelihood for discrete consumption -4711.45 -4737.96 -4676.05 -4639.91 -4639.79 -4719.17 -4736.01 -4676.35 -4641.83 -4636.86 
Non-likelihood based disaggregate data fit measure           
Average probability of correct prediction 0.280 0.269 0.274 0.277 0.276 0.277 0.269 0.274 0.276 0.277 
Non-likelihood based aggregate data fit measures           
Weighted MAPE for aggregate shares 11.11 5.94 4.24 4.26 3.75 11.91 6.11 4.34 4.32 3.67 
Overall MAPE for continuous consumption quantity 19.74 7.60 6.71 5.87 7.08 38.60 12.49 8.48 6.82 7.43  
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(2) Personal care, such as time on washing, dressing, meeting biological needs (excluding sleep), visiting the hairdresser, and seeing 
the doctor (52.1% participation rate, with an average of 6.23 weekly hours among participants). Note that all individuals spent 
some time on personal care, but the personal care time here refers to time beyond what may be considered mandatory personal 
care time (based on an assumption that individuals spend about one hour per day on mandatory personal care activities, which 
then gets included as a component of the outside good).8  

(3) Administrative chores and assistance, such as managing own family finances and helping family/non-family members (93.2% 
participation rate, with an average of 7.54 weekly hours among participants).  

(4) Leisure, including in-home and out-of-home recreational activities, such as watching TV, reading, practicing sports, hobbies, 
visiting family or friends, going out, walking the dog, cycling, and being intimate (94.3% participation rate, with an average of 
26.18 weekly hours among participants).  

(5) Social, including religious activities, civic and volunteer activities, and attending social gatherings. (42.5% participation rate, 
with an average of 11.67 weekly hours among participants). 

The multiple discrete-continuous dependent variable corresponds to weekly participation and weekly time investment in each of 
the above five inside activity purposes. The outside good constitutes all remaining time, including work, education, travel, and sleep. 
Also, the unit price for time use in each of the inside activities is unity since the decision variables themselves represent time 
investments. 

5.2. Model results 

In this section, we demonstrate an application of the proposed BR-GLγ-profile MDCEV model rather than provide an extensive 
commentary on substantive interpretations and policy implications. But, within the context of the data available, we explored 
alternative variable specifications to arrive at the best possible specification (including considering alternative functional forms for 
continuous independent variables such as income and age, including a linear form, piecewise linear forms in the form of spline 
functions, and dummy variable specifications for different groupings). The final variable specification was based on statistical sig
nificance testing as well as intuitive reasoning based on the results of earlier studies. 

The results of our empirical application are provided in Table 3, and are discussed below by variable category. The coefficients 
represent the impact of variables on the logarithm of the baseline preference (that is, they correspond to the β vector elements in Eq. 
(2)) except for the satiation effects discussed later). 

5.2.1. Individual characteristics 
Our results suggest that women are more likely than men to partake in household chores relative to social, leisure, and admin

istrative chores. Earlier family time-use studies have clearly established a gender asymmetry in household responsibilities, even when 
women work full-time outside the home (see Bernardo et al., 2015; Bernstein, 2015; Cerrato and Cifre, 2018). While this asymmetry 
has been attributed to the continued societal expectation that household chores rest squarely on the shoulders of women, there is also 
literature that suggests that women see the responsibility of household chores as a source of identity and power, and are reluctant to 
relinquish such responsibilities (see Martinez and Paterna, 2009; Vieira et al., 2019). Table 3 also indicates that women have a higher 
propensity for participation in personal care, a finding that is consistent with women placing more emphasis on their appearance than 
men. In the psychology and gender development literature (see, for example, Mafra et al., 2020; Quittkat et al., 2019; Borland and 
Akram, 2007), this need to look good has been associated with socially-learned behavior (through exposure to marketing campaigns of 
a feminine image) as well as traced to an evolutionary explanation of women using their own looks to provide themselves a competitive 
physical edge to attract the most desirable males, thereby attaining some amount of social power themselves (through the social power 
of the “desirable” male) in what has been a male-dominated society for much of human existence. 

Age is also found to be a key determinant in individuals’ time use behavior, with those in the age group of 45 years or younger 
generally partaking less in all the “inside” activity purposes. Younger individuals and those who are middle-aged are in the formative 
and rising years of their careers, and are likely to spend more time at work (part of the outside activity) than other non-career and 
financial/retirement planning activities (see Olmo-Sánchez and Maeso-González, 2014; Regitz-Zagrosek, 2012; Henager and Cude, 
2016). Of course, those in the middle age group may be in relatively settled relationships (see, for example, Williams et al., 2016), 
leading to a rise in participation in household chores and leisure activities to the same intensity level as those older than 45 years of 
age, as reflected in the absence of a coefficient for “household chores” and “leisure” purposes corresponding to those in the “30–45 
years” age group. 

5.2.2. Household demographics 
Household size has a positive effect on the baseline preference for administrative chores and assistance, reflecting added finance 

planning obligations and household responsibilities (including assistance to friends/family members) in large-sized households. 
Moreover, larger families provide more opportunity to interact and partake in social activities. But household composition also 
matters, in addition to household size. Specifically, the presence of children (less than 15 years of age) increases participation in 

8 The one hour per day assumption for mandatory personal care is based on Lee (2008), who indicates that grooming, which typically is done in 
the morning, takes up, on average, a little more than 30 min for men and about 45 min for women every morning. 

C.R. Bhat et al.                                                                                                                                                                                                         



Transportation Research Part B 156 (2022) 28–49

42

household chores and lowers the propensity to participate in leisure. These results are not surprising, as child-care related activities 
take priority for parents at this life-cycle stage, and also has been shown to lead to time poverty/social exclusion among working 
parents (see for example, Bernardo et al., 2015; Craig and Brown, 2016). 

Our results also indicate that a lower household income (for weekly income levels of 750 or less euros relative to higher income 
levels) leads to increased participation in administrative chores (family finances related activities and helping family members) and 
social activities. The latter result is not surprising, since social activities may be perceived as a low-cost recreational outlet for low- 
income families. Beside, this effect may also be proxying for the effect of the closer-knit extended family and community unit of so
cialization among immigrants in the Netherlands, who generally earn less than domestic-born citizens. 

5.2.3. Baseline preference constants 
The baseline preference constants do not have any substantive interpretations, and simply serve as instruments to better fit the 

discrete participation rate and continuous consumption values of the inside goods. 

5.2.4. Satiation effects through γk parameters 
To allow heterogeneity in the parameters across individuals, while also guaranteeing the positivity of the parameters, they are 

parameterized as γk = exp(δ’
kωk). The estimates in Table 3 for the satiation effects correspond to the elements of the δk vector. A 

positive value for a δk element implies that an increase in the corresponding element of the ωk vector increases γk, which has the result 
of reducing satiation effects and increasing the continuous consumption quantity of alternative k (conditional on consumption of 
alternative k). On the other hand, a negative value for a δk element implies that an increase in the corresponding element of the ωk 
vector decreases γk, which has the result of increasing satiation effects and decreasing the continuous consumption quantity of 
alternative k (conditional on consumption of alternative k). The specification related to the satiation parameters are available in the 
bottom panel of Table 3. 

Interestingly, the satiation parameter results suggest that while women have a higher propensity to participate in personal care 
activities, this does not necessarily translate to longer participation durations subject to participation (in fact, there is a marginally 
significant negative effect of the “female” variable on satiation for personal care in Table 3). That is, there is little difference between 
men and women in time investment, among individuals who partake in personal care during the week. The age effects on satiation 
reveal that, while younger individuals are less likely to partake in personal care, administrative chores, and social activities during the 
week, they participate for longer periods in these activity purposes if they participate. This may be reflecting a justification effect or a 
“fixed cost” effect, wherein once the relatively time-poor young individuals decide to participate in these activities, they decide to 
invest a good amount of time in it. Finally, as the number of individuals in a household increases, not only does participation in 
household chores increase, but so does the time invested in household chores. 

The constants in the satiation effects (last row of Table 3) generally reflect the high duration of time investment in leisure activity 

Table 3 
Empirical application results (using the BR-GLγprofile).  

Variables Coefficient estimates (t-stats) 

Household 
chores 

Personal 
care 

Admin. chores and 
assistance 

Leisure Social 

Individual characteristics      
Female 0.489 (4.66) 0.693 (7.50) – – – 
Age (Base: More than 45 years)      
Below 30 years -0.624 (-1.81) -0.403 

(-1.26) 
-0.595 (-2.01) -0.715 

(-1.49) 
-0.314 
(-0.98) 

30–45 years – -0.291 
(-2.74) 

-0.545 (-5.83) – -0.270 
(-2.77) 

Household sociodemographic      
Household size – – 0.145 (3.89) – 0.138 (4.01) 
Presence of child(ren) 0.607 (3.37) – – -0.361 

(-2.90) 
– 

Weekly household income (Base: Greater than equal 750 
Euros)      

Less than 500 Euros – – 0.223 (2.06) – 0.400 (4.10) 
500–749 Euros – – 0.170 (1.76) – 0.331 (3.96) 
Baseline preference constant 2.890 (16.29) 4.135 (17.27) 1.590 (5.68) 3.811 

(20.22) 
-0.024 
(-0.16) 

Satiation effects      
Female – -0.284 

(-1.82) 
– – – 

Age (Base: More than 45 years)      
Below 30 years – 0.341 (1.33) – 0.706 (1.67) 0.810 (3.55) 
30–45 years – 0.315 (1.87) – – 0.470 (3.31) 
Household size 0.138 (1.83) – – – – 
Satiation constant 0.841 (7.04) -1.676 

(-5.87) 
1.196 (9.16) 1.884 

(21.40) 
1.269 (1.53)  

C.R. Bhat et al.                                                                                                                                                                                                         



Transportation Research Part B 156 (2022) 28–49

43

and the low duration of time investment in personal care activity. These constants also adjust for the sample range of explanatory 
variables and the magnitudes of the estimated baseline preferences to provide the best fit for the continuous consumption values. 

5.3. Data fit measures 

In this section, we examine the data fit measures of three models for the empirical time-use data. The three models are the proposed 
BR-GLγ-profile model, the R-GLγ-profile model, and the traditional γ-profile-based MDCEV model. The last of these; the traditional 
γ-profile-based MDCEV model; employs a non-linear baseline utility for the outside good, requires an observed budget, and guarantees 
positivity of all goods that are predicted to be consumed. This model uses the usual extreme value error based on the limiting dis
tribution of the maximum of random variables in the baseline utilities of the goods. As discussed in detail by Bhat (2018), the model is 
known to tie the continuous predictions (how much of an inside good to consume) and the discrete predictions (whether an inside good 
will be consumed) very tightly, leading to possibly poor predictions of the discrete choice, especially when the consumption of the 
outside good is very large. On the other hand, the BR-GLγ-profile, which relaxes the strong tie between the discrete and continuous 
predictions, may do better on the discrete predictions than the traditional γ-profile-MDCEV model, especially at high consumptions of 
the outside good. However, it may also produce worse continuous predictions than the traditional γ-profile-MDCEV model for the 
consumed goods. Thus, a comparison of the BR-GLγ-profile is undertaken with the γ-profile-based MDCEV model, in addition to a 
comparison between the BR-GLγ-profile and R-GLγ-profile models. 

5.3.1. Likelihood-based data fit measures 
The likelihood-based data fit measures in terms of log-likelihood at convergence, predictive log-likelihood value at the discrete 

consumption level as well as the average probability of correct prediction for all the three models are provided in Table 4. Our 
proposed model outperforms the R-GLγ-profile model in all the above metrics, highlighting the value of considering the positivity of 
the outside good consumption in estimation. However, the traditional γ-profile-based model performs better in terms of the overall 
MDC fit as observed from the marginally better log-likelihood convergence value, although our proposed model does substantially 
better in terms of the predictive discrete log-likelihood measure and average probability of correct prediction at the discrete con
sumption level. To evaluate and compare the performance of these models further, we also examine the non-likelihood based 
aggregate fit measures discussed next. 

5.3.2. Non-likelihood based data fit measures 
The aggregate-level fit measures for the three models are shown in Table 5. For ease of presentation, we provide the pairwise 

predictions of activity participation at the disaggregate level for the five activities in our application (based on whether or not an 
individual participates in each of these five activities, there are a total of 25 = 32 activity-combinations; however, to make our pre
sentation simple and to avoid clutter, we only provide pairwise predictions of activity participation, which corresponds to 10 possible 
combinations). For each of the three models (the proposed BR-GLγ-profile model, the R-GLγ-profile model and the traditional γ-profile- 
based MDCEV model), the predicted number of individuals participating in each pairwise combination at the discrete level is computed 
and provided in the top panel of Table 5. Our proposed model with a weighted MAPE (weighted with respect to the actual observed 
shares) value of just over 11% outperforms both the R-GLγ-profile model (MAPE of 16.5%) and the traditional γ-profile-based MDCEV 
model (MAPE of 21%), reinforcing the superior performance of our proposed model in the discrete dimension based on the likelihood 
based fit measures. 

The aggregate fit measures in the bottom panel of Table 5 correspond to the conditional continuous consumption dimension (that 
is, the average predicted continuous values; in our context, these values are the number of hours in a week for which an individual 
engages in the respective “inside” activity, given that an individual decides to participate in that activity). The proposed BR-GLγ-profile 
model with the weighted MAPE of 27.73% performs much better than the R-GLγ-profile model which has a MAPE of over 41%. 
However, the traditional γ-profile-based MDCEV model with a weighted MAPE of just over 20% provides the best prediction along the 
continuous consumption quantity (conditional on discrete participation). 

5.3.3. A summary discussion 
The motivation for this paper was to propose a model that accommodates the positivity constraint on the outside good during 

estimation of the linear outside good utility model form. In the case when the budget is unobserved and may be expected to be large, 
the R-GLγ-profile model is the model to use. But if there is reason to believe that a finite ceiling applies to the budget, even if the budget 
is unobserved, the BR-GLγ-profile should be the model to use. And, if budget is available, finite, and the investment in the inside goods 
is not small relative to the investment in the outside good, our proposed BR-GLγ-profile must be the preferred model relative to the R- 
GLγ-profile model. These results are clearly evident in the superior performance of our proposed model relative to the R-GLγ-profile in 

Table 4 
Likelihood-based data fit measures for empirical study.  

Metrics BR-GLγ-profile R-GLγ-profile Traditional γ-profile 

Log-likelihood at convergence -18,646.6 -19,450.6 -18,575.0 
Predictive log-likelihood at the discrete consumption level -2320.3 -2422.3 -2782.9 
Average probability of correct prediction 0.211 0.203 0.178  
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both the simulation experiment as well as in our empirical demonstration. 
In the case when the budget information is available, the best approach would be to estimate both our proposed BR-GLγ-profile as 

well as a traditional γ-profile-MDCEV model. The advantage of our BR-GLγ-profile is that it disentangles the discrete and continuous 
consumption decisions, which, in general, will provide better discrete choice predictions, especially when the budget is large and the 
outside good takes up a substantial share of the continuous consumption. This is discussed at length in Bhat (2018). However, the 
continuous consumption predictions from our BR-GLγ-profile may be better or may be worse than the traditional γ-profile-MDCEV 
model, depending upon the empirical context. If it turns up that the BR-GLγ-profile provides a better fit at the discrete level as well as 
the continuous level relative to the traditional γ-profile-MDCEV model, the choice would be clear. But, if the BR-GLγ-profile provides a 
better fit at the discrete level, but not as good a fit as the traditional γ-profile-MDCEV model at the continuous level, the decision may 
be rather subjective. In such a situation, the analyst will have to examine the relative performances at both the discrete level and the 
continuous level, and make a final determination based on the context of the study and the relative priorities for the accuracy of the 
discrete and continuous predictions. While much more extensive investigations in different simulation/empirical contexts is needed to 
make additional definitive remarks on the performance of our proposed model and the traditional γ-profile-MDCEV, our preliminary 
explorations suggest that even in cases when the latter model performs better than our proposed model at the continuous level, the 
performance difference may not be by much. However, the traditional γ-profile-MDCEV model can perform much worse than our 
proposed model at the discrete level. 

6. Conclusions 

The traditional MDCEV model has now been widely used in a number of empirical contexts to analyze consumer discrete- 
continuous decisions. However, it is applicable only for cases when the budget is observed, and the model formulation also very 
closely ties the discrete and continuous decisions. More recently, a variant of the traditional MDCEV, based on adopting a linear utility 
form for the outside good, has received some attention. Labeled as the Lγ-profile model, this new model structure not only does away 
with the need to observe budgets, but also breaks the strong linkage between the discrete and continuous choice dimensions of 
decision-making. But recent studies show that this Lγ-profile model may not work well in situations when, even if the budget is un
observed, the budget is known to be finite and small in magnitude. The reason is that the formulation, while ensuring the positivity of 
consumptions of the inside goods (that may or may not be consumed), does not guarantee, within the model formulation and esti
mation itself, the positivity of the consumption of the essential outside good. 

In this paper, we have developed a formulation, based on a reverse Gumbel structure for the stochastic terms in the utility functions 
of alternatives, that develops a closed-form probability expression, while also accommodating the positivity requirement for the 
outside good. This is done through a truncation scheme that still yields an elegant closed-form expression. Importantly, the procedure 
works with both observed and unobserved budgets. The ability of our proposed Budget-based Reverse Generalized Lγ-profile model 
(labeled the BR-GLγ-profile model) to recover true underlying model parameters is subsequently compared with that of the linear 
outside good utility model without the outside good positivity consideration (labeled the R-GLγ-profile model). This evaluation is 
undertaken using an experimental set-up with varying budget levels. In addition, we demonstrate an application of our proposed BR- 
GLγ-profile model to the weekly time-use decisions of individuals using the 2012 wave of the LISS (Longitudinal Internet Studies for the 
Social Sciences) Dutch panel data, compare the data fit of the proposed model with the R-GLγ-profile model and the traditional 
γ-profile-MDCEV models. 

Our results clearly point to the distinct benefit of employing our proposed BR-GLγ-profile model (over the linear outside utility 

Table 5 
Data fit measures for empirical study.  

Discrete choice consumption: Number of individuals with consumption in outside 
good and joint participation in… 

Actual 
number 

BR-GLγ- 
profile 

R-GLγ- 
profile 

Traditional 
γ-profile 

Household chores, Personal care 615 656 697 425 
Household chores, Administrative chores 1091 1094 1097 1056 
Household chores, Leisure 1120 1120 1121 1094 
Household chores, Social 499 552 610 270 
Personal care, Administrative chores 581 636 677 377 
Personal care, Leisure 601 644 686 407 
Personal care, Social 243 401 451 111 
Administrative chores, Leisure 991 1067 1069 874 
Administrative chores, Social 1060 741 655 753 
Leisure, Social 474 545 601 381 
Weighted Mean Absolute Percentage Error – 11.3% 16.5% 21.0% 
Continuous consumption (conditional on positive discrete choice consumption) Observed BR-GLγ- 

profile 
R-GLγ- 
profile 

Traditional 
γ-profile 

Household chores 16.85 14.12 9.88 21.22 
Personal care 6.23 3.58 3.27 7.54 
Administrative chores 7.54 5.22 4.87 10.52 
Leisure 26.18 19.52 15.80 28.32 
Social 11.67 7.04 6.14 14.63 
Weighted Mean Absolute Percentage Error – 27.73% 41.64% 20.10%  
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profile models proposed thus far and employed in the literature) in empirical contexts where there is reason to believe that a finite 
ceiling applies to the budget (even if the budget is unobserved) or if the budget is actually available. In the latter case, our proposed 
model is a serious contender to the traditional γ-profile-MDCEV model. In such a case, it would be best to estimate both our proposed 
model and the traditional model, before making a final determination of which model to use. 

Future research should focus on approaches to include the proposed truncation scheme into Bhat’s (2018) flexible MDCEV model 
form as well as develop methods that ensure that the resulting truncation-based flexible MDCEV model also conforms to global 
utility-maximizing behavior across the multiple discrete and continuous consumption choices), (), (. 
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APPENDIX A. Integration to arrive at the multivariate survival distribution function 

To show that the multivariate survival function collapses to a closed-form expression as shown in Eq. (10), we start off with the 
probability expression as below: 

Sη(w2, w3, ..., wK) = Prob(η2 > w2, η3 > w3, ..., ηK > wK)

= Prob(ε2 > w2 + ε1, ε3 > w3 + ε1, ε4 > w4 + ε1, ..., εK > wK + ε1) sinceηk = εk − ε1.

Based on the property of the standard reverse-Gumbel distribution, we can write the above probability as 

=

∫+∞

ε1=−∞

∏K

k=2
e−e[wk +ε1 ] e−eε1 eε1 dε1. (A.1) 

The integrand above can be simplified as follows: 

∏K

k=2
e−e[wk +ε1 ] e−eε1 eε1

= e
−

∑K

k=2
e[wk +ε1 ]

e−eε1 eε1

= e
−

(

eε1 +
∑K

k=2
eε1 ewk

)

eε1

= e
−

[

eε1

(

1+
∑K

k=2
ewk

)]

eε1 

Therefore, the integration in Eq. (A.1) can be re-written as, 

∫+∞

ε1=−∞

e
−

[

eε1

(

1+
∑K

k=2
ewk

)]

eε1 dε1.

To evaluate this integration, let s = eε1 (1 +
∑K

k=2ewk ). 
Therefore, ds = eε1 (1 +

∑K
k=2ewk )dε1. 

Then the integration takes the following form (ignoring the limits for the moment), 
∫

e−sds
(

1 +
∑K

k=2
ewk

)

= −
e−s

(

1 +
∑K

k=2
ewk

).

Now, evaluating the limits, we have, 
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−
e

−eε1

(

1+
∑K

k=2
ewk

)

(

1 +
∑K

k=2
ewk

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

ε1=+∞

ε1=−∞

= −
1

(

1 +
∑K

k=2
ewk

) [0 − 1].

Therefore, Eq. (A.1) takes the following result: 

∫+∞

ε1=−∞

∏K

k=2
e−e[wk +ε1 ] e−eε1 eε1 dε1 =

1
(

1 +
∑K

k=2
ewk

).

Which is exactly the expression in Eq. (10). 

APPENDIX B. Derivation of the closed-form expression for the probability condition related to the positivity of the outside 
good consumption 

We start off with the probability expression given in Eq. (17) of the text. 

P
(
x*

1 > 0
)

= P

{[

ε1 − ln

(
∑M+1

k=2
[hkeεk ]

)]

> G

}

= P

{

ε1 > G + ln

(
∑M+1

k=2
[hkeεk ]

) } (B.1) 

Based on the property of the standard reverse-Gumbel distribution, we can write the above probability expression as 

=

∫+∞

εM+1=−∞

...

∫+∞

ε3=−∞

∫+∞

ε2=−∞

e−e

[

G+ln

(
∑M+1

k=2
[hk eεk ]

)]

e−eε2 eε2 dε2e−eε3 eε3 dε3...e−eεM+1 eεM+1 dεM+1

=

∫+∞

εM+1=−∞

...

∫+∞

ε3=−∞

∫+∞

ε2=−∞

e
−eG

∑M+1

k=2

[hkeεk ]

e−eε2 eε2 dε2e−eε3 eε3 dε3...e−eεM+1 eεM+1 dεM+1

=

∫+∞

εM+1=−∞

...

∫+∞

ε3=−∞

∫+∞

ε2=−∞

e−eG(h2eε2 +h3eε3 +...+hM+1eεM+1 ) e−eε2 eε2 dε2e−eε3 eε3 dε3...e−eεM+1 eεM+1 dεM+1

(B.2) 

Given that the random variables ε2,ε3,…,εM + 1 are independent, the integration in Eq. (B.2) can be re-written as, 

=

∫+∞

ε2=−∞

e−eG(h2eε2 )e−eε2 eε2 dε2

∫+∞

ε3=−∞

e−eG(h3eε3 )e−eε3 eε3 dε3...

∫+∞

εM+1=−∞

e−eG(hM+1eεM+1 )e−eεM+1 eεM+1 dεM+1

= Iε2 , Iε3 , ..., IεM+1 (say)

We solve the first integration Iε2 as below: 

Iε2 =

∫+∞

ε2=−∞

e−eG(h2eε2 )e−eε2 eε2 dε2

=

∫+∞

ε2=−∞

e−eε2 (1+eGh2)eε2 dε2 

To evaluate this integration, let s = eε2 (1 + eGh2). 
Therefore, ds = eε2 (1 + eGh2)dε2. 
The first integration then takes the following form (ignoring the limits for the moment), 

Iε2 =

∫
e−sds

(1 + eGh2)
.

This is a straightforward integration to solve, which results in 

Iε2 = −
e−s

(1 + eGh2)
.

Now, evaluating the limits [note that (1 + eGhk) for all k (= 2, 3, ..., M + 1) is always positive by definition], we have: 
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Iε2 = −
e−eε2 (1+eGh2)

(1 + eGh2)

⃒
⃒
⃒
⃒
⃒

ε2=+∞

ε2=−∞

= −
1

(1 + eGh2)
[0 − 1].

Therefore, 

Iε2 =
1

(1 + eGh2)
.

Similarly, following the exact same approach, we have, 

Iε3 =
1

(1 + eGh3
), IεM+1 =

1
(1 + eGhM+1

) and for general, Iεk =
1

(1 + eGhk
) for k( = 2, 3, ..., M + 1) ,

Therefore, the probability expression in Eq. (B.1) results into the following closed-form expression. 

= P

{

ε1 > G + ln

(
∑M+1

k=2
[hkeεk ]

) }

= Iε2 .Iε3 ....IεM+1

=
1

(1 + eGh2
).

1
(1 + eGh3

)....
1

(1 + eGhM+1
)

=
1

∏M+1

k=2

[
1 + hkeG)

]

This is exactly Eq. (18) in the text. 

APPENDIX C. Derivation of the conditional likelihood expression that ensures positive outside good consumption 

Consider the following probability expression that ensures positive consumption of the outside good: 

P
((

x*
2, x*

3, ..., x*
M+1, 0, ..., ... , 0, 0

)
|x*

1 > 0
)

=

P

⎛

⎜
⎜
⎜
⎝

(
x*

2, x*
3, ..., x*

M+1, 0, ..., ... , 0, 0
)
|ψ1 >

∑M+1

k=2
ψkγk(pk)

δ

E +
∑M+1

k=2
pkγk

⎞

⎟
⎟
⎟
⎠

(C1) 

The set of optimal consumptions in the above expression can be equivalently represented using the corresponding set of KKT 
conditions from Eq. (4) in the text. Hence, the above expression can be written as: 

P
((

x*
2, x*

3, ..., x*
M+1, 0, ..., ... , 0, 0

)
|x*

1 > 0
)

=

P

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎝

[

ψk

(
x*

k

γk
+ 1

)−1
]1−α

= λpk

∀ k={2,3,...M+1}

; [ψk]
1−α

< λpk
∀ k={M+2,M+3,...,K}

⎞

⎟
⎠|ψ1 >

∑M+1

k=2
ψkγk(pk)

δ

E +
∑M+1

k=2
pkγk

⎞

⎟
⎟
⎟
⎠

(C2) 

Expanding the above conditional probability expression, we get: 

P
((

x*
2, x*

3, ..., x*
M+1, 0, ..., ... , 0, 0

)
|x*

1 > 0
)

=

P

⎛

⎜
⎜
⎜
⎝

[

ψk

(
x*

k
γk

+ 1
)−1

]1−α

= λpk

∀ k={2,3,...M+1}

AND [ψk]
1−α

< λpk
∀ k={M+2,M+3,...,K}

AND ψ1 >

∑M+1

k=2
ψkγk(pk)

δ

E +
∑M+1

k=2
pkγk

⎞

⎟
⎟
⎟
⎠

P

⎛

⎜
⎜
⎜
⎝

ψ1 >

∑M+1

k=2
ψkγk(pk)

δ

E +
∑M+1

k=2
pkγk

⎞

⎟
⎟
⎟
⎠

(C3) 

The numerator in the above expression is the joint likelihood of the KKT conditions in Eq. (4) and the truncation condition in Eq. (8) 
necessary for ensuring positive consumption of the outside good. Note that Eq. (8) implies truncation on the distributions of baseline 
preference parameters of only the chosen alternatives. Therefore, the numerator of the above expression includes redundant conditions 
specific to the stochastic parameters of the chosen alternatives. To remove such redundancies from the numerator, consider the sets of 
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conditions specific to only the chosen alternatives. That is, consider the following set of conditions from the numerator (after 
substituting ψ1

1 − α for λ): 
[

ψk

(
x*

k

γk
+ 1

)−1
]1−α

= ψ1−α
1 pk, k = 2, 3, ..., M + 1, and, (C4)  

ψ1 >

∑M+1
k=2 ψkγk(pk)

δ

E +
∑M+1

k=2 pkγk
, where δ =

−α
1 − α (C5) 

From Eq. (C4), the expression for ψk is ψ1

(
x*

k
γk

+ 1
)

p
1

1−α
k , which can be fed into Eq. (C5) to rewrite the latter equation as: 

ψ1 >

∑M+1

k=2
ψ1γk

(
x*

k
γk

+ 1
)

pk

E +
∑M+1

k=2
pkγk

(C6) 

Simplifying the expression in Eq. (C6), we get 

E +
∑M+1

k=2
pkγk >

∑M+1

k=2
γk

(
x*

k

γk
+ 1

)

pk ⇒ E >
∑M+1

k=2
pkx*

k (C7) 

The above condition is always true in observed data, and therefore the condition in Eq. (C5) becomes redundant in the numerator of 
Eq. (C3). Hence, the expression in Eq. (C3) can be written as: 

P
((

x*
2, x*

3, ..., x*
M+1, 0, ..., ... , 0, 0

)
|x*

1 > 0
)

=

P

⎛

⎜
⎝

[

ψk

(
x*

k
γk

+ 1
)−1

]1−α

= λpk

∀ k={2,3,...M+1}

AND [ψk]
1−α

< λpk
∀ k={M+2,M+3,...,K}

⎞

⎟
⎠

P

⎛

⎜
⎜
⎜
⎝

ψ1 >

∑M+1

k=2
ψkγk(pk)

δ

E +
∑M+1

k=2
pkγk

⎞

⎟
⎟
⎟
⎠

, or
P

(
x*

2, x*
3, ..., x*

M+1, 0, ..., ... , 0, 0
)

P(x*
1 > 0)

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.trb.2021.12.013. 
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