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Dark solitons in a trapped gas of long-range interacting bosons
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We consider the interplay of repulsive short-range and same-sign long-range interactions in the dynamics
of dark solitons, as prototypical coherent nonlinear excitations in a trapped one-dimensional Bose gas. First,
the form of the ground state is examined, and then both the existence of the solitary waves and their stability
properties are explored, and corroborated by direct numerical simulations. We find that single- and multiple-
dark-soliton states can exist and are generically robust in the presence of long-range interactions. We analyze
the modes of vibration of such excitations and find that their respective frequencies are significantly upshifted
as the strength of the long-range interactions is increased. Indeed, we find that a prefactor of the long-range
interactions considered comparable to the trap strength may upshift the dark soliton oscillation frequency by an
order of magnitude, in comparison to the well established one of /+/2 in a trap of frequency Q.
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I. INTRODUCTION

A paradigmatic model of one-dimensional bosons sub-
ject to contact interactions is known as the Lieb-Liniger
model (LL) [1,2]. As an exactly solvable model exhibiting
scattering without diffraction [3], it plays a crucial role in
mathematical physics [4-6]. At the same time, it accurately
describes ultracold atomic clouds tightly confined in waveg-
uides when interatomic scattering is dominated by the s-wave
contribution [7,8].

Recently, it has been shown that a variant of the LL model
admits an exact solution in the presence of a harmonic trap
when the interparticle contact interactions are supplemented
with a long-range term [9,10]. When the contact interac-
tions are attractive, the long-range term is equivalent to a
one-dimensional (1D) attractive gravitational potential. By
contrast, for repulsive contact interactions, the long-range
term is equivalent to a 1D repulsive Coulomb potential. The
resulting long-range Lieb-Liniger (LRLL) model has intrigu-
ing connections with other physical models. Its ground state
wave function shares the structure of Laughlin liquids of
relevance to the fractional quantum Hall effect [11]. It also
describes a 1D version of the nonrelativistic Newtonian grav-
itational Schrédinger equation used in the modeling of dark
matter as a self-gravitating Bose-Einstein condensate [12]. In
this context, soliton solutions are used to describe so-called
ghostly galaxies, large and barely visible low-density galax-
ies, such as the dark-matter dominated Antlia II [13].

The LRLL model is part of a larger class of solvable
models that can be obtained as deformations of parent Hamil-
tonians by embedding them in a confining potential [10,14].
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Such deformations are analogous to those known in the
nonlinear-Schrodinger (NLS) equation [15]. However, at the
many-particle level, it is crucial that the embedded quantum
state has a Jastrow form, e.g., with a wave function expressed
as a pairwise product of a correlation function [10,14] over
each pair of particles. The conventional LL model in free
space with attractive interactions is solvable by Bethe ansatz
and admits so-called string solutions with complex Bethe
roots [5]. In the center of mass frame, the lowest energy
state was found by McGuire and describes a quantum bright
soliton, a cluster of particles sharply localized in space [16].
Importantly, the McGuire bright soliton solution is given by a
Jastrow form, making its embedding possible in a harmonic
trap at the cost of supplementing the Hamiltonian with a
two-body pairwise long-range interaction term. As a result,
the trapped McGuire soliton is the ground state of the LRLL
model in the case of attractive interactions [9].

When the many-particle wave function of a quantum state
is not of Jastrow form, embedding in a harmonic trap results in
a parent Hamiltonian with many-body momentum-dependent
interactions, which need not be pairwise [10], and are less
straightforward to justify on physical grounds. This observa-
tion potentially precludes the investigation of dark solitons
(namely density depressions, denoting the localized absence
of particles in space, accompanied by a phase jump across
their density minimum) in the LRLL model. Building on
early results [17-19], the investigation of many-body quan-
tum soliton wave functions for repulsive interactions in the
absence of a trap has led to the identification of a series
of solitonlike quantum states [20-22]. Yet, such states lack
the simple Jastrow structure required for their embedding
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in a trap to require solely momentum-independent pairwise
interactions.

This state of affairs is the starting point for our work.
Can bosons with long-range interactions support dark soliton
solutions in the mean-field regime? The LRLL mean-field
limit was presented in Ref. [9] and is described by a 1D NLS
equation with a nonlocal nonlinearity. In the homogeneous
space, it is known that the defocusing NLS model associ-
ated with a weakly nonlocal repulsive interaction admits dark
soliton solutions [23]. In the case of the LRLL model as
well as in its mean-field limit, the strength of the spatially
inhomogeneous harmonic confinement and the nonlocal non-
linearity are interrelated. This motivates our quest for dark
soliton solutions in a nontrivial inhomogeneous model of a
trapped gas of long-range interacting bosons. Specifically,
we focus on a NLS with local repulsive interactions and a
nonlocal long-range contribution of the same sign. This model
is inspired by the inhomogeneous NLS associated with the
mean-field theory of the LRLL, but there local and nonlocal
interactions have opposite character, making the present ex-
tension a nontrivial one. We illustrate herein that a systematic
characterization of the underlying ground state can be offered
under the interplay of short-range and long-range interactions.
Equipped with that, we can theoretically analyze the motion
of the dark soliton on top of this background (and associated
effective potential), by suitably adapting the methodology of
[24] to account for the presence of long-range terms. We
find that turning on even weak long-range interactions has a
drastic impact on the oscillation frequency of the dark soliton
in comparison to the frequency of the confining parabolic
potential. Upon extending these ideas to multiple solitons, we
summarize our findings and present some directions for future
study.

II. ANALYTICAL AND NUMERICAL SETUP

The regimes of degeneracy of a 1D Bose gas with contact
interactions are well known since the seminal work by Petrov
et al. [25]. An analogous study for the recently introduced
LRLL model has not been yet performed. While the strength
of the contact and long-range interactions is characterized by
a single common parameter, it is not possible to extrapolate
the results from the case with only contact interactions to
the LRLL model. In particular, the LRLL exhibits different
phases which are absent in the conventional LL model. For
instance, it can behave as an incompressible Laughlin-like
fluid with flat density or like a Wigner crystal [9]. Chartering
the phase diagram of the LRLL model remains an interesting
prospect for further studies.

In this work, we take a different approach and focus on
nonlinear physics inspired by the LRLL model. Specifically,
motivated by the dynamical version of the mean-field model
discussed in Ref. [9], we consider the following NLS equa-
tion (subscripts denote partial derivatives):

h2
ih, = —2—% + gV P W+ V(X)W
m

+ma</dx/|x—x/||‘lf(x’,t)|2>lll. (1)

Here, W(x, t) is the mean-field wave function describing a 1D
boson gas, consisting of atoms of mass m, confined in the
parabolic trapping potential V (x) = (1/2)w’x* of frequency
. The atoms are assumed to interact repulsively via the con-
tact (local) interaction, with coupling strength g = 242 /(may)
(where a; > 0 is the 1D scattering length), as well as via
the long-range (nonlocal) interaction, characterized by the
effective coupling constant a (with dimensional units of ac-
celeration); this long-range effect can be induced either by
gravitational attraction or Coulomb repulsion [9]. Next, mea-
suring time, length, and density |¥|? in units of wy gy =
I/ (mwy) and 2a(2) /as, respectively (where the frequency wy
is a free parameter—see below), we express Eq. (1) in the
following dimensionless form:

iV = =3 W + WPV + [V(x) + ULV, (2a)

U= ﬁ(/dx/pc —x/||\ll(x/)|2), (2b)

where the parabolic trapping potential now reads V(x) =
(1/2)Q%x?, with the normalized frequency €2 and the parame-
ter B characterizing the long-range effect being given by

w aay
Q=—, B=7—5.
wo 2agwg

3)

The model under consideration, Egs. (2a) and (2b), involves
two parameters: the normalized trap frequency 2 and the
normalized long-range interaction strength 8. In the case of
Q = B =0, the system (2a) and (2b) reduces to the com-
pletely integrable defocusing NLS equation, which possesses
dark soliton solutions [26,27]. In our analysis below, we will
investigate the combined effect of the trapping potential and
the nonlocal interactions to the dark soliton dynamics. It is
clear that the relative magnitude of the parameters €2 and
B, which both depend on the (undefined so far) frequency
wp, leads to different regimes, where the magnitude of wy
can accordingly be estimated. Specifically, using Eq. (3), it
can be found that, e.g., in the regime 2 ~ 8, the frequency
wo = Olaag/ (a(z)a))]. It is also noticed that using the Green’s
function identity %lx —x'| =28(x — x") [where 8(x) is the
Dirac delta function], Eq. (2b) leads to

Uxx = 2ﬂ|\IJ|2’ (4)

and hence the full integrodifferential equation can alterna-
tively be treated as the system of Egs. (2a) and (4).

The time-independent version of Eq. (2a) can be obtained
upon using the standard ansatz W(x,t) = exp(—iut)u(x),
where p is the chemical potential. In this way, we obtain the
corresponding steady state problem for the function u(x) in
the form

pu = =it + lulu+ [V () + Ul (5a)

U= ﬁ(/dx’|x —x’||u(x’)|2>. (5b)

Equation (5a) is key to our analysis. We focus herein on the
case with 8 > 0, namely, we consider the interplay between
repulsive short-range and attractive long-range interactions.
Our numerical computation starts from the local case with
B = 0 and considers the approach to the Thomas-Fermi (TF)
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limit of p >> €, in which the role of the kinetic energy is be-
coming negligible. In this limit, a well-defined theory of dark
solitons, analyzing their existence, stability, and dynamical
properties, has been developed for quasi-1D BEC settings—
see, e.g., the reviews [26,27]. We obtain these dark solitons
as (numerically) exact solutions up to a prescribed numerical
tolerance, using a root finding algorithm [a Newton-Raphson
scheme for the vector arising from the numerical discretiza-
tion of Eq. (5a)]. An advantage of this method is that it can
be used in any regime, i.e., it is not restricted to the Thomas-
Fermi limit.

Subsequent consideration of the Bogolyubov—de Gennes
(BdG) spectral analysis [28,29] of the ground state and the
solitons is then implemented using the perturbation ansatz:

W(x, 1) = e " {u(x) + [a(x)e™ + b*(x)e ™). (6)

Here, w = w, + iw; is the relevant eigenfrequency, which
when real indicates spectral stability (and oscillations with
frequency w,), while if it has a nontrivial imaginary part
w; # 0, it indicates a dynamic instability with growth rate w;.
The pertinent eigenvector (a, b) corresponds to the eigendi-
rection associated with the relevant oscillation and/or growth.
Once the solution of Eq. (5a) is obtained, it is used as an input
in the eigenvalue solver resulting from the insertion of Eq. (6)
into Eq. (2a), allowing us to assess the solution’s spectral
features and its anticipated dynamical robustness. Once the
existence is obtained via Eq. (5a) and the BdG stability is char-
acterized via Eq. (6), the solution is inserted in a dynamical
integrator of Eq. (2a) (typically a fourth-order Runge-Kutta in
time, coupled with a second-order discretization in space) to
explore the dynamical properties of the wave form.

III. GROUND STATE

To derive the ground state of the system characterized by
a density n(x) > 0, we substitute u = n'/? into Egs. (5a) and
(5b) and, using also Eq. (4), we obtain the following equa-
tions:

PO+ —n—-Vx)—U =0, (7)

U = B[ [ dx'lx — x'|n(x))]. (8)

Below we are interested in finding the ground state in the
TF limit, where the curvature term (1/2)n~"2(n'/?),, [see
Eq. (7)] can be neglected [28,29]. To be more specific,
we seek a symmetric ground state, with n(x) = n(—x), obey-
ing the following normalization condition at x = 0 (i.e., at the
trap center):

n(0) + B / X' n () = u, ©)

which stems from Eq. (7). The above nonlinear boundary-
value problem of Egs. (7) and (8) for the ground state density
will be solved, following the same Newton-Raphson method-
ology as discussed above, for both the local (8 = 0) and
nonlocal (8 # 0) cases.

The limit of local interactions with § = 0 (i.e., U = 0) is
described by the defocusing NLS (g > 0) and features a pos-
itive definite, nodeless ground state, with a TF density profile
that can be found in the limit of u >  [28,29]. Indeed, in

1 : :
— N
X051 /’ \ |
C
0 f . \
-20 -10 0 x 10 20
3 8
® [o]
6
31 ° 3, ’
@
0 © 0 o
-1 0 wi/Q 1 -1 0 wi/Q 1
10
=3 1
C
O L
-50 0 X 50
2 20 °
®
< S 0
371 ® 310
0 ® 0 8
-1 0 wi/Q 1 -1 0 wi/Q 1

FIG. 1. Ground state density profile (top row) in the limit of
n=1> Q =0.1. The outer, inverted parabola profile corresponds
to the (local) case of B =0 [28,29], as per Eq. (10). The inner,
smaller amplitude profile corresponds to the nonlocal case of 8 =
Q2 = 0.1. In both cases, the solid blue line provides the numerical
result, while the dashed red line corresponds to the analytical approx-
imation. The second row presents the spectral plane (w;, w,) of the
BdG eigenfrequencies w = w, + iw; for the case of B = 0 (left) and
B = 0.1 (right). The numerically obtained four lowest frequencies
are shown with blue circles, while the analytical prediction of the TF
limit for 8 = 0, i.e., w/Q = /m(m + 1)/2 [27,29,31,32], is shown
with red stars. The absence of imaginary eigenfrequencies showcases
the spectral stability of the corresponding configuration. The third
and fourth rows show the same features, but now for the case of
nw=10>Q =0.1.

this limit performing the standard approximation neglecting
the second derivative term [28,29], we obtain

nr(x) = max {(u — 1Q%x?), 0}. (10)

This expression captures very accurately the core of the rel-
evant distribution and only “falters” at the low-density tails,
where suitable asymptotic corrections can be devised [30].
The relevant stationary state for 1 = 1 and the TF analytical
approximation are shown as the larger (inverted parabola)
profile in the top row of Fig. 1; see also the third row of the
figure for the case of u = 10.
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On the other hand, for the fully nonlocal case with 8 # 0,
we may use a similar methodology and derive ntp. Indeed,
we differentiate Eq. (7) twice with respect to x, and substitute
U, = 2fn from Eq. (8); then, in the TF limit, where the
curvature term [(1/2)n~'?(n'/?),:].x can be neglected, we
obtain the following equation:

Ne +2Bn 4+ Q> = 0. (11)

The symmetric solution of the above equation represents the
TF density profile:

QZ
nr(x) = Acos(v/2Bx) — TR (12)

where A is a constant. Naturally, and similarly to Eq. (10),
we note that the density cannot become negative. Hence, the
TF density consists of the central lobe of Eq. (12), while the
rest of the spatial domain is padded with a zero background.
In this case, the amplitude A of the solution can be derived
via the normalization condition (9), namely by the following
transcendental equation:

< - Q—2> +28 Lx’[Acos( %x’> - Q—z]dx’ =
28 0 ¢ 28] T

(13)

where L = /T/(2B) cos™'[Q?/(2BA)] is the effective “TF
radius.” We have solved this equation numerically for different
parameter values; e.g., for 8 = Q = 0.1 and u = 1, we find
A = 0.706. This, then, enables us to produce an approximate
profile for the TF density which is also compared with the
corresponding numerical result in the top two rows of Fig. 1.
The first row thereof presents the comparison of the relevant
density profiles, while the second row illustrates the collective
frequencies of the BdG (stability) analysis for both cases,
B =0 (left) and g = 0.1 (right). While the agreement is not
as remarkable as in the local case (presumably due to the
enhanced curvature of the solution, especially near x = 0), we
still obtain a reasonable approximation of the corresponding
ground state profile. Indeed, this prompts one to think that,
presumably, despite the p > Q setting, the TF limit has not
yet been reached. In light of that, we considered a far larger
value of u = 10, for which repeating the calculation yields
an analytical estimate of A = 6.4371 for § = 0.1 [based on
the solution of Eq. (13)]. In that case, as can be seen in the
third and fourth rows of Fig. 1, the analytical expression of
Eq. (12) captures very accurately the numerically obtained
solution, not only for 8 = 0, but also for the nonlocal case of
B = 0.1. Itis also interesting to note that while the known fre-
quencies of the TF cloud in the absence of the nonlocal effect
w/Q2 = /m(m + 1)/2 for positive integer m [27,29,31,32] are
precisely captured (see, e.g., the bottom left panel), there is a
significant upshift of the relevant frequencies (i.e., downshift
of the period of the respective modes) for 8 = 0.1, as shown
in the bottom right panel of Fig. 1 both for x = 1 and for
u = 10.

Armed with the above understanding of the ground state
of the system, we now turn our attention to the study of dark
soliton states.
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FIG. 2. The top panel contains the exact stationary trapped dark
soliton solution in the absence (i.e., 8 = 0, dashed line) and in the
presence (8 = €2, solid line) of long-range interactions. The chemi-
cal potentials and trap parameters are directly analogous (in top and
bottom panels) to those of Fig. 1. The second row panels show the
BdG results (again the imaginary vs the real part of the four lowest
eigenfrequencies) for 8 = 0 (left panel) and g = Q (right panel).
The real nature of the eigenfrequencies indicates stability in both
cases. The numerical results in both settings are indicated by blue
circles. The red stars show in both cases the analytical predictions in
the TF limit for 8 = 0 for comparison (see also text). The third row
panel represents the solution for § = 0 (dashed line) and g = 0.1
(solid line) for the TF limit case of ; = 10. The bottom panels show
the corresponding BdG eigenfrequencies for 8 = 0 (left) and g = Q
(right panel). Notice in the bottom left panel the coincidence of the
numerical (blue circles) and analytically predicted (red stars—see
also text) frequencies. However, even in the nonlocal case of 8 # 0
of the bottom right panel, the symmetry modes at w = 0 and w = Q
and the dark soliton vibrational mode [see text around Eq. (15)] are
theoretically captured.

IV. SINGLE AND MULTIPLE DARK SOLITONS

Typical examples in the context of the long-range inter-
actions problem for the case of the single dark soliton are
depicted in Figs. 2 and 3. The former characterizes the exis-
tence and stability of the numerically obtained solution from
Egs. (5a) and (5b)—with dashed line representing the local
and solid the nonlocal case—and the latter encompasses its
typical dynamics. The profiles of the top panel of Fig. 2
are associated with 8§ =0 (i.e., the purely local case) and
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FIG. 3. Contour plot of the dynamical space (x) — time (¢) evo-
lution of a single dark soliton. The color bar indicates the modulus
|W| of the wave function. The initial condition contains a dark soliton
perturbed by the (anomalous) eigenmode associated with the dark
soliton in-trap oscillation. As expected, this leads to a soliton oscil-
lation with the frequency predicted by the BAG analysis of Egs. (6),
namely for this case of 8 = Q2 = 0.1, ® = 0.2089. The dashed (red)
line shows a simple cosinusoidal curve with this frequency, illustrat-
ing excellent agreement with the BdG prediction.

B = =0.1, i.e., the case where both local and nonlocal
interactions are present. Notice that the chemical potential
used in the top two rows is u = 1 > €2, so we are close to
(but not “at”) the Thomas-Fermi regime. Indeed the former
case of B =0 resembles closely a tanh-shaped (stationary,
i.e., bearing vanishing speed) dark soliton embedded into
(i.e., multiplied by) a background of the TF profile nyr =
max [0, © — V(x)]. On the other hand, in the presence of non-
locality, we can see that both the local and nonlocal terms
contribute to the profile of the wave form, which maintains its
antisymmetry and the associated  phase shift, yet it “shrinks”
in amplitude, as well as in width.

The second row of Fig. 2 depicts the results of the BdG
analysis, i.e., the lowest modes thereof, including the = 0
mode due to the U(1) (phase) invariance of the model. The
left panel corresponds to 8 =0, a case that is well studied
[26,27], while the right panel illustrates the modification of
the relevant frequencies, upon inclusion of the nonlocality.
It is important to highlight first that the single-soliton state
retains its spectral stability throughout our continuation be-
tween B =0 and B = Q that we have considered herein.
This suggests that, in the presence of nonlocality, the solitary
waves remain dynamically robust. In the case of g =0, it
is known that in addition to the lowest modes of w = 2
(the so-called dipole frequency) and w = +/392—and the rest
of the 1D modes of w = (/m(m + 1)/2)Q—there exists a
negative energy (so-called anomalous) mode at w = §2/+/2
(this prediction originally made in [33] is valid at the TF
limit), as summarized in the reviews of [26,27] and observed
in the experiments of [34-36]. This mode indicates the excited
nature of the dark soliton state. Importantly, the right panel
illustrates the effect of the nonlocal nonlinearity on all of these
modes. Indeed, we find that all the modes are significantly
upshifted, including the anomalous one, except for the dipole
mode that stays unchanged, being associated with an invari-
ance. The (upshifted) anomalous mode is intimately related

to the oscillations of the single dark soliton inside the trap,
while the rest of the modes are associated with the background
intrinsic oscillation modes of the entire boson cloud. Hence,
we conclude that the shrinkage of the condensate cloud is
accompanied by a substantially shorter-period oscillation of
the dark soliton in this nonlocal setting.

In trying to further capture this mode of in-trap oscillation
of the dark soliton, we will leverage the methodology of
[24] (see also [37] for a generalization to the Lieb-Liniger
setting of a Bose gas with §-function repulsive interactions).
In accordance with that, in the TF limit, the energy of a dark
soliton moving against the backdrop of a spatially dependent
background density is an adiabatic invariant in the form

.9\3/2
Eus = 4(n(xo) — )7, (14)

where x( is the soliton center (and, accordingly, x( is the
soliton velocity). Upon multiplication by the constant factor
(of 3/4), raising to the power (of 2/3), and differentiating
Eq. (14), one obtains an effective equation for the motion
of the dark soliton which can be combined with Eq. (12) as
follows:

1dn

x0:2dx

A —A\/g sin(y/28x), (15)

X=X0

with the latter equation being valid in the TF limit and for
B # 0. For oscillations of the single dark soliton around the
origin, a Taylor expansion and a choice of a mode of vibra-
tion xo ~ € yields an oscillatory motion with a frequency
w ~ /AB. It is relevant to also note here that the frequency
w depends on €2 implicitly via the dependence of A on 2
as per our earlier discussion. It is this vibrational mode that
we test in the bottom row of Fig. 2 for u = 10 (again for
© = 0.1). We find that this prediction enables us to capture
the relevant oscillation mode not only in the local interactions
case of § = 0 (bottom left panel), but also adequately in the
nonlocal case of § = 0.1 (bottom right panel). In the latter, the
numerical eigenfrequency of the anomalous mode is found to
be w/2 = 7.3, while the corresponding theoretical prediction
is w/Q2 = 8.02, arising since w = 4/6.4371 x 0.1, for a rela-
tive error of less than 10%, which is quite reasonable given
the approximate nature of the calculation, the narrow nature
of the nonlocal wave form in that limit, and the comparatively
wide nature of the dark soliton in this setting.

It is this anomalous mode that we seek to excite in Fig. 3.
In particular, we add to the (numerically) exact stationary
solution of Fig. 2 for 8 = Q2 = 0.1 for u =1 a significant
perturbation along the relevant eigendirection. Naturally, this
mode initially displaces the dark soliton, which, in turn, exe-
cutes highly ordered oscillations inside the trap; indeed, notice
that our perturbation is strong enough that it also mildly ex-
cites the “background” of the dark soliton. Nevertheless, this
does not affect the accuracy of the result of the linearized pre-
diction when compared with the direct numerical simulation.
Indeed, the relevant eigenfrequency is ~2.089Q2 = 0.2089
and it is that frequency that we very accurately find mani-
fested in the relevant oscillations of the dark soliton center.
A simple cosinusoidal motion with this frequency is overlaid
for definiteness in the corresponding dynamics of Fig. 3 with
a dashed (red) line as a guide to the eye.
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FIG. 4. Comparison of the density profile of two dark solitons
with and without long-range interactions, represented by a solid and
dashed line, respectively. The corresponding collective frequencies
are shown as in Fig. 2. Here, only the case of = 1 is shown. The
red stars in both of the bottom panels reflect the analytical prediction
of the lowest (background and anomalous) modes for the case of

B =0.

In a similar vein, we can explore the configuration in-
volving two dark solitons [again numerically obtained from
solving Egs. (5a) and (5b)], as shown in Fig. 4. Here, there
exist two anomalous modes, associated with negative energy,
as discussed in [26,27,36], already at the local limit of 8 =
0. One of these modes (the lowest nonzero frequency of
the BAG spectrum) corresponds to the in-phase oscillation
of the two dark solitons with the same frequency as that
of a single soliton, while the other one corresponds to the
out-of-phase motion that has been experimentally observed
[35,36]. Indeed, in the 8 = 0 limit, both the relative positions
of the solitary waves and the vibration mode frequencies can
be predicted. In particular, according to the prediction of
[36], the solitary wave positions are found to be x; = —x; =
(1/4)w(64/$2?), where w is the Lambert w function, which
is defined as the inverse of n(w) = we". This prediction
yields x; = —x; = 1.7103 for the choice of 2 = 0.1, while
numerically we find x; = —x, = 1.7198 (from the location
of the zero crossings of the numerical solution, signaling the
soliton positions) in very good agreement with the theory,
confirming that we are close to the TF limit for the local
nonlinearity case. The corresponding BdG modes are for the
in-phase vibration, w; = /+/2, while for the out-of-phase
one wy; = \/92 + 64 exp(—4x; )/ﬁ. Here, for instance the
latter mode is theoretically predicted to have w, = 0.1980 and
is numerically found to have w, = 0.1992, i.e., nearly at 2.

These BAG modes, analogously to what we had observed
in the case of a single dark soliton are significantly upshifted
in frequency as B increases. For instance, in the case of
B = =0.1, we find that the lower in-phase oscillation is
associated with a frequency of w;p = 0.1728 (while this fre-
quency was 0.0756, i.e., close to 2/ /2, indeed well below the
trap frequency 2 = 0.1, in the local case of § = 0). On the
other hand, the higher out-of-phase oscillation is found to be
wop = 0.3276. The relevant eigenfrequencies are illustrated
in the BAG analysis of the bottom panels of Fig. 4, both

-10

0.15

0.1

0.05
100 t 200

5
10
0 300
-10 0.2
-5 0.15
< of I L I L N
5 0.05
10
0 50 t 100 150

FIG. 5. Top panel: similar to Fig. 3, but now for the in-phase
dynamics of a two-soliton state. The color bar once again indicates
the modulus || of the wave function. The state oscillates with a
frequency w;p = 0.1728 identified in the BdG analysis. Indeed, as a
guide to the eye for the motion of one of the solitons, the (dashed)
curve which is cosinusoidal with the same frequency is also shown to
illustrate the accuracy of the relevant frequency of vibration. Bottom
panel: same as the top panel but now for the out-of-phase oscillation
of the two dark solitons with wop = 0.3276. Once again, the dashed
(red) curve represents a cosinusoidal oscillation that is superposed as
a guide to the eye.

for the local case of B = 0 (incorporating also the analytical
predictions via red stars, for the anomalous modes and the
asymptotic frequencies of the ground state TF cloud), and for
the nonlocal one of 8 # 0.

To explore the dynamics associated with these solitonic
(negative energy) eigenmodes in the nonlocal case, we have
perturbed the corresponding eigendirections in the dynamics
of Eq. (2a). Indeed, in each one of the cases presented in
Fig. 5, we observe a vibration with the corresponding eigen-
mode. The top panel involves initialization of the model with
the two-soliton solution, perturbed by the in-phase eigenvec-
tor of the BAG analysis. Accordingly, we can observe that
the two solitons execute robust oscillations with the corre-
sponding in-phase frequency (wpp = 0.1728). On the other
hand, a similar initialization is performed in the bottom panel,
with the only difference being that now we have “kicked”
the two-soliton configuration along the eigendirection of the
out-of-phase vibration between the coherent structures. As
a result, in the latter case, we observe a vibration with the
relevant out-of-phase frequency (wop = 0.3276). This pattern
can naturally be extended to arbitrary numbers of dark soli-
tons, with the number of negative energy modes being equal
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to the number of dark soliton states within the configuration,
reflecting the corresponding excited nature of the state at
hand [27].

V. DISCUSSION AND CONCLUSIONS

In the present work, we have explored some aspects of
the nonlinear physics of the long-range Lieb-Liniger model.
The latter constitutes a deformation of the one-dimensional
Bose gas with contact interactions (canonical Lieb-Liniger
model) resulting in the case of embedding in a harmonic trap,
which gives rise to a long-range two-body interaction term
[9,10]. Earlier, in this setting, it was found that—for attractive
local interactions—the ground state of this model is a trapped
bright quantum soliton of the McGuire form. Here, we have
considered the case of repulsive local interactions, and investi-
gated the existence of dark soliton solutions in the mean-field
regime, that is described by a nonlinear Schrodinger (NLS)
equation, incorporating the effect of long-range interactions.
To this end, upon identifying the relevant density profiles via
a fixed-point iteration, we have performed a Bogolyubov—de
Gennes spectral analysis of single and multiple dark soli-
ton states, identifying the characteristic frequency describing
the evolution of their density profile. Subsequently, we have
confirmed the results of the BdG analysis, through nonlinear

model simulations, confirming the vibrational modes identi-
fied (including the two anomalous ones, describing in- and
out-of-phase oscillations of the two dark solitons).

Our results motivate the quest for many-body quantum
soliton wave functions exhibiting an analogous behavior.
Moreover, there are numerous concrete explorations that the
present work motivates from a nonlinear dynamical perspec-
tive. More specifically, a natural question is whether the
asymptotic frequencies of the ground state BdG analysis can
be obtained for the nonlocal case in analogy with what is
known for the local one [28,29]. Another is whether the parti-
cle approach developed for a single soliton can be generalized
to multiple solitons as in the work of [36]. Furthermore, the
present analysis has been limited so far to a one-dimensional
setting. Yet, it would be particularly interesting and relevant to
explore the extensions to higher dimensional structures and, in
particular, to vortical density profiles [27,38].
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