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Abstract

How to represent an image? While the visual world is

presented in a continuous manner, machines store and see

the images in a discrete way with 2D arrays of pixels. In

this paper, we seek to learn a continuous representation for

images. Inspired by the recent progress in 3D reconstruc-

tion with implicit neural representation, we propose Local

Implicit Image Function (LIIF), which takes an image co-

ordinate and the 2D deep features around the coordinate as

inputs, predicts the RGB value at a given coordinate as an

output. Since the coordinates are continuous, LIIF can be

presented in arbitrary resolution. To generate the contin-

uous representation for images, we train an encoder with

LIIF representation via a self-supervised task with super-

resolution. The learned continuous representation can be

presented in arbitrary resolution even extrapolate to ×30
higher resolution, where the training tasks are not provided.

We further show that LIIF representation builds a bridge

between discrete and continuous representation in 2D, it

naturally supports the learning tasks with size-varied im-

age ground-truths and significantly outperforms the method

with resizing the ground-truths. Our project page with code

is at https://yinboc.github.io/liif/.

1. Introduction

Our visual world is continuous. However, when a ma-

chine tries to process a scene, it will usually need to first

store and represent the images as 2D arrays of pixels, where

the trade-off between complexity and precision is controlled

by resolution. While the pixel-based representation has

been successfully applied in various computer vision tasks,

they are also constrained by the resolution. For example, a

dataset is often presented by images with different resolu-

tions. If we want to train a convolutional neural network,

we will usually need to resize the images to the same size,

which may sacrifice fidelity. Instead of representing an im-

age with a fixed resolution, we propose to study a contin-

uous representation for images. By modeling an image as

a function defined in a continuous domain, we can restore

and generate the image in arbitrary resolution if needed.

LIIF
48px

5.3 13.7 32.8

Figure 1: Local Implicit Image Function (LIIF) represents

an image in continuous domain, which can be presented in

arbitrary high resolution.

How do we represent an image as a continuous function?

Our work is inspired by the recent progress in implicit neu-

ral representation [34, 27, 6, 38, 18, 41] for 3D shape re-

construction. The key idea of implicit neural representation

is to represent an object as a function that maps coordinates

to the corresponding signal (e.g. signed distance to a 3D

object surface, RGB value in an image), where the function

is parameterized by a deep neural network. To share knowl-

edge across instances instead of fitting individual functions

for each object, encoder-based methods [27, 6, 41] are pro-

posed to predict latent codes for different objects, then a de-

coding function is shared by all the objects while it takes

the latent code as an additional input to the coordinates.

Despite its success in 3D tasks [38, 39], previous encoder-

based methods of implicit neural representation only suc-

ceeded in representing simple images such as digits [6], but

failed to represent natural images with high fidelity [41].

In this paper, we propose the Local Implicit Image Func-

tion (LIIF) for representing natural and complex images in

a continuous manner. In LIIF, an image is represented as a

set of latent codes distributed in spatial dimensions. Given

a coordinate, the decoding function takes the coordinate in-

formation and queries the local latent codes around the co-

ordinate as inputs, then predicts the RGB value at the given
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coordinate as an output. Since the coordinates are continu-

ous, LIIF can be presented in arbitrary resolution.

To generate such continuous representation for pixel-

based images, since we hope the generated continuous rep-

resentation can generalize to higher precision than the in-

put image, we train an encoder with the LIIF representa-

tion via a self-supervised task with super-resolution, where

the input and ground-truth are provided in continuously

changing up-sampling scales. In this task, take a pixel-

based image as an input, the encoded LIIF representation

is trained to predict a higher resolution counterpart of the

input. While most of the previous works on image super-

resolution [10, 23, 24, 22] focus on learning an up-sampling

function for specific scales in a convolution-deconvolution

framework, LIIF representation is continuous, and we show

it can be presented in arbitrary high resolution, that can

even extrapolate to ×30 higher resolution where the train-

ing tasks are not provided.

We further demonstrate that LIIF builds a bridge be-

tween discrete and continuous representation in 2D. In the

learning tasks with size-varied image ground-truths, LIIF

can naturally exploit the information provided in different

resolutions. Previous methods with fixed-size output usu-

ally need to resize all the ground-truths to the same size for

training, which may sacrifice fidelity. Since the LIIF repre-

sentation can be presented in arbitrary resolution, it can be

trained in an end-to-end manner without resizing ground-

truths, which achieves significantly better results than the

method with resizing the ground-truths.

Our contributions include: (i) A novel method for repre-

senting natural and complex images continuously; (ii) LIIF

representation allows extrapolation to even ×30 higher res-

olution which is not presented during training time; (iii) We

show LIIF representation is effective for the learning tasks

with size-varied image ground-truths.

2. Related Work

Implicit neural representation. In implicit neural rep-

resentation, an object is usually represented as a multi-

layer perceptron (MLP) that maps coordinates to signal.

This idea has been widely applied in modeling 3D object

shapes [6, 28, 2, 13], 3D surfaces of the scene [42, 18, 36, 4]

as well as the appearance of the 3D structure [33, 32, 29].

For example, Mildenhall et al. [29] propose to perform

novel view synthesis by learning an implicit representation

for a specific scene using multiple image views. Comparing

to explicit 3D representations such as voxel, point cloud,

and mesh, the continuous implicit representation can cap-

ture the very fine details of the shape with a small number

of parameters. Its differentiable property also allows back-

propagation through the model for neural rendering [42] .

Learning implicit function space. Instead of learning

an independent implicit neural representation for each ob-

ject, recent works share a function space for the implicit

representations of different objects. Typically, a latent space

is defined where each object corresponds to a latent code.

The latent code can be obtained by optimization with an

auto-decoder [34, 6]. For example, Park et al. [34] propose

to learn a Signed Distance Function (SDF) for each object

shape and different SDFs can be inferred by changing the

input latent codes. Recent work from Sitzmann et al. [40]

also proposes a meta-learning-based method for sharing the

function space. Instead of using auto-decoder, our work

adopts the auto-encoder architecture [27, 6, 38, 39, 47],

which gives an efficient and effective manner for sharing

knowledge between a large variety of samples. For exam-

ple, Mescheder et al. [27] propose to estimate a latent code

given an image as input, and use an occupancy function con-

ditioning on this latent code to perform 3D reconstruction

for the input object.

Despite the success of implicit neural representation in

3D tasks, its applications in representing images are rel-

atively underexplored. Early works [43, 30] parameterize

2D images with compositional pattern producing networks.

Chen et al. [6] explore 2D shape generation from latent

space for simple digits. Recently, Sitzmann et al. [41] ob-

serve that previous implicit neural representation parame-

terized by MLP with ReLU [31] is incapable of represent-

ing fine details of natural images. They replace ReLU with

periodic activation functions (sinusoidal) and demonstrates

it can model the natural images in higher quality. However,

none of these approaches can represent natural and complex

images with high fidelity when sharing the implicit func-

tion space, while it is of limited generalization to higher

precision if not to share the implicit function space. Re-

lated to recent works [38, 11, 7, 37, 18] on 3D implicit

neural representation, LIIF representation is based on lo-

cal latent codes, which can recover the fine details of natu-

ral and complex images. Similar formulations have been

recently proposed for 3D reconstruction [18] and super-

resolving physics-constrained solution [19]. Different from

these works, LIIF focuses on learning continuous image

representation and has image-specific design choices (e.g.

cell decoding).

Image generation and super-resolution. Our work is

related to the general image-to-image translation tasks [50,

17, 52, 14, 8], where one image is given as input and it is

translated to a different domain or format. For example,

Isola et al. [17] propose conditional GANs [12] to perform

multiple image translation tasks. Unlike the deconvolution-

based approaches, LIIF representation supports perform-

ing realistic and high-resolution image generation by in-

dependently querying the pixels at different coordinates

from the generated implicit representation. While LIIF

is useful for general purposes, in this paper, we perform

experiments on generating high-resolution images given
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low-resolution inputs, which is related to the image super-

resolution tasks [5, 46, 44, 9, 23, 24, 22, 51, 49]. For ex-

ample, Lai et al. [22] propose a Laplacian Pyramid Net-

work to progressively reconstruct the image. While related,

we stress that this work on learning continuous representa-

tion is different from the traditional super-resolution setting.

Most previous super-resolution models are designed for up-

sampling with a specific scale (or a fixed set of scales),

while our goal is to learn a continuous representation that

can be presented in arbitrary high resolution. In this respect,

our work is more related to MetaSR [15] on magnification-

arbitrary super-resolution. Their method generates a con-

volutional up-sampling layer by its meta-network, while it

can perform arbitrary up-sampling in its training scales, it

has limited performance on generalizing to the larger-scale

synthesis that is out of training distribution. LIIF represen-

tation, on the other hand, when trained with tasks from ×1
to ×4, can generate ×30 higher resolution image based on

the continuous representation in one forward pass.

3. Local Implicit Image Function

In LIIF representation, each continuous image I(i) is

represented as a 2D feature map M (i)
∈ R

H×W×D. A

decoding function fθ (with θ as its parameters) is shared by

all the images, it is parameterized as a MLP and takes the

form:

s = fθ(z, x), (1)

where z is a vector, x ∈ X is a 2D coordinate in the con-

tinuous image domain, s ∈ S is the predicted signal (i.e.

the RGB value). In practice, we assume the range of x is

[0, 2H] and [0, 2W ] for two dimensions. With a defined fθ,

each vector z can be considered as representing a function

fθ(z, ·) : X �→ S , i.e. a function that maps coordinates to

RGB values. We assume the H × W feature vectors (we

call them latent codes from now on) of M (i) are evenly dis-

tributed in the 2D space of the continuous image domain of

I(i) (e.g. blue circles in Figure 2), then we assign a 2D co-

ordinate to each of them. For the continuous image I(i), the

RGB value at coordinate xq is defined as

I(i)(xq) = fθ(z
∗, xq − v∗), (2)

where z∗ is the nearest (Euclidean distance) latent code

from xq in M (i), v∗ is the coordinate of latent code z∗ in

the image domain. Take Figure 2 as an example, z∗11 is the

z∗ for xq in our current definition, while v∗ is defined as the

coordinate for z∗11.

As a summary, with a function fθ shared by all the im-

ages, a continuous image is represented as a 2D feature map

M (i)
∈ R

H×W×D which is viewed as H ×W latent codes

evenly spread in the 2D domain. Each latent code z in M (i)

represents a local piece of the continuous image, it is re-

sponsible for predicting the signal of the set of coordinates

that are closest to itself.

Figure 2: LIIF representation with local ensemble. A

continuous image is represented as a 2D feature map with

a decoding function fθ shared by all the images. The sig-

nal is predicted by ensemble of the local predictions, which

guarantees smooth transition between different areas.

Feature unfolding. To enrich the information contained

in each latent code in M (i), we apply feature unfolding to

M (i) and get M̂ (i). A latent code in M̂ (i) is the concatena-

tion of the 3×3 neighboring latent codes in M (i). Formally,

the feature unfolding is defined as

M̂
(i)
jk = Concat({M

(i)
j+l,k+m}l,m∈{−1,0,1}), (3)

where Concat refers to concatenation of a set of vectors,

M (i) is padded by zero-vectors outside its border. After

feature unfolding, M̂ (i) replaces M (i) for any computation.

For simplicity, we will only use the notation M (i) in the

following sections regardless of feature unfolding.

Local ensemble. An issue in Eq 2 is the discontinuous

prediction. Specifically, since the signal prediction at xq is

done by querying the nearest latent code z∗ in M (i), when

xq moves in the 2D domain, the selection of z∗ can sud-

denly switch from one to another (i.e. the selection of near-

est latent code changes). For example, it happens when xq

crossing the dashed lines in Figure 2. Around those coordi-

nates where the selection of z∗ switches, the signal of two

infinitely close coordinates will be predicted from differ-

ent latent codes. As long as the learned function fθ is not

perfect, discontinuous patterns can appear at these borders

where z∗ selection switches.

To address this issue, as shown in Figure 2, we extend

Eq 2 to:

I(i)(xq) =
∑

t∈{00,01,10,11}

St

S
· fθ(z

∗

t , xq − v∗t ), (4)

where z∗t (t ∈ {00, 01, 10, 11}) are the nearest latent code

in top-left, top-right, bottom-left, bottom-right sub-spaces,

v∗t is the coordinate of z∗t , St is the area of the rectangle
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cell decodingno cell decoding

Figure 3: Cell decoding. With cell decoding, the decoding

function takes the shape of the query pixel as an additional

input and predicts the RGB value for the pixel.

between xq and v∗t′ where t′ is diagonal to t (i.e. 00 to 11,

10 to 01). The weights are normalized by S =
∑

t St. We

consider the feature map M (i) to be mirror-padded outside

the borders, so that the formula above also works for coor-

dinates near the borders.

Intuitively, this is to let the local pieces represented by

local latent codes overlap with its neighboring pieces so

that at each coordinate there are four latent codes for inde-

pendently predicting the signal. These four predictions are

then merged by voting with normalized confidences, which

are proportional to the area of the rectangle between the

query point and its nearest latent code’s diagonal counter-

part, thus the confidence gets higher when the query coor-

dinate is closer. It achieves continuous transition at coordi-

nates where z∗ switches (e.g. dashed lines in Figure 2).

Cell decoding. In practice, we want that the LIIF repre-

sentation can be presented as the pixel-based form in arbi-

trary resolution. Suppose the desired resolution is given, a

straight-forward way is to query the RGB values at the co-

ordinates of pixel centers in the continuous representation

I(i)(x). While this can already work well, it may not be

optimal since the predicted RGB value of a query pixel is

independent of its size, the information in its pixel area is

all discarded except the center value.

To address this issue, we add cell decoding as shown in

Figure 3. We reformulate f (omit θ) in Eq 1 as fcell with

the form

s = fcell(z, [x, c]), (5)

where c = [ch, cw] contains two values that specify the

height and width of the query pixel, [x, c] refers to the con-

catenation of x and c.

The meaning of fcell(z, [x, c]) can be interpreted as:

what the RGB value should be, if we render a pixel cen-

tered at coordinate x with shape c. As we will show in the

experiments, having an extra input c can be beneficial when

presenting the continuous representation in a given resolu-

tion.

Random
down-sample

LIIF

=

Input

Input

Ground-truth

Training image

To pixel
samples

loss

(a) Data preparation

(b) Training

Figure 4: Learning to generate continuous representa-

tion for pixel-based images. An encoder is jointly trained

with the LIIF representation in a self-supervised super-

resolution task, in order to encourage the LIIF representa-

tion to maintain high fidelity in higher resolution.

4. Learning Continuous Image Representation

In this section, we introduce the method for learning

to generate a continuous representation for an image, an

overview is demonstrated in Figure 4. Formally, in this task

we have a set of images as the training set, the goal is to

generate a continuous representation for an unseen image.

The general idea is to train an encoder Eϕ (with ϕ as its

parameters) that maps an image to a 2D feature map as its

LIIF representation, the function fθ shared by all the im-

ages is jointly trained. We hope that the generated LIIF

representation is not only able to reconstruct its input, but

more importantly, as a continuous representation, it should

maintain high fidelity even when being presented in higher

resolution. Therefore, we propose to train the framework in

a self-supervised task with super-resolution.

We first take a single training image as an example, as

shown in Figure 4, for a training image, an input is gener-

ated by down-sampling the training image with a random

scale. A ground-truth is obtained by representing the train-

ing image as pixel samples xhr, shr, where xhr are the cen-

ter coordinates of pixels in the image domain, shr are the

corresponding RGB values of the pixels. The encoder Eϕ

maps the input image to a 2D feature map as its LIIF rep-

resentation. The coordinates xhr are then used to query on

the LIIF representation, where fθ predicts the signal (RGB

value) for each of these coordinates based on LIIF repre-

sentation. Let spred denote the predicted signal, a training

loss (L1 loss in our experiment) is then computed between

spred and the ground-truth shr. For batch training, we sam-

ple batches from the training set where the loss is the aver-

age over instances. We replace x with [x, c] when having

cell decoding.
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Input (48px)

crop=12px
Bicubic 1-SIREN [41] MetaSR [15] LIIF (ours)

Figure 5: Qualitative comparison of learning continuous representation. The input is a 48 × 48 patch from images in

DIV2K validation set, a red box indicates the crop area for demonstration (×30). 1-SIREN refers to fitting an independent

implicit function for the input image. MetaSR and LIIF are trained for continuous random scales in ×1–×4 and tested for

×30 for evaluating the generalization to arbitrary high precision of the continuous representation.

5. Experiments

5.1. Learning continuous image representation

Setup. We use DIV2K dataset [1] of NTIRE 2017 Chal-

lenge [45] for experiments on learning continuous image

representation. It consists of 1000 images in 2K resolu-

tion and provides low-resolution counterparts with down-

sampling scales ×2,×3,×4, which are generated by imre-

size function in Matlab with the default setting of bicubic

interpolation. We follow the standard split using 800 images

in DIV2K for training. For testing, we report the results on

the DIV2K validation set with 100 images which follows

prior work [24], and on four standard benchmark datasets:

Set5 [3], Set14 [48], B100 [26], and Urban100 [16].

The goal is to generate a continuous representation for

a pixel-based image. A continuous representation is ex-

pected to have infinite precision that can be presented in

arbitrary high resolution while maintaining high fidelity.

Therefore, to quantitatively evaluate the effectiveness of

the learned continuous representation, besides evaluating

the up-sampling tasks of scales that are in training distri-

bution, we propose to also evaluate extremely large up-

sampling scales that are out of training distribution. Specif-

ically, in training time, the up-sampling scales are uni-

formly sampled in ×1–×4 (continuous range). During test

time, the models are evaluated on unseen images with much

higher up-sampling scales, namely ×6–×30, that are un-

seen scales during training. The out-of-distribution tasks

evaluate whether the continuous representation can gener-

alize to arbitrary precision.

Implementation details. We follow prior work [24] and

use 48 × 48 patches as the inputs for the encoder. Let B

denote the batch size, we first sample B random scales

r1∼B in uniform distribution U(1, 4), then we crop B

patches with sizes {48ri × 48ri}
B
i=1 from training images.

48× 48 inputs are their down-sampled counterpart. For the

ground-truths, we converted these images to pixel samples

(coordinate-RGB pairs) and we sample 482 pixel samples

for each of them so that the shapes of ground-truths are the

same in a batch.

Our method can be combined with different encoders.

We use EDSR-baseline [24] or RDN [51] (without their up-

sampling modules) as the encoder Eϕ, they generate a fea-

ture map with the same size as the input image. The decod-

ing function fθ is a 5-layer MLP with ReLU activation and

hidden dimensions of 256. We follow [24] and use L1 loss.

For training, we use bicubic resizing in PyTorch [35] to per-

form continuous down-sampling. For evaluation of scales

×2,×3,×4, we use the low resolution inputs provided in

DIV2K and benchmark datasets (with border-shaving that

follows [24]). For evaluation of scales ×6–×30 we first

crop the ground-truths to make their shapes divisible by

the scale, then we generate low-resolution inputs by bicu-

bic down-sampling. We use Adam [21] optimizer with an

initial learning rate 1 ·10−4, the models are trained for 1000

epochs with batch size 16, the learning rate decays by factor

0.5 every 200 epochs. The experimental setting of MetaSR
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Method
In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

Bicubic [24] 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59

EDSR-baseline [24] 34.55 30.90 28.94 - - - - -

EDSR-baseline-MetaSR� [15] 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37

EDSR-baseline-LIIF (ours) 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48

RDN-MetaSR� [15] 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47

RDN-LIIF (ours) 34.99 31.26 29.27 26.99 23.89 22.34 21.31 20.59

Table 1: Quantitative comparison on DIV2K validation set (PSNR (dB)). � indicates ours implementation. The results

that surpass others by 0.05 are bolded. EDSR-baseline trains different models for different scales. MetaSR and LIIF use one

model for all scales, and are trained with continuous random scales uniformly sampled in ×1–×4.

Dataset Method
In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×8

Set5

RDN [51] 38.24 34.71 32.47 - -

RDN-MetaSR� [15] 38.22 34.63 32.38 29.04 26.96

RDN-LIIF (ours) 38.17 34.68 32.50 29.15 27.14

Set14

RDN [51] 34.01 30.57 28.81 - -

RDN-MetaSR� [15] 33.98 30.54 28.78 26.51 24.97

RDN-LIIF (ours) 33.97 30.53 28.80 26.64 25.15

B100

RDN [51] 32.34 29.26 27.72 - -

RDN-MetaSR� [15] 32.33 29.26 27.71 25.90 24.83

RDN-LIIF (ours) 32.32 29.26 27.74 25.98 24.91

Urban100

RDN [51] 32.89 28.80 26.61 - -

RDN-MetaSR� [15] 32.92 28.82 26.55 23.99 22.59

RDN-LIIF (ours) 32.87 28.82 26.68 24.20 22.79

Table 2: Quantitative comparison on benchmark datasets (PSNR (dB)). � indicates ours implementation. The results that

surpass others by 0.05 are bolded. RDN trains different models for different scales. MetaSR and LIIF use one model for all

scales, and are trained with continuous random scales uniformly sampled in ×1–×4.

is the same as LIIF, except for replacing LIIF representation

with their meta decoder.

Quantitative results. In Table 1 and Table 2, we show a

quantitative comparison between our method and: i) EDSR-

baseline, RDN: encoders with up-sampling modules, ii)

MetaSR [15]: encoders with their meta decoder. EDSR-

baseline and RDN reply on up-sampling modules, they are

trained with different models for different scales and cannot

be tested for out-of-distribution scales. For in-distribution

scales, we observe that our method achieves competitive

performance to prior works. Note that both EDSR-baseline

and RDN are trained and evaluated for a specific scale,

thus they may have more advantages on a specific task than

our method. For out-of-distribution scales, both EDSR and

RDN baselines cannot be directly applied, we observe LIIF

outperforms MetaSR, which shows the advantage of using

implicit neural representation becomes more obvious when

the scale is larger.

Qualitative results. We demonstrate a qualitative com-

parison in Figure 5. In the figure, 1-SIREN refers to inde-

pendently fitting a SIREN [41] neural implicit function for

the test image, i.e., one neural network for one image with-

out using an image encoder. MetaSR and LIIF are trained

with scales ×1–×4 and are tested for scale ×30. From the

visualization, we observe that LIIF is significantly better

than other methods. While 1-SIREN is capable of fitting

an image as a neural implicit function, it does not share

the knowledge across images, therefore its performance in

higher precision is limited. MetaSR shows discontinuity,

while LIIF is capable of demonstrating visually pleasing re-

sults, it maintains high fidelity even in an extreme ×30 scale

that is out of training distribution.

5.2. Ablation study

Cell decoding. In cell decoding, we attach the shape of

query pixel to the input of decoding function fθ, which al-

lows the implicit function to predict different values for dif-

ferently sized pixels at the same location. Intuitively, it tells

fθ to gather local information for predicting the RGB value

for a given query pixel.

By comparing LIIF and LIIF(-c) in Table 3, we first ob-

serve that using cell decoding improves the performance for
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Input (48px) Cell-1/1 Cell-1/2 Cell-1/30 No-cell

Figure 6: Qualitative ablation study on cell decoding. The model is trained for ×1–×4 and tested for ×30. The annotation

1/k refers to the cell size is 1/k to a pixel in the input image. The pictures demonstrate that the learned cell generalizes to

unseen scales, using a proper cell size (1/30 in this case) is less blurry (e.g. the area inside the dashed line).

In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

LIIF 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48

LIIF(-c) 34.53 30.92 28.97 26.73 23.72 22.19 21.19 20.51

LIIF(-u) 34.64 30.94 28.98 26.73 23.69 22.16 21.17 20.47

LIIF(-e) 34.63 30.95 28.97 26.72 23.66 22.13 21.14 20.45

LIIF(-d) 34.65 30.94 28.98 26.71 23.64 22.10 21.12 20.42

Table 3: Quantitative ablation study on design choices of LIIF. Evaluated on the DIV2K validation set (PSNR (dB)). -c/u/e

refers to removing cell decoding, feature unfolding, and local ensemble correspondingly. -d refers to reducing the depth of

the decoding function.

scales ×2,×3,×4, which is expected according to our mo-

tivation. However, as the scale goes up, when LIIF is pre-

sented in out-of-distribution high resolution, it seems that

cell decoding can hurt the performance of the PSNR value.

Is this indicating that the learned cell does not generalize to

out-of-distribution scales?

To have a closer look, we perform a qualitative study

in Figure 6. The pictures are generated in a task of ×30
up-sampling scale, where the model is trained for ×1–×4.

Cell-1/k refers to using the cell size that is 1/k to a pixel in

the input image. Therefore, cell-1/30 is the one that should

be used for ×30 representation. From the figure, we can

see that cell-1/30 displays much clearer edges than cell 1/1,

cell-1/2, and no-cell. This is expected if we make an ap-

proximation that we assume the cell query is simply taking

the average value of the image function I(i)(x) in the query

pixel, decoding by a cell that is larger than the actual pixel

size is similar to having a “large averaging filter” on the im-

age. Similar reasons also apply to no-cell, since it is trained

with scales ×1–×4, it may implicitly learn a cell size for

×1–×4 during training, which makes it blurry in ×30.

In summary, we observe that using cell decoding con-

sistently improves the visual results for all the scales. For

the PSNR metric, we see that cell decoding achieves sig-

nificantly better performance in relatively small scales, but

does not improve in extremely large scales. We hypothesize

this is because the PSNR is evaluated towards the “ground-

truth” we provided, which is not the unique counterpart, and

the uncertainty gets much higher in large scales, thus could

be less conclusive than the visual results.

Other design choices. In Table 3 we have an ablation

study on other design choices. We find feature unfolding

mainly helps representation in moderate scales in the com-

parison between LIIF and LIIF(-u). By comparing LIIF

with LIIF(-e), we observe that the local ensemble consis-

tently improves the quality of the continuous representation,

which demonstrates its effectiveness. To confirm the bene-

fits of using a deep decoding function, we compare LIIF

to LIIF(-d), which reduces 5 layers to 3 layers. It turns

out that having a deep decoding function is beneficial for

in-distribution scales and also generalizes better to out-of-

distribution scales.

5.3. Learning with size-varied ground-truths

In this section, we introduce further applications of LIIF

continuous representation. Since LIIF representation is

resolution-free, it can be compared with arbitrarily sized

ground-truths. Specifically, in the tasks where the ground-

truths are images in different resolutions (which is common

in practice), suppose we have a model that generates a fea-

ture map with a fixed size, we do not need to resize the
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Task Method PSNR (dB)

L = 64, Up-sampling modules [24] 34.78

H = 128 LIIF (ours) 35.96

L = 32, Up-sampling modules [24] 27.56

H = 256 LIIF (ours) 27.74

Table 4: Comparison of learning with size-varied

ground-truths. Evaluated on the CelebAHQ dataset. The

task is to map a face image in L × L resolution to H ×H

resolution, where the training images are in resolutions uni-

formly distributed from L× L to H ×H .

size-varied ground-truth to the same size which sacrifices

data fidelity. LIIF can naturally build the bridge between

the fixed-size feature map and the ground-truths in different

resolutions. Below we show an image-to-image task as an

example of this application.

Setup. We use CelebAHQ [20] dataset, that has 30,000

high-resolution face images selected from the CelebA [25]

dataset. We split 25,000 images as the training set, 5,000

images as the test set (where we use 100 images for model

selection). The task is to learn a mapping from a face image

in L×L (low) resolution to its counterpart in H×H (high)

resolution. However, the sizes of images in the training set

are uniformed distributed from L × L to H × H , and for

every training image, we have its down-sampled counterpart

in L× L resolution (as input).

We highlight that while this problem is also a super-

resolution task, it is essentially different from the super-

resolution task in the previous section of learning contin-

uous representation for pixel-based images. In previous

experiments, as we assume the dataset contains general

natural scenes (not category-specific), the training can be

patched-based. For a specific up-sampling scale, the input

and output size can be fixed for a super-resolution model

since we can crop patches of any size in an image. However,

in this task, we want the model to take the whole face image

in L× L resolution as input to follow the input distribution

during test time, instead of training in a patch-based style.

Therefore, we will need to address the challenge of size-

varied ground-truths. Note that the input can potentially be

any other fixed-size information (e.g. with natural noise and

perturbation) for predicting the output image, we choose the

input information as a L×L low-resolution counterpart here

for simplicity. In general, this task is framed as an image-

to-image task with size-varied ground-truths.

Methods. We compare two end-to-end learning methods

for this task. The first is denoted by “Up-sampling mod-

ules”, where all the ground-truths are resized to H × H

with bicubic resizing, then an encoder is trained with up-

sampling modules on the top. The second is to use LIIF

representation, where we train the same encoder that gen-

erates a feature map, but we take the feature map as LIIF

representation and we jointly train the encoder with the de-

coding function. In this case, since LIIF representation can

be presented in arbitrary resolution, all the ground-truths

can keep their original resolution for supervision.

Implementation details. The Eϕ is a EDSR-baseline en-

coder and fθ is a 5-layer MLP (the same as previous exper-

iments). We follow [24] for up-sampling modules and the

training loss is L1 loss. We use Adam [21] optimizer, with

initial learning rate 1 · 10−4, the models are trained for 200

epochs with batch size 16, the learning rate decays by factor

0.1 at epoch 100.

Results. The evaluation results are shown in Table 4. For

both tasks of L = 64, H = 128 and L = 32, H = 256,

we consistently observe that using LIIF representation is

significantly better than resizing the ground-truths to the

same size and training with classical up-sampling modules.

While the resizing operation sacrifices data fidelity, training

with LIIF representation can naturally exploit the informa-

tion provided in ground-truths in different resolutions. The

results demonstrate that LIIF provides an effective frame-

work for learning tasks with size-varied ground-truths.

6. Conclusion

In this paper, we presented the Local Implicit Image

Function (LIIF) for continuous image representation. In

LIIF representation, each image is represented as a 2D fea-

ture map, a decoding function is shared by all the images,

which outputs the RGB value based on the input coordinate

and neighboring feature vectors.

By training an encoder with LIIF representation in a self-

supervised task with super-resolution, it can generate con-

tinuous LIIF representation for pixel-based images. The

continuous representation can be presented in extreme high-

resolution, we showed that it can generalize to much higher

precision than the training scales while maintaining high

fidelity. We further demonstrated that LIIF representation

builds a bridge between discrete and continuous representa-

tion in 2D, it provides a framework that can naturally and ef-

fectively exploit the information from image ground-truths

in different resolutions. Better architectures for the decod-

ing function and more applications on other image-to-image

tasks may be explored in future work.
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zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In Advances in

Neural Information Processing Systems, pages 1121–1132,

2019. 2

[43] Kenneth O Stanley. Compositional pattern producing net-

works: A novel abstraction of development. Genetic pro-

gramming and evolvable machines, 8(2):131–162, 2007. 2

[44] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration. In

Proceedings of the IEEE international conference on com-

puter vision, pages 4539–4547, 2017. 3

[45] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-

Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single

image super-resolution: Methods and results. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition workshops, pages 114–125, 2017. 5

[46] Radu Timofte, Vincent De Smet, and Luc Van Gool.

Anchored neighborhood regression for fast example-based

super-resolution. In Proceedings of the IEEE international

conference on computer vision, pages 1920–1927, 2013. 3

[47] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir

Mech, and Ulrich Neumann. Disn: Deep implicit surface

network for high-quality single-view 3d reconstruction. In

Advances in Neural Information Processing Systems, pages

492–502, 2019. 2

[48] Roman Zeyde, Michael Elad, and Matan Protter. On sin-

gle image scale-up using sparse-representations. In Interna-

tional conference on curves and surfaces, pages 711–730.

Springer, 2010. 5

[49] Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfold-

ing network for image super-resolution. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3217–3226, 2020. 3

[50] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In European conference on computer

vision, pages 649–666. Springer, 2016. 2

[51] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2472–2481, 2018. 3, 5, 6

8637



[52] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–

2232, 2017. 2

8638


