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MODELING AND COMPUTATION OF KUBO CONDUCTIVITY
FOR TWO-DIMENSIONAL INCOMMENSURATE BILAYERS*
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Abstract. This paper presents a unified approach to the modeling and computation of the Kubo
conductivity of incommensurate bilayer heterostructures at finite temperature. First, we derive an
expression for the large-body limit of Kubo—Greenwood conductivity in terms of an integral of the
conductivity function with respect to a current-current correlation measure. We then observe that
the incommensurate structure can be exploited to decompose the current-current correlation measure
into local contributions and deduce an approximation scheme which is exponentially convergent in
terms of domain size. Second, we analyze the cost of computing local conductivities via Chebyshev
approximation. Our main finding is that if the inverse temperature S is sufficiently small compared
to the inverse relaxation time 7, namely 8 < 1n~1/2) then the dominant computational cost is
O(n*3/ 2) inner products for a suitably truncated Chebyshev series, which significantly improves
on the O(n_z) inner products required by a naive Chebyshev approximation. Third, we propose
a rational approximation scheme for the low temperature regime n~1/2 < B, where the cost of the
polynomial method increases up to (9(/6’2)7 but the rational scheme scales much more mildly with
respect to 3.
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1. Introduction. Periodic bilayer two-dimensional heterostructures are typi-
cally studied using Bloch theory [18]. This technique breaks down in the case of
incommensurate heterostructures, where the ensemble is not periodic, though each
individual sheet may maintain its own periodicity. Previous work introduced a con-
figuration space representation of incommensurate materials, where incommensurate
systems are classified by local configurations [7, 8, 21], motivated by concepts intro-
duced in [2, 22]. The configuration space approach proved to be useful for numerical
simulation of the density of states [8]. In the present paper, we consider conductivity,
which proves to be significantly more challenging to compute numerically, especially
in the low temperature and long dissipation time regime. We shall restrict ourselves to
the tight-binding model, which has the advantage of being designed for large systems
while maintaining accurate quantum information.

Our first main result will be to prove that the Kubo conductivity is well defined
in the thermodynamic limit, as was done for the density of states in [21], and has a
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similar formulation in terms of configuration space integrals. For each local configu-
ration, we compute a local conductivity using the classical current-current correlation
formulation [18] and then integrate over a compact parametrization of all local config-
urations. Specifically, in Theorem 2.1, we obtain an exponential rate of convergence
of the averaged local conductivities to the thermodynamic limit. Related results have
also been obtained within the framework of C* algebras [7] and for a disordered lattice
gas [22], whereas our approach uses the direct matrix framework developed in [21].

Our second main result will be the cost analysis of a linear scaling conductivity
algorithm based on Chebyshev approximation, which is the direct analogue of the
Fermi operator expansion for the density matrix [15, 16] and the kernel polynomial
method for the density of states [21, 27]. Both of these methods expand their re-
spective quantity of interest ¢ in terms of some functional f(A) of the Chebyshev
polynomials Ty (F) applied to the Hamiltonian matrix H,

q= ch f(Tw(H)),
k=0

and then truncate this series to a finite set of indices K = {0,. .., kmax} for numerical
evaluation. This truncation is justified since it can be shown in both cases that the
contributions from large matrix powers k decay exponentially.

Unlike the density matrix and the density of states, the conductivity o requires
an expansion in terms of pairs of Chebyshev polynomials,

(1.1) o= ok [ (Tu,(H), Ty (H)),
k1, ka=0

and this introduces two new features. On the one hand, it shifts the main com-
putational burden from evaluating the matrix polynomials Ty (H) to evaluating the
functional f(A, B) since the FLOP counts for both operations scale linearly in the size
of the Hamiltonian but the two-dimensional nature of the expansion in (1.1) implies
that the number of f(A, B) to evaluate is asymptotically larger than the corresponding
number of Ty, (H). On the other hand, (1.1) allows for more complex decay behavior
of the expansion coeflicients cg,x, and hence necessitates a more careful analysis of
how to choose the truncation indices K C N2.

Indeed, we will see in section 3 that the shape of the large terms in (1.1) depends
heavily on two physical parameters, namely the inverse temperature § and the inverse
relaxation time 7, and changes from “wedge along the diagonal” for 8 < n=/2 to
“equilateral triangle” for 8 2> n~! (see Figure 4), and the number of significant terms
changes correspondingly from (9(7)*3/2) for < =12 to 0(52) for B > n71 (see
Table 1). In the case 8 = 1~ !, we will further see that the number of significant
terms can be reduced even further by using a rational approximation instead of (1.1).
Since f is inversely proportional to the temperature while n depends mostly on the
material properties [1], the same material at different temperatures can lead to a
widely varying relationship between 8 and 7.

An expansion analogous to (1.1) has previously been considered in [26] for com-
puting optical-absorption spectra. The main novelty of our work compared to [26] is
that we analyze the decay of the terms in (1.1) and use an adaptive index set K C N2
for truncating this series, while [26] considers only K = {0, ..., kmax }*-

1.1. Notation.
e We denote the #2 norm, the operator norm, and the Frobenius norm over
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discrete space as || - |lez, || - llop, || - |lr- The supremum norm of a function
f:X =Y on adomain Q C X is denoted by || f|lq-

e B,={zeR?: |z| <r}.

e For vectors v,w € CN and A € CN*VN_ we have (vjw) = Zivzl viw,; and
(o] Afw) = 5275, Agofw;.

e L((?(2)) are the bounded operators from £2(2) to itself.

e We write “f(z) = O(g(x)) for x — x¢” if limsup,, EE;C;" < ooand “f(x) =

O(g(x)) for @ — xo” if limsup, 553 < oo and liminf,_,,, % > 0. We

note that unlike O(g(x)), ©(g(x)) is signed, i.e., O(g(z)) # O(—g(z)).
2. Conductivity in incommensurate bilayers.

2.1. Incommensurate bilayer. Informally, an incommensurate bilayer is a
union of two infinite sheets of material, which are individually periodic but when
joined together become aperiodic (see Figure 1 for an example). To formalize this
concept, let

Ry := {Azm tm e Z2},
with nonsingular A, € R?*2, be two Bravais lattices defining the periodicity of the
two sheets indexed by ¢ € {1,2}. For future reference, let 7(1) = 2,7(2) = 1 denote
the transposition operator, and let

o= {A5: 5 €0,1)°}
denote the unit cell for R,. In terms of the reciprocal lattices

R; = {QWAZTTL :n €2},

we can state the assumption of incommensurability as follows.

Assumption 2.1. The bilayer Ry U R is incommensurate, that is,
V+RIUR;=RIUR; <&  v=(0,0).

As shown in [7, 17, 21], incommensurability leads to a form of ergodicity that
allows us to replace sampling over bilayer sites with sampling over bilayer shifts or
disregistry (henceforth called configurations; cf. Remark 2.1).

LEMMA 2.1. Let Ry and Ry satisfy Assumption 2.1, and g € Cper(I'7(p)); then

1 1
m o) = [ g
r—oo #Ry N B, RZERZ@OBT |F.,-(g)| T o)

where B, = {z € R? : |z| <r}.
Lemma 2.1 is the basis of an efficient algorithm for computing the density of

states in incommensurate bilayers [21]. In the present work, it plays a similar role in
the computation of transport properties.

Remark 2.1. The relative shift b between the layers parameterizes the local envi-
ronment of sites uniquely. For example, if we let R € R1, we have

RiURs+R=R1 U (RQ + R) =R U (Rg + modg(R)),

where mody(R) = R + R’ € T’y for an appropriately chosen R’ € Ry. The shift
b = moda(R) therefore selects the new environment of site R, R U (R2 + mods(R)).

As a consequence of this observation, we will from now on refer to the shift b as
a configuration and the space of configurations (I'y, I's) as configuration space.
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2.2. Tight-binding model. The tight-binding model [18] is an electronic struc-
ture model that has been successfully employed in the modeling of two-dimensional
heterostructures [8, 13, 14]. For the purpose of the present work, it will be sufficient
to formulate it at an abstract and slightly simplified level.

Let Ay denote the index set of atomic orbitals for each lattice site of sheet £; then
the degree of freedom space for the entire bilayer is given by

(21) Q= (Rl X Al) U (RQ X .AQ)

(Note that the orbital set A, also accounts for multilattice structures in the config-
uration of atomic nuclei.) The tight-binding model is described by an operator (or,
more intuitively, an infinite matrix) H € L£(£*(Q)),

(2.2) HRoz,R/o/ = hao (R — R/)

Assumption 2.2. We assume hyo € C™(R?) for some n > 0 and is exponentially
localized for R = (Ry, R2) € R%:
|haa (R)| < ei’yo‘R‘a

(2.3) ,
|ag1 agz haa' (R)| 5 e_’YM/m‘R‘ )

for Ymrm > 0 and 9 > 0, m + m’ < n. Further, we assume
hao'(R) = hara(—R).

Note that H is Hermitian. In tight-binding models, the interlayer coupling func-
tions h are smooth [13, 14] as they are constructed from the coupling between smooth
Wannier orbitals. Since the infinite-dimensional electronic structure problem (diago-
nalizing H) cannot be solved directly, we first consider a projection to a finite subset
of the degree of freedom space

(2.4) Q, = {[Rl N B, ] xAl} U {[RQ N B, ] xAg] for r > 0.

DERERXXXXXX]
LEXXXRXYYY)

® Layer 1

0% % 0% 00 00 00 00 00 84 0, 0, 9,
64 0" 00 00 00 00 00 00 0 0, 0, 8, * ) weesee
PP PP rnmssss e Y3388 cene FCPPRwnne oo

Fic. 1. Hexagonal bilayer lattices with a 2.5° relative twist.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/07/21 to 134.84.192.103. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

CONDUCTIVITY FOR 2D INCOMMENSURATE BILAYERS 1529

Let the projected Hamiltonian be the matrix H" = H|q,; then we can solve the
corresponding eigenvalue problem

(25) HTUZ‘ = E;V;

with [Jv;||;= = 1. A wide range of physical quantities of interest can be inferred from
the eigenpairs (¢;,v;), including electronic conductivity, which we discuss next.

Under Assumption 2.2, the spectrum of H" is uniformly bounded as r — oo.
Upon shifting and rescaling the Hamiltonian, we may therefore assume, without loss
of generality, that |H||op < 1.

2.3. Current-current correlation measure. The conductivity tensor will be
defined in terms of the current-current correlation measure. To introduce it, let p €
{1, 2}, and let A € R *% be a Hamiltonian. Then the velocity operator 9,A €
C@r*%r g given by

(26) [apA]Ra,R’a’ = Z(R/ — R)pAROé’R/a/, Ra, Rd € Q,.

Equivalently, we can define 0,4 in terms of a commutator, 9,4 = i[4,R,] = i(AR, —
R,A), where R, is understood as a diagonal matrix

[Rp]Ra,R’o/ = 6040/6RR'RP-

The matrix-valued current-current correlation measure " on the finite system 2,
is defined by [10]

/R OBy, B (B, )

=0 — i X olenc) T slop o w7l |

|Qr| i p,p'=1,2

where (g;,v;) denote the eigenpairs of the Hamiltonian H", and F, Fy are integration
variables. (In particular, the indices in Ej, E; are unrelated to the indices of the
layers.)

We note that (2.7) is the current-current correlation measure since the current
operator i[R,, A] is the negative of the velocity operator 9,A = i[A,R,]. For the
sake of simplicity of notation, we will henceforth simply drop the brackets [e], ,» on
the right-hand side of (2.7). In numerical computations, we will approximate general
functions ¢(E1, F3) by sums of products of univariate functions

G(E1, Ba) = §(Er, E) i= > ¢ (E1)n,(Ba),

(k1,k2)EK

where K is a finite index set. In this case, we can rewrite (2.7) (with ¢ replaced with

@) as
(2.8)

1

é(Elv EQ) dﬂr(Ela E2) = \lT7o T
R2 ‘Qr|

Z Tr [pr, (Hr)apHT¢k2 (Hr)ap’ H"]
(k1,k2) €K pp'=1.2

For brevity we collect the set of conductivity parameters ¢ = (5,n,w, Er) € P =
]R?,_ x RZ. The conductivity tensor for the finite system (2, can now be defined by
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(2.9) 0" = /2 Fe(Ey, E2)dp" (Ex, E3)
R
for the conductivity function F defined as

;J8(Er = Er) = f5(E» — Er)
(Eg — El)(El — E2 +w + L?])’

(2.10) Fe (B, Bp) =

where w is proportional to photon frequency, n is proportional to inverse relaxation
time, Ep is the Fermi level of the system, and f3(F) = (14e®F~Fr))~1 is the Fermi-
Dirac distribution. Here we have rescaled n, 3, and all energies to be unitless, and
the conductivity is missing a physical constant prefactor. We note that for a finite
system, this is not a true conductivity. Conductivity is defined only in the infinite
system, and hence for the finite system this is an approximate conductivity, which we
analyze in this text.

Our aim throughout the remainder of section 2 is to show that the thermodynamic
limit o := lim,_,, 6" exists and to establish a configuration space representation with
an exponential convergence rate.

Remark 2.2. The formulation (2.9) is consistent with the formulation for periodic
systems [18] and with the C* algebra formulation of a generalized Kubo formula for
incommensurate bilayers [7]. We will obtain a definition through a thermodynamic
limit argument using a direct matrix formulation, thus giving this formulation addi-
tional justification. Here we focus on the thermodynamic limit taken as a sequence
of circular domains, though we observe that this could be extended to a more general
class of limit sequences. In particular, as long as the sequence does not generate a
proportionally imbalanced boundary relative to bulk, the sequence will converge to
the same limit. We restrict ourselves to the circular domain limit to avoid distraction
from the key points of this paper.

Implicitly, " and later o depend on the model parameters { = (8,n,w, Er),
but for the sake of brevity of notation, this dependence is suppressed. However, we
emphasize that for a quantitative convergence analysis the parameters 3,7 are in fact
crucial since they characterize the region of analyticity of the conductivity function
Fe.

2.4. Local current-current correlation measure. In order to pass to the
limit as r — oo, we follow the ideas in [21] and define a local (or projected) conduc-
tivity, which will later take the role of ¢ in Lemma 2.1. To motivate, we first observe
that the expression in (2.7) can be written as

G(E1, Eo)dp" (Eq, Eo) =

D blen e )T [[0i) (vil0p H  [vir) (vir |0 H]
R2 |Q |

i3

= Do 1D dleicin)(eralvi) (vildpH vir) (vir| Oy H [eRa)

| T|Ra€(lr i,i’

Here we have defined eg, € ¢*(£2,.) via
[eRa]R’a’ = 5(1&’51%1%’, R'd' € Qra

and (g;,v;) are the eigenpairs of H". We see that the trace is decomposed into projec-
tions onto diagonal elements. We further observe that the left-most sum, normalized
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by IQilrl’ looks remarkably similar to a discretized integral. The crucial step then is how
to realize the thermodynamic limit as an integral. We will formalize this with the help
of Lemma 2.1, which will convert this expression into an integral over configuration
space. To that end, we define the Hamiltonian for a shifted configuration,

(211) [Hl(b)]Ra,R’a’ = hgo (b(éaeAT(z) — 6Q/GAM)) +R— R/), RO[, Rao' €Q.

Likewise, we have Hj (b) = Hy(b)|q,.. Since H} (b) is Hermitian, we can define the local
current-current correlation measure yj [b] for a finite system €,, at configuration b, in
layer £, via

(2.12)
/RZ S(Er, Ba) dpy[b) = Y d(ei, i) (eonlvi) (vil0p Hy (b)[vir) (vir |0 H (b) | €0a)

=
i,

aEA,

where (e;,v;) are the eigenpairs of Hj (b) (and thus implicitly depend on r, ¢, and b).
Our next result states that lim, o p}[b] is well defined. To that end, we first
define a strip in the complex plane

Se ={z|Re(z) € [-a—1,a+ 1],Im(z) € [—a,a]}.

LEMMA 2.2. Under Assumptions 2.1 and 2.2, there exist unique measures pig[b],
¢ =1,2, such that for all F that are analytic on S, X S,

F(El, Eg)duz[b](El, EQ) — F(El, Eg)d/j,g[b](El, EQ)
R2 R2

with the rate

[ P B (B )~ [ Py Bl (B, Ea)
]RQ ]RZ

,S sup |F(Z,Z/)|ef’yarfclog(a)’
z,z’ESa\Sa/g

for some ¢,y > 0. Furthermore, we have the maps
b ,F(E‘l7 EQ)dMZ[b](Eh Eg) S C”(FT(@) and
R2

b | F(E1, E2)dubl(Er, Ez) € Cp(Ure))-

2 per

Combining Lemmas 2.2 and 2.1, we are now ready to define the thermodynamic
limit of the current-current correlation measure and associated conductivity tensor by

uy(/rzm[b]der/Fl,ug[b]db) and
(2.13) o= /FC du(Ey, By),

where

1
D] AL+ T - Aol

v
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Moreover, we propose an alternative approximation to p that exploits the configura-
tion integrals, and the corresponding approximation of the conductivity,

mu(/rzu;[b]dw/n ug[b]db> and

(2.14) o :/chuT(El,Eg).

<

With these definitions, we can state our first main result.

THEOREM 2.1. Let Assumptions 2.1 and 2.2 be satisfied, then
=0 and " =0 as r — Q.

More precisely, if X = min{n, =1}, then there exist constants ¢,y > 0, independent
of A and r, such that

|(T _ (TT| 5 e—'y/\r—clog(/\).

Remark 2.3. Although we prove convergence of " — o, we do not obtain a rate.
Indeed, as a supercell-like approximation of an incommensurate system this sequence
is expected to converge slowly [9]. Here, " has error proportional to (nr)~! from the
boundary effects, as the error of the domain edge site contributions does not decay.
This is poor decay compared to the exponential convergence found in the ¢” scheme
(2.14). For the development of a numerical algorithm (see section 3), we therefore
use the expression for ¢” as a starting point, where large domain sizes r are replaced
by an (embarrassingly parallel) integration over local configurations. We note that
the convergence rate for the effect of a local perturbation in a crystal can often be
improved by more sophisticated boundary conditions [19]. However, the perturbation
due to incommensurability in two-dimensional bilayers is global, but we have shown
that an exponential rate of convergence can nonetheless be achieved by integration
over local configuration.

3. Linear scaling algorithm for local conductivities. We have seen in sec-
tion 2 that the conductivity of an infinite incommensurate bilayer can be written
as

(3.1) o= lim o zrgn;oy</F2al[b]db+/rlc;2[b}db),

where the local conductivities o} [b] are given by

ﬁw:/QwMMMNW%&)

(3.2) = 3" Felens i) (0|0, Hy (5)]via) (629 HE (9)]coa) (coalvi)-

11,12

This section will present a method for evaluating the local conductivities o} [b] based
on polynomial and rational approximation of the conductivity function F¢(E1, E»).
When combined with any off-the-shelf quadrature rule for evaluating the integrals over
Iy, T2 in (3.1) (e.g., the periodic trapezoidal rule; see subsection 4.4), our method gives
rise to a conductivity algorithm which involves three limits: (1) the number of terms
in the approximation of F¢(E1, Es) going to infinity, (2) the number of quadrature
points in (3.1) going to infinity, and (3) the localization radius r going to infinity.
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The main feature of the local conductivity algorithm proposed in this section is
that it scales linearly in the number of explicitly represented degrees of freedom |€2,.|.
It is this linear scaling which sets our algorithm apart from the more straightforward
approach of diagonalizing H and inserting the resulting eigenvalues ¢; and eigenvec-
tors v; into (3.2), which would scale cubically in |§2,|, but we caution that the “linear
scaling” label is also somewhat misleading since €2,. (or equivalenty r) is not an inde-
pendent variable but rather should be chosen as a function of 5 and 7; cf. Theorem
2.1. We will further elaborate on this point in Remark 3.2, where we compare our al-
gorithm and the diagonalization algorithm based on their overall scaling with respect
to 8 and 7.

As mentioned, the focus of this section is to compute a single local conductivity
oy [b] for fixed values of the localization radius r, sheet index ¢, and bilayer shift b.
We therefore reduce the notational clutter by introducing the abbreviations

Hye = H[(b), M;OC = 6PH€T(b)

_3.1. Algorithm outline. Let us consider an approximate conductivity function
F¢ obtained by truncating the Chebyshev series of I,

(33) FC(El’EQ) = Z Cky ko Tkl (El)Tkz(EQ)
(k1,k2)EK

(3.4) R kb Th (B1) Ty (B) = Fe(Ey, Ba),
K ,ka=0

where K C N? is a finite set of indices and Ty (E) denotes the kth Chebyshev poly-
nomial defined through the three-term recurrence relation

(3.5) To(x) =1, Ti(z)=2z, Tryi(x)=2xT(z)—Tr_1(x).
Inserting (3.3) into (3.2), we obtain an approximate local conductivity
Gylb] = Felir €iy) (Ui M) 0iy) (03| M2 €0a) (€0alvi,)
11,92

Z Z Ck1kso <6004 |vi1 > T, (Eil) <vi1 |M1170C|vi2> Tk, (5i2) <Ui2 |M;;(’)C|600t>
11,12 (k1,k2)€EK

Z Chy ks <Tk1(Hloc)M,l)OCTkQ(Hloc)M,lﬁc)o o
(k1,k2)EK o

(3.6)

which can be evaluated without computing the eigendecomposition as shown in
Algorithm 1.

Lines 1 and 2 of Algorithm 1 take |K;| and |K3|, respectively, matrix-vector
products when evaluated using the recurrence relation (3.5), while line 3 requires | K|

Algorithm 1 Local conductivity via Chebyshev approximation

1: |Uk1> = MII)OC Tk1 (Hloc) |€0a> for all k& € K7 := {]{?1 | Jksy : (k‘l, ]{)2) S K}
2: |wk2> = Tk2 (Hloc) M;?C ‘60a> for all ks € Ky := {k’g | dkq - (kl,kg) S K}

36l = Y Chuk (Vky |why).

(k1,k2)EK
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inner products. Due to the sparsity of Hioc, both types of products take O(|;)
floating-point operations; thus we conclude that Algorithm 1 scales linearly in the
matrix size |€2,|. Furthermore, the error in the computed local conductivity & [b] can
be estimated in terms of the dropped Chebyshev coeflicients cy,, as follows.

LEMMA 3.1. It holds that

’ﬂ[b] —UﬂbH S Z |Ck1k2"
(k1,k2)EN2\K

Proof. The bound follows immediately from (3.6) after noting that M°° and
T (Hioc) are bounded for p € {1,2} and all k¥ € N. d

A more careful analysis of Algorithm 1 reveals that since |Kj|,|K2| < |K| and
both matrix-vector and inner products take O(|€2.|) floating-point operations, the
computational cost of this algorithm is dominated by the cost of line 3, which is |K]|
inner products. In light of Lemma 3.1, a good choice for the set K is

K(7) == {(k1,k2) € N* | |exyh,| > 7}

for some truncation tolerance 7; thus | K| is linked to the decay of the Chebyshev coeffi-
cients, which in turn depends on the analyticity properties of F¢. To analyze these, it is
convenient to split the conductivity function F¢(E1, E2) = fremp(E1, E2) frelax(E1, E2)
into the two factors

f8(E1 — Er) — fs(E2 — EF)

(37) ftemp(ElyEZ) =1 E2 — El
and

1
(38) frelax(Eh E2) =

N FEq —E2+w+w7’

which are easily seen to be analytic' everywhere except, respectively, on the sets
(3.9) Stemp = (St(;)np X C) U (c X sgggnp) with S = {EF ek | g odd}
and

(3.10) Sretax = {(E1,E2) € C* | E1 — Ex +w+wm =0} .

The conductivity function F¢ is thus analytic except on the union of these two sets.
In one dimension, it is well known that the Chebyshev coefficients ¢, of a function

f(z) analytic on a neighborhood of [—1, 1] decay exponentially, |c;| < C exp(—a k),

and the decay rate « is equal? to the parameter a of the largest Bernstein ellipse

(311)  E(a) = {cosh(d) cos(6) + ¢ sinh(a) sin(6)) | & € [0,),0 € [0, 27r)}

which can be inscribed into the domain of analyticity of f. In two dimensions, we have
two decay rates o, ap and in the case of the conductivity function Fy we have two sets
of singularities Stemp, Srelax limiting the possible values of o; and ap. This suggests

LA precise definition of analyticity in two dimensions will be provided in Definition B.1.
2More precisely, it is the asymptotic rate of decay which is equal to the parameter of the ellipse
of analyticity. Further details are provided in Appendix B.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/07/21 to 134.84.192.103. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

CONDUCTIVITY FOR 2D INCOMMENSURATE BILAYERS 1535

partitioning the space of parameters ( into relazation-constrained, mized-constrained,
and temperature-constrained depending on whether two, one, or zero decay rates are
constrained by the singularities Sielax rather than Siemp. In subsection 3.2, we will
characterize these parameter regimes more precisely and present asymptotic estimates
regarding the number of significant Chebyshev coefficients in each case. A summary
of our findings is provided in Table 1. We see that for fixed 7, the cost of Algorithm
1 gradually increases from (9(77’3/ 2) to (9(52) for increasing inverse temperature
which renders conductivity calculations at low temperatures (i.e., large 8) particularly
expensive. In subsection 3.3, we present an alternative algorithm based on a pole
expansion of F which provably reduces the cost of evaluating the local conductivity
to (’)(ﬁl/2 77_5/4) inner products for all 3 > n~'/2 and whose actual scaling was
empirically found to be O(3Y/27~1:9) inner products (see (3.21)).

3.2. Chebyshev coefficients of the conductivity function. A convenient
way to visualize the set Syelax from (3.10) is to draw two copies of the interval [—1, 1]
with a shift w 4+ 7¢ between them (the green and blue lines in Figure 2), and the
singularities Siemp from (3.9) can be added to this picture by drawing a copy of St(iznp
relative to each of these intervals (the green and blue dots in Figure 2). We will see in
Appendix B that the decay of the Chebyshev coefficients of Fy(E1, Es) is determined
by the size of the ellipses E (1), F(az) which can be drawn around the two copies of
[—1,1] subject to the following constraints:

1. Neither ellipse may contain the endpoints of the other copy of [—1, 1].
2. Neither ellipse may contain any of the points in its copy of St(ell)np.
3. The two ellipses may not overlap if their parameters a1, as are both positive.
However, we will see that it is possible for one of the parameters to assume a
negative effective value, in which case overlap is admissible (see Figure 3(a)).

Let us now determine pairs of ellipses by first choosing the upper (blue) ellipse

TABLE 1
Classification of conductivity parameters { and number of significant terms (up to logarithmic
factors of B and 1) in the Chebyshev series of F¢.

’ Constraint Parameter range ‘ # Significant terms ‘
Relaxation B <12 (9(17_3/2)
Mixed n 5B Sn! o(Bn1)
Temperature n~1<pB O(,BQ)
[ ]
° [ ]

(]
[ ]
N\
&
+
=

F1G. 2. Singularities Syclax U Stemp of the conductivity function F¢(E1, E2). The solid lines
indicate two copies of [—1,1] shifted by w + tn relative to each other, and the dots indicate the set
s

temp Te€lative to the interval of the same color.
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(a) Relaxation (b) Mixed

(¢) Temperature

F1a. 3. Ellipse pairs for relaxation-, mized-, and temperature-constrained parameters. The
blue and green dots indicate the points in Stemp restricting the ellipses. The purple dots indicate
the x*(¢) introduced in (B.13).

as large as possible subject to rules 1 and 2, and then maximizing the lower (green)
ellipse subject to rules 2 and 3 for the given upper ellipse. This procedure allows us
to distinguish the relaxation-, mixed-, and temperature-constrained parameters ( as
follows:
e Relaxation-constrained: 3 is small enough such that rule 1 restricts the upper
ellipse. See Figure 3(a).
e Mixed-constrained: [ is large enough such that rule 2 restricts the upper
ellipse, but it is small enough such that rule 3 restricts the lower ellipse. See
Figure 3(b).
e Temperature-constrained: [ is large enough such that rule 2 restricts both
the upper and the lower ellipse. See Figure 3(c).

THEOREM 3.1. There exist agiag(¢) and cani(¢) > 0 such that the Chebyshev
coefficients cp, i, of F¢ are bounded by
(3.12) |Cky ks | < C(C) exp—audiag(¢) (k1 + ka) — anti(¢) [k1 — kal]

for some C'(¢) < oo independent of ki, ka. In the limit 8 — oo, w,n — 0 with |w| <1,
and assuming Ep € (—1,1), we have that

Qdiag (C) = {

@(77) if C is relazation- or mized-constrained,

@(,@_1) if ¢ is temperature-constrained, and

@(7)1/2) if ¢ is relazation-constrained,
Qanti(C) = 0(571) if ¢ is mized-constrained,
0

if C is temperature-constrained
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and
B < Y2 if ¢ is relazation-constrained,

V2 < B <yt if ¢ is mized-constrained,

7771 <p if ¢ is temperature-constrained.

A proof of Theorem 3.1 and exact formulae for qiag(¢), and aanti(¢) are pro-
vided in Appendix B. Figures 4(b) to 4(d) show Chebyshev coefficients matching the
predictions of Theorem 3.1 perfectly.

We numerically observed the bound (3.12) to describe the correct decay behav-
ior and the decay rates of adiag(¢) and @anti(¢) to be quantitatively accurate for
temperature- and mixed-constrained parameters as well for relaxation-constrained
parameters with § close to the critical value 8 ~ n~'/2. For relaxation-constrained

parameters far away from this critical value, however, the level lines of ¢, x, are piece-
wise concave rather than piecewise straight as predicted by Theorem 3.1 (see Figure
4(a)), and we empirically found that this extra concentration reduces the number of
significant Chebyshev coefficients from O(n_3/2) to (’)(77_1'1) (see Figure 5).

10°
1073
10-¢
' 1072
10—12
0 100 200 300 400 500
k1

(b) 8= % (relaxation)

10°

1073

1079

10712

100 100
1073 1073
106 10~
1079 1079
10712 10-—12
0 100 200 300 400 500 0 100 200 300 400 500
kl kl
(c) B= % (mixed) (d) 8= 2777 (temperature)
F1G. 4. Normalized Chebyshev coefficients ik, = |Ck ko |/|co0| of the conductivity function

Fe with Ep = w =0, n=0.06, and 8 as indicated.
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o(n?)
0(77—3/2)

& On=t1)

§ 8= % (temperature)

* B = %, rational

_ .
B= 75 (relaxation)
fn (far relaxation)
n
FIG. 5. Number of normalized Chebyshev coefficients ¢y, 1, = |Ciyky|/|co0| larger than 10~3 for

Fy with Ep = w =0 and fy(E1, E2) := m
of Chebyshev coefficients in the pole expansion from Theorem 3.3 as described in Figure 6.

The “rational” line refers to the total number

Theorem 3.1 suggests to truncate the Chebyshev series (3.4) using
(313) K(T) = {(k‘l, kg) S N2 ‘ exp(—adiag |]€1 + k2| — Olanti |]€1 - ]CQD Z T},

where here and in the following we no longer explicitly mention the dependence of
Qdiag (), @tanti(¢) on ¢. The following theorem analyzes the error incurred by this
approximation.

THEOREM 3.2. It holds that
(3.14) 5716] = o7 [8]] = O (Zihg s ™ [108(7)])-

Proof. See Appendix C.1. ]

In applications, we usually specify a truncation tolerance 7 > 0 such that (3.14)
is upper-bounded by an error tolerance € > 0. It is shown in Appendix C.2 that this

can be achieved by setting 7. := % which yields
iag anti

(3.15) K ()| =0 (|10g(adiag‘ Qant; €)] ) .

Qdiag Qanti
Table 1 then follows by combining (3.15) with Theorem 3.1.

3.3. Pole expansion for low-temperature calculations. We have seen in
the previous subsection that for increasing (3, the sparsity in the Chebyshev coeffi-

cients of F¢ induced by the factor m decreases and the number of coefficients
eventually scales as 0(52) such that Algorithm 1 becomes expensive at low temper-
atures. To avoid this poor low-temperature scaling, we propose to expand F¢ into a
sum over the poles in Siemp as described in Theorem 3.3 below and apply Algorithm

1 to each term separately.

THEOREM 3.3. Let kK € N and denote by oy g E, the parameter of the ellipse
through the Fermi—Dirac poles Ep+ W There ezists a function Ry g, g, (E1, Ea)

analytic on the biellipse E(ak,g,EF)2 D) E(a0ﬁ7EF)2 such that
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(3.16)  Fe(By, B2) = 5—p, 070 (Z P E T +RkﬁvEF(EhE2)>’
2€Zy,

where
Zy = {EF+% |6e{—2k+1,-2k+3,...,2k—3,2k — 1}} C Sp,,..
Proof. See Appendix C.3. a

For k large enough, the remainder term (the last term in (3.16)) becomes relaxation-
constrained and hence Algorithm 1 becomes fairly efficient. For the pole terms, on
the other hand, we propose to employ Algorithm 1 using the weighted Chebyshev
approximation

1 Ty, (B1) T, (F2)
3.17 R~ c(z ! z ,
(3.17) (E1 —2)(Ey —2) (F1 — By +w+17m) klkzzeK (2ras Ei—2 Ey—z

where the weight (E—2z)~! is chosen such that two factors (E;—z)"! and (E;—2z)"! on
the left- and right-hand sides match. The coefficients ¢(z)k,x, in (3.17) are therefore
the Chebyshev coefficients of the relaxation-constrained function

1
~ Ty, (E1) Ty, (B
E1 — E2 + w + n kl]ge:K C(Z)k1k2 kl( 1) kQ( 2)

and exhibit the concentration described in Theorem 3.1. This leads us to the algorithm
shown in Algorithm 2.

THEOREM 3.4. The dominant computational cost of Algorithm 2 is
On=22) if Bn'’? Sk,
(3.18) #IP = O(kn %) + L O(Z2)  if By S kS Bn'l?,
O(%) ks A,
inner products if we assume that solving a single linear system of the form (H —

zI)~1 v is less expensive than O(n~%/?) inner products (see Remark 3.3). This cost
is minimized if we choose

©(1) if B Sn2,

(3.19) k=082 ifn 2 <8<y 82,
OF ' 12) if 2 S 5,

which yields
O(n~2/2) ifBSn

(3.20) #IP = (’)(31/2 77—5/4) if 12 < B <3,
OB 0t ifn <8

Algorithm 2 Local conductivity via pole expansion

~ Ry 8,6 (E1,E2)
. T B.Ep
1. Gj[b] == yOPg opwmwEw
2: for z € Zk,ﬁ,EF do

3: ay[b] == aj[b) + % i 0= (Ez—z)l(El—E2+w+Ln) duy(E1, Es), evaluated using
Algorithm 1 with the weighted Chebyshev polynomials (E — 2)~! Ty (E).
4: end for

duy(E, Es), evaluated using Algorithm 1.
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Proof. Tt follows from Theorem 3.1 that the first term in (3.18) describes the cost
of the for-loop in Algorithm 2 while the second term describes the cost of line 1. Since
the first term is strictly increasing while the second is decreasing, the sum of the two
O-terms is minimized by the unique k such that the first term equals the second term,
which one can readily verify to be given by (3.19). 0

We note that Algorithm 2 reduces to Algorithm 1 if § < n~'/2 but scales better
than Algorithm 1 for larger values of 3, e.g., for 8 ~ n~! ~ x we have #IP = O(X7/4)
in the case of Algorithm 2 while #IP = O(Xz) for Algorithm 1. The first term in
(3.16) further reduces to O(kn~'!) if we assume the improved O(n~!!)-scaling for
the number of significant Chebyshev coefficients of f(E, Es) = m suggested
by Figure 5. In this case, the optimal choice of k£ and the corresponding costs are

(3.21)
o(1), O it 8 <n72,
k= @(,31/2 ,'70.05)7 and #IP — 0(61/2 n—1.05> if ,,7—1/2 5 ,6 5 ,,7—3/2’
@(BZ/B T]O‘37), O(BQ/B n70.73) if ,’773/2 S 5

These predictions are compared against numerical results in Figure 6, where we
observe good qualitative agreement between the theory and the experiment. For
B~n~t~y, (3.21) yields #IP = O(X1'55), which is only marginally more expensive
than the (’)(Xl'5) cost of Algorithm 1 in the case of relaxation-constrained parameters
B2 ~ =1 ~ x. This is empirically demonstrated by the “rational” line in Figure 5.

Remark 3.1. Instead of running Algorithm 1 for each pole z € Zj, g g, separately,
we can apply Algorithm 1 to a group of poles Z C Zy.8,Ep if we weigh the Chebyshev
polynomials Ty (E) with q(E) := [],.;(E —z)~!, and the same idea can also be used
to improve the concentration of the Chebyshev coefficients of Ry g r,. Grouping the
poles in this manner reduces the computational cost of Algorithm 2 but amplifies

] —— polynomial /" 1024 --- 0(51/2)
6 rational . i _._
10 - o
Rd
yay -
& e
10%3 R o <
3 " 10' 5
:ﬁ: - E
104 /7
/’/ -7
7 )
¢/
100_
107 T T T
10° 10! 102 103 10% 10° 10° 10t 102 10% 0% 10°
B B
(a) Number of coefficients (b) Number of removed poles
F1G. 6. (a) Number of normalized Chebyshev coefficients ik, = |Ciykq|/|coo| larger than

10=3 for F¢ withn = 0.06 and Er = w = 0. The “polynomial” line counts the number of significant
coefficients in the Chebyshev expansion from (3.3), while the “rational” line counts the sum of the
number of significant Chebyshev coefficients of all the terms in the pole expansion from (3.16).
The dashed lines denote O(,B) and 0(51/2), respectively, and the dash-dotted lines denote 0(62)
and 0(62/3), respectively; cf. (3.21). (b) Index k for the set of poles Zy, from Theorem 3.3. This
number was determined by increasing k starting from 0 until the number of coefficients reported in
(a) stopped decreasing.
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the round-off errors® by a factor r := maxpe(_1,1) |¢(E)|/ minge(_y1 17 [¢(E)| such that
the result is fully dominated by round-off errors if this ratio exceeds 106, Since
l¢(Er)| ~ 14! while |q(41)| ~ 1, this means that we have to keep the group size rather
small (e.g., | Z| < 4 for 8 = 10*) to maintain numerical stability. We therefore conclude
that grouping poles reduces the prefactor but does not change the asymptotics of the
computational cost of Algorithm 2.

Remark 3.2. The runtime estimates (3.20) and (3.21) are formulated in terms of
number of inner products and must therefore be multiplied by the length |Q,.| = O(r?)
of these inner products to obtain runtime estimates in terms of number of floating-
point operations. According to Theorem 2.1, we must choose

@(77_1) if ¢ is relaxation- or mixed-constrained,
T =
@(B) if ¢ is temperature-constrained

to guarantee an error in oy [b] independent of (; hence we conclude that Algorithm 2
requires

O<n—3.1) if g < 77_1/2
0(51/2 n73.05) if 7771/2 <B <l
O<B5/2 n—1.05) if ,'7—1 5 B 5 77—3/2
O(BB/S 7770.73) if 7773/2 g 6

(3.22) I (CETR

floating-point operations assuming the empirically observed scaling of the number of
coefficients reported in (3.21). In contrast, computing the eigendecomposition of Hjoe
and evaluating (3.2) requires

O —6 if B < -1
O(le‘S) _ (9(7“6) _ (776 ) 1 B r;/ n-,

o) ifn'<B
floating-point operations and hence scales with a power which is close to twice the
one of our proposed algorithm.

Remark 3.3. Solving a linear system (Hjoe — z)*l v associated with the two-
dimensional configuration 2, using a direct solver takes

(’)(|QT|3/2) _ O(’I‘S) _ {(9(7}3) ?f ¢ ?s relaxation- or mixed.—constrained7
(’)(53) if ¢ is temperature-constrained
floating-point operations (see, e.g., [11, section 7.6] regarding the runtime of direct
sparse solvers). In comparison, approximating p(E) =~ 1/(E — z) and evaluating
p(Hioe) ~ (Hyoe — 2) 71 (or equivalently, using an iterative linear solver like conjugate
gradients) takes

(’)(6 n_2) if ¢ is relaxation- or mixed-constrained,

O (degree(p) |Q,]) = {

(’)(,63) if  is temperature-constrained

3We focus on rounding errors here for the sake of simplicity, but we will see in subsection 4.3
that a highly unbalanced g-factor also requires smaller approximation tolerances which in turn lead
to larger runtimes.
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floating-point operations, where we used that degree(p) = O(|Im(z)|7') = O(B)
according to fundamental results in approximation theory; see, e.g., [24]. We hence
conclude that iterative solvers scale slightly better than direct ones in the relaxation-
and mixed-constrained cases, and they scale as well as direct ones in the temperature-
constrained case.

Remark 3.4. The cost of computing (9(77’3/2) inner products is

0(7773/2 0 |) _ (’)(77_7/2) if ¢ is relaxation- or mixed-constrained,
" (’)(77_3/2 ,6’2) if ¢ is temperature-constrained

floating-point operations. Comparing this result against the findings of Remark 3.3,
we conclude that the assumption in Theorem 3.4 is satisfied if § < 7n~3/2.

3.4. Remarks regarding implementation. We conclude this section by point-
ing out two features of the proposed algorithms which are relevant when one considers
their practical implementation.

3.4.1. Memory requirements. Algorithm 1 as formulated above suggests that
we precompute and store both the vectors |vg, ) for all k; € K3 and |wy,) for all ks €
K5. This requires more memory than necessary since we can rewrite the algorithm
as shown in Algorithm 3.

Furthermore, even caching all the vectors |vg,) is not needed if the function to
be evaluated is relaxation-constrained: it follows from the wedge-like shape of the
Chebyshev coefficients of such functions shown in Figure 4(b) that in every iteration
of the loop in Algorithm 3, we only need vectors |vk, ) with index k; within some fixed
distance from ko. The vectors |vg,) can hence be computed and discarded on the fly
just like |wy, ), albeit with a larger lag between computing and discarding. Quantita-
tively, this reduces the memory requirements from O(n_l |QT|) for both Algorithms
1 and 3 to O(n~1/2|9,|) for the final version described above, assuming the function
to be evaluated is relaxation-constrained.

3.4.2. Choosing the approximation scheme. Algorithms 1 and 2 involve
three basic operations, namely matrix-vector products, inner products, and linear
system solves, and a fundamental assumption in their derivation was that matrix-
vector and inner products are approximately equally expensive and linear system
solves are not significantly more expensive than that (see Theorem 3.4 for the pre-
cise condition). The former assumption is true in the sense that both matrix-vector
and inner products scale linearly in the matrix size m, but their prefactors are very
different: the inner product (w |v) takes 2m — 1 floating-point operations, while the
cost of the matrix-vector product H |v) is approximately equal to twice the number

Algorithm 3 Memory-optimized version of Algorithm 1

: Precompute |v, ) for all ky € K as in Algorithm 1.

: for ky € K> in ascending order do

Evaluate |wy,) using the recurrence relation (3.5).

Discard |wy,—2) as it will no longer be needed.

Compute the inner products (v, |wy,) for all k1 such that (ki,ks) € K, and
accumulate the results as in Algorithm 1.

6: end for

AN A S
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of nonzeros in H. Even in the simplest case of a single triangular lattice and a tight-
binding Hamiltonian H involving only nearest-neighbor terms and s and p orbitals,
the number of nonzeros per column of H is about 6 (number of neighbors) times 4
(number of orbitals), hence the cost of evaluating H |v) is approximately 48m, which
is 24 times more expensive than the inner product. Similarly, the assumption regard-
ing the costs of linear system solves holds true in the asymptotic sense as discussed in
Remark 3.3, but the situation may look very different once we include the prefactors.
This observation has two practical implications:

e Rather than choosing the number of removed poles &k in Theorem 3.3 solely to
minimize the number of coefficients, one should benchmark the runtimes of
inner products, matrix-vector products, and linear system solves and choose
the k£ which yields the smallest overall runtime.

e Fairly small values of n are required before the wedge shown in Figure 4(b)
becomes thin enough that the savings due to a smaller number of inner prod-
ucts make a significant difference compared to the cost of the matrix-vector
products, and very large values of 8 are required for the reduced number of
inner products to compensate for the additional matrix-vector products and
linear systems solves in Algorithm 2.

4. Numerical demonstration. This section demonstrates the theory devel-
oped in sections 2 and 3 by applying it to a model bilayer system defined as follows.

Geometry. We consider a hexagonal bilayer system R, U Ro with a relative twist
angle of 2.5° as shown in Figure 1. The distance between the two layers is equal
to the nearest-neighbor distance within each layer. For ease of implementation, the
projection onto a finite subsystem is performed using a parallelogrammatic cut-out

Q, = U{Azm;me{—r,...,r}Q}

{=1

rather than the circular cut-out as in (2.4).
Hamiltonian. We construct a model Hamiltonian H for this system in two steps.
e Define the matrix

~ _M) f R _ Rl <
(41) HR,R/ = h(|R—R/|) = exp ( 7“3L”:7|R7R"2 1 | | Tcut,
0 otherwise,
where R and R’ range over all lattice sites in R1 UR2 and

Feut = V3 X (nearest-neighbor distance)

denotes the second-nearest-neighbor distance in the lattices. Note that this
implies that if R, R’ are sites on the same lattice, then

Hpp #0 <= R=R or R R are nearest neighbors.

e Set H to be a shifted and scaled copy of H such that the spectrum of H is
contained in [—1,1], i.e.,

H = 52— (H — Bocfuin 1),

‘max — Emin

where Emin a~nd Emax denote lower and upper bounds, respectively, on the
spectrum of H.
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All numerical experiments in this section have been performed on a single core of
an Intel Core 17-8550 CPU (1.8 GHz base frequency, 4 GHz turbo boost) using the
Julia programming language [4].

4.1. Convergence with respect to the localization radius . We have seen
in Theorem 2.1 that the local conductivity o} [b] converges exponentially, as r — oo,
with exponent proportional to min{3~!,n}. Since the particular Hamiltonian H we
consider involves only nearest-neighbor interactions, this statement can be further
sharpened. The approximate local conductivity &j [b] introduced in (3.6) is now inde-
pendent of r, as long as

r >  max %(k1+k2+2).
(k1,k2)EK

Hence, 67 [b] equals the exact local conductivity og°[b] in the thermodynamic limit
r — 0o up to truncation of the Chebyshev series. Combining this observation with
the decay of the Chebyshev coefficients of F¢, asserted in Theorem 3.1, yields

(4.2) |07 [b] — 07°[b]| < C exp(—aaiag(C) 7)

for some C' > 0 independent of r. This theoretical finding is numerically confirmed in
Figure 7, which demonstrates that o} [b] indeed converges exponentially with a rate
of convergence upper bound by auiag(¢) with reasonable but not perfect tightness.

The above argument for relating localization to polynomial approximation is
based on closely related arguments from [3, 12].

4.2. Scaling for relaxation-constrained parameters. The discussion in sub-
section 4.1 suggests choosing the localization radius r by determining a truncated
Chebyshev series approximation Fg of sufficient accuracy and then setting

1
"7 ke ()
where K denotes the set of indices in FG cf. (3.3). Figure 8 demonstrates that this
choice of r leads to fairly large matrix sizes || and hence the diagonalization algo-
rithm is not competitive with our Algorithm 1 for any of the parameters ¢ considered
in Figure 8. However, we remark that unlike diagonalization, Algorithm 1 benefits
from the excellent sparsity of the Hamiltonian H and the relaxed error tolerance
¢ = 1073 considered in this example. The relative performance of Algorithm 1 may
therefore be somewhat worse for more realistic Hamiltonians.

1071
10—24

10~34
E —e— [ =50 (temperature)

3 -—= O(exp(—agiag(¢) 7))
10_"'%I B = 0.5 (relaxation)
10—6-;' O (exp(—adiag(¢) 7))

10772

10—44

Error in o7[0]

1083

10—9-

F1G. 7. Convergence of o7[0] as a function of r for Ep = w =0, n = 0.5, and 3 as indicated.
Errors were measured by comparing against the result for r = 50.
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—e— runtime diagonalization [ns]
--= OG)
runtime polynomial approx. [ns]
On=*1)
—4— matrix size
--- OG?)

Fic. 8. Runtime of local conductivity calculations via diagonalization of H and polynomial
approzimation of Fe (Algorithm 1), respectively, for § = 0.1, Ep = w = 0, and varying n. The
truncated Chebyshev expansion FC(EL E3) in (3.3) has been determined by computing all Chebyshev
coefficients ci k., for ki,k2 € {0,...500} and then dropping the coefficients of smallest absolute
values until the sum of the dropped coefficients reaches 1073, The matriz size |Q| is determined by
choosing © = max (i, k,)e K % (k1 + k2 + 2); cf. subsection 4.2.

TABLE 2
Runtimes of Algorithm 1 (polynomial approximation), Algorithm 2 (pole expansion), and Al-
gorithm 2 with all poles grouped into a single term as described in Remark 3.1, for B as indicated,
Er = —0.2, n =1, w = 0, and number of removed poles k = 3. The matriz sizes |Qr| have been
determined as in Figure 8. All linear system solves (Hk(Hloc — zk)*l) v have been performed us-
ing polynomial approximation (cf. Remark 3.3), and the corresponding matriz-vector products are
included in the matriz-vector count reported above.

‘ Polynomial ‘ Pole expansion ‘ Grouped pole expansion

matrix-vector prod count 225 509 396
p time [s] 0.056 0.155 0.124
mer orod count 2680 602 229
p time [s] 0.015 0.003 0.001
] Total time [§] | 0072 | 0.159 \ 0.125 \

(a) B =20, || = 13122

’ ‘ Polynomial ‘ Pole expansion ‘ Grouped pole expansion ‘

matrix-vector prod count 348 772 741
ALHX-VECtor Prod 1 time [s] 0.338 0.749 0.798
inner prod count 6410 739 468

P time [s] 0.182 0.014 0.007

Total time [s] [ 0520 | 0.763 0.806

(b) B = 30, |2:| = 30258

4.3. Pole expansion for temperature-constrained parameters. Table 2
demonstrates the effect of accelerating the polynomial-approximation-based Algo-
rithm 1 using pole expansion as described in subsection 3.3. We observe the following:

e The additive approximation scheme described in Algorithm 2 significantly
reduces the inner products count compared to the polynomial algorithm, and
grouping poles as described in Remark 3.1 reduces the inner product count
even further.
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e The runtimes of all three algorithms are dominated by the matrix-vector
products. The number of matrix-vector products is significantly larger for
the two rational algorithms; hence their overall runtimes are larger than that
of the polynomial algorithm.

The larger number of matrix-vector products in the rational algorithms is due to
several factors.

1. Pole expansion without grouping (Algorithm 2) requires running Algorithm 1
multiple times and hence incurs more matrix-vector products from lines 1 and
2 of Algorithm 1.

2. The rational algorithms require solving sequences of linear systems (H W(H—
z;;) ') v, which we evaluate by approximating q(E) ~ [[,(E — zi)
replacing ([T, (H — zx) ') v — q(H)v.

3. Determining polynomials p(E1, E3) and ¢(F) such that

and

p(Er, E2) q(E1) q(E2) = Fe(Ey, E2)

requires stricter tolerances and hence larger degrees due to the multiplications
(cf. Remark 3.1).
Item 2 explains why the number of matrix-vector products is higher for the ungrouped
pole expansion compared to the grouped pole expansion for § = 20, while item 3
explains why the number of matrix-vector products for grouped pole expansion catches
up with that of ungrouped pole expansion for larger values of 8 where the ratio
(maXE q(E))/(minE q(E)) is larger.

These findings suggest that the rational approximation techniques from subsec-
tion 3.3 require very large values of 3 to outperform the polynomial algorithm from
subsection 3.1. However, we also note that the performance of the rational algorithms
can be improved by using better approximation and evaluation schemes.

4.4. Convergence of integral over configurations. Finally, we demonstrate
in Figure 9 the convergence of the periodic bivariate trapezoidal rule applied to the
integral over configurations in (3.1). We observe the following:

e The coupling function h(r) introduced in (4.1) is C* but not analytic, which
according to Lemma 2.2 implies that also the local conductivity o}[b] as a

10744
10“53

10_G'é —e— [ =0.5,n = 4.0 (relaxation)
] B =0.5,7=0.5 (relaxation)

—4— B =4.0,n1 = 4.0 (temperature)

error

10*73

10784

10*93

Fic. 9. Convergence of the g?-point bivariate trapezoidal rule applied to the integral over
configurations in (3.1) for Erp =w =0 and B, n as indicated. Errors were computed relative to the
result for ¢ = 10.
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function of the configurations b is C'*° but not analytic. We therefore expect
that trapezoidal rule quadrature applied to this function converges superalge-
braically but subexponentially, and this matches our numerical observations
in Figure 9.

e Conversely to Figure 7, the convergence with respect to ¢ is fairly mono-
tonous for relaxation-constrained parameters but oscillates for temperature-
constrained parameters.

5. Conclusion. We have demonstrated in this paper how to construct numer-
ical algorithms for conductivity in incommensurate heterostructures where classical
Bloch theory is unavailable. Our construction is based on the observation that the
ergodicity property of incommensurate bilayers allows us to replace conductivity cal-
culations on the infinite system with an integral over the two unit cells. The resulting
formula presented in section 2 is similar to Bloch’s theorem and extends an analogous
construction for the density of states in [21]. Unlike in Bloch’s theorem, however,
the two unit cells require padding with a buffer region which may involve tens of
thousands of atoms. This is far beyond the reach of the diagonalization algorithm;
hence we propose in section 3 an alternative, linearly scaling algorithm in the spirit
of the kernel polynomial method and Fermi operator expansion. We show that for
relaxation-constrained parameters 3 < =2, our algorithm requires only (’)(77_3/ 2)
inner products, and we present a rational approximation scheme which effectively
allows us to reduce arbitrary parameter regimes to the relaxation-constrained case.

Appendix A. Proofs: Conductivity.

A.1. Notation. Throughout several of the following proofs it will become nec-
essary to compare resolvent matrices (z — H") ! and (z — H"/)_1 of different size r,r’.
To that end, it is convenient to implicitly extend all matrices to be defined over ).
Specifically, if A is usually defined over €2,., then we use the implicit extension to €2
given by

AR R'a if Ra € QT,R/O/ € Q,,
(Al Ra,Rrar = { ’

0 otherwise.

A.2. Proof of Lemma 2.2. We let A = [—1,1] and recall that this interval
contains the spectrum for all Hamiltonians H”, > 0. Letting » > 0 and a > 0, then
following the same argument as [21, Lemma 4.2] we have the existence of 4 > 0 such
that, for z € C with d(z,A) > a/2, and ' C 2 such that Q, C ',

[ = 20D e — [ = He®lo) ™ gy

~ / ~ !
< 4~ min {efalefR |, e—ai(r—max{|R|,|R |}>},

(A1)

We have the following lemma.

LeEmMMA A.1. Using Assumption 2.2, we have

(2~ Hy(b) ™" = lim (= — Hy (b)) ™.

Further, (z — Hy(b))™" is periodic over T'ry).

Proof. From (A.1), we have that (= — Hy(b))~' is Cauchy over L(¢*(2)) and
hence has a well-defined limit. This limit must be (z — Hy(b))~! as it is clearly true
on the dense subset of vectors with a finite number of entries. | Hy (b+ 2w A, yyn) —
Hy(b)|lop — 0 for n € Z? as 7 — oo, and hence (2 — Hy(b)) ™! is periodic over I'; .0
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Let P : £2(Q) — £2(Q) be the projection defined by

[R€¢]Ra = 5|R|<sza-

We now introduce two lemmas we will use for the convergence estimates. The
matrix A in Lemma A.2 corresponds to resolvent differences as in (A.1), while the
second lemma will be applied to resolvents and localized Hamiltonian operators.

LEMMA A.2. For A € L({%(Y)) satisfying (for r > 1)
|ARa,rR7ar| S e—¢1o8(@) mip {e_“%lR_R/‘,e‘“VC(T—maX{\R\,IR’\})} )

it holds that

||Pr/2APr/2||op < e—’ycar/Q—clog(a)—i-clog(r).

~

Proof. We estimate
||PT/2APT/2H<2)p < HPT/2APT/2H%
S ef'ycar72élog(a)‘ﬂr/2|2
< T4e—'ycar—2é log(a)
< ef'ycar72élog(a)+4log(r)
for ¢ = max{2¢,4}, so we then have
||Pr/2APr/2||op S e—fycar/2—clog(a)+clog(r). 0
Recall eq,, € £2(Q2) such that [ega]rer = SorRO0a-
LeMMA A3. If A, AN AR € £(0%(Q)) satisfies

D) ] S 6ol R 1=lo(@)
a,R'a’l ~

for some . > 0, then there exist vq4,c > 0 such that
(AQ) |||(1 - PT/2)A|60a>||£2 S ef’Ydanclog(a) and
(A.3) ’[A(I)A(Q)]Ra Rror| < @40l R=R|=clog(a)

Proof. The two estimates follow from straightforward direct estimations of the
individual vector or matrix entries of, respectively, Aeg, and [A™M) A®)] Ro,R' o - |

To proceed with the proof of Lemma 2.2, we recognize that we can rewrite the
current-current correlation measure in terms of a contour integral.

LEMMA A.4. Let ¢ be analytic on Sy X S, and Cq C So — S, /2 a complex contour
encircling the spectrum of Hj(b); then

() [ olBn BB E)

= - ¢(Z7 z )
42 2'€C, JzEC,

D (coal(z = Hy (b)) 0, Hy (b) (2" — H (b))~ 0y Hy (b)|eon)dzdz'.
acAp
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Proof. Inserting the spectral decomposition of Hj (b) into the right-hand side of
(A.4) and then applying Cauchy’s integral formula twice yields the definition (2.12)
of the local current-current correlation measure 1 [b]. |

For the remainder of this proof, we denote P = P,/ for the sake of brevity. Then,

(eoal(z — Hy (b)) 10, Hy (0) (2" — Hj (b)) ™" 0 Hy (b)|eoa)
= > leoal(z— Hy ()" 10, H{ ()Us(=' — Hf (b))~ Usy Hy (b)leoa)
U;e{P,1-P}
=57+ 53,
where ST = S7(z,2'), S5 = S5(z,2') are given by
S1 = {eoal(z — Hj (b)) "' PO H[ (b) P(2' — H{ (b))~ POy Hj (b)leoa)  and
Sy = D f{eoal(z = H{(0)) "' U10, Hy (b)Uz (=" — Hy (b))~ Usdy Hf (b)leoa).
U,e{P,1-P}

(U1,U2,U3)#(P,P,P)

Using Lemma A.1 and the resolvent formulation above, we can see that the weak
limit gee[b] = lim, oo pj[b] and the limit S; := lim, S]T» exist. However, we wish
to obtain an error estimate. We can estimate

/RQF(El»EﬁdMZ[b](El»Eﬂ —/ F(Ey, Ez)dpe[b](Er, E2)

]R2
< ]{ f F(z,2)
2'€Cq J2€C,

< sup |F(z,2')]- sup |S]+ S5 — 51— S,

ST + S5 — Sy — Sa|dzdZ’

2,2'€Cq z,2'€Cq
(A.5) < sup |F(z,2')|- sup (|S] — S|+ |53 +152]).
z,2'€C, z,2'€C,

Applying Lemma A.3, we readily obtain
(A6) S5 5 emroree st

for some constants v, ¢ > 0.
Next, we claim that there exist constants 7, c” such that

(A7) |ST — G| < e~ mra—clog(a)+c" log(r)

Proof of (A.7). We define two sets of operators,

B, = { P(z — Hj (b)) "' P, PO,H] (b)P, P(2' — Hj (b)) ™' P, POy, H} (b) P,
P(z — Hy(b)) "' P, PO,H,(b)P, P(2' — Hy(b)) ™" P, PO, H(b)P}.

Then, we can decompose
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(A8) ST =81 =3 (coald? AP AP AP Jeqa ),

J

where each of the operators AZ(-j ) € B, UAB, and for every j at least one Agj ) € AB,.
Using Lemma A.2, it is straightforward to see that

[Allop < max{a™", 1} for A € B, and
Allop < erra=c"los@+<"los() g1 4 € AB,,
which we apply to (A.8) to complete the proof. 0

Combining (A.5), (A.6), and (A.7) we conclude that there exist v,c¢ > 0, such
that

/ F(Ey, Ex)dyy[b)(Ey, Ey) — / F(Ey, Bx)dufl B)(Ey, )
R2 R2

< sup |F(Z, Z/)|e—'y7-a—clog(a)—&-clog(y-).

- z,2'€Cq
In particular, it follows that fW F(Ey, E2)dp;[b](Eq, E2) has a limit, which we denote
by

/']R2 F(El, EQ)d‘LLg[bKEl, EQ) = lim F(El, EQ)d‘LLZ [b](El, EQ)

T—>00 R2

As the limit of a bounded sequence of (matrix-valued) Radon measures, it is clear
that pe[b] is again a Radon measure.

Finally, we establish the regularity of yj[b] and ju,[b] as functions of b € I';(y),
where we recall that 7 is the transposition operator, 7(1) = 2, and 7(2) = 1. The
statement that

b— - F(El, Eg)duz[b}(El, EQ) S Cn(FT(Zﬂ
follows immediately from the resolvent representation (A.4) and the fact that (z —
H7(b))~! is n times differentiable with respect to b (all operators involved here are
finite-dimensional).

Thus, it remains only to show the regularity

(Ag) b— F(El, Eg)dﬂg[b](El, EQ) S Cger(FT(K))-
R2

To that end, we consider the operator Hy(b) € L(¢*()). Using Lemma A.1, we

have

. F(E1, E2)dpe[b](Er, E2)

*_—1 2,2 Y eoal(z — He -1 0 2 — Hy 19, 0 €o 2dz’
S b o FC el ) )~ Hll) 0y HoBeon

We notice that differentiation of the resolvent (z — Hj (b)) ™! leads to products of the
resolvent (z — Hy (b))~" and matrices of the form 9;"* ;"2 H; (b), all of which are well
defined in the thermodynamic limit and have periodic limits with respect to I'; ().
For an example, consider the derivative

O, (2 — H{(0)) ™" = (= — Hy (b))~ 0, Hy (b) (2 — H{ (b))~
— (2 = He(b)) ™" Op, He(b) (2 — He(b)) ™"

Hence (z — Hy(b))™! is a differentiable operator when acting on an element of the
domain, and we trivially find [ Fue[b] € Cll (Trg)).-
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A.3. Proof of Theorem 2.1. We recall that the current-current correlation
measure for the finite system was defined through

F(E, FE d E E E F 51,51
/Rz ( 1 2) ,LL 1 2

i3’

| Trf[vi) (vilOp H" |vir) (vir |Op H"].

We can decompose this into local current-current correlation measures of the finite
system by defining u’,, via

/RQ F(Ey, Ba)dupe = ) Fleiev)lvi) (vil0pH [vir) (0|8 H' [ s, R
i/

Hence,

. F(Eq, Ey)dp” (Ey, Ep) = |
R

| [ P )i (Er, ).
™l Raeq, /R

We will also reserve the notation for ' C € finite,

’ ’ 1
F(Ey, E)dpy [b] = ZF(si,a/)@[lvﬁ(w\apffdb)\w|W><W|3p'He(b)|sz/HRa,Ra-

R2

Here, (¢;,v;) are the eigenpairs for Hy(b)|q. We pick D > 0, and then consider 7",
where we wish to consider the limit » — co. We have

1
o = — Fe(EBy, Bg)dp" (Ey, E2)
|QT‘ R2

—/ o F(Br,Bo) [ ) dupa(Br,Bo)+ ) dppa(Fr, Ba)
R2 Ra€Q,_p Ra€eQ\Qr—p
We define the domain QY for R € Ry such that
Of = ((ReN B, — R) X Ag) U (R.,-(g) NB,— R+ mOdT(g)(R)) X .AT(g)) .
For |R| < r — D,

‘/ Fe(By B) Y. diia (B, Bs) — /ZF(;(EhEz)duﬂR](El,Ez)
acAp R

[ BB BRI B B — [ Fo(Br. BauP (BB, E)

< e—'yAD—clog()\)
S .

The last line follows from (A.1), the fact that Qp C QF, and F¢(E, E) is analytic
on Sy x Sy. Using Theorem 2.1, we have

. 1 .,
lim sup Fe(Ey, Ey) 77— Z A (Ey, E)
r—00 R2 ‘Qr| e
_/ FC(El,EQ Z/ d/"’l [b](El,EQ) <€ YAD— clog(A)
acA, /oo
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Further,
1
|Q ‘ FC(EI’E2) Z d:urRa(ElvEQ) —0
/R Ra€Q\Q, b
as r — oo since % — 0. Hence we have, letting D — oo,
1
m F((El,EQ)dﬁr(El,EQ) — / Fq(El,EQ)d/LL(El,Eb) = 0.
r| JR2 R2

This is the desired global thermodynamic result. Finally,

|O' _ O'T| 5 e—'y)\r—clog()\)-&-clog(r)

is a trivial application of Lemma 2.2.
Appendix B. Proof of Theorem 3.1.

B.1. Approximation theory background. This subsection briefly recalls
some concepts from approximation theory and introduces the notation used in the
remainder of this section. A textbook introduction to the topics discussed here can
be found, e.g., in [24].

Joukowsky map ¢(z). The three-term recurrence relation (3.5) for the Chebyshev
polynomials Ty (z) is equivalent to

(B.1) T (6(2)) = MTZ% where (2 ;:”;71

is known as the Joukowsky map. Since ¢(z) = ¢(27'), the inverse Joukowsky map

¢~'(z) has two branches related by ¢1'(z) = ((;5;1(36))_1. Given any curve b C C
connecting the two branch points x = +1, we define

¢y (2) =2+ Va2 -1,

where v/z2 — 1 denotes the branch of v/22 — 1 with branch cut along b and sign such
that ¢, ' (c0) = oo.

Bernstein ellipses E(a) and parameter function ap(xz). The definition of the
Bernstein ellipses E(«) in (3.11) is equivalent to

E(a) ={z € C|aj_11(z) < a},
where the parameter function () is given by

ay(x) := log|ey ' (2)].

This function satisfies the following properties.

LEMMA B.1.
o ap(z) =0 for all x € [—1,1] and all branch cuts b.
o aj_1q(x) >0 for all x € C.

o ap(z +0n) = —ay(x — 0n) for all x € b and all branch cuts b, where the
notation x + On indicates that we evaluate ap(x) on different sides of the
branch cut.
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Zero-width contours. In an abuse of notation, we define 9 for curves v C C as
the counterclockwise contour around a domain of infinitesimal width. For example,

I-1,1] = ([-1,1] 4+ 0:)U([-1,1] — Oc),

where the signed zero in the imaginary part indicates which branch to evaluate for a
function with branch cut along [—1, 1].

ExAMPLE B.1. We have

/ ¢[—711 1](:1:) d:ﬂ _ / (Z’ + [*1,1]/1.2 _ 1) d.T
a[-1,1] ’ a[-1,1]
—1+0¢
:/ (x—l—m/l—aﬂ)dm—&—/
1

+0¢ —1-0¢

1
—2[,/ V1—22dr = -7,
-1

1-0¢

(x—L\/l—x2)dac

where \/y with y > 0 denotes the positive square root and the sign of V2 -1 =
+uv1 — 22 (i.e., the &+ in £1v/1 — x2) has been determined as follows:

o V22 —1 has no branch cut along 9[—1,1], and ""Vz2 -1 # 0 for x #
+1; hence the only x € 9[—1,1] where ""V/22 — 1 is allowed to change sign
is * = £1. The sign of ""Vx2 —1 on [~1,1] + Ov is therefore equal to the
sign of "HY/(0400)2 — 1, and the sign of " "Va2 —1 on [~1,1] -0 is equal
to the sign of TVN/(0—00)% — 1.

o The sign of "*Y/(0+00)2 — 1 must be equal to the sign of " "Va2 —1 in
the limit x — +oou since " Va2 — 1 is nonzero and purely imaginary and
does not have a branch cut along the ray (0, 00) ¢.

o We must have " "Vx2 —1 = 1v/1 — 22 in the limit x — 4oor since for the
opposite sign we would obtain lim,_, |, qi)[__lm] () =2+ ""Ve2 -1 = 0,
which contradicts the definition of ¢[__1171] ().

e The sign of "1{/(0—00)2 — 1 can be determined analogously.

Ezponential decay with asymptotic rate . Following the O, notation of [25], we
introduce ay <. C(«a) exp(—ak) as a shorthand notation for exponential decay with
asymptotic rate a, i.e.,

ar <. C(a) exp(—ak) <= Va<a:a, <C(@) exp(—ak).

We further write ar <. exp(—ak) if the prefactor C(«) is irrelevant.

If limg— o C(&) exists and is bounded, then ar <. C(«) exp(—ak‘) is equivalent
to ar, < C(a) exp(—ak). A typical example of a sequence ap <. C(«) exp(—ak) is
ak = k exp(—ak), in which case C(&) = maxy, k exp(—(a—a) k) and lims_,o C (&) =
oo. For the purposes of this paper, the distinction between “aj <. C(a)exp(—ak)”
and “ap < C exp(—ak) for some unspecified C' > 0” is required for correctness, but
it is of little practical relevance.

Analyticity in two dimensions. The notion of analyticity can be extended to
two-dimensional functions f(z1,z22) as follows.

DEFINITION B.1. A function f : Q — C with Q C C? is called analytic if f(z1,22)
is analytic in the one-dimensional sense in each variable z1,zo separately for every
(2’1, 22) e 0.
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This definition deserves several remarks.

e By a well-known result due to Hartogs (see, e.g., [20, Theorem 1.2.5]), a
function f(z1,22) analytic in the above one-dimensional sense is continuous
and differentiable in the two-dimensional sense.

e It is known that if f(z1, 22) is analytic on an arbitrary set Q C C?, then there
exists an open set ' D € such that f(z1, 22) is analytic on .

e It is known that if f(z1,22) is analytic on the biannulus A(ry) x A(ry) with
A(r) == {z | r~! < |z| <}, it can be expanded into a Laurent series

o

k1 _k
f(z17z2) = Z Ak ky 21 Z22

kl,kQZ—OO
with coefficients given by
1 O R
e f(z1,22) 2 25 dzy dzy
Y2 Y71

for any bicontour «y; X 2 where v, C A(ry) are two rectifiable closed contours
winding once around the origin; see, e.g., [23, Theorem 1.5.26].

akl ko =

B.2. Auxiliary results. We next establish a contour-integral formula for the
Chebyshev coefficients of analytic functions in Theorem B.1 and demonstrate in The-
orem B.2 how this formula translates into a bound on the Chebyshev coefficients.
Both results are straightforward generalizations of the one-dimensional results (see,

g., [24]), except that we allow for a general branch cut in Theorem B.2, which will
be important in subsection B.3.

THEOREM B.1. A function f(x1,22) analytic on [—1,1]% can be expanded into a
Chebyshev series

(B.2) f(z1,22) = Z Chyks Thy (1) Thy (22)  om [=1,1]°
k1,k2=0

with coefficients ci,k, given by

T T;
Chiky = (2 5k10)(2 5k20)/ / 1'1,1'2) k‘l(xl) k2(x2) dxl de.
—1,1] Jo[-1,1] 1

[-1,11/,.2 _ [-1,11/,.2 _
\/ml 1 x5

Proof. f(x1,22) is analytic on [—1,1] and ¢(z) maps the unit circle {|z| = 1}
holomorphically onto [—1,1], thus f(#(z1), ¢(z2)) is analytic on {|z| = 1}? and can
be expanded into a Laurent series

oo

(B.3) F(e(z1),0(22)) = D hy ok, 21t 252

k17k2=—00

with coefficients ag,x, given by
1 k=1 —ko—
(B.4) Ukyky = *ﬁ/ / F(0(21)s d(22)) 27 237 dz dzo.
|z2|=1 J]z1|=1

Since ¢(z) = qﬁ(z*l), we conclude that ay,x, is symmetric about the origin in both £,
and kg, i.€., gy ky = G—ky ky and G, ky = Gk,,—k,- The terms in (B.3) can therefore
be rearranged as a Chebyshev series in ¢(z1), ¢(z2),
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o k1 —k1 ko —k2
AR oA 26° + 2
F((z1),0(22) = D (2= 05,0)(2 = Oka0) Gy ki, — 5 = 5 2
k1,ko=0

=3 ctaks T (9(21) Ty (9(22)),
k=0

which is (B.2) with ¢k, g, := (2 — 0,0)(2 — 0k40) Gkyk,- The formula for the coefficients
follows by substituting

91,y (20)
BV

for ¢ =1 and ¢ = 2 in the integrals in (B.4) and setting

z — ¢>[:11,1] (z0), dzy — dxy and {|z¢| =1} — 9[-1,1]

Chkiky = (2 - 61910) (2 - 6k20) % (a‘khkz + Aky,—ky T Ay ky T a*kl,*kz)' a

THEOREM B.2. Let Q1,95 C C be two simply connected sets with rectifiable
boundaries 0y such that both sets contain —1 and 1. It then holds that

(2 - 5k10>(2 - 61920) / f(-Tl {EQ) Tkl ($1) Tkz ($2)
Ar? 09, J oo, 7 War?—1 %/z2 -1
< C(901) C(992) || flloos xo0, exp(—ai1ki — agks)

d.’L‘ldQEQ S

for all k1, ko € N and all branch cuts (b[ - Qg) connecting —1,1, where

re{1,2}

(Oég = min ayp, (694)) and C(09Q) = 1 / M
re{1,2} T Jo, 1 (69) |2

Proof. Reversing the substitutions in the proof of Theorem B.1 transforms the

expression on the left-hand side to (B.4) up to a factor (2 — 0g,0)(2 — dk,0) and the

integrals running over ¢, ' (9¢) instead of {|z¢| = 1} for £ € {1,2}. The claim follows

by bounding these integrals using Holder’s inequality. O

We illustrate the application of Theorems B.1 and B.2 by proving the following
corollary, which can be found, e.g., in [5, Theorem 11], [25, Lemma 5.1], and [6,
Theorem 11].

COROLLARY B.1. The Chebyshev coefficients of a function f(x1,x2) analytic on
E(a1) X E(ag) are bounded by
(B5) |Ck1k2| S 4 ||f||6E(a1)><BE(a2) exp(falk:l — Ozgk'g) Vki, ko € N.

Proof. f(z1,3) is analytic on [—1,1]? C E(a;) x E(az), thus Theorem B.1 states
that we can expand f(x,z2) into a Chebsyhev series with coefficients given by
(2 = 6k10)(2 — Oky0) / T, (1) T, (22)
T1,T
42 al—1,1] Jaj=1,1] far, ) Fr/p? -1 /a2 -1
The integrand in this expression is analytic on z; € E(aq) \ [-1,1] for any fixed

x9 € 9[—1,1]; hence by the one-dimensional Cauchy integral theorem we can move
the contour in x; from 9[—1,1] to OE(ay) for any a1 < oy, i.e., we have

Ckﬂcg:-w/ / ...dl’ldl'z.
0[—1,1] JOE(a1)

dl‘1 dIQ.

Chiky = —
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Arguing similarly in the second variable, we obtain

cklkzz.../ / ... dx1 dxo
0E(&2) JOE(61)

for any pair (&g < ar)eeq1,2}, which by Theorem B.2 implies
|k ksl < 4\ fllor ) xoE@as) exp(—diks — doks),

where we used C(0E(a)) = 1 14zl — 9 and o111 (0E(a)) = . This is

m J]z|=exp(a) ¢
precisely the bound (B.5). |

B.3. Chebyshev coefficients of the conductivity function. This subsection
establishes the bound (3.12) with explicit formulae for agiag(¢) and @ani(¢). This
will be done in two steps. First, we will prove Theorem B.3 below which bounds
the Chebyshev coefficients of the factor f(xy1,x2) = $17i2+s from (3.8) where we set
s := w+n for notational convenience. The extension to the conductivity function F¢
will then be provided in Theorem B.4.

We note that zl_;ﬁ_s is analytic at all z; € C except x1 = z2 — s, and likewise
xﬁ;ﬁs is analytic at all zo € C except o = 1 + s. The condition that wﬁ;,ﬁS
be analytic on a domain 1 x €y is thus equivalent to (Ql + s) N Qy = {}, which is
clearly the case for Q1 = Qo = [—1, 1] and Im(s) # 0; see Figure 10(a). By Theorem
B.1, we can thus expand - into a Chebyshev series with coefficients given by

1
1—T2+S
(B.6)

c _ (2 — 5k10)(2 — 5k20) 1 T, (xl) T, (xQ) do dx
ke 4r? o0, Joo, T1— T2+ s /2T -1 /2 -1 S
2 1 1 2

where for now Q = Qg = by = by = [-1,1].

0 = E((ﬁhlmx(s))

Q) = [~1,1]
1s

0y = [—1,1]

Qy = b*(s)

(a) Initial contours (b) Final contours

E((A,},lllfx,)((s))

E(_(A\min(ﬁ)) D(*)
(c) Definitions

F1G. 10. Illustration of the various definitions in subsection B.3.
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Like in the proof of Corollary B.1, we will next use Cauchy’s integral theorem
repeatedly to move the contour domains €21, {25 to appropriate shapes and then employ
Theorem B.2 to bound the Chebyshev coefficients. To this end, let us introduce

Grmax(s) := min{a_1,1)(£1 — s)} = a—1,1) (1 — |Re(s)| — ¢ Im(s)),

which is the parameter of the ellipse E (dm ) penetrating the line [—1,1] — s up
to the endpoints £1 + s (see Figure 10(c)), and let us denote by

D(s) = (E(&max(s)) + s) N{z € C|Im(z) <0}

the portion of E (Guax(s)) + s penetrating [—1,1]. Since ([~1,1]+s)ND(s) = {} (see
Figure 10(c)), we conclude that Ilfi is analytic on [—1,1] x ([-1,1] UD(S)), thus

2+s

we can replace Qo = [—1,1] with Qs = [—1,1] U D(s) without changing the value of
the integral. Similarly, we can move the branch cut by = [—1, 1] to the lower boundary
of QQ, R . .

by = b*(s) := ([-1,1]\ D(s)) U{z € dD(s) | Im(z) < 0},
which in turn allows us to replace Qs = [—1,1] U D(s) with Qy = b*(s) and finally
replace ©; = [—1,1] with Q; = E(ay) for any &1 < Gmax($); see Figure 10(b). By
Theorem B.2, these final contours imply the bound
(B.7) ko | Se eXP(*&maX(S) k1 — Gmin(s) k2)7
where
(B.8) Gimin (5) == minag, ) (8(3*(5)) = —max a|_q ] (l;*(s))

(the second equality follows from Lemma B.1). We note that the last expression in
(B.8) may be interpreted as minus the parameter of the smallest ellipse containing
D(s); see Figure 10(c).

By the symmetry of ——, the bound (B.7) also holds with the roles of k1, ko
interchanged, and since amdx(s) > 0 but @&min(s) < 0, we may summarize the two
bounds with

eXp(—dmax(s) kl - dmin(s) k2) if kl > kQ’

B.9 S
( ) |Ck1k2| ~ {exp(_dmin(s) k1 — dmax(s) k2) if ky < ko.

Rewriting (B.9) in the form (B.10), we arrive at the following theorem.

THEOREM B.3. The Chebyshev coefficients cp,r, of f(x1,z2) = m with
Re(s) € [-1,1] are bounded by

(B.lO) |Ck1,k2| 55 exp(—ddiag(s) (/ﬁ + kz) — &anti(s) ‘kl — k2|),
where
&diag(s) = % (dmax(S) + OA‘min(S)) and OA‘anti(S) = % (é‘max(S) - &min(s))-

A closer inspection of the above argument reveals that the bound (B.10) holds

for any function f(x1,x9) = % as long as g(z1, z2) is analytic on E(évmax(s))Z,
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fremp (£1,E2) if

and in particular it applies to the conductivity function F¢(E,, Ey) = Ty Bt on

the singularities Stemp Of fremp(F1, E2) from (3.9) satisfy
E(Gmax(@+ 1) N Stomp = {} == E(Gmax(w + 1)) N Sty = {3,

i.e., if ( is relaxation-constrained. Furthermore, the argument and hence the bound
(B.10) can be extended to the mixed- and temperature-constrained cases if we replace
GQmax(s) with

(B]-]-) amax(C) = min{a[—l,l](l - |w‘ + ”7); a[—l,l] (EF + %)}7

which is the parameter of the blue ellipses in Figure 3. This leads to new variables
D(¢) and b*(¢) defined analogously to D(s) and b*(s), respectively, but starting from
max (€) instead of Gunax(s), ie.,

D(C) = (E(amaX(C)) +w + 77L> n {.2? | Im(x) < 0},
b*(¢) == ([~1,1] \ D(¢)) U {z € dD(¢) | Im(x) < 0}.

Finally, we generalize émin(s) to
(B.12) amin(¢) = min{ap ) (#7(¢) + 0), 1,1 (EF + ) },
where 2*(() is given by

(B.13) x*(¢) == arg min ape(¢)(x + 0).
meaE(amaX(C))J"W""Ln

Note that amin(¢) is the parameter of the green ellipses in Figure 3, and x*({) is
indicated by the purple dots in Figure 3.

With the above notation, we can now formally describe the classification into
relaxation-, mixed-, and temperature-constrained parameters ¢, and we can generalize
Theorem B.3 to Theorem B.4 below.

DEFINITION B.2.

L

relazation-constrained —if a1 1)(1 — |w| + ) < 117 (Er + %)7
We call ¢ { temperature-constrained if o_y 1 (EF + %) < () (x*({) + OL),

mixed-constrained otherwise.
THEOREM B.4. The Chebyshev coefficients cg,k, of F¢(E1, E2) are bounded by

|Chy ks | Se exp(—diag (€) (k1 + k2) — qtanti (¢) [k1 — k2|),

where
aiag(€) 1= 3 (0max(Q) + oin(©)) 0 () = 3 (@max(€) = Qin())-

B.4. Asymptotics. To complete the proof of Theorem 3.1, it remains to deter-
mine the asymptotic scaling of augiag(¢) and cani(¢) and the asymptotic parameter
classification. We will do so in subsubsections B.4.1 and B.4.2 using the following
auxiliary result.

LEMMA B.2. It holds that
B.14) «a_11(z) = O (| Im(x for x — x* with z* € (—1,1),
[—1,1]
(B.15)  ap1,1(z) =O(V]z F1]) for x — £1 with £ Re(z) — 1 > C|Im(z)|.
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Proof. (B.14): a_1,1)(z) = Re(log (;5[__11 ;y(@)) is symmetric about the real axis
and harmonic on either side of the branch cut at any «* € (—1,1); hence we can write

* Oaj_1,1 * * Oaj_1,1 * *
aj-1,1)(2) = ap-1,1)(z")+ oy (27) Re(z—a*)+ 51 (27 +00) [ Im(z)[+O (|2~ ?).

Since aj_1,1(2*) = 0 for all * € (—1,1), the constant term vanishes, and writing
op1,1)(z) = (¢! (Re(x),Im(x))), with

eto,0 = (ffftee =1 00) — (i) ).
(0.6) <sin0(9) —Si(I)l(G)) ’

we conclude that

Oa_ *\ —
St @) = (Ve(0,6971) =0,

11
Tt @+ ) = (Ve(0,07)71)  =sin(67) " £0,

12

where 6* = acos(Re(z*)) € (0,7).
(B.15): We compute

oz(w2 + 1)

Re(log (w214 m))
Re(log (1 T w w2 i2:|:w2>)

= Re(:F \/i2w+(9(w2)> for w — 0,

where by y/(w? +1)2 — 1 we mean a w-dependent combination of the two branches
of the square-root function such that a(w2 + 1) is harmonic around w = 0. The claim
follows by substituting w = /= F 1 and noting that /£2+/z F 1 is bounded away
from the imaginary axis as long as x is bounded away from (—1,1). O

B.4.1. Scaling of agiag(¢) and canti(¢). For temperature-constrained ¢, we
have

amax(C) = O[min(C) = O[-1,1] (EF + %) = @(571)
and hence

adiag(() = amax(C) + amin(C) = @(671)7 aanti(C) = amax(C) - amin(C) =0.

The remainder of this subsubsection establishes analogous estimates for relaxation-
and mixed-constrained (. In this case, we have

(B.16) amax(¢) = 1,11 (z*(¢) —w — me) = ©(n — Im(2*(¢))),
(B.17) amin(¢) = aps () (27 (¢) + 0c) = 0(Im(z*(())),
which may be verified as follows:

e The first expression for au,ax(€) is an immediate consequence of the definition
of 2*(¢) in (B.13). The second expression follows from (B.14)? after observing

4We implicitly assume here that 2*(¢) — w — n¢ approaches some z* € (—1,1) in the limit
considered in Theorem 3.1 and not z*(¢) — w — nt — 1. Readers may easily convince themselves
that this is true using illustrations like the ones provided in Figure 3. A rigorous proof of this result
is beyond the scope of this work.
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that Im(2*(¢)) < 0 or Im(2*(¢)) < n and hence |Im(z*(()) —n| = n —
Im(z*(C)).

e The first expression for amy(¢) is the definition of ayin(¢) in (B.12) simpli-
fied for the relaxation- and mixed-constrained cases. The second expression
follows by observing that 2*(¢) 4 O¢ is always above the branch cut *(¢) and
hence (B.14) applies without the absolute value on the right-hand side.

It follows from (B.16), (B.17) that

Qdiag () = O (n — Im(2*(C))) + O (Im(2*(())) = O(n),

where we note that the two © (Im(z*(¢)))-terms indeed cancel since they arise from
Taylor expansions of the same function a;(x) around the same point z = 0.
To determine the asymptotic scaling of aanti(¢), we compare

e (0) = ap_11)(1 = Jw| + ) = O(n*/?) if ¢ is relaxation-constrained,
e o1 (Ep + ) = O(B™Y) if ¢ is mixed-constrained

against (B.16) to conclude that

O(n'/?) if ¢ is relaxation-constrained,

O(B71) if ¢ is mixed-constrained.

n—Im(z*(0)) = {

In the relaxation-constrained case, we thus have

O(n —Im(z*(¢))) = —O(Im(z"(¢))) = O(n'/?)

and hence

Canti(€) = O (n — Im(z*(¢))) — ©(Im(2*(¢))) = O (n*/?).

In the mixed-constrained case, we have
aanti(g) = ®<77 - Im(x*(C))) - @(Im(m*(())) = 0(5_1)7

where we used that 17 > 0 and hence 7 — 2Im(z*(¢)) < 2 (7 —Im(z*(¢))). We remark
that indeed qani(¢) # O(B71) since aani(¢) — 0 as 3 approaches the finite value
where ( transitions into the temperature-constrained regime.

B.4.2. Parameter classification. In the limit considered in Theorem 3.1,
Lemma B.2 yields

a1yl —lwl+m) =0(n"?), a1y (Er+ %) =0(7);

hence
on/?) <o) = pInt?

if ¢ is relaxation-constrained, and
@(nl/Q) > @(5—1) — 77—1/2 g ﬂ

if ¢ is mixed-constrained. To obtain the second bound for the mixed-constrained
case, we observe that for given EFr, w, and 7, the largest 8 such that ( is still mixed-
constrained must be such that Er + Z¢ and w+2m lie on the same Bernstein ellipse;
hence for mixed-constrained ¢ we have

OB =iy (Br+ %) > oy (*57) =60 = B
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Finally, for temperature-constrained ¢, we must have
<n = 5P

(i.e., the first pole of the Fermi-Dirac function must lie between the two intervals in
Figure 3) since otherwise E(n) := E(aj_11](tn)) and E(0) = [~1,1] are two ellipses
such that E(n) + w + n and [—1,1] touch in a single point and neither E(n) nor
[—1,1] intersects with the set of Fermi-Dirac singularities st

temp> contradicting the
assumption that ( is temperature-constrained.
Appendix C. Other proofs: Numerics.

C.1. Proof of Theorem 3.2. Let us introduce
bk] ko = eXP(—Oémax(O kl - arnin(g) k2)
with
Oémax(é) = O‘diag(() + O‘anti(()v O‘min(() = Oldiag(g) - aanti(C)-
Using Lemma 3.1 and the bound (3.12), we obtain

|67 [0] — oy [b]] < >, |k ks |
(k1,k2) EN2\K (7)

< 2C(§) Z bklkz

(k1,k2) EN2\K (1) Ak1 >ko

KQ(T)—l 0o oo [e'e)
=20() ( Z by ks + Z Z bk1k2>a
k2=0 k=K (r,ks) ko =Ko (r) k1=ks
A B

where

We then compute

Ko(m)—1 00
A= Z exp(famin(C) k2) Z eXp(famax(év kl)
ka=0 k1=K (k2)
Ko(r)—1
7 exp(amin(€) k2)
< — &min k
- kQZ:(] exp( “ (C) 2) 1- exp(_amax(C))
KQ(T)

1- exp(_amax(C))

= 0 (g€ aans( 7 7 105(r) )

and
B = Z exp(—amin(g) ]ﬂg) Z eXp(_amax(C) kl)
ko=K(T) k1=kz
= Z eXp(_adiag(C) k2) !

ko=FKa(7) 1- eXp(_amax(C))
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< T 1
1- exp(_adiag(C)) 1- eXp(_amax(C))
= 0 asle) " ) 7).
where in the last steps for both terms we used that qqiag(() = O(aanti(g)) (cf. The-

orem 3.1) and hence apmax(¢) = @(aami(g)).

C.2. Inverse of € = 7 |log(7)|. This subsection establishes the following re-
sult.

THEOREM C.1. Let e,7 € (0,00) be such that ¢ = 7|log|. It then holds that

€
T= Toge| (1+o0(1)) for e—0.

Proof. Dividing € = 7 |log 7| by |loge| = }logT + loglog 7|, we obtain

g 1 g log 1
= — — 1 og log 7 .
lloge| — |1+1“’i501%7_|7 "~ Toge| 1+ [og 7]

The claim follows after noting that 7 |log(7)| is monotonically increasing in 7 and
hence 7 — 0 for e — 0. d

C.3. Proof of Theorem 3.3. According to Riemann’s removable singularity
theorem in higher dimensions (see, e.g., [23, Theorem 4.2.1]), the function
1 1

(C.1) R(E1, Ey) = (Ey — Bz +w + ) F¢(Ey, Ey) — B (Er —2) (Ey — 2)

with z := % can be analytically continued to

S = ({2} % (€\Spe) ) U ((C\ Ss.mp) x {2})
if R(E1, E3) is bounded on this set, or equivalently if
E1~>z

for some arbitrary E; € C\ Sg g, and likewise with the roles of E; and E, inter-
changed. In order to verify (C.2), we compute

f8.2r(E1) — f5.5,(F2)

(C.3) Elllrgz(El — 2) fremp(E1, B2) = Elllng(El - 2) B E,
E1 —Z
C4 = — lim
(C4) z— FEy E1—z 1+exp(6 (E4 fEF))
1 1
(C.5) =S E—T

where on the last line we used I’Hopital’s rule to determine the limit. It follows from
(C.5) that for Eq — z, the first and second terms in (C.1) cancel and hence (C.2)
holds. The transposed version of (C.2) follows from the symmetry of (C.1), thus we
conclude that R(FE, E3) can indeed be analytically continued to S,. Theorem 3.3
then follows by rewriting (3.16) in the form (C.1) and applying the above argument
to each of the terms in the sum over Zj.

Acknowledgments. The authors would like to thank Stephen Carr and Paul
Cazeaux for helpful comments on the theme of this paper.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/07/21 to 134.84.192.103. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

CONDUCTIVITY FOR 2D INCOMMENSURATE BILAYERS 1563

REFERENCES

N. ASHCROFT AND N. MERMIN, Solid State Physics, Cengage Learning, 2011, https://books.
google.com/books?id=x_s_ YAAACAAJ.

J. BELLISSARD, Coherent and dissipative transport in aperiodic solids: An overview, in Dy-
namics of Dissipation, Lecture Notes in Phys. 597, Springer, New York, 2002, pp. 413-485,
https://doi.org/10.1007/3-540-46122-1_18.

M. BENzI, P. Boito, AND N. RAZOUK, Decay properties of spectral projectors with applica-
tions to electronic structure, SIAM Rev., 55 (2013), pp. 3—64, https://doi.org/10.1137/
100814019.

J. BEZANSON, A. EDELMAN, S. KARPINSKI, AND V. B. SHAH, Julia: A fresh approach to nu-
merical computing, STAM Rev., 59 (2017), pp. 65-98, https://epubs.siam.org/doi/10.1137/
141000671.

S. BOCHNER AND W. T. MARTIN, Several Complex Variables, Princeton University Press,
Princeton, NJ, 1948.

J. P. BoYD, Large-degree asymptotics and exponential asymptotics for Fourier, Chebyshev and
Hermite coefficients and Fourier transforms, J. Engrg. Math., 63 (2009), pp. 355-399,
https://doi.org/10.1007/s10665-008-9241-3.

E. Cancks, P. CAzZEAUX, AND M. LUSKIN, Generalized Kubo formulas for the transport prop-
erties of incommensurate 2D atomic heterostructures, J. Math. Phys., 58 (2017), 063502.

S. CARR, D. MassarT, S. FANG, P. CazeAux, M. LUSKIN, AND E. KAXIRAS, Twistron-
ics: Manipulating the electronic properties of two-dimensional layered structures through
their twist angle, Phys. Rev. B, 95 (2017), 075420, https://doi.org/10.1103/PhysRevB.95.
075420.

P. CazEAUX AND M. LUSKIN, Cauchy-Born strain energy density for coupled incommensurate
elastic chains, Math. Model. Numer. Anal., 52 (2018), pp. 729-749.

J.-M. CoMmBES, F. GERMINET, AND P. D. HisLop, Conductivity and the current—current corre-
lation measure, J. Phys. A, 43 (2010), 474010.

T. A. Davis, Direct Methods for Sparse Linear Systems, Fundam. Algorithms Z, SIAM,
Philadelphia 2006, http://epubs.siam.org/doi/book/10.1137/1.9780898718881.

S. DEMKO, W. F. Moss, AND P. W. SMITH, Decay rates for inverses of band matrices, Math.
Comp., 43 (1984), pp. 491-499, https://doi.org/10.1090/S0025-5718-1984-0758197-9.

S. FANG AND E. KAXIRAS, Electronic structure theory of weakly interacting bilayers, Phys. Rev.
B, 93 (2016), 235153, https://doi.org/10.1103 /PhysRevB.93.235153.

S. Fang, R. KuaTE DEFO, S. N. SHIRODKAR, S. LIEU, G. A. TRITSARIS, AND E. KAXIRAS,
Ab initio tight-binding hamiltonian for transition metal dichalcogenides, Phys. Rev. B, 92
(2015), 205108, https://doi.org/10.1103/PhysRevB.92.205108.

S. GOEDECKER AND L. COLOMBO, Efficient linear scaling algorithm for tight-binding molecular
dynamics, Phys. Rev. Lett., 73 (1994), pp. 122-125, https://doi.org/10.1103/PhysRevLett.
73.122.

S. GOEDECKER AND M. TETER, Tight-binding electronic-structure calculations and tight-
binding molecular dynamics with localized orbitals, Phys. Rev. B, 51 (1995), pp. 9455-9464,
https://doi.org/10.1103/PhysRevB.51.9455.

A. Z. Jiu DING, Statistical Properties of Deterministic Systems, Springer, Berlin, 2009.

E. KAXIRAS, Atomic and Electronic Structure of Solids, Cambridge University Press, Cam-
bridge, UK, 2003.

P. J. KELLY AND R. CAR, Green’s-matriz calculation of total energies of point defects in silicon,
Phys. Rev. B, 45 (1992), pp. 6543-6563, https://doi.org/10.1103/PhysRevB.45.6543.

S. G. KrRANTZ, Function Theory of Several Complex Variables, AMS, Providence, RI, 2001.

D. Massatt, M. LUskIN, AND C. ORTNER, Electronic density of states for incommensu-
rate layers, Multiscale Model. Simul., 15 (2017), pp. 476-499, https://doi.org/10.1137/
16M1088363.

E. PRODAN, Quantum transport in disordered systems under magnetic fields: A study based on
operator algebras, Appl. Math. Res. Express. AMRX, 2013 (2013), pp. 176-255.

V. SCHEIDEMANN, Introduction to Complex Analysis in Several Variables, Birkhduser, Basel,
2005.

L. N. TREFETHEN, Approzimation Theory and Approzimation Practice, STAM, Philadelphia,
2013.

L. N. TREFETHEN, Multivariate polynomial approximation in the hypercube, Proc. Amer. Math.
Soc., 145 (2017), pp. 4837-4844, https://doi.org/10.1090/proc/13623.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://books.google.com/books?id=x_s_YAAACAAJ
https://books.google.com/books?id=x_s_YAAACAAJ
https://doi.org/10.1007/3-540-46122-1_18
https://doi.org/10.1137/100814019
https://doi.org/10.1137/100814019
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://doi.org/10.1007/s10665-008-9241-3
https://doi.org/10.1103/PhysRevB.95.075420
https://doi.org/10.1103/PhysRevB.95.075420
http://epubs.siam.org/doi/book/10.1137/1.9780898718881
https://doi.org/10.1090/S0025-5718-1984-0758197-9
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.92.205108
https://doi.org/10.1103/PhysRevLett.73.122
https://doi.org/10.1103/PhysRevLett.73.122
https://doi.org/10.1103/PhysRevB.51.9455
https://doi.org/10.1103/PhysRevB.45.6543
https://doi.org/10.1137/16M1088363
https://doi.org/10.1137/16M1088363
https://doi.org/10.1090/proc/13623

Downloaded 01/07/21 to 134.84.192.103. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1564 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

[26] L.-W. WANG, Calculating the density of states and optical-absorption spectra of large quantum
systems by the plane-wave moments method, Phys. Rev. B, 49 (1994), pp. 10154-10158,
https://doi.org/10.1103/PhysRevB.49.10154.

[27] A. WEISSE, G. WELLEIN, A. ALVERMANN, AND H. FEHSKE, The kernel polynomial method, Rev.
Mod. Phys., 78 (2006), pp. 275-306, https://doi.org/10.1103/RevModPhys.78.275.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1103/PhysRevB.49.10154
https://doi.org/10.1103/RevModPhys.78.275

	Introduction
	Notation

	Conductivity in incommensurate bilayers
	Incommensurate bilayer
	Tight-binding model
	Current-current correlation measure
	Local current-current correlation measure

	Linear scaling algorithm for local conductivities
	Algorithm outline
	Chebyshev coefficients of the conductivity function
	Pole expansion for low-temperature calculations
	Remarks regarding implementation
	Memory requirements
	Choosing the approximation scheme


	Numerical demonstration
	Convergence with respect to the localization radius r
	Scaling for relaxation-constrained parameters
	Pole expansion for temperature-constrained parameters
	Convergence of integral over configurations

	Conclusion
	Appendix A. Proofs: Conductivity
	Notation
	Proof of Lemma 2.2
	Proof of Theorem 2.1

	Appendix B. Proof of Theorem 3.1
	Approximation theory background
	Auxiliary results
	Chebyshev coefficients of the conductivity function
	Asymptotics
	Scaling of diag() and anti()
	Parameter classification


	Appendix C. Other proofs: Numerics
	Proof of Theorem 3.2
	Inverse of =  |log()|
	Proof of Theorem 3.3

	Acknowledgments
	References

