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MODELING AND COMPUTATION OF KUBO CONDUCTIVITY
FOR TWO-DIMENSIONAL INCOMMENSURATE BILAYERS\ast 

SIMON ETTER\dagger , DANIEL MASSATT\ddagger , MITCHELL LUSKIN\S , AND

CHRISTOPH ORTNER\P 

Abstract. This paper presents a unified approach to the modeling and computation of the Kubo
conductivity of incommensurate bilayer heterostructures at finite temperature. First, we derive an
expression for the large-body limit of Kubo--Greenwood conductivity in terms of an integral of the
conductivity function with respect to a current-current correlation measure. We then observe that
the incommensurate structure can be exploited to decompose the current-current correlation measure
into local contributions and deduce an approximation scheme which is exponentially convergent in
terms of domain size. Second, we analyze the cost of computing local conductivities via Chebyshev
approximation. Our main finding is that if the inverse temperature \beta is sufficiently small compared
to the inverse relaxation time \eta , namely \beta \lesssim \eta  - 1/2, then the dominant computational cost is
\scrO (\eta  - 3/2) inner products for a suitably truncated Chebyshev series, which significantly improves
on the \scrO (\eta  - 2) inner products required by a naive Chebyshev approximation. Third, we propose
a rational approximation scheme for the low temperature regime \eta  - 1/2 \lesssim \beta , where the cost of the
polynomial method increases up to \scrO (\beta 2), but the rational scheme scales much more mildly with
respect to \beta .
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1. Introduction. Periodic bilayer two-dimensional heterostructures are typi-
cally studied using Bloch theory [18]. This technique breaks down in the case of
incommensurate heterostructures, where the ensemble is not periodic, though each
individual sheet may maintain its own periodicity. Previous work introduced a con-
figuration space representation of incommensurate materials, where incommensurate
systems are classified by local configurations [7, 8, 21], motivated by concepts intro-
duced in [2, 22]. The configuration space approach proved to be useful for numerical
simulation of the density of states [8]. In the present paper, we consider conductivity,
which proves to be significantly more challenging to compute numerically, especially
in the low temperature and long dissipation time regime. We shall restrict ourselves to
the tight-binding model, which has the advantage of being designed for large systems
while maintaining accurate quantum information.

Our first main result will be to prove that the Kubo conductivity is well defined
in the thermodynamic limit, as was done for the density of states in [21], and has a
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1526 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

similar formulation in terms of configuration space integrals. For each local configu-
ration, we compute a local conductivity using the classical current-current correlation
formulation [18] and then integrate over a compact parametrization of all local config-
urations. Specifically, in Theorem 2.1, we obtain an exponential rate of convergence
of the averaged local conductivities to the thermodynamic limit. Related results have
also been obtained within the framework of C\ast algebras [7] and for a disordered lattice
gas [22], whereas our approach uses the direct matrix framework developed in [21].

Our second main result will be the cost analysis of a linear scaling conductivity
algorithm based on Chebyshev approximation, which is the direct analogue of the
Fermi operator expansion for the density matrix [15, 16] and the kernel polynomial
method for the density of states [21, 27]. Both of these methods expand their re-
spective quantity of interest q in terms of some functional f(A) of the Chebyshev
polynomials Tk(E) applied to the Hamiltonian matrix H,

q =
\infty \sum 

k=0

ck f
\bigl( 
Tk(H)

\bigr) 
,

and then truncate this series to a finite set of indices K = \{ 0, . . . , kmax\} for numerical
evaluation. This truncation is justified since it can be shown in both cases that the
contributions from large matrix powers k decay exponentially.

Unlike the density matrix and the density of states, the conductivity \sigma requires
an expansion in terms of pairs of Chebyshev polynomials,

\sigma =
\infty \sum 

k1,k2=0

ck1,k2
f
\bigl( 
Tk1

(H), Tk2
(H)

\bigr) 
,(1.1)

and this introduces two new features. On the one hand, it shifts the main com-
putational burden from evaluating the matrix polynomials Tk(H) to evaluating the
functional f(A,B) since the FLOP counts for both operations scale linearly in the size
of the Hamiltonian but the two-dimensional nature of the expansion in (1.1) implies
that the number of f(A,B) to evaluate is asymptotically larger than the corresponding
number of Tk(H). On the other hand, (1.1) allows for more complex decay behavior
of the expansion coefficients ck1k2

and hence necessitates a more careful analysis of
how to choose the truncation indices K \subset N2.

Indeed, we will see in section 3 that the shape of the large terms in (1.1) depends
heavily on two physical parameters, namely the inverse temperature \beta and the inverse
relaxation time \eta , and changes from ``wedge along the diagonal"" for \beta \lesssim \eta  - 1/2 to
``equilateral triangle"" for \beta \gtrsim \eta  - 1 (see Figure 4), and the number of significant terms
changes correspondingly from \scrO 

\bigl( 
\eta  - 3/2

\bigr) 
for \beta \lesssim \eta  - 1/2 to \scrO 

\bigl( 
\beta 2

\bigr) 
for \beta \gtrsim \eta  - 1 (see

Table 1). In the case \beta \gtrsim \eta  - 1, we will further see that the number of significant
terms can be reduced even further by using a rational approximation instead of (1.1).
Since \beta is inversely proportional to the temperature while \eta depends mostly on the
material properties [1], the same material at different temperatures can lead to a
widely varying relationship between \beta and \eta .

An expansion analogous to (1.1) has previously been considered in [26] for com-
puting optical-absorption spectra. The main novelty of our work compared to [26] is
that we analyze the decay of the terms in (1.1) and use an adaptive index set K \subset N2

for truncating this series, while [26] considers only K = \{ 0, . . . , kmax\} 2.
1.1. Notation.
\bullet We denote the \ell 2 norm, the operator norm, and the Frobenius norm over
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CONDUCTIVITY FOR 2D INCOMMENSURATE BILAYERS 1527

discrete space as \| \cdot \| \ell 2 , \| \cdot \| op, \| \cdot \| F. The supremum norm of a function
f : X \rightarrow Y on a domain \Omega \subset X is denoted by \| f\| \Omega .

\bullet Br = \{ x \in R2 : | x| < r\} .
\bullet For vectors v, w \in CN and A \in CN\times N , we have \langle v| w\rangle =

\sum N
i=1 v

\ast 
iwi and

\langle v| A| w\rangle = \sum N
i,j=1Aijv

\ast 
iwj .

\bullet \scrL (\ell 2(\Omega )) are the bounded operators from \ell 2(\Omega ) to itself.

\bullet We write ``f(x) = \scrO (g(x)) for x\rightarrow x0"" if lim supx\rightarrow x0

| f(x)| 
| g(x)| <\infty and ``f(x) =

\Theta (g(x)) for x \rightarrow x0"" if lim supx\rightarrow x0

f(x)
g(x) < \infty and lim infx\rightarrow x0

f(x)
g(x) > 0. We

note that unlike \scrO (g(x)), \Theta (g(x)) is signed, i.e., \Theta (g(x)) \not = \Theta ( - g(x)).
2. Conductivity in incommensurate bilayers.

2.1. Incommensurate bilayer. Informally, an incommensurate bilayer is a
union of two infinite sheets of material, which are individually periodic but when
joined together become aperiodic (see Figure 1 for an example). To formalize this
concept, let

\scrR \ell :=
\bigl\{ 
A\ell m : m \in Z2

\bigr\} 
,

with nonsingular A\ell \in R2\times 2, be two Bravais lattices defining the periodicity of the
two sheets indexed by \ell \in \{ 1, 2\} . For future reference, let \tau (1) = 2, \tau (2) = 1 denote
the transposition operator, and let

\Gamma \ell =
\bigl\{ 
A\ell \beta : \beta \in [0, 1)2

\bigr\} 

denote the unit cell for \scrR \ell . In terms of the reciprocal lattices

\scrR \ast 
\ell :=

\bigl\{ 
2\pi A - T

\ell n : n \in Z2
\bigr\} 
,

we can state the assumption of incommensurability as follows.

Assumption 2.1. The bilayer \scrR 1 \cup \scrR 2 is incommensurate, that is,

v +\scrR \ast 
1 \cup \scrR \ast 

2 = \scrR \ast 
1 \cup \scrR \ast 

2 \leftrightarrow v = (0, 0).

As shown in [7, 17, 21], incommensurability leads to a form of ergodicity that
allows us to replace sampling over bilayer sites with sampling over bilayer shifts or
disregistry (henceforth called configurations; cf. Remark 2.1).

Lemma 2.1. Let \scrR 1 and \scrR 2 satisfy Assumption 2.1, and g \in Cper(\Gamma \tau (\ell )); then

lim
r\rightarrow \infty 

1

\#\scrR \ell \cap Br

\sum 

R\ell \in \scrR \ell \cap Br

g(R\ell ) =
1

| \Gamma \tau (\ell )| 

\int 

\Gamma \tau (\ell )

g(b)db,

where Br = \{ x \in R2 : | x| \leq r\} .
Lemma 2.1 is the basis of an efficient algorithm for computing the density of

states in incommensurate bilayers [21]. In the present work, it plays a similar role in
the computation of transport properties.

Remark 2.1. The relative shift b between the layers parameterizes the local envi-
ronment of sites uniquely. For example, if we let R \in \scrR 1, we have

\scrR 1 \cup \scrR 2 +R = \scrR 1 \cup (\scrR 2 +R) = \scrR 1 \cup (\scrR 2 +mod2(R)),

where mod2(R) = R + R\prime \in \Gamma 2 for an appropriately chosen R\prime \in \scrR 2. The shift
b = mod2(R) therefore selects the new environment of site R, \scrR 1 \cup (\scrR 2 +mod2(R)).

As a consequence of this observation, we will from now on refer to the shift b as
a configuration and the space of configurations (\Gamma 1, \Gamma 2) as configuration space.
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1528 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

2.2. Tight-binding model. The tight-binding model [18] is an electronic struc-
ture model that has been successfully employed in the modeling of two-dimensional
heterostructures [8, 13, 14]. For the purpose of the present work, it will be sufficient
to formulate it at an abstract and slightly simplified level.

Let \scrA \ell denote the index set of atomic orbitals for each lattice site of sheet \ell ; then
the degree of freedom space for the entire bilayer is given by

\Omega = (\scrR 1 \times \scrA 1) \cup (\scrR 2 \times \scrA 2).(2.1)

(Note that the orbital set \scrA \ell also accounts for multilattice structures in the config-
uration of atomic nuclei.) The tight-binding model is described by an operator (or,
more intuitively, an infinite matrix) H \in \scrL (\ell 2(\Omega )),

HR\alpha ,R\prime \alpha \prime = h\alpha \alpha \prime (R - R\prime ).(2.2)

Assumption 2.2. We assume h\alpha \alpha \prime \in Cn(R2) for some n > 0 and is exponentially
localized for R = (R1, R2) \in R2:

| h\alpha \alpha \prime (R)| \lesssim e - \gamma 0| R| ,

| \partial m\prime 
R1
\partial mR2

h\alpha \alpha \prime (R)| \lesssim e - \gamma m\prime m| R| ,
(2.3)

for \gamma m\prime m > 0 and \gamma 0 > 0, m+m\prime \leq n. Further, we assume

h\alpha \alpha \prime (R) = h\alpha \prime \alpha ( - R).

Note that H is Hermitian. In tight-binding models, the interlayer coupling func-
tions h are smooth [13, 14] as they are constructed from the coupling between smooth
Wannier orbitals. Since the infinite-dimensional electronic structure problem (diago-
nalizing H) cannot be solved directly, we first consider a projection to a finite subset
of the degree of freedom space

\Omega r =

\biggl[ \bigl[ 
\scrR 1 \cap Br

\bigr] 
\times \scrA 1

\biggr] 
\cup 

\biggl[ \bigl[ 
\scrR 2 \cap Br

\bigr] 
\times \scrA 2

\biggr] 
for r > 0.(2.4)

Layer 1
Layer 2

Fig. 1. Hexagonal bilayer lattices with a 2.5\circ relative twist.
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Let the projected Hamiltonian be the matrix Hr = H| \Omega r
; then we can solve the

corresponding eigenvalue problem

Hrvi = \varepsilon ivi(2.5)

with \| vi\| \ell 2 = 1. A wide range of physical quantities of interest can be inferred from
the eigenpairs (\varepsilon i, vi), including electronic conductivity, which we discuss next.

Under Assumption 2.2, the spectrum of Hr is uniformly bounded as r \rightarrow \infty .
Upon shifting and rescaling the Hamiltonian, we may therefore assume, without loss
of generality, that \| H\| op < 1.

2.3. Current-current correlation measure. The conductivity tensor will be
defined in terms of the current-current correlation measure. To introduce it, let p \in 
\{ 1, 2\} , and let A \in R\Omega r\times \Omega r be a Hamiltonian. Then the velocity operator \partial pA \in 
C\Omega r\times \Omega r is given by

[\partial pA]R\alpha ,R\prime \alpha \prime = i(R\prime  - R)pAR\alpha ,R\prime \alpha \prime , R\alpha ,R\prime \alpha \prime \in \Omega r.(2.6)

Equivalently, we can define \partial pA in terms of a commutator, \partial pA = i[A,Rp] = i(ARp - 
RpA), where Rp is understood as a diagonal matrix

[Rp]R\alpha ,R\prime \alpha \prime = \delta \alpha \alpha \prime \delta RR\prime Rp.

The matrix-valued current-current correlation measure \=\mu r on the finite system \Omega r

is defined by [10]
\int 

R2

\phi (E1, E2)d\=\mu 
r(E1, E2)

=

\biggl[ 
1

| \Omega r| 
\sum 

i,i\prime 

\phi (\varepsilon i, \varepsilon i\prime ) Tr
\Bigl[ 
| vi\rangle \langle vi| \partial pHr| vi\prime \rangle \langle vi\prime | \partial p\prime Hr| 

\Bigr] \biggr] 

p,p\prime =1,2

,
(2.7)

where (\varepsilon i, vi) denote the eigenpairs of the Hamiltonian Hr, and E1, E2 are integration
variables. (In particular, the indices in E1, E2 are unrelated to the indices of the
layers.)

We note that (2.7) is the current-current correlation measure since the current
operator i[Rp, A] is the negative of the velocity operator \partial pA = i[A,Rp]. For the
sake of simplicity of notation, we will henceforth simply drop the brackets [\bullet ]p,p\prime on
the right-hand side of (2.7). In numerical computations, we will approximate general
functions \phi (E1, E2) by sums of products of univariate functions

\phi (E1, E2) \approx \~\phi (E1, E2) :=
\sum 

(k1,k2)\in K

\phi k1
(E1)\phi k2

(E2),

where K is a finite index set. In this case, we can rewrite (2.7) (with \phi replaced with
\~\phi ) as

\int 

R2

\~\phi (E1, E2) d\=\mu 
r(E1, E2) =

\left[ 
 1

| \Omega r| 
\sum 

(k1,k2)\in K

Tr [\phi k1
(Hr)\partial pH

r\phi k2
(Hr)\partial p\prime Hr]

\right] 
 
p,p\prime =1,2

.

(2.8)

For brevity we collect the set of conductivity parameters \zeta = (\beta , \eta , \omega ,EF ) \in \scrP =
R2

+ \times R2. The conductivity tensor for the finite system \Omega r can now be defined by
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1530 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

\=\sigma r =

\int 

R2

F\zeta (E1, E2)d\=\mu 
r(E1, E2)(2.9)

for the conductivity function F\zeta defined as

F\zeta (E1, E2) = i
f\beta (E1  - EF ) - f\beta (E2  - EF )

(E2  - E1)(E1  - E2 + \omega + \iota \eta )
,(2.10)

where \omega is proportional to photon frequency, \eta is proportional to inverse relaxation
time, EF is the Fermi level of the system, and f\beta (E) = (1+e\beta (E - EF )) - 1 is the Fermi--
Dirac distribution. Here we have rescaled \eta , \beta , and all energies to be unitless, and
the conductivity is missing a physical constant prefactor. We note that for a finite
system, this is not a true conductivity. Conductivity is defined only in the infinite
system, and hence for the finite system this is an approximate conductivity, which we
analyze in this text.

Our aim throughout the remainder of section 2 is to show that the thermodynamic
limit \sigma := limr\rightarrow \infty \=\sigma r exists and to establish a configuration space representation with
an exponential convergence rate.

Remark 2.2. The formulation (2.9) is consistent with the formulation for periodic
systems [18] and with the C\ast algebra formulation of a generalized Kubo formula for
incommensurate bilayers [7]. We will obtain a definition through a thermodynamic
limit argument using a direct matrix formulation, thus giving this formulation addi-
tional justification. Here we focus on the thermodynamic limit taken as a sequence
of circular domains, though we observe that this could be extended to a more general
class of limit sequences. In particular, as long as the sequence does not generate a
proportionally imbalanced boundary relative to bulk, the sequence will converge to
the same limit. We restrict ourselves to the circular domain limit to avoid distraction
from the key points of this paper.

Implicitly, \=\sigma r and later \sigma depend on the model parameters \zeta = (\beta , \eta , \omega ,EF ),
but for the sake of brevity of notation, this dependence is suppressed. However, we
emphasize that for a quantitative convergence analysis the parameters \beta , \eta are in fact
crucial since they characterize the region of analyticity of the conductivity function
F\zeta .

2.4. Local current-current correlation measure. In order to pass to the
limit as r \rightarrow \infty , we follow the ideas in [21] and define a local (or projected) conduc-
tivity, which will later take the role of g in Lemma 2.1. To motivate, we first observe
that the expression in (2.7) can be written as

\int 

R2

\phi (E1, E2) d\=\mu 
r(E1, E2) =

1

| \Omega r| 
\sum 

i,i\prime 

\phi (\varepsilon i, \varepsilon i\prime )Tr
\bigl[ 
| vi\rangle \langle vi| \partial pHr| vi\prime \rangle \langle vi\prime | \partial p\prime Hr| 

\bigr] 

=
1

| \Omega r| 
\sum 

R\alpha \in \Omega r

\left[ 
 \sum 

i,i\prime 

\phi (\varepsilon i, \varepsilon i\prime )\langle eR\alpha | vi\rangle \langle vi| \partial pHr| vi\prime \rangle \langle vi\prime | \partial p\prime Hr| eR\alpha \rangle 

\right] 
 .

Here we have defined eR\alpha \in \ell 2(\Omega r) via

[eR\alpha ]R\prime \alpha \prime = \delta \alpha \alpha \prime \delta RR\prime , R\prime \alpha \prime \in \Omega r,

and (\varepsilon i, vi) are the eigenpairs of H
r. We see that the trace is decomposed into projec-

tions onto diagonal elements. We further observe that the left-most sum, normalized
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by 1
| \Omega r| , looks remarkably similar to a discretized integral. The crucial step then is how

to realize the thermodynamic limit as an integral. We will formalize this with the help
of Lemma 2.1, which will convert this expression into an integral over configuration
space. To that end, we define the Hamiltonian for a shifted configuration,

[H\ell (b)]R\alpha ,R\prime \alpha \prime = h\alpha \alpha \prime 
\bigl( 
b(\delta \alpha \in \scrA \tau (\ell )

 - \delta \alpha \prime \in \scrA \tau (\ell )
) +R - R\prime \bigr) , R\alpha ,R\prime \alpha \prime \in \Omega .(2.11)

Likewise, we have Hr
\ell (b) = H\ell (b)| \Omega r

. Since Hr
\ell (b) is Hermitian, we can define the local

current-current correlation measure \mu r
\ell [b] for a finite system \Omega r, at configuration b, in

layer \ell , via

\int 

R2

\phi (E1, E2) d\mu 
r
\ell [b] =

\sum 

i,i\prime 

\alpha \in \scrA \ell 

\phi (\varepsilon i, \varepsilon i\prime ) \langle e0\alpha | vi\rangle \langle vi| \partial pHr
\ell (b)| vi\prime \rangle \langle vi\prime | \partial p\prime Hr

\ell (b)| e0\alpha \rangle ,
(2.12)

where (\varepsilon i, vi) are the eigenpairs of Hr
\ell (b) (and thus implicitly depend on r, \ell , and b).

Our next result states that limr\rightarrow \infty \mu r
\ell [b] is well defined. To that end, we first

define a strip in the complex plane

Sa = \{ z | Re(z) \in [ - a - 1, a+ 1], Im(z) \in [ - a, a]\} .

Lemma 2.2. Under Assumptions 2.1 and 2.2, there exist unique measures \mu \ell [b],
\ell = 1, 2, such that for all F that are analytic on Sa \times Sa,

\int 

R2

F (E1, E2)d\mu 
r
\ell [b](E1, E2) \rightarrow 

\int 

R2

F (E1, E2)d\mu \ell [b](E1, E2)

with the rate
\bigm| \bigm| \bigm| \bigm| 
\int 

R2

F (E1, E2)d\mu 
r
\ell [b](E1, E2) - 

\int 

R2

F (E1, E2)d\mu \ell [b](E1, E2)

\bigm| \bigm| \bigm| \bigm| 

\lesssim sup
z,z\prime \in Sa\setminus Sa/2

| F (z, z\prime )| e - \gamma ar - c log(a),

for some c, \gamma > 0. Furthermore, we have the maps

b \mapsto \rightarrow 
\int 

R2

F (E1, E2)d\mu 
r
\ell [b](E1, E2) \in Cn(\Gamma \tau (\ell )) and

b \mapsto \rightarrow 
\int 

R2

F (E1, E2)d\mu \ell [b](E1, E2) \in Cn
per(\Gamma \tau (\ell )).

Combining Lemmas 2.2 and 2.1, we are now ready to define the thermodynamic
limit of the current-current correlation measure and associated conductivity tensor by

\mu = \nu 

\biggl( \int 

\Gamma 2

\mu 1[b] db+

\int 

\Gamma 1

\mu 2[b] db

\biggr) 
and

\sigma =

\int 
F\zeta d\mu (E1, E2),(2.13)

where

\nu =
1

| \Gamma 1| \cdot | \scrA 1| + | \Gamma 2| \cdot | \scrA 2| 
.
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1532 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

Moreover, we propose an alternative approximation to \mu that exploits the configura-
tion integrals, and the corresponding approximation of the conductivity,

\mu r = \nu 

\biggl( \int 

\Gamma 2

\mu r
1[b] db+

\int 

\Gamma 1

\mu r
2[b] db

\biggr) 
and

\sigma r =

\int 
F\zeta d\mu 

r(E1, E2).(2.14)

With these definitions, we can state our first main result.

Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied, then

\=\sigma r \rightarrow \sigma and \sigma r \rightarrow \sigma as r \rightarrow \infty .

More precisely, if \lambda = min\{ \eta , \beta  - 1\} , then there exist constants c, \gamma > 0, independent
of \lambda and r, such that

| \sigma  - \sigma r| \lesssim e - \gamma \lambda r - c log(\lambda ).

Remark 2.3. Although we prove convergence of \=\sigma r \rightarrow \sigma , we do not obtain a rate.
Indeed, as a supercell-like approximation of an incommensurate system this sequence
is expected to converge slowly [9]. Here, \=\sigma r has error proportional to (\eta r) - 1 from the
boundary effects, as the error of the domain edge site contributions does not decay.
This is poor decay compared to the exponential convergence found in the \sigma r scheme
(2.14). For the development of a numerical algorithm (see section 3), we therefore
use the expression for \sigma r as a starting point, where large domain sizes r are replaced
by an (embarrassingly parallel) integration over local configurations. We note that
the convergence rate for the effect of a local perturbation in a crystal can often be
improved by more sophisticated boundary conditions [19]. However, the perturbation
due to incommensurability in two-dimensional bilayers is global, but we have shown
that an exponential rate of convergence can nonetheless be achieved by integration
over local configuration.

3. Linear scaling algorithm for local conductivities. We have seen in sec-
tion 2 that the conductivity of an infinite incommensurate bilayer can be written
as

\sigma = lim
r\rightarrow \infty 

\sigma r = lim
r\rightarrow \infty 

\nu 

\biggl( \int 

\Gamma 2

\sigma r
1[b] db+

\int 

\Gamma 1

\sigma r
2[b] db

\biggr) 
,(3.1)

where the local conductivities \sigma r
\ell [b] are given by

\sigma r
\ell [b] :=

\int 
F\zeta (E1, E2) d\mu 

r
\ell [b](E1, E2)

=
\sum 

i1,i2

F\zeta (\varepsilon i1 , \varepsilon i2) \langle vi1 | \partial pHr
\ell (b)| vi2\rangle \langle vi2 | \partial p\prime Hr

\ell (b)| e0\alpha \rangle \langle e0\alpha | vi1\rangle .(3.2)

This section will present a method for evaluating the local conductivities \sigma r
\ell [b] based

on polynomial and rational approximation of the conductivity function F\zeta (E1, E2).
When combined with any off-the-shelf quadrature rule for evaluating the integrals over
\Gamma 1, \Gamma 2 in (3.1) (e.g., the periodic trapezoidal rule; see subsection 4.4), our method gives
rise to a conductivity algorithm which involves three limits: (1) the number of terms
in the approximation of F\zeta (E1, E2) going to infinity, (2) the number of quadrature
points in (3.1) going to infinity, and (3) the localization radius r going to infinity.
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The main feature of the local conductivity algorithm proposed in this section is
that it scales linearly in the number of explicitly represented degrees of freedom | \Omega r| .
It is this linear scaling which sets our algorithm apart from the more straightforward
approach of diagonalizing H and inserting the resulting eigenvalues \varepsilon i and eigenvec-
tors vi into (3.2), which would scale cubically in | \Omega r| , but we caution that the ``linear
scaling"" label is also somewhat misleading since \Omega r (or equivalenty r) is not an inde-
pendent variable but rather should be chosen as a function of \beta and \eta ; cf. Theorem
2.1. We will further elaborate on this point in Remark 3.2, where we compare our al-
gorithm and the diagonalization algorithm based on their overall scaling with respect
to \beta and \eta .

As mentioned, the focus of this section is to compute a single local conductivity
\sigma r
\ell [b] for fixed values of the localization radius r, sheet index \ell , and bilayer shift b.

We therefore reduce the notational clutter by introducing the abbreviations

Hloc := Hr
\ell (b), M loc

p := \partial pH
r
\ell (b).

3.1. Algorithm outline. Let us consider an approximate conductivity function
\~F\zeta obtained by truncating the Chebyshev series of F\zeta ,

\~F\zeta (E1, E2) :=
\sum 

(k1,k2)\in K

ck1k2 Tk1(E1)Tk2(E2)(3.3)

\approx 
\infty \sum 

k1,k2=0

ck1k2
Tk1

(E1)Tk2
(E2) = F\zeta (E1, E2),(3.4)

where K \subset N2 is a finite set of indices and Tk(E) denotes the kth Chebyshev poly-
nomial defined through the three-term recurrence relation

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x) - Tk - 1(x).(3.5)

Inserting (3.3) into (3.2), we obtain an approximate local conductivity

\~\sigma r
\ell [b] :=

\sum 

i1,i2

\~F\zeta (\varepsilon i1 , \varepsilon i2) \langle vi1 | M loc
p | vi2\rangle \langle vi2 | M loc

p\prime | e0\alpha \rangle \langle e0\alpha | vi1\rangle 

=
\sum 

i1,i2

\sum 

(k1,k2)\in K

ck1k2 \langle e0\alpha | vi1\rangle Tk1(\varepsilon i1) \langle vi1 | M loc
p | vi2\rangle Tk2(\varepsilon i2) \langle vi2 | M loc

p\prime | e0\alpha \rangle 

=
\sum 

(k1,k2)\in K

ck1k2

\Bigl( 
Tk1

(Hloc)M
loc
p Tk2

(Hloc)M
loc
p\prime 

\Bigr) 
0\alpha ,0\alpha 

(3.6)

which can be evaluated without computing the eigendecomposition as shown in
Algorithm 1.

Lines 1 and 2 of Algorithm 1 take | K1| and | K2| , respectively, matrix-vector
products when evaluated using the recurrence relation (3.5), while line 3 requires | K| 

Algorithm 1 Local conductivity via Chebyshev approximation

1: | vk1\rangle :=M loc
p Tk1(Hloc) | e0\alpha \rangle for all k1 \in K1 := \{ k1 | \exists k2 : (k1, k2) \in K\} .

2: | wk2\rangle := Tk2(Hloc)M
loc
p\prime | e0\alpha \rangle for all k2 \in K2 := \{ k2 | \exists k1 : (k1, k2) \in K\} .

3: \~\sigma r
\ell [b] :=

\sum 

(k1,k2)\in K

ck1k2
\langle vk1

| wk2
\rangle .
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1534 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

inner products. Due to the sparsity of Hloc, both types of products take \scrO 
\bigl( 
| \Omega r| 

\bigr) 

floating-point operations; thus we conclude that Algorithm 1 scales linearly in the
matrix size | \Omega r| . Furthermore, the error in the computed local conductivity \~\sigma r

\ell [b] can
be estimated in terms of the dropped Chebyshev coefficients ck1k2 as follows.

Lemma 3.1. It holds that

\bigm| \bigm| \~\sigma r
\ell [b] - \sigma r

\ell [b]
\bigm| \bigm| \lesssim 

\sum 

(k1,k2)\in N2\setminus K

| ck1k2
| .

Proof. The bound follows immediately from (3.6) after noting that M loc
p and

Tk(Hloc) are bounded for p \in \{ 1, 2\} and all k \in N.
A more careful analysis of Algorithm 1 reveals that since | K1| , | K2| \leq | K| and

both matrix-vector and inner products take \scrO (| \Omega r| ) floating-point operations, the
computational cost of this algorithm is dominated by the cost of line 3, which is | K| 
inner products. In light of Lemma 3.1, a good choice for the set K is

K(\tau ) :=
\bigl\{ 
(k1, k2) \in N2 | | ck1k2

| \geq \tau 
\bigr\} 

for some truncation tolerance \tau ; thus | K| is linked to the decay of the Chebyshev coeffi-
cients, which in turn depends on the analyticity properties of F\zeta . To analyze these, it is
convenient to split the conductivity function F\zeta (E1, E2) = ftemp(E1, E2) frelax(E1, E2)
into the two factors

ftemp(E1, E2) := i
f\beta (E1  - EF ) - f\beta (E2  - EF )

E2  - E1
(3.7)

and

frelax(E1, E2) :=
1

E1  - E2 + \omega + \iota \eta 
,(3.8)

which are easily seen to be analytic1 everywhere except, respectively, on the sets

Stemp :=
\Bigl( 
S
(1)
temp \times C

\Bigr) 
\cup 
\Bigl( 
C\times S

(1)
temp

\Bigr) 
with S

(1)
temp :=

\Bigl\{ 
EF + \iota \pi k

\beta | k odd
\Bigr\} 

(3.9)

and

Srelax :=
\bigl\{ 
(E1, E2) \in C2 | E1  - E2 + \omega + \iota \eta = 0

\bigr\} 
.(3.10)

The conductivity function F\zeta is thus analytic except on the union of these two sets.
In one dimension, it is well known that the Chebyshev coefficients ck of a function

f(x) analytic on a neighborhood of [ - 1, 1] decay exponentially, | ck| \leq C exp( - \alpha k),
and the decay rate \alpha is equal2 to the parameter \alpha of the largest Bernstein ellipse

E(\alpha ) :=
\Bigl\{ 
cosh(\~\alpha ) cos(\theta ) + \iota sinh(\~\alpha ) sin(\theta )

\bigr) 
| \~\alpha \in [0, \alpha ), \theta \in [0, 2\pi )

\Bigr\} 
(3.11)

which can be inscribed into the domain of analyticity of f . In two dimensions, we have
two decay rates \alpha 1, \alpha 2 and in the case of the conductivity function F\zeta we have two sets
of singularities Stemp, Srelax limiting the possible values of \alpha 1 and \alpha 2. This suggests

1A precise definition of analyticity in two dimensions will be provided in Definition B.1.
2More precisely, it is the asymptotic rate of decay which is equal to the parameter of the ellipse

of analyticity. Further details are provided in Appendix B.
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partitioning the space of parameters \zeta into relaxation-constrained, mixed-constrained,
and temperature-constrained depending on whether two, one, or zero decay rates are
constrained by the singularities Srelax rather than Stemp. In subsection 3.2, we will
characterize these parameter regimes more precisely and present asymptotic estimates
regarding the number of significant Chebyshev coefficients in each case. A summary
of our findings is provided in Table 1. We see that for fixed \eta , the cost of Algorithm
1 gradually increases from \scrO 

\bigl( 
\eta  - 3/2

\bigr) 
to \scrO 

\bigl( 
\beta 2

\bigr) 
for increasing inverse temperature \beta 

which renders conductivity calculations at low temperatures (i.e., large \beta ) particularly
expensive. In subsection 3.3, we present an alternative algorithm based on a pole
expansion of F\zeta which provably reduces the cost of evaluating the local conductivity
to \scrO 

\bigl( 
\beta 1/2 \eta  - 5/4

\bigr) 
inner products for all \beta \gtrsim \eta  - 1/2 and whose actual scaling was

empirically found to be \scrO 
\bigl( 
\beta 1/2 \eta  - 1.05

\bigr) 
inner products (see (3.21)).

3.2. Chebyshev coefficients of the conductivity function. A convenient
way to visualize the set Srelax from (3.10) is to draw two copies of the interval [ - 1, 1]
with a shift \omega + \eta \iota between them (the green and blue lines in Figure 2), and the

singularities Stemp from (3.9) can be added to this picture by drawing a copy of S
(1)
temp

relative to each of these intervals (the green and blue dots in Figure 2). We will see in
Appendix B that the decay of the Chebyshev coefficients of F\zeta (E1, E2) is determined
by the size of the ellipses E(\alpha 1), E(\alpha 2) which can be drawn around the two copies of
[ - 1, 1] subject to the following constraints:

1. Neither ellipse may contain the endpoints of the other copy of [ - 1, 1].

2. Neither ellipse may contain any of the points in its copy of S
(1)
temp.

3. The two ellipses may not overlap if their parameters \alpha 1, \alpha 2 are both positive.
However, we will see that it is possible for one of the parameters to assume a
negative effective value, in which case overlap is admissible (see Figure 3(a)).

Let us now determine pairs of ellipses by first choosing the upper (blue) ellipse

Table 1
Classification of conductivity parameters \zeta and number of significant terms (up to logarithmic

factors of \beta and \eta ) in the Chebyshev series of F\zeta .

Constraint Parameter range \# Significant terms

Relaxation \beta \lesssim \eta  - 1/2 \scrO 
\bigl( 
\eta  - 3/2

\bigr) 

Mixed \eta  - 1/2 \lesssim \beta \lesssim \eta  - 1 \scrO 
\bigl( 
\beta \eta  - 1

\bigr) 

Temperature \eta  - 1 \lesssim \beta \scrO 
\bigl( 
\beta 2

\bigr) 

ω + ηι

Fig. 2. Singularities Srelax \cup Stemp of the conductivity function F\zeta (E1, E2). The solid lines
indicate two copies of [ - 1, 1] shifted by \omega + \iota \eta relative to each other, and the dots indicate the set

S
(1)
temp relative to the interval of the same color.
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(a) Relaxation (b) Mixed

(c) Temperature

Fig. 3. Ellipse pairs for relaxation-, mixed-, and temperature-constrained parameters. The
blue and green dots indicate the points in Stemp restricting the ellipses. The purple dots indicate
the x \star (\zeta ) introduced in (B.13).

as large as possible subject to rules 1 and 2, and then maximizing the lower (green)
ellipse subject to rules 2 and 3 for the given upper ellipse. This procedure allows us
to distinguish the relaxation-, mixed-, and temperature-constrained parameters \zeta as
follows:

\bullet Relaxation-constrained: \beta is small enough such that rule 1 restricts the upper
ellipse. See Figure 3(a).

\bullet Mixed-constrained: \beta is large enough such that rule 2 restricts the upper
ellipse, but it is small enough such that rule 3 restricts the lower ellipse. See
Figure 3(b).

\bullet Temperature-constrained: \beta is large enough such that rule 2 restricts both
the upper and the lower ellipse. See Figure 3(c).

Theorem 3.1. There exist \alpha diag(\zeta ) and \alpha anti(\zeta ) > 0 such that the Chebyshev
coefficients ck1k2

of F\zeta are bounded by

| ck1,k2
| \leq C(\zeta ) exp

\bigl[ 
 - \alpha diag(\zeta ) (k1 + k2) - \alpha anti(\zeta ) | k1  - k2| 

\bigr] 
(3.12)

for some C(\zeta ) <\infty independent of k1, k2. In the limit \beta \rightarrow \infty , \omega , \eta \rightarrow 0 with | \omega | \lesssim \eta ,
and assuming EF \in ( - 1, 1), we have that

\alpha diag(\zeta ) =

\Biggl\{ 
\Theta 
\bigl( 
\eta 
\bigr) 

if \zeta is relaxation- or mixed-constrained,

\Theta 
\bigl( 
\beta  - 1

\bigr) 
if \zeta is temperature-constrained, and

\alpha anti(\zeta ) =

\left\{ 
  
  

\Theta 
\bigl( 
\eta 1/2

\bigr) 
if \zeta is relaxation-constrained,

\scrO 
\bigl( 
\beta  - 1

\bigr) 
if \zeta is mixed-constrained,

0 if \zeta is temperature-constrained
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and \left\{ 
  
  

\beta \lesssim \eta  - 1/2 if \zeta is relaxation-constrained,

\eta  - 1/2 \lesssim \beta \lesssim \eta  - 1 if \zeta is mixed-constrained,

\eta  - 1 \lesssim \beta if \zeta is temperature-constrained.

A proof of Theorem 3.1 and exact formulae for \alpha diag(\zeta ), and \alpha anti(\zeta ) are pro-
vided in Appendix B. Figures 4(b) to 4(d) show Chebyshev coefficients matching the
predictions of Theorem 3.1 perfectly.

We numerically observed the bound (3.12) to describe the correct decay behav-
ior and the decay rates of \alpha diag(\zeta ) and \alpha anti(\zeta ) to be quantitatively accurate for
temperature- and mixed-constrained parameters as well for relaxation-constrained
parameters with \beta close to the critical value \beta \approx \eta  - 1/2. For relaxation-constrained
parameters far away from this critical value, however, the level lines of ck1k2 are piece-
wise concave rather than piecewise straight as predicted by Theorem 3.1 (see Figure
4(a)), and we empirically found that this extra concentration reduces the number of
significant Chebyshev coefficients from \scrO 

\bigl( 
\eta  - 3/2

\bigr) 
to \scrO 

\bigl( 
\eta  - 1.1

\bigr) 
(see Figure 5).
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400
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(a) \beta = \pi 
5
\surd 
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(far relaxation)
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(b) \beta = \pi \surd 
\eta 

(relaxation)
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(c) \beta = \pi 
2\eta 

(mixed)

0 100 200 300 400 500

k1

0

100

200

300

400

500

k
2

100

10−3

10−6

10−9

10−12

(d) \beta = 2\pi 
\eta 

(temperature)

Fig. 4. Normalized Chebyshev coefficients \^ck1k2
:= | ck1k2

| /| c00| of the conductivity function
F\zeta with EF = \omega = 0, \eta = 0.06, and \beta as indicated.
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10−210−1

η
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104

105

106

107

#
co

eff
s

O
(
η−2

)

O
(
η−3/2

)

O
(
η−1.1

)

β = π
η

(temperature)

β = π
η

, rational

β = π√
η

(relaxation)

fη (far relaxation)

Fig. 5. Number of normalized Chebyshev coefficients \^ck1k2
:= | ck1k2

| /| c00| larger than 10 - 3 for

F\zeta with EF = \omega = 0 and f\eta (E1, E2) :=
1

E1 - E2+\iota \eta 
. The ``rational"" line refers to the total number

of Chebyshev coefficients in the pole expansion from Theorem 3.3 as described in Figure 6.

Theorem 3.1 suggests to truncate the Chebyshev series (3.4) using

K(\tau ) :=
\Bigl\{ 
(k1, k2) \in N2 | exp

\bigl( 
 - \alpha diag | k1 + k2|  - \alpha anti | k1  - k2| 

\bigr) 
\geq \tau 

\Bigr\} 
,(3.13)

where here and in the following we no longer explicitly mention the dependence of
\alpha diag(\zeta ), \alpha anti(\zeta ) on \zeta . The following theorem analyzes the error incurred by this
approximation.

Theorem 3.2. It holds that

\bigm| \bigm| \~\sigma r
\ell [b] - \sigma r

\ell [b]
\bigm| \bigm| = \scrO 

\Bigl( 
\alpha  - 1
diag \alpha 

 - 1
anti \tau | log(\tau )| 

\Bigr) 
.(3.14)

Proof. See Appendix C.1.

In applications, we usually specify a truncation tolerance \tau > 0 such that (3.14)
is upper-bounded by an error tolerance \varepsilon > 0. It is shown in Appendix C.2 that this
can be achieved by setting \tau \varepsilon :=

\alpha diag \alpha anti \varepsilon 
| log(\alpha diag \alpha anti \varepsilon )| , which yields

| K(\tau \varepsilon )| = \scrO 
\biggl( | log(\alpha diag \alpha anti \varepsilon )| 2

\alpha diag \alpha anti

\biggr) 
.(3.15)

Table 1 then follows by combining (3.15) with Theorem 3.1.

3.3. Pole expansion for low-temperature calculations. We have seen in
the previous subsection that for increasing \beta , the sparsity in the Chebyshev coeffi-
cients of F\zeta induced by the factor 1

E1 - E2+\omega +\iota \eta decreases and the number of coefficients

eventually scales as \scrO 
\bigl( 
\beta 2

\bigr) 
such that Algorithm 1 becomes expensive at low temper-

atures. To avoid this poor low-temperature scaling, we propose to expand F\zeta into a
sum over the poles in Stemp as described in Theorem 3.3 below and apply Algorithm
1 to each term separately.

Theorem 3.3. Let k \in N and denote by \alpha k,\beta ,EF
the parameter of the ellipse

through the Fermi--Dirac poles EF \pm (2k+1)\pi \iota 
\beta . There exists a function Rk,\beta ,EF

(E1, E2)

analytic on the biellipse E
\bigl( 
\alpha k,\beta ,EF

\bigr) 2 \supset E
\bigl( 
\alpha 0,\beta ,EF

\bigr) 2
such that
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F\zeta (E1, E2) =
1

E1 - E2+\omega +\iota \eta 

\Biggl( \sum 

z\in Zk

1
\beta 

1
(E1 - z) (E2 - z) +Rk,\beta ,EF

(E1, E2)

\Biggr) 
,(3.16)

where

Zk :=
\bigl\{ 
EF + \ell \pi \iota 

\beta | \ell \in \{  - 2k + 1, - 2k + 3, . . . , 2k  - 3, 2k  - 1\} 
\bigr\} 
\subset S\beta ,EF

.

Proof. See Appendix C.3.

For k large enough, the remainder term (the last term in (3.16)) becomes relaxation-
constrained and hence Algorithm 1 becomes fairly efficient. For the pole terms, on
the other hand, we propose to employ Algorithm 1 using the weighted Chebyshev
approximation

1

(E1  - z) (E2  - z) (E1  - E2 + \omega + \iota \eta )
\approx 

\sum 

k1k2\in Kz

c(z)k1k2

Tk1(E1)

E1  - z

Tk2(E2)

E2  - z
,(3.17)

where the weight (E - z) - 1 is chosen such that two factors (E1 - z) - 1 and (E2 - z) - 1 on
the left- and right-hand sides match. The coefficients c(z)k1k1

in (3.17) are therefore
the Chebyshev coefficients of the relaxation-constrained function

1

E1  - E2 + \omega + \iota \eta 
\approx 

\sum 

k1k2\in Kz

c(z)k1k2
Tk1

(E1)Tk2
(E2)

and exhibit the concentration described in Theorem 3.1. This leads us to the algorithm
shown in Algorithm 2.

Theorem 3.4. The dominant computational cost of Algorithm 2 is

\#IP = \scrO 
\bigl( 
k \eta  - 3/2

\bigr) 
+

\left\{ 
  
  

\scrO 
\bigl( 
\eta  - 3/2

\bigr) 
if \beta \eta 1/2 \lesssim k,

\scrO 
\bigl( 
\beta \eta  - 1

k

\bigr) 
if \beta \eta \lesssim k \lesssim \beta \eta 1/2,

\scrO 
\bigl( 
\beta 2

k2

\bigr) 
if k \lesssim \beta \eta ,

(3.18)

inner products if we assume that solving a single linear system of the form (H  - 
zI) - 1 v is less expensive than \scrO (\eta  - 3/2

\bigr) 
inner products (see Remark 3.3). This cost

is minimized if we choose

k =

\left\{ 
  
  

\Theta (1) if \beta \lesssim \eta  - 1/2,

\Theta 
\bigl( 
\beta 1/2 \eta 1/4

\bigr) 
if \eta  - 1/2 \lesssim \beta \lesssim \eta  - 3/2,

\Theta 
\bigl( 
\beta 2/3 \eta 1/2

\bigr) 
if \eta  - 3/2 \lesssim \beta ,

(3.19)

which yields

\#IP =

\left\{ 
  
  

\scrO 
\bigl( 
\eta  - 3/2

\bigr) 
if \beta \lesssim \eta  - 1/2,

\scrO 
\bigl( 
\beta 1/2 \eta  - 5/4

\bigr) 
if \eta  - 1/2 \lesssim \beta \lesssim \eta  - 3/2,

\scrO 
\bigl( 
\beta 2/3 \eta  - 1

\bigr) 
if \eta  - 3/2 \lesssim \beta .

(3.20)

Algorithm 2 Local conductivity via pole expansion

1: \~\sigma r
\ell [b] :=

\int Rk,\beta ,EF
(E1,E2)

E1 - E2+\omega +\iota \eta d\mu r
\ell (E1, E2), evaluated using Algorithm 1.

2: for z \in Zk,\beta ,EF
do

3: \~\sigma r
\ell [b] := \~\sigma r

\ell [b] +
1
\beta 

\int 
1

(E1 - z) (E2 - z) (E1 - E2+\omega +\iota \eta ) d\mu 
r
\ell (E1, E2), evaluated using

Algorithm 1 with the weighted Chebyshev polynomials (E  - z) - 1 Tk(E).
4: end for
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Proof. It follows from Theorem 3.1 that the first term in (3.18) describes the cost
of the for-loop in Algorithm 2 while the second term describes the cost of line 1. Since
the first term is strictly increasing while the second is decreasing, the sum of the two
\scrO -terms is minimized by the unique k such that the first term equals the second term,
which one can readily verify to be given by (3.19).

We note that Algorithm 2 reduces to Algorithm 1 if \beta \lesssim \eta  - 1/2 but scales better
than Algorithm 1 for larger values of \beta , e.g., for \beta \sim \eta  - 1 \sim \chi we have \#IP = \scrO 

\bigl( 
\chi 7/4

\bigr) 

in the case of Algorithm 2 while \#IP = \scrO 
\bigl( 
\chi 2

\bigr) 
for Algorithm 1. The first term in

(3.16) further reduces to \scrO 
\bigl( 
k \eta  - 1.1

\bigr) 
if we assume the improved \scrO 

\bigl( 
\eta  - 1.1

\bigr) 
-scaling for

the number of significant Chebyshev coefficients of f(E1, E2) =
1

E1 - E2+\omega +\iota \eta suggested
by Figure 5. In this case, the optimal choice of k and the corresponding costs are

k =

\left\{ 
  
  

\Theta (1),

\Theta 
\bigl( 
\beta 1/2 \eta 0.05

\bigr) 
,

\Theta 
\bigl( 
\beta 2/3 \eta 0.37

\bigr) 
,

and \#IP =

\left\{ 
  
  

\scrO 
\bigl( 
\eta  - 1.1

\bigr) 
if \beta \lesssim \eta  - 1/2,

\scrO 
\bigl( 
\beta 1/2 \eta  - 1.05

\bigr) 
if \eta  - 1/2 \lesssim \beta \lesssim \eta  - 3/2,

\scrO 
\bigl( 
\beta 2/3 \eta  - 0.73

\bigr) 
if \eta  - 3/2 \lesssim \beta .

(3.21)

These predictions are compared against numerical results in Figure 6, where we
observe good qualitative agreement between the theory and the experiment. For
\beta \sim \eta  - 1 \sim \chi , (3.21) yields \#IP = \scrO 

\bigl( 
\chi 1.55

\bigr) 
, which is only marginally more expensive

than the \scrO 
\bigl( 
\chi 1.5

\bigr) 
cost of Algorithm 1 in the case of relaxation-constrained parameters

\beta 2 \sim \eta  - 1 \sim \chi . This is empirically demonstrated by the ``rational"" line in Figure 5.

Remark 3.1. Instead of running Algorithm 1 for each pole z \in Zk,\beta ,EF
separately,

we can apply Algorithm 1 to a group of poles \~Z \subset Zk,\beta ,EF
if we weigh the Chebyshev

polynomials Tk(E) with q(E) :=
\prod 

z\in \~Z(E - z) - 1, and the same idea can also be used
to improve the concentration of the Chebyshev coefficients of Rk,\beta ,EF

. Grouping the
poles in this manner reduces the computational cost of Algorithm 2 but amplifies

100 101 102 103 104 105

β

103

104

105

106

#
co

eff
s

polynomial

rational

(a) Number of coefficients

100 101 102 103 104 105

β

100

101

102

k

O
(
β1/2

)

O
(
β2/3

)

(b) Number of removed poles

Fig. 6. (a) Number of normalized Chebyshev coefficients \^ck1k2
:= | ck1k2

| /| c00| larger than
10 - 3 for F\zeta with \eta = 0.06 and EF = \omega = 0. The ``polynomial"" line counts the number of significant
coefficients in the Chebyshev expansion from (3.3), while the ``rational"" line counts the sum of the
number of significant Chebyshev coefficients of all the terms in the pole expansion from (3.16).
The dashed lines denote \scrO 

\bigl( 
\beta 
\bigr) 
and \scrO 

\bigl( 
\beta 1/2

\bigr) 
, respectively, and the dash-dotted lines denote \scrO 

\bigl( 
\beta 2

\bigr) 

and \scrO 
\bigl( 
\beta 2/3

\bigr) 
, respectively; cf. (3.21). (b) Index k for the set of poles Zk from Theorem 3.3. This

number was determined by increasing k starting from 0 until the number of coefficients reported in
(a) stopped decreasing.
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the round-off errors3 by a factor r := maxE\in [ - 1,1] | q(E)| /minE\in [ - 1,1] | q(E)| such that
the result is fully dominated by round-off errors if this ratio exceeds 1016. Since

| q(EF )| \sim \beta | \~Z| while | q(\pm 1)| \sim 1, this means that we have to keep the group size rather
small (e.g., | \~Z| \leq 4 for \beta = 104) to maintain numerical stability. We therefore conclude
that grouping poles reduces the prefactor but does not change the asymptotics of the
computational cost of Algorithm 2.

Remark 3.2. The runtime estimates (3.20) and (3.21) are formulated in terms of
number of inner products and must therefore be multiplied by the length | \Omega r| = \scrO (r2)
of these inner products to obtain runtime estimates in terms of number of floating-
point operations. According to Theorem 2.1, we must choose

r =

\Biggl\{ 
\Theta 
\bigl( 
\eta  - 1

\bigr) 
if \zeta is relaxation- or mixed-constrained,

\Theta 
\bigl( 
\beta 
\bigr) 

if \zeta is temperature-constrained

to guarantee an error in \sigma r
\ell [b] independent of \zeta ; hence we conclude that Algorithm 2

requires

\left\{ 
     
     

\scrO 
\bigl( 
\eta  - 3.1

\bigr) 
if \beta \lesssim \eta  - 1/2

\scrO 
\bigl( 
\beta 1/2 \eta  - 3.05

\bigr) 
if \eta  - 1/2 \lesssim \beta \lesssim \eta  - 1

\scrO 
\bigl( 
\beta 5/2 \eta  - 1.05

\bigr) 
if \eta  - 1 \lesssim \beta \lesssim \eta  - 3/2

\scrO 
\bigl( 
\beta 8/3 \eta  - 0.73

\bigr) 
if \eta  - 3/2 \lesssim \beta 

\right\} 
     
     

= \scrO 
\Bigl( \bigl( 
\beta + \eta  - 1

\bigr) 3.55\Bigr) 
(3.22)

floating-point operations assuming the empirically observed scaling of the number of
coefficients reported in (3.21). In contrast, computing the eigendecomposition of Hloc

and evaluating (3.2) requires

\scrO (| \omega r| 3) = \scrO (r6) =

\Biggl\{ 
\scrO 
\bigl( 
\eta  - 6

\bigr) 
if \beta \lesssim \eta  - 1,

\scrO 
\bigl( 
\beta 6

\bigr) 
if \eta  - 1 \lesssim \beta 

floating-point operations and hence scales with a power which is close to twice the
one of our proposed algorithm.

Remark 3.3. Solving a linear system (Hloc  - z) - 1 v associated with the two-
dimensional configuration \Omega r using a direct solver takes

\scrO 
\bigl( 
| \Omega r| 3/2

\bigr) 
= \scrO 

\bigl( 
r3

\bigr) 
=

\Biggl\{ 
\scrO 
\bigl( 
\eta  - 3

\bigr) 
if \zeta is relaxation- or mixed-constrained,

\scrO 
\bigl( 
\beta 3

\bigr) 
if \zeta is temperature-constrained

floating-point operations (see, e.g., [11, section 7.6] regarding the runtime of direct
sparse solvers). In comparison, approximating p(E) \approx 1/(E  - z) and evaluating
p(Hloc) \approx (Hloc  - z) - 1 (or equivalently, using an iterative linear solver like conjugate
gradients) takes

\scrO 
\bigl( 
degree(p) | \Omega r| 

\bigr) 
=

\Biggl\{ 
\scrO 
\bigl( 
\beta \eta  - 2

\bigr) 
if \zeta is relaxation- or mixed-constrained,

\scrO 
\bigl( 
\beta 3

\bigr) 
if \zeta is temperature-constrained

3We focus on rounding errors here for the sake of simplicity, but we will see in subsection 4.3
that a highly unbalanced q-factor also requires smaller approximation tolerances which in turn lead
to larger runtimes.
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floating-point operations, where we used that degree(p) = \scrO 
\bigl( 
| Im(z)|  - 1

\bigr) 
= \scrO 

\bigl( 
\beta 
\bigr) 

according to fundamental results in approximation theory; see, e.g., [24]. We hence
conclude that iterative solvers scale slightly better than direct ones in the relaxation-
and mixed-constrained cases, and they scale as well as direct ones in the temperature-
constrained case.

Remark 3.4. The cost of computing \scrO 
\bigl( 
\eta  - 3/2

\bigr) 
inner products is

\scrO 
\bigl( 
\eta  - 3/2 | \Omega r| 

\bigr) 
=

\Biggl\{ 
\scrO 
\bigl( 
\eta  - 7/2

\bigr) 
if \zeta is relaxation- or mixed-constrained,

\scrO 
\bigl( 
\eta  - 3/2 \beta 2

\bigr) 
if \zeta is temperature-constrained

floating-point operations. Comparing this result against the findings of Remark 3.3,
we conclude that the assumption in Theorem 3.4 is satisfied if \beta \lesssim \eta  - 3/2.

3.4. Remarks regarding implementation. We conclude this section by point-
ing out two features of the proposed algorithms which are relevant when one considers
their practical implementation.

3.4.1. Memory requirements. Algorithm 1 as formulated above suggests that
we precompute and store both the vectors | vk1\rangle for all k1 \in K1 and | wk2\rangle for all k2 \in 
K2. This requires more memory than necessary since we can rewrite the algorithm
as shown in Algorithm 3.

Furthermore, even caching all the vectors | vk1
\rangle is not needed if the function to

be evaluated is relaxation-constrained: it follows from the wedge-like shape of the
Chebyshev coefficients of such functions shown in Figure 4(b) that in every iteration
of the loop in Algorithm 3, we only need vectors | vk1

\rangle with index k1 within some fixed
distance from k2. The vectors | vk1

\rangle can hence be computed and discarded on the fly
just like | wk2

\rangle , albeit with a larger lag between computing and discarding. Quantita-
tively, this reduces the memory requirements from \scrO 

\bigl( 
\eta  - 1 | \Omega r| 

\bigr) 
for both Algorithms

1 and 3 to \scrO 
\bigl( 
\eta  - 1/2 | \Omega r| 

\bigr) 
for the final version described above, assuming the function

to be evaluated is relaxation-constrained.

3.4.2. Choosing the approximation scheme. Algorithms 1 and 2 involve
three basic operations, namely matrix-vector products, inner products, and linear
system solves, and a fundamental assumption in their derivation was that matrix-
vector and inner products are approximately equally expensive and linear system
solves are not significantly more expensive than that (see Theorem 3.4 for the pre-
cise condition). The former assumption is true in the sense that both matrix-vector
and inner products scale linearly in the matrix size m, but their prefactors are very
different: the inner product \langle w | v\rangle takes 2m  - 1 floating-point operations, while the
cost of the matrix-vector product H | v\rangle is approximately equal to twice the number

Algorithm 3 Memory-optimized version of Algorithm 1

1: Precompute | vk1\rangle for all k1 \in K1 as in Algorithm 1.
2: for k2 \in K2 in ascending order do
3: Evaluate | wk2

\rangle using the recurrence relation (3.5).
4: Discard | wk2 - 2\rangle as it will no longer be needed.
5: Compute the inner products \langle vk1

| wk2
\rangle for all k1 such that (k1, k2) \in K, and

accumulate the results as in Algorithm 1.
6: end for
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of nonzeros in H. Even in the simplest case of a single triangular lattice and a tight-
binding Hamiltonian H involving only nearest-neighbor terms and s and p orbitals,
the number of nonzeros per column of H is about 6 (number of neighbors) times 4
(number of orbitals), hence the cost of evaluating H | v\rangle is approximately 48m, which
is 24 times more expensive than the inner product. Similarly, the assumption regard-
ing the costs of linear system solves holds true in the asymptotic sense as discussed in
Remark 3.3, but the situation may look very different once we include the prefactors.
This observation has two practical implications:

\bullet Rather than choosing the number of removed poles k in Theorem 3.3 solely to
minimize the number of coefficients, one should benchmark the runtimes of
inner products, matrix-vector products, and linear system solves and choose
the k which yields the smallest overall runtime.

\bullet Fairly small values of \eta are required before the wedge shown in Figure 4(b)
becomes thin enough that the savings due to a smaller number of inner prod-
ucts make a significant difference compared to the cost of the matrix-vector
products, and very large values of \beta are required for the reduced number of
inner products to compensate for the additional matrix-vector products and
linear systems solves in Algorithm 2.

4. Numerical demonstration. This section demonstrates the theory devel-
oped in sections 2 and 3 by applying it to a model bilayer system defined as follows.

Geometry. We consider a hexagonal bilayer system \scrR 1 \cup \scrR 2 with a relative twist
angle of 2.5\circ as shown in Figure 1. The distance between the two layers is equal
to the nearest-neighbor distance within each layer. For ease of implementation, the
projection onto a finite subsystem is performed using a parallelogrammatic cut-out

\Omega r =
2\bigcup 

\ell =1

\bigl\{ 
A\ell m : m \in \{  - r, . . . , r\} 2

\bigr\} 

rather than the circular cut-out as in (2.4).
Hamiltonian. We construct a model Hamiltonian H for this system in two steps.
\bullet Define the matrix

\~HR,R\prime = h
\bigl( 
| R - R\prime | 

\bigr) 
:=

\Biggl\{ 
exp

\Bigl( 
 - | R - R\prime | 2

r2cut - | R - R\prime | 2

\Bigr) 
if | R - R\prime | < rcut,

0 otherwise,
(4.1)

where R and R\prime range over all lattice sites in \scrR 1 \cup \scrR 2 and

rcut =
\surd 
3\times (nearest-neighbor distance)

denotes the second-nearest-neighbor distance in the lattices. Note that this
implies that if R,R\prime are sites on the same lattice, then

\~HR,R\prime \not = 0 \Leftarrow \Rightarrow R = R\prime or R,R\prime are nearest neighbors.

\bullet Set H to be a shifted and scaled copy of \~H such that the spectrum of H is
contained in [ - 1, 1], i.e.,

H = 2
\~Emax - \~Emin

\Bigl( 
\~H  - \~Emax+ \~Emin

2 I
\Bigr) 
,

where \~Emin and \~Emax denote lower and upper bounds, respectively, on the
spectrum of \~H.
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All numerical experiments in this section have been performed on a single core of
an Intel Core i7-8550 CPU (1.8 GHz base frequency, 4 GHz turbo boost) using the
Julia programming language [4].

4.1. Convergence with respect to the localization radius r. We have seen
in Theorem 2.1 that the local conductivity \sigma r

\ell [b] converges exponentially, as r \rightarrow \infty ,
with exponent proportional to min\{ \beta  - 1, \eta \} . Since the particular Hamiltonian H we
consider involves only nearest-neighbor interactions, this statement can be further
sharpened. The approximate local conductivity \~\sigma r

\ell [b] introduced in (3.6) is now inde-
pendent of r, as long as

r \geq max
(k1,k2)\in K

1
2 (k1 + k2 + 2).

Hence, \~\sigma r
\ell [b] equals the exact local conductivity \sigma \infty 

\ell [b] in the thermodynamic limit
r \rightarrow \infty up to truncation of the Chebyshev series. Combining this observation with
the decay of the Chebyshev coefficients of F\zeta , asserted in Theorem 3.1, yields

\bigm| \bigm| \sigma r
\ell [b] - \sigma \infty 

\ell [b]
\bigm| \bigm| \leq C exp

\bigl( 
 - \alpha diag(\zeta ) r

\bigr) 
(4.2)

for some C > 0 independent of r. This theoretical finding is numerically confirmed in
Figure 7, which demonstrates that \sigma r

\ell [b] indeed converges exponentially with a rate
of convergence upper bound by \alpha diag(\zeta ) with reasonable but not perfect tightness.

The above argument for relating localization to polynomial approximation is
based on closely related arguments from [3, 12].

4.2. Scaling for relaxation-constrained parameters. The discussion in sub-
section 4.1 suggests choosing the localization radius r by determining a truncated
Chebyshev series approximation \~F\zeta of sufficient accuracy and then setting

r = max
(k1,k2)\in K

1
2 (k1 + k2 + 2),

where K denotes the set of indices in \~F\zeta ; cf. (3.3). Figure 8 demonstrates that this
choice of r leads to fairly large matrix sizes | \Omega r| and hence the diagonalization algo-
rithm is not competitive with our Algorithm 1 for any of the parameters \zeta considered
in Figure 8. However, we remark that unlike diagonalization, Algorithm 1 benefits
from the excellent sparsity of the Hamiltonian H and the relaxed error tolerance
\varepsilon = 10 - 3 considered in this example. The relative performance of Algorithm 1 may
therefore be somewhat worse for more realistic Hamiltonians.

0 5 10 15 20 25 30

r

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

o
r
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σ
r 1
[0

]

β = 50 (temperature)

O
(
exp(−αdiag(ζ) r)

)

β = 0.5 (relaxation)

O
(
exp(−αdiag(ζ) r)

)

Fig. 7. Convergence of \sigma r
1 [0] as a function of r for EF = \omega = 0, \eta = 0.5, and \beta as indicated.

Errors were measured by comparing against the result for r = 50.
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Fig. 8. Runtime of local conductivity calculations via diagonalization of H and polynomial
approximation of F\zeta (Algorithm 1), respectively, for \beta = 0.1, EF = \omega = 0, and varying \eta . The

truncated Chebyshev expansion \~F\zeta (E1, E2) in (3.3) has been determined by computing all Chebyshev
coefficients ck1k2

for k1, k2 \in \{ 0, . . . 500\} and then dropping the coefficients of smallest absolute
values until the sum of the dropped coefficients reaches 10 - 3. The matrix size | \Omega r| is determined by
choosing r = max(k1,k2)\in K

1
2
(k1 + k2 + 2); cf. subsection 4.2.

Table 2
Runtimes of Algorithm 1 (polynomial approximation), Algorithm 2 (pole expansion), and Al-

gorithm 2 with all poles grouped into a single term as described in Remark 3.1, for \beta as indicated,
EF =  - 0.2, \eta = 1, \omega = 0, and number of removed poles k = 3. The matrix sizes | \Omega r| have been
determined as in Figure 8. All linear system solves

\bigl( \prod 
k(Hloc  - zk)

 - 1
\bigr) 
v have been performed us-

ing polynomial approximation (cf. Remark 3.3), and the corresponding matrix-vector products are
included in the matrix-vector count reported above.

Polynomial Pole expansion Grouped pole expansion

matrix-vector prod
count 225 509 396
time [s] 0.056 0.155 0.124

inner prod
count 2680 602 229
time [s] 0.015 0.003 0.001

Total time [s] 0.072 0.159 0.125

(a) \beta = 20, | \Omega r| = 13 122

Polynomial Pole expansion Grouped pole expansion

matrix-vector prod
count 348 772 741
time [s] 0.338 0.749 0.798

inner prod
count 6410 739 468
time [s] 0.182 0.014 0.007

Total time [s] 0.520 0.763 0.806

(b) \beta = 30, | \Omega r| = 30 258

4.3. Pole expansion for temperature-constrained parameters. Table 2
demonstrates the effect of accelerating the polynomial-approximation-based Algo-
rithm 1 using pole expansion as described in subsection 3.3. We observe the following:

\bullet The additive approximation scheme described in Algorithm 2 significantly
reduces the inner products count compared to the polynomial algorithm, and
grouping poles as described in Remark 3.1 reduces the inner product count
even further.
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1546 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

\bullet The runtimes of all three algorithms are dominated by the matrix-vector
products. The number of matrix-vector products is significantly larger for
the two rational algorithms; hence their overall runtimes are larger than that
of the polynomial algorithm.

The larger number of matrix-vector products in the rational algorithms is due to
several factors.

1. Pole expansion without grouping (Algorithm 2) requires running Algorithm 1
multiple times and hence incurs more matrix-vector products from lines 1 and
2 of Algorithm 1.

2. The rational algorithms require solving sequences of linear systems
\bigl( \prod 

k(H - 
zk)

 - 1
\bigr) 
v, which we evaluate by approximating q(E) \approx \prod 

k(E  - zk)
 - 1 and

replacing
\bigl( \prod 

k(H  - zk)
 - 1

\bigr) 
v \rightarrow q(H) v.

3. Determining polynomials p(E1, E2) and q(E) such that

p(E1, E2) q(E1) q(E2) \approx F\zeta (E1, E2)

requires stricter tolerances and hence larger degrees due to the multiplications
(cf. Remark 3.1).

Item 2 explains why the number of matrix-vector products is higher for the ungrouped
pole expansion compared to the grouped pole expansion for \beta = 20, while item 3
explains why the number of matrix-vector products for grouped pole expansion catches
up with that of ungrouped pole expansion for larger values of \beta where the ratio\bigl( 
maxE q(E)

\bigr) 
/
\bigl( 
minE q(E)

\bigr) 
is larger.

These findings suggest that the rational approximation techniques from subsec-
tion 3.3 require very large values of \beta to outperform the polynomial algorithm from
subsection 3.1. However, we also note that the performance of the rational algorithms
can be improved by using better approximation and evaluation schemes.

4.4. Convergence of integral over configurations. Finally, we demonstrate
in Figure 9 the convergence of the periodic bivariate trapezoidal rule applied to the
integral over configurations in (3.1). We observe the following:

\bullet The coupling function h(r) introduced in (4.1) is C\infty but not analytic, which
according to Lemma 2.2 implies that also the local conductivity \sigma r

\ell [b] as a

1 2 3 4 5 6 7 8

q

10−9

10−8

10−7

10−6

10−5

10−4

er
ro

r

β = 0.5, η = 4.0 (relaxation)

β = 0.5, η = 0.5 (relaxation)

β = 4.0, η = 4.0 (temperature)

Fig. 9. Convergence of the q2-point bivariate trapezoidal rule applied to the integral over
configurations in (3.1) for EF = \omega = 0 and \beta , \eta as indicated. Errors were computed relative to the
result for q = 10.
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function of the configurations b is C\infty but not analytic. We therefore expect
that trapezoidal rule quadrature applied to this function converges superalge-
braically but subexponentially, and this matches our numerical observations
in Figure 9.

\bullet Conversely to Figure 7, the convergence with respect to q is fairly mono-
tonous for relaxation-constrained parameters but oscillates for temperature-
constrained parameters.

5. Conclusion. We have demonstrated in this paper how to construct numer-
ical algorithms for conductivity in incommensurate heterostructures where classical
Bloch theory is unavailable. Our construction is based on the observation that the
ergodicity property of incommensurate bilayers allows us to replace conductivity cal-
culations on the infinite system with an integral over the two unit cells. The resulting
formula presented in section 2 is similar to Bloch's theorem and extends an analogous
construction for the density of states in [21]. Unlike in Bloch's theorem, however,
the two unit cells require padding with a buffer region which may involve tens of
thousands of atoms. This is far beyond the reach of the diagonalization algorithm;
hence we propose in section 3 an alternative, linearly scaling algorithm in the spirit
of the kernel polynomial method and Fermi operator expansion. We show that for
relaxation-constrained parameters \beta \lesssim \eta  - 1/2, our algorithm requires only \scrO 

\bigl( 
\eta  - 3/2

\bigr) 

inner products, and we present a rational approximation scheme which effectively
allows us to reduce arbitrary parameter regimes to the relaxation-constrained case.

Appendix A. Proofs: Conductivity.

A.1. Notation. Throughout several of the following proofs it will become nec-
essary to compare resolvent matrices (z - Hr) - 1 and (z - Hr\prime ) - 1 of different size r, r\prime .
To that end, it is convenient to implicitly extend all matrices to be defined over \Omega .
Specifically, if A is usually defined over \Omega r, then we use the implicit extension to \Omega 
given by

[A]R\alpha ,R\prime \alpha \prime =

\Biggl\{ 
AR\alpha ,R\prime \alpha \prime if R\alpha \in \Omega r, R

\prime \alpha \prime \in \Omega r,

0 otherwise.

A.2. Proof of Lemma 2.2. We let \Lambda = [ - 1, 1] and recall that this interval
contains the spectrum for all Hamiltonians Hr, r > 0. Letting r > 0 and a > 0, then
following the same argument as [21, Lemma 4.2] we have the existence of \~\gamma > 0 such
that, for z \in C with d(z,\Lambda ) > a/2, and \Omega \prime \subset \Omega such that \Omega r \subset \Omega \prime ,

\bigm| \bigm| \bigm| 
\bigl[ 
(z  - Hr

\ell (b))
 - 1

\bigr] 
R\alpha ,R\prime \alpha \prime  - 

\bigl[ 
(z  - H\ell (b)| \Omega \prime ) - 1

\bigr] 
R\alpha ,R\prime \alpha \prime 

\bigm| \bigm| \bigm| 

\lesssim a - 6 min
\Bigl\{ 
e - a\~\gamma | R - R\prime | , e - a\~\gamma (r - max\{ | R| ,| R\prime | \} )

\Bigr\} 
.

(A.1)

We have the following lemma.

Lemma A.1. Using Assumption 2.2, we have

(z  - H\ell (b))
 - 1 = lim

r\rightarrow \infty 
(z  - Hr

\ell (b))
 - 1.

Further, (z  - H\ell (b))
 - 1 is periodic over \Gamma \tau (\ell ).

Proof. From (A.1), we have that (z  - Hr
\ell (b))

 - 1 is Cauchy over \scrL (\ell 2(\Omega )) and
hence has a well-defined limit. This limit must be (z  - H\ell (b))

 - 1 as it is clearly true
on the dense subset of vectors with a finite number of entries. \| Hr

\ell (b+ 2\pi A\tau (\ell )n) - 
Hr

\ell (b)\| op \rightarrow 0 for n \in Z2 as r \rightarrow \infty , and hence (z  - H\ell (b))
 - 1 is periodic over \Gamma \tau (\ell ).

D
ow

nl
oa

de
d 

01
/0

7/
21

 to
 1

34
.8

4.
19

2.
10

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1548 S. ETTER, D. MASSATT, M. LUSKIN, AND C. ORTNER

Let Ps : \ell 
2(\Omega ) \rightarrow \ell 2(\Omega ) be the projection defined by

[Ps\psi ]R\alpha = \delta | R| <s\psi R\alpha .

We now introduce two lemmas we will use for the convergence estimates. The
matrix A in Lemma A.2 corresponds to resolvent differences as in (A.1), while the
second lemma will be applied to resolvents and localized Hamiltonian operators.

Lemma A.2. For A \in \scrL (\ell 2(\Omega )) satisfying (for r > 1)

| AR\alpha ,R\prime \alpha \prime | \lesssim e - \~c log(a) min
\Bigl\{ 
e - a\gamma c| R - R\prime | , e - a\gamma c(r - max\{ | R| ,| R\prime | \} )

\Bigr\} 
,

it holds that

\| Pr/2APr/2\| op \lesssim e - \gamma car/2 - c log(a)+c log(r).

Proof. We estimate

\| Pr/2APr/2\| 2op \leq \| Pr/2APr/2\| 2F
\lesssim e - \gamma car - 2\~c log(a)| \Omega r/2| 2

\lesssim r4e - \gamma car - 2\~c log(a)

\lesssim e - \gamma car - 2\~c log(a)+4 log(r)

for c = max\{ 2\~c, 4\} , so we then have

\| Pr/2APr/2\| op \lesssim e - \gamma car/2 - c log(a)+c log(r).

Recall e0\alpha \in \ell 2(\Omega ) such that [e0\alpha ]R\alpha \prime = \delta 0R\delta \alpha \alpha \prime .

Lemma A.3. If A,A(1), A(2) \in \scrL (\ell 2(\Omega )) satisfies

| A(j)
R\alpha ,R\prime \alpha \prime | \lesssim e - \gamma ca| R - R\prime |  - \~c log(a)

for some \gamma c > 0, then there exist \gamma d, c > 0 such that

\| | (1 - Pr/2)A| e0\alpha \rangle \| \ell 2 \lesssim e - \gamma dar - c log(a) and(A.2)
\bigm| \bigm| [A(1)A(2)]R\alpha ,R\prime \alpha \prime 

\bigm| \bigm| \lesssim e - \gamma da| R - R\prime |  - c log(a).(A.3)

Proof. The two estimates follow from straightforward direct estimations of the
individual vector or matrix entries of, respectively, Ae0\alpha and [A(1)A(2)]R\alpha ,R\prime \alpha \prime .

To proceed with the proof of Lemma 2.2, we recognize that we can rewrite the
current-current correlation measure in terms of a contour integral.

Lemma A.4. Let \phi be analytic on Sa \times Sa and \scrC a \subset Sa  - Sa/2 a complex contour
encircling the spectrum of Hr

\ell (b); then

\int 

R2

\phi (E1, E2)d\mu 
r
\ell [b](E1, E2)(A.4)

=  - 1

4\pi 2

\oint 

z\prime \in \scrC a

\oint 

z\in \scrC a

\phi (z, z\prime )

\sum 

\alpha \in \scrA \ell 

\langle e0\alpha | (z  - Hr
\ell (b))

 - 1\partial pH
r
\ell (b)(z

\prime  - Hr
\ell (b))

 - 1\partial p\prime Hr
\ell (b)| e0\alpha \rangle dzdz\prime .
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Proof. Inserting the spectral decomposition of Hr
\ell (b) into the right-hand side of

(A.4) and then applying Cauchy's integral formula twice yields the definition (2.12)
of the local current-current correlation measure \mu r

\ell [b].

For the remainder of this proof, we denote P = Pr/2 for the sake of brevity. Then,

\langle e0\alpha | (z  - Hr
\ell (b))

 - 1\partial pH
r
\ell (b)(z

\prime  - Hr
\ell (b))

 - 1\partial p\prime Hr
\ell (b)| e0\alpha \rangle 

=
\sum 

Ui\in \{ P,1 - P\} 

\langle e0\alpha | (z  - Hr
\ell (b))

 - 1U1\partial pH
r
\ell (b)U2(z

\prime  - Hr
\ell (b))

 - 1U3\partial p\prime Hr
\ell (b)| e0\alpha \rangle 

= Sr
1 + Sr

2 ,

where Sr
1 = Sr

1(z, z
\prime ), Sr

2 = Sr
2(z, z

\prime ) are given by

Sr
1 = \langle e0\alpha | (z  - Hr

\ell (b))
 - 1P\partial pH

r
\ell (b)P (z

\prime  - Hr
\ell (b))

 - 1P\partial p\prime Hr
\ell (b)| e0\alpha \rangle and

Sr
2 =

\sum 

Ui\in \{ P,1 - P\} 
(U1,U2,U3)\not =(P,P,P )

\langle e0\alpha | (z  - Hr
\ell (b))

 - 1U1\partial pH
r
\ell (b)U2(z

\prime  - Hr
\ell (b))

 - 1U3\partial p\prime Hr
\ell (b)| e0\alpha \rangle .

Using Lemma A.1 and the resolvent formulation above, we can see that the weak
limit \mu \ell [b] := limr\rightarrow \infty \mu r

\ell [b] and the limit Sj := limr\rightarrow \infty Sr
j exist. However, we wish

to obtain an error estimate. We can estimate
\bigm| \bigm| \bigm| \bigm| 
\int 

R2

F (E1, E2)d\mu 
r
\ell [b](E1, E2) - 

\int 

R2

F (E1, E2)d\mu \ell [b](E1, E2)

\bigm| \bigm| \bigm| \bigm| 

\lesssim 
\oint 

z\prime \in \scrC a

\oint 

z\in \scrC a

| F (z, z\prime )| 
\bigm| \bigm| \bigm| \bigm| Sr

1 + Sr
2  - S1  - S2

\bigm| \bigm| \bigm| \bigm| dzdz\prime 

\lesssim sup
z,z\prime \in \scrC a

| F (z, z\prime )| \cdot sup
z,z\prime \in \scrC a

\bigm| \bigm| Sr
1 + Sr

2  - S1  - S2

\bigm| \bigm| 

\leq sup
z,z\prime \in \scrC a

| F (z, z\prime )| \cdot sup
z,z\prime \in \scrC a

\bigl( 
| Sr

1  - S1| + | Sr
2 | + | S2| 

\bigr) 
.(A.5)

Applying Lemma A.3, we readily obtain

| Sr
2 | \lesssim e - \gamma ara - c\prime log(a)(A.6)

for some constants \gamma a, c
\prime > 0.

Next, we claim that there exist constants \gamma b, c
\prime \prime such that

| Sr
1  - S1| \lesssim e - \gamma bra - c\prime \prime log(a)+c\prime \prime log(r).(A.7)

Proof of (A.7). We define two sets of operators,

\Delta \scrB r =
\bigl\{ 
P [(z  - Hr

\ell (b))
 - 1  - (z  - H\ell (b))

 - 1]P,

P [\partial pH
r
\ell (b) - \partial pH\ell (b)]P,

P [(z\prime  - Hr
\ell (b))

 - 1  - (z\prime  - H\ell (b))
 - 1]P,

P [\partial pH
r
\ell (b) - \partial p\prime H\ell (b)]P

\bigr\} 
, and

\scrB r =
\bigl\{ 
P (z  - Hr

\ell (b))
 - 1P, P\partial pH

r
\ell (b)P, P (z

\prime  - Hr
\ell (b))

 - 1P, P\partial p\prime Hr
\ell (b)P,

P (z  - H\ell (b))
 - 1P, P\partial pH\ell (b)P, P (z

\prime  - H\ell (b))
 - 1P, P\partial p\prime H\ell (b)P

\bigr\} 
.

Then, we can decompose
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Sr
1  - S1 =

\sum 

j

\Bigl\langle 
e0\alpha | A(j)

1 A
(j)
2 A

(j)
3 A

(j)
4 | e0\alpha 

\Bigr\rangle 
,(A.8)

where each of the operators A
(j)
i \in \scrB r \cup \Delta \scrB r and for every j at least one A

(j)
i \in \Delta \scrB r.

Using Lemma A.2, it is straightforward to see that

\| A\| op \lesssim max\{ a - 1, 1\} for A \in \scrB r and

\| A\| op \lesssim e - \gamma bra - c\prime \prime log(a)+c\prime \prime log(r) for A \in \Delta \scrB r,

which we apply to (A.8) to complete the proof.

Combining (A.5), (A.6), and (A.7) we conclude that there exist \gamma , c > 0, such
that \bigm| \bigm| \bigm| \bigm| 

\int 

R2

F (E1, E2)d\mu 
r
\ell [b](E1, E2) - 

\int 

R2

F (E1, E2)d\mu 
r\prime 
\ell [b](E1, E2)

\bigm| \bigm| \bigm| \bigm| 

\leq sup
z,z\prime \in \scrC a

| F (z, z\prime )| e - \gamma ra - c log(a)+c log(r).

In particular, it follows that
\int 
R2 F (E1, E2)d\mu 

r
\ell [b](E1, E2) has a limit, which we denote

by
\int 

R2

F (E1, E2)d\mu \ell [b](E1, E2) := lim
r\rightarrow \infty 

\int 

R2

F (E1, E2)d\mu 
r
\ell [b](E1, E2).

As the limit of a bounded sequence of (matrix-valued) Radon measures, it is clear
that \mu \ell [b] is again a Radon measure.

Finally, we establish the regularity of \mu r
\ell [b] and \mu \ell [b] as functions of b \in \Gamma \tau (\ell ),

where we recall that \tau is the transposition operator, \tau (1) = 2, and \tau (2) = 1. The
statement that

b \mapsto \rightarrow 
\int 

R2

F (E1, E2)d\mu 
r
\ell [b](E1, E2) \in Cn(\Gamma \tau (\ell ))

follows immediately from the resolvent representation (A.4) and the fact that (z  - 
Hr

\ell (b))
 - 1 is n times differentiable with respect to b (all operators involved here are

finite-dimensional).
Thus, it remains only to show the regularity

b \mapsto \rightarrow 
\int 

R2

F (E1, E2)d\mu \ell [b](E1, E2) \in Cn
per(\Gamma \tau (\ell )).(A.9)

To that end, we consider the operator H\ell (b) \in \scrL (\ell 2(\Omega )). Using Lemma A.1, we
have\int 

R2

F (E1, E2)d\mu \ell [b](E1, E2)

=
 - 1

4\pi 

\oint 
z\prime \in \scrC a

\oint 
z\in \scrC a

F (z, z\prime )\langle e0\alpha | (z  - H\ell (b))
 - 1\partial pH\ell (b)(z

\prime  - H\ell (b))
 - 1\partial p\prime H\ell (b)| e0\alpha \rangle dzdz\prime .

We notice that differentiation of the resolvent (z  - Hr
\ell (b))

 - 1 leads to products of the
resolvent (z  - Hr

\ell (b))
 - 1 and matrices of the form \partial m1

b1
\partial m2

b2
Hr

\ell (b), all of which are well
defined in the thermodynamic limit and have periodic limits with respect to \Gamma \tau (\ell ).
For an example, consider the derivative

\partial b1(z  - Hr
\ell (b))

 - 1 = (z  - Hr
\ell (b))

 - 1\partial b1H
r
\ell (b)(z  - Hr

\ell (b))
 - 1

\rightarrow (z  - H\ell (b))
 - 1\partial b1H\ell (b)(z  - H\ell (b))

 - 1.

Hence (z  - H\ell (b))
 - 1 is a differentiable operator when acting on an element of the

domain, and we trivially find
\int 
F\mu \ell [b] \in Cn

per(\Gamma \tau (\ell )).
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A.3. Proof of Theorem 2.1. We recall that the current-current correlation
measure for the finite system was defined through

\int 

R2

F (E1, E2)d\=\mu 
r(E1, E2) =

\sum 

ii\prime 

F (\varepsilon i, \varepsilon i\prime )
1

| \Omega r| 
Tr[| vi\rangle \langle vi| \partial pHr| vi\prime \rangle \langle vi\prime | \partial p\prime Hr| ].

(A.10)

We can decompose this into local current-current correlation measures of the finite
system by defining \mu r

R\alpha via

\int 

R2

F (E1, E2)d\mu 
r
R\alpha =

\sum 

ii\prime 

F (\varepsilon i, \varepsilon i\prime )[| vi\rangle \langle vi| \partial pHr| vi\prime \rangle \langle vi\prime | \partial p\prime Hr| ]R\alpha ,R\alpha .

Hence,
\int 

R2

F (E1, E2)d\=\mu 
r(E1, E2) =

1

| \Omega r| 
\sum 

R\alpha \in \Omega r

\int 

R2

F (E1, E2)d\mu 
r
R\alpha (E1, E2).

We will also reserve the notation for \Omega \prime \subset \Omega finite,\int 
R2

F (E1, E
\prime 
2)d\mu 

\Omega \prime 
\ell [b] =

\sum 
ii\prime 

F (\varepsilon i, \varepsilon i\prime )
1

| \Omega \prime | [| vi\rangle \langle vi| \partial pH\ell (b)| \Omega \prime | vi\prime \rangle \langle vi\prime | \partial p\prime H\ell (b)| \Omega \prime | ]R\alpha ,R\alpha .

Here, (\varepsilon i, vi) are the eigenpairs for H\ell (b)| \Omega \prime . We pick D > 0, and then consider \=\sigma r,
where we wish to consider the limit r \rightarrow \infty . We have

\=\sigma r =
1

| \Omega r| 

\int 

R2

F\zeta (E1, E2)d\=\mu 
r(E1, E2)

=

\int 

R2

1

| \Omega r| 
F\zeta (E1, E2)

\left( 
 \sum 

R\alpha \in \Omega r - D

d\mu r
R\alpha (E1, E2) +

\sum 

R\alpha \in \Omega r\setminus \Omega r - D

d\mu r
R\alpha (E1, E2)

\right) 
 .

We define the domain \Omega r
R for R \in \scrR \ell such that

\Omega r
R = ((\scrR \ell \cap Br  - R)\times \scrA \ell ) \cup 

\bigl( 
\scrR \tau (\ell ) \cap Br  - R+mod\tau (\ell )(R))\times \scrA \tau (\ell )

\bigr) 
.

For | R| < r  - D,
\bigm| \bigm| \bigm| \bigm| 
\int 

R2

F\zeta (E1, E2)
\sum 

\alpha \in \scrA \ell 

d\mu r
R\alpha (E1, E2) - 

\int 

R2

F\zeta (E1, E2)d\mu 
D
\ell [R](E1, E2)

\bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| 
\int 

R2

F\zeta (E1, E2)d\mu 
\Omega r

R

\ell [R](E1, E2) - 
\int 

R2

F\zeta (E1, E2)d\mu 
D
\ell [R](E1, E2)

\bigm| \bigm| \bigm| \bigm| 

\lesssim e - \gamma \lambda D - c log(\lambda ).

The last line follows from (A.1), the fact that \Omega D \subset \Omega r
R, and F\zeta (E1, E2) is analytic

on S\lambda \times S\lambda . Using Theorem 2.1, we have

lim sup
r\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| 
\int 

R2

F\zeta (E1, E2)
1

| \Omega r| 
\sum 

R\alpha \in \Omega r - D

d\mu r
R\alpha (E1, E2)

 - 
\int 

R2

F\zeta (E1, E2)\nu 
\sum 

\alpha \in \scrA \ell 

\int 

\Gamma p(\ell )

d\mu D
\ell [b](E1, E2)

\bigm| \bigm| \bigm| \bigm| \lesssim e - \gamma \lambda D - c log(\lambda ).
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Further,

1

| \Omega r| 

\int 

R2

F\zeta (E1, E2)
\sum 

R\alpha \in \Omega r\setminus \Omega r - D

d\mu r
R\alpha (E1, E2) \rightarrow 0

as r \rightarrow \infty since | \Omega r\setminus \Omega r - D| 
| \Omega r| \rightarrow 0. Hence we have, letting D \rightarrow \infty ,

1

| \Omega r| 

\int 

R2

F\zeta (E1, E2)d\=\mu 
r(E1, E2) \rightarrow 

\int 

R2

F\zeta (E1, E2)d\mu (E1, E2) = \sigma .

This is the desired global thermodynamic result. Finally,

| \sigma  - \sigma r| \lesssim e - \gamma \lambda r - c log(\lambda )+c log(r)

is a trivial application of Lemma 2.2.

Appendix B. Proof of Theorem 3.1.

B.1. Approximation theory background. This subsection briefly recalls
some concepts from approximation theory and introduces the notation used in the
remainder of this section. A textbook introduction to the topics discussed here can
be found, e.g., in [24].

Joukowsky map \phi (z). The three-term recurrence relation (3.5) for the Chebyshev
polynomials Tk(x) is equivalent to

Tk
\bigl( 
\phi (z)

\bigr) 
:=

zk + z - k

2
, where \phi (z) :=

z + z - 1

2
(B.1)

is known as the Joukowsky map. Since \phi (z) = \phi 
\bigl( 
z - 1

\bigr) 
, the inverse Joukowsky map

\phi  - 1(x) has two branches related by \phi  - 1
\pm (x) =

\bigl( 
\phi  - 1
\mp (x)

\bigr)  - 1
. Given any curve b \subset C

connecting the two branch points x = \pm 1, we define

\phi  - 1
b (x) := x+

b
\sqrt{} 
x2  - 1,

where b
\surd 
x2  - 1 denotes the branch of

\surd 
x2  - 1 with branch cut along b and sign such

that \phi  - 1
b (\infty ) = \infty .

Bernstein ellipses E(\alpha ) and parameter function \alpha b(x). The definition of the
Bernstein ellipses E(\alpha ) in (3.11) is equivalent to

E(\alpha ) = \{ x \in C | \alpha [ - 1,1](x) < \alpha \} ,

where the parameter function \alpha b(x) is given by

\alpha b(x) := log | \phi  - 1
b (x)| .

This function satisfies the following properties.

Lemma B.1.
\bullet \alpha b(x) = 0 for all x \in [ - 1, 1] and all branch cuts b.
\bullet \alpha [ - 1,1](x) \geq 0 for all x \in C.
\bullet \alpha b(x + 0n) =  - \alpha b(x  - 0n) for all x \in b and all branch cuts b, where the

notation x \pm 0n indicates that we evaluate \alpha b(x) on different sides of the
branch cut.
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Zero-width contours. In an abuse of notation, we define \partial \gamma for curves \gamma \subset C as
the counterclockwise contour around a domain of infinitesimal width. For example,

\partial [ - 1, 1] =
\bigl( 
[ - 1, 1] + 0\iota 

\bigr) 
\cup 
\bigl( 
[ - 1, 1] - 0\iota 

\bigr) 
,

where the signed zero in the imaginary part indicates which branch to evaluate for a
function with branch cut along [ - 1, 1].

Example B.1. We have
\int 

\partial [ - 1,1]

\phi  - 1
[ - 1,1](x) dx =

\int 

\partial [ - 1,1]

\Bigl( 
x+

[ - 1,1]
\sqrt{} 
x2  - 1

\Bigr) 
dx

=

\int  - 1+0\iota 

1+0\iota 

\Bigl( 
x+ \iota 

\sqrt{} 
1 - x2

\Bigr) 
dx+

\int 1 - 0\iota 

 - 1 - 0\iota 

\Bigl( 
x - \iota 

\sqrt{} 
1 - x2

\Bigr) 
dx

=  - 2\iota 

\int 1

 - 1

\sqrt{} 
1 - x2 dx =  - \pi \iota ,

where
\surd 
y with y > 0 denotes the positive square root and the sign of [ - 1,1]

\surd 
x2  - 1 =

\pm \iota 
\surd 
1 - x2 (i.e., the \pm in \pm \iota 

\surd 
1 - x2) has been determined as follows:

\bullet [ - 1,1]
\surd 
x2  - 1 has no branch cut along \partial [ - 1, 1], and [ - 1,1]

\surd 
x2  - 1 \not = 0 for x \not =

\pm 1; hence the only x \in \partial [ - 1, 1] where [ - 1,1]
\surd 
x2  - 1 is allowed to change sign

is x = \pm 1. The sign of [ - 1,1]
\surd 
x2  - 1 on [ - 1, 1] + 0\iota is therefore equal to the

sign of [ - 1,1]
\sqrt{} 
(0 + 0\iota )2  - 1, and the sign of [ - 1,1]

\surd 
x2  - 1 on [ - 1, 1] - 0\iota is equal

to the sign of [ - 1,1]
\sqrt{} 

(0 - 0\iota )2  - 1.

\bullet The sign of [ - 1,1]
\sqrt{} 
(0 + 0\iota )2  - 1 must be equal to the sign of [ - 1,1]

\surd 
x2  - 1 in

the limit x \rightarrow +\infty \iota since [ - 1,1]
\surd 
x2  - 1 is nonzero and purely imaginary and

does not have a branch cut along the ray (0,\infty ) \iota .
\bullet We must have [ - 1,1]

\surd 
x2  - 1 = \iota 

\surd 
1 - x2 in the limit x \rightarrow +\infty \iota since for the

opposite sign we would obtain limx\rightarrow +\infty \iota \phi 
 - 1
[ - 1,1](x) = x + [ - 1,1]

\surd 
x2  - 1 \rightarrow 0,

which contradicts the definition of \phi  - 1
[ - 1,1](x).

\bullet The sign of [ - 1,1]
\sqrt{} 

(0 - 0\iota )2  - 1 can be determined analogously.

Exponential decay with asymptotic rate \alpha . Following the \scrO \varepsilon notation of [25], we
introduce ak \leq \varepsilon C(\alpha ) exp( - \alpha k) as a shorthand notation for exponential decay with
asymptotic rate \alpha , i.e.,

ak \leq \varepsilon C(\alpha ) exp
\bigl( 
 - \alpha k

\bigr) 
: \Leftarrow \Rightarrow \forall \~\alpha < \alpha : ak \leq C(\~\alpha ) exp

\bigl( 
 - \~\alpha k

\bigr) 
.

We further write ak \lesssim \varepsilon exp( - \alpha k) if the prefactor C(\alpha ) is irrelevant.
If lim\~\alpha \rightarrow \alpha C(\~\alpha ) exists and is bounded, then ak \leq \varepsilon C(\alpha ) exp

\bigl( 
 - \alpha k

\bigr) 
is equivalent

to ak \leq C(\alpha ) exp( - \alpha k). A typical example of a sequence ak \leq \varepsilon C(\alpha ) exp( - \alpha k) is
ak := k exp( - \alpha k), in which case C(\~\alpha ) = maxk k exp

\bigl( 
 - (\alpha  - \~\alpha ) k

\bigr) 
and lim\~\alpha \rightarrow \alpha C(\~\alpha ) =

\infty . For the purposes of this paper, the distinction between ``ak \leq \varepsilon C(\alpha ) exp( - \alpha k)""
and ``ak \leq C exp( - \alpha k) for some unspecified C > 0"" is required for correctness, but
it is of little practical relevance.

Analyticity in two dimensions. The notion of analyticity can be extended to
two-dimensional functions f(z1, z2) as follows.

Definition B.1. A function f : \Omega \rightarrow C with \Omega \subset C2 is called analytic if f(z1, z2)
is analytic in the one-dimensional sense in each variable z1, z2 separately for every
(z1, z2) \in \Omega .
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This definition deserves several remarks.
\bullet By a well-known result due to Hartogs (see, e.g., [20, Theorem 1.2.5]), a
function f(z1, z2) analytic in the above one-dimensional sense is continuous
and differentiable in the two-dimensional sense.

\bullet It is known that if f(z1, z2) is analytic on an arbitrary set \Omega \subset C2, then there
exists an open set \Omega \prime \supset \Omega such that f(z1, z2) is analytic on \Omega \prime .

\bullet It is known that if f(z1, z2) is analytic on the biannulus A(r1) \times A(r2) with
A(r) := \{ z | r - 1 < | z| < r\} , it can be expanded into a Laurent series

f(z1, z2) =
\infty \sum 

k1,k2= - \infty 

ak1k2 z
k1
1 zk2

2

with coefficients given by

ak1k2 =  - 1

4\pi 2

\int 

\gamma 2

\int 

\gamma 1

f(z1, z2) z
 - k1 - 1
1 z - k2 - 1

2 dz1 dz2

for any bicontour \gamma 1\times \gamma 2 where \gamma \ell \subset A(r\ell ) are two rectifiable closed contours
winding once around the origin; see, e.g., [23, Theorem 1.5.26].

B.2. Auxiliary results. We next establish a contour-integral formula for the
Chebyshev coefficients of analytic functions in Theorem B.1 and demonstrate in The-
orem B.2 how this formula translates into a bound on the Chebyshev coefficients.
Both results are straightforward generalizations of the one-dimensional results (see,
e.g., [24]), except that we allow for a general branch cut in Theorem B.2, which will
be important in subsection B.3.

Theorem B.1. A function f(x1, x2) analytic on [ - 1, 1]2 can be expanded into a
Chebyshev series

f(x1, x2) =
\infty \sum 

k1,k2=0

ck1k2
Tk1

(x1)Tk2
(x2) on [ - 1, 1]2(B.2)

with coefficients ck1k2
given by

ck1k2
=  - (2 - \delta k10)(2 - \delta k20)

4\pi 2

\int 

\partial [ - 1,1]

\int 

\partial [ - 1,1]

f(x1, x2)
Tk1

(x1)
[ - 1,1]

\sqrt{} 
x21  - 1

Tk2
(x2)

[ - 1,1]
\sqrt{} 
x22  - 1

dx1 dx2.

Proof. f(x1, x2) is analytic on [ - 1, 1] and \phi (z) maps the unit circle \{ | z| = 1\} 
holomorphically onto [ - 1, 1], thus f

\bigl( 
\phi (z1), \phi (z2)

\bigr) 
is analytic on \{ | z| = 1\} 2 and can

be expanded into a Laurent series

f
\bigl( 
\phi (z1), \phi (z2)

\bigr) 
=

\infty \sum 

k1,k2= - \infty 

ak1,k2 z
k1
1 zk2

2(B.3)

with coefficients ak1k2 given by

ak1k2
=  - 1

4\pi 2

\int 

| z2| =1

\int 

| z1| =1

f
\bigl( 
\phi (z1), \phi (z2)

\bigr) 
z - k1 - 1
1 z - k2 - 1

2 dz1 dz2.(B.4)

Since \phi (z) = \phi 
\bigl( 
z - 1

\bigr) 
, we conclude that ak1k2

is symmetric about the origin in both k1
and k2, i.e., ak1,k2

= a - k1,k2
and ak1,k2

= ak1, - k2
. The terms in (B.3) can therefore

be rearranged as a Chebyshev series in \phi (z1), \phi (z2),
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f
\bigl( 
\phi (z1), \phi (z2)

\bigr) 
=

\infty \sum 

k1,k2=0

(2 - \delta k10)(2 - \delta k20) ak1k2

zk1
1 + z - k1

1

2

zk2
2 + z - k2

2

2

=
\infty \sum 

k=0

ck1k2 Tk1

\bigl( 
\phi (z1)

\bigr) 
Tk2

\bigl( 
\phi (z2)

\bigr) 
,

which is (B.2) with ck1k2
:= (2 - \delta k10)(2 - \delta k20) ak1k2

. The formula for the coefficients
follows by substituting

z\ell \rightarrow \phi  - 1
[ - 1,1](x\ell ), dz\ell \rightarrow 

\phi  - 1
[ - 1,1](x\ell )

[ - 1,1]
\surd 
x2  - 1

dx\ell and \{ | z\ell | = 1\} \rightarrow \partial [ - 1, 1]

for \ell = 1 and \ell = 2 in the integrals in (B.4) and setting

ck1k2 = (2 - \delta k10) (2 - \delta k20)
1
4

\bigl( 
ak1,k2 + ak1, - k2 + a - k1,k2 + a - k1, - k2

\bigr) 
.

Theorem B.2. Let \Omega 1,\Omega 2 \subseteq C be two simply connected sets with rectifiable
boundaries \partial \Omega \ell such that both sets contain  - 1 and 1. It then holds that

\bigm| \bigm| \bigm| \bigm| \bigm| 
(2 - \delta k10)(2 - \delta k20)

4\pi 2

\int 

\partial \Omega 2

\int 

\partial \Omega 1

f(x1, x2)
Tk1

(x1)
b1
\sqrt{} 
x21  - 1

Tk2
(x2)

b2
\sqrt{} 
x22  - 1

dx1 dx2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \cdot \cdot \cdot 

\leq C(\partial \Omega 1)C(\partial \Omega 2) \| f\| \partial \Omega 1\times \partial \Omega 2
exp

\bigl( 
 - \alpha 1k1  - \alpha 2k2

\bigr) 

for all k1, k2 \in N and all branch cuts
\bigl( 
b\ell \subset \Omega \ell 

\bigr) 
\ell \in \{ 1,2\} connecting  - 1, 1, where

\Bigl( 
\alpha \ell := min\alpha b\ell (\partial \Omega \ell )

\Bigr) 
\ell \in \{ 1,2\} 

and C(\partial \Omega ) :=
1

\pi 

\int 

\phi  - 1
b (\partial \Omega )

| dz| 
| z| .

Proof. Reversing the substitutions in the proof of Theorem B.1 transforms the
expression on the left-hand side to (B.4) up to a factor (2  - \delta k10)(2  - \delta k20) and the
integrals running over \phi  - 1

b (\partial \Omega \ell ) instead of \{ | z\ell | = 1\} for \ell \in \{ 1, 2\} . The claim follows
by bounding these integrals using H\"older's inequality.

We illustrate the application of Theorems B.1 and B.2 by proving the following
corollary, which can be found, e.g., in [5, Theorem 11], [25, Lemma 5.1], and [6,
Theorem 11].

Corollary B.1. The Chebyshev coefficients of a function f(x1, x2) analytic on
E(\alpha 1)\times E(\alpha 2) are bounded by

| ck1k2 | \lesssim 4 \| f\| \partial E(\alpha 1)\times \partial E(\alpha 2) exp
\bigl( 
 - \alpha 1k1  - \alpha 2k2

\bigr) 
\forall k1, k2 \in N.(B.5)

Proof. f(x1, x2) is analytic on [ - 1, 1]2 \subset E(\alpha 1)\times E(\alpha 2), thus Theorem B.1 states
that we can expand f(x1, x2) into a Chebsyhev series with coefficients given by

ck1k2 =  - (2 - \delta k10)(2 - \delta k20)

4\pi 2

\int 
\partial [ - 1,1]

\int 
\partial [ - 1,1]

f(x1, x2)
Tk1(x1)

[ - 1,1]
\sqrt{} 

x2
1  - 1

Tk2(x2)
[ - 1,1]

\sqrt{} 
x2
2  - 1

dx1 dx2.

The integrand in this expression is analytic on x1 \in E(\alpha 1) \setminus [ - 1, 1] for any fixed
x2 \in \partial [ - 1, 1]; hence by the one-dimensional Cauchy integral theorem we can move
the contour in x1 from \partial [ - 1, 1] to \partial E(\~\alpha 1) for any \~\alpha 1 < \alpha 1, i.e., we have

ck1k2
= . . .

\int 

\partial [ - 1,1]

\int 

\partial E(\~\alpha 1)

. . . dx1 dx2.
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Arguing similarly in the second variable, we obtain

ck1k2 = . . .

\int 

\partial E(\~\alpha 2)

\int 

\partial E(\~\alpha 1)

. . . dx1 dx2

for any pair (\~\alpha \ell < \alpha \ell )\ell \in \{ 1,2\} , which by Theorem B.2 implies

| ck1,k2
| \leq 4 \| f\| \partial E(\~\alpha 1)\times \partial E(\~\alpha 2) exp

\bigl( 
 - \~\alpha 1k1  - \~\alpha 2k2

\bigr) 
,

where we used C
\bigl( 
\partial E(\alpha )

\bigr) 
= 1

\pi 

\int 
| z| =exp(\alpha )

| dz| 
| z| = 2 and \alpha [ - 1,1]

\bigl( 
\partial E(\alpha )

\bigr) 
= \alpha . This is

precisely the bound (B.5).

B.3. Chebyshev coefficients of the conductivity function. This subsection
establishes the bound (3.12) with explicit formulae for \alpha diag(\zeta ) and \alpha anti(\zeta ). This
will be done in two steps. First, we will prove Theorem B.3 below which bounds
the Chebyshev coefficients of the factor f(x1, x2) =

1
x1 - x2+s from (3.8) where we set

s := \omega + \iota \eta for notational convenience. The extension to the conductivity function F\zeta 

will then be provided in Theorem B.4.
We note that 1

x1 - x2+s is analytic at all x1 \in C except x1 = x2  - s, and likewise
1

x1 - x2+s is analytic at all x2 \in C except x2 = x1 + s. The condition that 1
x1 - x2+s

be analytic on a domain \Omega 1 \times \Omega 2 is thus equivalent to
\bigl( 
\Omega 1 + s

\bigr) 
\cap \Omega 2 = \{ \} , which is

clearly the case for \Omega 1 = \Omega 2 = [ - 1, 1] and Im(s) \not = 0; see Figure 10(a). By Theorem
B.1, we can thus expand 1

x1 - x2+s into a Chebyshev series with coefficients given by

ck1k2 =  - (2 - \delta k10)(2 - \delta k20)

4\pi 2

\int 

\partial \Omega 2

\int 

\partial \Omega 1

1

x1  - x2 + s

Tk1
(x1)

b1
\sqrt{} 
x21  - 1

Tk2
(x2)

b2
\sqrt{} 
x22  - 1

dx1 dx2,

(B.6)

where for now \Omega 1 = \Omega 2 = b1 = b2 = [ - 1, 1].

s

Ω1 = [−1, 1]

Ω2 = [−1, 1]

(a) Initial contours

Ω1 = E
(
α̂max(s)

)

Ω2 = b̂?(s)

(b) Final contours

E
(
α̂max(s)

)

D̂(s)E
(
−α̂min(s)

)

(c) Definitions

Fig. 10. Illustration of the various definitions in subsection B.3.
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Like in the proof of Corollary B.1, we will next use Cauchy's integral theorem
repeatedly to move the contour domains \Omega 1,\Omega 2 to appropriate shapes and then employ
Theorem B.2 to bound the Chebyshev coefficients. To this end, let us introduce

\^\alpha max(s) := min\{ \alpha [ - 1,1](\pm 1 - s)\} = \alpha [ - 1,1]

\bigl( 
1 - | Re(s)|  - \iota Im(s)

\bigr) 
,

which is the parameter of the ellipse E
\bigl( 
\^\alpha max(s)

\bigr) 
penetrating the line [ - 1, 1]  - s up

to the endpoints \pm 1 + s (see Figure 10(c)), and let us denote by

\^D(s) :=
\Bigl( 
E
\bigl( 
\^\alpha max(s)

\bigr) 
+ s

\Bigr) 
\cap 
\bigl\{ 
x \in C | Im(x) \leq 0

\bigr\} 

the portion of E
\bigl( 
\^\alpha max(s)

\bigr) 
+s penetrating [ - 1, 1]. Since

\bigl( 
[ - 1, 1]+s

\bigr) 
\cap \^D(s) = \{ \} (see

Figure 10(c)), we conclude that 1
x1 - x2+s is analytic on [ - 1, 1]\times 

\bigl( 
[ - 1, 1]\cup \^D(s)

\bigr) 
, thus

we can replace \Omega 2 = [ - 1, 1] with \Omega 2 = [ - 1, 1] \cup \^D(s) without changing the value of
the integral. Similarly, we can move the branch cut b2 = [ - 1, 1] to the lower boundary
of \Omega 2,

b2 = \^b \star (s) :=
\bigl( 
[ - 1, 1] \setminus \^D(s)

\bigr) 
\cup \{ x \in \partial \^D(s) | Im(x) < 0\} ,

which in turn allows us to replace \Omega 2 = [ - 1, 1] \cup \^D(s) with \Omega 2 = \^b \star (s) and finally
replace \Omega 1 = [ - 1, 1] with \Omega 1 = E(\~\alpha 1) for any \~\alpha 1 < \^\alpha max(s); see Figure 10(b). By
Theorem B.2, these final contours imply the bound

| ck1k2
| \lesssim \varepsilon exp

\bigl( 
 - \^\alpha max(s) k1  - \^\alpha min(s) k2

\bigr) 
,(B.7)

where

\^\alpha min(s) := min\alpha \^b \star (s)

\bigl( 
\partial \^b \star (s)

\bigr) 
=  - max\alpha [ - 1,1]

\bigl( 
\^b \star (s)

\bigr) 
(B.8)

(the second equality follows from Lemma B.1). We note that the last expression in
(B.8) may be interpreted as minus the parameter of the smallest ellipse containing
\^D(s); see Figure 10(c).

By the symmetry of 1
x1 - x2+s , the bound (B.7) also holds with the roles of k1, k2

interchanged, and since \^\alpha max(s) > 0 but \^\alpha min(s) < 0, we may summarize the two
bounds with

| ck1k2
| \lesssim \varepsilon 

\Biggl\{ 
exp

\bigl( 
 - \^\alpha max(s) k1  - \^\alpha min(s) k2

\bigr) 
if k1 \geq k2,

exp
\bigl( 
 - \^\alpha min(s) k1  - \^\alpha max(s) k2

\bigr) 
if k1 \leq k2.

(B.9)

Rewriting (B.9) in the form (B.10), we arrive at the following theorem.

Theorem B.3. The Chebyshev coefficients ck1k2
of f(x1, x2) := 1

x1 - x2+s with
Re(s) \in [ - 1, 1] are bounded by

| ck1,k2
| \lesssim \varepsilon exp

\bigl( 
 - \^\alpha diag(s) (k1 + k2) - \^\alpha anti(s) | k1  - k2| 

\bigr) 
,(B.10)

where

\^\alpha diag(s) :=
1
2

\Bigl( 
\^\alpha max(s) + \^\alpha min(s)

\Bigr) 
and \^\alpha anti(s) :=

1
2

\Bigl( 
\^\alpha max(s) - \^\alpha min(s)

\Bigr) 
.

A closer inspection of the above argument reveals that the bound (B.10) holds

for any function f(x1, x2) =
g(x1,x2)
x1 - x2+s as long as g(x1, x2) is analytic on E

\bigl( 
\^\alpha max(s)

\bigr) 2
,
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and in particular it applies to the conductivity function F\zeta (E1, E2) =
ftemp(E1,E2)
E1 - E2+\omega +\iota \eta if

the singularities Stemp of ftemp(E1, E2) from (3.9) satisfy

E
\bigl( 
\^\alpha max(\omega + \iota \eta )

\bigr) 2 \cap Stemp = \{ \} \Leftarrow \Rightarrow E
\bigl( 
\^\alpha max(\omega + \iota \eta )

\bigr) 
\cap S(1)

temp = \{ \} ,
i.e., if \zeta is relaxation-constrained. Furthermore, the argument and hence the bound
(B.10) can be extended to the mixed- and temperature-constrained cases if we replace
\^\alpha max(s) with

\alpha max(\zeta ) := min
\bigl\{ 
\alpha [ - 1,1](1 - | \omega | + \iota \eta ), \alpha [ - 1,1]

\bigl( 
EF + \pi \iota 

\beta 

\bigr) \bigr\} 
,(B.11)

which is the parameter of the blue ellipses in Figure 3. This leads to new variables
D(\zeta ) and b \star (\zeta ) defined analogously to \^D(s) and \^b \star (s), respectively, but starting from
\alpha max(\zeta ) instead of \^\alpha max(s), i.e.,

D(\zeta ) :=
\Bigl( 
E
\bigl( 
\alpha max(\zeta )

\bigr) 
+ \omega + \eta \iota 

\Bigr) 
\cap 
\bigl\{ 
x | Im(x) \leq 0

\bigr\} 
,

b \star (\zeta ) :=
\bigl( 
[ - 1, 1] \setminus D(\zeta )

\bigr) 
\cup \{ x \in \partial D(\zeta ) | Im(x) < 0\} .

Finally, we generalize \^\alpha min(s) to

\alpha min(\zeta ) = min
\bigl\{ 
\alpha b \star (\zeta )

\bigl( 
x \star (\zeta ) + 0\iota 

\bigr) 
, \alpha [ - 1,1]

\bigl( 
EF + \pi \iota 

\beta 

\bigr) \bigr\} 
,(B.12)

where x \star (\zeta ) is given by

x \star (\zeta ) := argmin
x\in \partial E(\alpha max(\zeta ))+\omega +\iota \eta 

\alpha b \star (\zeta )(x+ 0\iota ).(B.13)

Note that \alpha min(\zeta ) is the parameter of the green ellipses in Figure 3, and x \star (\zeta ) is
indicated by the purple dots in Figure 3.

With the above notation, we can now formally describe the classification into
relaxation-, mixed-, and temperature-constrained parameters \zeta , and we can generalize
Theorem B.3 to Theorem B.4 below.

Definition B.2.

We call \zeta 

\left\{ 
  
  

relaxation-constrained if \alpha [ - 1,1](1 - | \omega | + \iota \eta ) \leq \alpha [ - 1,1]

\bigl( 
EF + \pi \iota 

\beta 

\bigr) 
,

temperature-constrained if \alpha [ - 1,1]

\bigl( 
EF + \pi \iota 

\beta 

\bigr) 
\leq \alpha b \star (\zeta )

\bigl( 
x \star (\zeta ) + 0\iota 

\bigr) 
,

mixed-constrained otherwise.

Theorem B.4. The Chebyshev coefficients ck1k2 of F\zeta (E1, E2) are bounded by

| ck1,k2
| \lesssim \varepsilon exp

\bigl( 
 - \alpha diag(\zeta ) (k1 + k2) - \alpha anti(\zeta ) | k1  - k2| 

\bigr) 
,

where

\alpha diag(\zeta ) :=
1
2

\Bigl( 
\alpha max(\zeta ) + \alpha min(\zeta )

\Bigr) 
and \alpha anti(\zeta ) :=

1
2

\Bigl( 
\alpha max(\zeta ) - \alpha min(\zeta )

\Bigr) 
.

B.4. Asymptotics. To complete the proof of Theorem 3.1, it remains to deter-
mine the asymptotic scaling of \alpha diag(\zeta ) and \alpha anti(\zeta ) and the asymptotic parameter
classification. We will do so in subsubsections B.4.1 and B.4.2 using the following
auxiliary result.

Lemma B.2. It holds that

\alpha [ - 1,1](x) = \Theta 
\bigl( 
| Im(x)| 

\bigr) 
for x\rightarrow x \star with x \star \in ( - 1, 1),(B.14)

\alpha [ - 1,1](x) = \Theta 
\bigl( \sqrt{} 

| x\mp 1| 
\bigr) 

for x\rightarrow \pm 1 with \pm Re(x) - 1 \geq C| Im(x)| .(B.15)
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Proof. (B.14): \alpha [ - 1,1](x) = Re
\bigl( 
log \phi  - 1

[ - 1,1](x)
\bigr) 
is symmetric about the real axis

and harmonic on either side of the branch cut at any x \star \in ( - 1, 1); hence we can write

a[ - 1,1](x) = a[ - 1,1](x
 \star )+

\partial a[ - 1,1]

\partial Re(x) (x
 \star ) Re(x - x \star )+\partial a[ - 1,1]

\partial Im(x) (x
 \star +0\iota ) | Im(x)| +\scrO 

\bigl( 
| x - x \star | 2

\bigr) 
.

Since \alpha [ - 1,1](x
 \star ) = 0 for all x \star \in ( - 1, 1), the constant term vanishes, and writing

\alpha [ - 1,1](x) =
\bigl( 
\varphi  - 1

\bigl( 
Re(x), Im(x)

\bigr) \bigr) 
1
with

\varphi (\alpha , \theta ) :=

\biggl( 
Re

\bigl( 
\phi (exp(\alpha + \iota \theta ))

\bigr) 

Im
\bigl( 
\phi (exp(\alpha + \iota \theta ))

\bigr) 
\biggr) 

=

\biggl( 
cosh(\alpha ) cos(\theta )
sinh(\alpha ) sin(\theta )

\biggr) 
,

\nabla \varphi (0, \theta ) =
\biggl( 

0  - sin(\theta )
sin(\theta ) 0

\biggr) 
,

we conclude that

\partial \alpha [ - 1,1]

\partial Re(x) (x
 \star ) =

\Bigl( 
\nabla \varphi (0, \theta  \star ) - 1

\Bigr) 
11

= 0,

\partial \alpha [ - 1,1]

\partial Im(x) (x
 \star + 0\iota ) =

\Bigl( 
\nabla \varphi (0, \theta  \star ) - 1

\Bigr) 
12

= sin(\theta  \star ) - 1 \not = 0,

where \theta  \star = acos
\bigl( 
Re(x \star )

\bigr) 
\in (0, \pi ).

(B.15): We compute

\alpha 
\bigl( 
w2 \pm 1

\bigr) 
= Re

\biggl( 
log

\Bigl( 
w2 \pm 1 +

\sqrt{} 
(w2 \pm 1)2  - 1

\Bigr) \biggr) 

= Re

\biggl( 
log

\Bigl( 
1\mp w

\sqrt{} 
w2 \pm 2\mp w2

\Bigr) \biggr) 

= Re
\Bigl( 
\mp 
\surd 
\pm 2w +\scrO 

\bigl( 
w2

\bigr) \Bigr) 
for w \rightarrow 0,

where by
\sqrt{} 
(w2 \pm 1)2  - 1 we mean a w-dependent combination of the two branches

of the square-root function such that \alpha 
\bigl( 
w2\pm 1

\bigr) 
is harmonic around w = 0. The claim

follows by substituting w =
\surd 
x\mp 1 and noting that

\surd 
\pm 2

\surd 
x\mp 1 is bounded away

from the imaginary axis as long as x is bounded away from ( - 1, 1).

B.4.1. Scaling of \bfitalpha \bfd \bfi \bfa \bfg (\bfitzeta ) and \bfitalpha \bfa \bfn \bft \bfi (\bfitzeta ). For temperature-constrained \zeta , we
have

\alpha max(\zeta ) = \alpha min(\zeta ) = \alpha [ - 1,1]

\bigl( 
EF + \pi \iota 

\beta 

\bigr) 
= \Theta (\beta  - 1)

and hence

\alpha diag(\zeta ) = \alpha max(\zeta ) + \alpha min(\zeta ) = \Theta (\beta  - 1), \alpha anti(\zeta ) = \alpha max(\zeta ) - \alpha min(\zeta ) = 0.

The remainder of this subsubsection establishes analogous estimates for relaxation-
and mixed-constrained \zeta . In this case, we have

\alpha max(\zeta ) = \alpha [ - 1,1]

\bigl( 
x \star (\zeta ) - \omega  - \eta \iota 

\bigr) 
= \Theta 

\bigl( 
\eta  - Im(x \star (\zeta ))

\bigr) 
,(B.16)

\alpha min(\zeta ) = \alpha b \star (\zeta )

\bigl( 
x \star (\zeta ) + 0\iota 

\bigr) 
= \Theta 

\bigl( 
Im(x \star (\zeta ))

\bigr) 
,(B.17)

which may be verified as follows:
\bullet The first expression for \alpha max(\zeta ) is an immediate consequence of the definition
of x \star (\zeta ) in (B.13). The second expression follows from (B.14)4 after observing

4We implicitly assume here that x \star (\zeta )  - \omega  - \eta \iota approaches some x \star \in ( - 1, 1) in the limit
considered in Theorem 3.1 and not x \star (\zeta )  - \omega  - \eta \iota \rightarrow \pm 1. Readers may easily convince themselves
that this is true using illustrations like the ones provided in Figure 3. A rigorous proof of this result
is beyond the scope of this work.
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that Im
\bigl( 
x \star (\zeta )

\bigr) 
< 0 or Im

\bigl( 
x \star (\zeta )

\bigr) 
< \eta and hence

\bigm| \bigm| Im(x \star (\zeta ))  - \eta 
\bigm| \bigm| = \eta  - 

Im
\bigl( 
x \star (\zeta )

\bigr) 
.

\bullet The first expression for \alpha min(\zeta ) is the definition of \alpha min(\zeta ) in (B.12) simpli-
fied for the relaxation- and mixed-constrained cases. The second expression
follows by observing that x \star (\zeta )+0\iota is always above the branch cut b \star (\zeta ) and
hence (B.14) applies without the absolute value on the right-hand side.

It follows from (B.16), (B.17) that

\alpha diag(\zeta ) = \Theta 
\bigl( 
\eta  - Im(x \star (\zeta ))

\bigr) 
+\Theta 

\bigl( 
Im(x \star (\zeta ))

\bigr) 
= \Theta (\eta ),

where we note that the two \Theta 
\bigl( 
Im(x \star (\zeta ))

\bigr) 
-terms indeed cancel since they arise from

Taylor expansions of the same function \alpha b(x) around the same point x = 0.
To determine the asymptotic scaling of \alpha anti(\zeta ), we compare

\alpha max(\zeta ) =

\Biggl\{ 
\alpha [ - 1,1](1 - | \omega | + \iota \eta ) = \Theta (\eta 1/2) if \zeta is relaxation-constrained,

\alpha [ - 1,1](EF + \pi \iota 
\beta ) = \Theta (\beta  - 1) if \zeta is mixed-constrained

against (B.16) to conclude that

\eta  - Im(x \star (\zeta )) =

\Biggl\{ 
\Theta (\eta 1/2) if \zeta is relaxation-constrained,

\Theta (\beta  - 1) if \zeta is mixed-constrained.

In the relaxation-constrained case, we thus have

\Theta 
\bigl( 
\eta  - Im(x \star (\zeta ))

\bigr) 
=  - \Theta 

\bigl( 
Im(x \star (\zeta ))

\bigr) 
= \Theta (\eta 1/2)

and hence

\alpha anti(\zeta ) = \Theta 
\bigl( 
\eta  - Im(x \star (\zeta ))

\bigr) 
 - \Theta 

\bigl( 
Im(x \star (\zeta ))

\bigr) 
= \Theta 

\bigl( 
\eta 1/2

\bigr) 
.

In the mixed-constrained case, we have

\alpha anti(\zeta ) = \Theta 
\bigl( 
\eta  - Im(x \star (\zeta ))

\bigr) 
 - \Theta 

\bigl( 
Im(x \star (\zeta ))

\bigr) 
= \scrO (\beta  - 1),

where we used that \eta \geq 0 and hence \eta  - 2 Im(x \star (\zeta )) \leq 2
\bigl( 
\eta  - Im(x \star (\zeta ))

\bigr) 
. We remark

that indeed \alpha anti(\zeta ) \not = \Theta (\beta  - 1) since \alpha anti(\zeta ) \rightarrow 0 as \beta approaches the finite value
where \zeta transitions into the temperature-constrained regime.

B.4.2. Parameter classification. In the limit considered in Theorem 3.1,
Lemma B.2 yields

\alpha [ - 1,1](1 - | \omega | + \iota \eta ) = \Theta 
\bigl( 
\eta 1/2

\bigr) 
, \alpha [ - 1,1]

\bigl( 
EF + \pi \iota 

\beta 

\bigr) 
= \Theta 

\bigl( 
\beta  - 1

\bigr) 
;

hence
\Theta 
\bigl( 
\eta 1/2

\bigr) 
\leq \Theta 

\bigl( 
\beta  - 1

\bigr) 
\Leftarrow \Rightarrow \beta \lesssim \eta  - 1/2

if \zeta is relaxation-constrained, and

\Theta 
\bigl( 
\eta 1/2

\bigr) 
\geq \Theta 

\bigl( 
\beta  - 1

\bigr) 
\Leftarrow \Rightarrow \eta  - 1/2 \lesssim \beta 

if \zeta is mixed-constrained. To obtain the second bound for the mixed-constrained
case, we observe that for given EF , \omega , and \eta , the largest \beta such that \zeta is still mixed-
constrained must be such that EF + \pi \iota 

\beta and \omega +\iota \eta 
2 lie on the same Bernstein ellipse;

hence for mixed-constrained \zeta we have

\Theta (\beta  - 1) = \alpha [ - 1,1]

\bigl( 
EF + \pi \iota 

\beta 

\bigr) 
\geq \alpha [ - 1,1]

\bigl( 
\omega +\iota \eta 

2

\bigr) 
= \Theta (\eta ) \Leftarrow \Rightarrow \beta \lesssim \eta  - 1.
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Finally, for temperature-constrained \zeta , we must have

\pi 
\beta < \eta \Leftarrow \Rightarrow \eta  - 1 \lesssim \beta 

(i.e., the first pole of the Fermi--Dirac function must lie between the two intervals in
Figure 3) since otherwise E(\eta ) := E

\bigl( 
\alpha [ - 1,1](\iota \eta )

\bigr) 
and E(0) = [ - 1, 1] are two ellipses

such that E(\eta ) + \omega + \iota \eta and [ - 1, 1] touch in a single point and neither E(\eta ) nor

[ - 1, 1] intersects with the set of Fermi--Dirac singularities S
(1)
temp, contradicting the

assumption that \zeta is temperature-constrained.

Appendix C. Other proofs: Numerics.

C.1. Proof of Theorem 3.2. Let us introduce

bk1k2
:= exp

\bigl( 
 - \alpha max(\zeta ) k1  - \alpha min(\zeta ) k2

\bigr) 

with
\alpha max(\zeta ) := \alpha diag(\zeta ) + \alpha anti(\zeta ), \alpha min(\zeta ) := \alpha diag(\zeta ) - \alpha anti(\zeta ).

Using Lemma 3.1 and the bound (3.12), we obtain
\bigm| \bigm| \~\sigma r

\ell [b] - \sigma r
\ell [b]

\bigm| \bigm| \lesssim 
\sum 

(k1,k2)\in N2\setminus K(\tau )

| ck1k2
| 

\leq 2C(\zeta )
\sum 

(k1,k2)\in N2\setminus K(r)\wedge k1\geq k2

bk1k2

= 2C(\zeta )

\Biggl( 
K2(\tau ) - 1\sum 

k2=0

\infty \sum 

k1=K1(\tau ,k2)

bk1k2

\underbrace{}  \underbrace{}  
A

+
\infty \sum 

k2=K2(\tau )

\infty \sum 

k1=k2

bk1k2

\underbrace{}  \underbrace{}  
B

\Biggr) 
,

where

K2(\tau ) :=

\biggl\lceil  - log(\tau )

2\alpha diag(\zeta )

\biggr\rceil 
, K1(\tau , k2) :=

\biggl\lceil 
 - log(\tau ) + \alpha min(\zeta ) k2

\alpha max(\zeta )

\biggr\rceil 
.

We then compute

A =

K2(\tau ) - 1\sum 

k2=0

exp
\bigl( 
 - \alpha min(\zeta ) k2

\bigr) \infty \sum 

k1=K1(\tau ,k2)

exp
\bigl( 
 - \alpha max(\zeta ) k1

\bigr) 

\leq 
K2(\tau ) - 1\sum 

k2=0

exp
\bigl( 
 - \alpha min(\zeta ) k2

\bigr) \tau exp
\bigl( 
\alpha min(\zeta ) k2

\bigr) 

1 - exp
\bigl( 
 - \alpha max(\zeta )

\bigr) 

=
K2(\tau )

1 - exp
\bigl( 
 - \alpha max(\zeta )

\bigr) \tau 

= \scrO 
\biggl( 
\alpha diag(\zeta )

 - 1 \alpha anti(\zeta )
 - 1 \tau log(\tau )

\biggr) 

and

B =
\infty \sum 

k2=K2(\tau )

exp
\bigl( 
 - \alpha min(\zeta ) k2

\bigr) \infty \sum 

k1=k2

exp
\bigl( 
 - \alpha max(\zeta ) k1

\bigr) 

=

\infty \sum 

k2=K2(\tau )

exp
\bigl( 
 - \alpha diag(\zeta ) k2

\bigr) 1

1 - exp
\bigl( 
 - \alpha max(\zeta )

\bigr) 
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\leq \tau 

1 - exp
\bigl( 
 - \alpha diag(\zeta )

\bigr) 1

1 - exp
\bigl( 
 - \alpha max(\zeta )

\bigr) 

= \scrO 
\biggl( 
\alpha diag(\zeta )

 - 1 \alpha anti(\zeta )
 - 1 \tau 

\biggr) 
,

where in the last steps for both terms we used that \alpha diag(\zeta ) = \scrO 
\bigl( 
\alpha anti(\zeta )

\bigr) 
(cf. The-

orem 3.1) and hence \alpha max(\zeta ) = \Theta 
\bigl( 
\alpha anti(\zeta )

\bigr) 
.

C.2. Inverse of \bfitvarepsilon = \bfittau | log(\bfittau )| . This subsection establishes the following re-
sult.

Theorem C.1. Let \varepsilon , \tau \in (0,\infty ) be such that \varepsilon = \tau | log \tau | . It then holds that

\tau =
\varepsilon 

| log \varepsilon | 
\bigl( 
1 + o(1)

\bigr) 
for \varepsilon \rightarrow 0.

Proof. Dividing \varepsilon = \tau | log \tau | by | log \varepsilon | =
\bigm| \bigm| log \tau + log log \tau | , we obtain

\varepsilon 

| log \varepsilon | = \tau 
1\bigm| \bigm| 1 + log log \tau 
| log \tau | 

\bigm| \bigm| \Leftarrow \Rightarrow \tau =
\varepsilon 

| log \varepsilon | 
\bigm| \bigm| 1 + log log \tau 

| log \tau | 
\bigm| \bigm| .

The claim follows after noting that \tau | log(\tau )| is monotonically increasing in \tau and
hence \tau \rightarrow 0 for \varepsilon \rightarrow 0.

C.3. Proof of Theorem 3.3. According to Riemann's removable singularity
theorem in higher dimensions (see, e.g., [23, Theorem 4.2.1]), the function

R(E1, E2) =
\bigl( 
E1  - E2 + \omega + \iota \eta 

\bigr) 
F\zeta (E1, E2) - 

1

\beta 

1

(E1  - z) (E2  - z)
(C.1)

with z := \pi \iota 
\beta can be analytically continued to

\scrS z :=
\Bigl( 
\{ z\} \times 

\bigl( 
C \setminus \scrS \beta ,EF

\bigr) \Bigr) 
\cup 
\Bigl( \bigl( 

C \setminus \scrS \beta ,EF

\bigr) 
\times \{ z\} 

\Bigr) 

if R(E1, E2) is bounded on this set, or equivalently if

lim
E1\rightarrow z

(E1  - z)R(E1, E2) = 0(C.2)

for some arbitrary E2 \in C \setminus \scrS \beta ,EF
and likewise with the roles of E1 and E2 inter-

changed. In order to verify (C.2), we compute

lim
E1\rightarrow z

(E1  - z) ftemp(E1, E2) = lim
E1\rightarrow z

(E1  - z)
f\beta ,EF

(E1) - f\beta ,EF
(E2)

E1  - E2
(C.3)

=
1

z  - E2
lim

E1\rightarrow z

E1  - z

1 + exp
\bigl( 
\beta (E1  - EF )

\bigr) (C.4)

=
1

\beta 

1

E2  - z
,(C.5)

where on the last line we used l'H\^opital's rule to determine the limit. It follows from
(C.5) that for E1 \rightarrow z, the first and second terms in (C.1) cancel and hence (C.2)
holds. The transposed version of (C.2) follows from the symmetry of (C.1), thus we
conclude that R(E1, E2) can indeed be analytically continued to \scrS z. Theorem 3.3
then follows by rewriting (3.16) in the form (C.1) and applying the above argument
to each of the terms in the sum over Zk.
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