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Abstract

Background and Objective:
The contrast of cryo-EM images varies from one to another, primarily due to the
uneven thickness of the ice layer. This contrast variation can affect the quality of 2-
D class averaging, 3-D ab-initio modeling, and 3-D heterogeneity analysis. Contrast
estimation is currently performed during 3-D iterative refinement. As a result, the
estimates are not available at the earlier computational stages of class averaging and
ab-initio modeling. This paper aims to solve the contrast estimation problem directly
from the picked particle images in the ab-initio stage, without estimating the 3-D
volume, image rotations, or class averages.
Methods:
The key observation underlying our analysis is that the 2-D covariance matrix of the raw
images is related to the covariance of the underlying clean images, the noise variance,
and the contrast variability between images. We show that the contrast variability
can be derived from the 2-D covariance matrix and we apply the existing Covariance
Wiener Filtering (CWF) framework to estimate it. We also demonstrate a modification
of CWF to estimate the contrast of individual images.
Results:
Our method improves the contrast estimation by a large margin, compared to the
previous CWF method. Its estimation accuracy is often comparable to that of an
oracle that knows the ground truth covariance of the clean images. The more accurate
contrast estimation also improves the quality of image restoration as demonstrated in
both synthetic and experimental datasets.
Conclusions:
This paper proposes an effective method for contrast estimation directly from noisy
images without using any 3-D volume information. It enables contrast correction in the
earlier stage of single particle analysis, and may improve the accuracy of downstream
processing.

1 Introduction

In the past decade, single particle reconstruction (SPR) by cryo-electron microscopy (cryo-
EM) has emerged as a critical technique for high resolution 3-D structure determination of
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macromolecules [1, 6, 10, 26, 29, 30]. In SPR, the 3-D structure needs to be determined
from many noisy tomographic projection images with unknown viewing directions. Cryo-
EM images are typically very noisy due to the limited electron dosage required to avoid
significant radiation damage.

Mathematically, the formation of cryo-EM images can be summarized as follows. Let
φ(r) be the electrostatic potential of a molecule where r = (x, y, z)T ∈ R3. The i-th
observed raw image Ii is modeled as

Ii(x, y) = cihi ∗
∫
φ(R−1

i r)dz +Ni. (1)

Namely, the molecule φ is first rotated by the rotation matrix Ri, and followed by projection
in the z-direction to form the 2-D clean projection image. Next, the clean image is convolved
with the 2-D filter hi, often known as the point spread function, or the inverse Fourier
transform of the contrast transfer function (CTF). The convolved i-th clean image is further
rescaled by its amplitude contrast ci. At last, additive noise Ni is applied to the resulting
image (translations are omitted from (1) just for the sake of simplicity of exposition). The
goal of SPR is to estimate φ from the set of observed noisy images {Ii}i∈[n], where [n] :=
{1, 2, . . . , n}.

The challenges of SPR lie in several different aspects. First, the noise term Ni typically
has much larger magnitude than that of the clean signal, making the clean signal hard to
distinguish from the noise even by the naked eye. As a result, a large number of particle
images (104-106) is often required for reconstruction [6]. Second, the rotations {Ri}i∈[n]

are unknown. These additional unknown variables make the estimation of the 3-D volume
difficult in the low signal-to-noise-ratio (SNR) regime. The third challenge arises from the
CTF. Although the CTF can be estimated from the power spectrum of the micrograph
[12, 21, 23, 38], CTF correction is a challenging deconvolution problem. The main reason
is that the CTFs are highly oscillatory and have zeros at many frequencies. Those zero-
crossings completely remove the information of the images at those frequencies. As a result,
accurate CTF correction requires the usage of several images from different defocus groups
(namely different CTFs), assuming that those CTFs have non-overlapping zero-crossings [4].
Last but not least, the underlying clean signals may have different scaling ci. This ampli-
tude variation is mainly due to the unevenness of the ice layers where the molecule samples
reside [34]. Thicker ice layers increase inelastic scattering of electrons by ice, hence decreas-
ing elastic scattering by the molecule and effectively weakening the signal, i.e., a smaller
scaling coefficient ci. The large variation of ci may cause inaccurate image denoising and
CTF correction. Moreover, the scale variations may severely affect the similarity measures
used to detect images from similar viewing directions for 2-D class averaging [40, 5], 3-D
heterogeneity analysis, and the identification of common lines for 3-D ab-initio modeling [2].
In particular, as pointed in Table 2 of [2], the uneven image contrast is the most important
factor that negatively affects the accuracy of rotation estimation by some common line based
approaches. At last, scaling variability must be accounted for 3-D heterogeneity analysis to
prevent artificial classes that correspond to contrast variations [17]. In this work, we aim
to address the last challenge, contrast estimation, in the ab-initio stage. In other words, we
are interested in the direct estimation of ci without estimating φ and Ri. Furthermore, we
use the improved contrast estimation to obtain better denoising and CTF correction of the
images.
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2 Related Work

There exist several works that estimate the amplitude contrast using estimated φ and Ri’s
[24, 27]. Specifically, assuming accurately estimated CTFs and given the estimates φ̂, R̂i,

one can compute the estimated i-th CTF-effected clean image Îi := ĥi ∗
∫
φ̂(R̂−1

i r)dz and

then ci can be estimated as ⟨Ii , Îi⟩/∥Îi∥2. The estimates of ci, Ri and φ are often iteratively
refined using the EM algorithm [25]. Estimating ci without any knowledge of rotations and
3-D structure is a challenging task. We refer to this task of contrast estimation as ab-initio
contrast estimation (ACE). To the best of our knowledge, ACE has not been extensively
studied in previous works. The mean pixel value of the CTF-corrected and denoised images
can be used to approximate the contrast. However, [4] only uses the estimated contrasts to
filter out junk particles (outliers), while the accuracy of contrast estimation itself was not
tested. There are other contrast-related techniques. Image normalization [25, 31] rescales
the images so that the background noise level is approximately the same across the images.
However, its normalization factor depends on the noise level, not the amplitude contrast.
There are also works on contrast enhancement [37, 20, 32]. These aim to enhance the
brightness of the underlying signal so that it is more distinguishable from the noise. However,
they do not directly estimate the amplitude contrast of the clean signal, and in the process
they alter the image contrast.

There are also several commonly used ab-initio methods for simultaneous image denoising
and CTF correction, such as traditional Wiener filtering (TWF), and covariance Wiener
filtering (CWF) [4]. TWF denoises each image using its own information, which suffers
from low SNR and zero-crossings in CTF. CWF overcomes these issues by estimating the
population covariance of a set of images. However, its denoising performance degrades when
the covariance is not accurately estimated. Image restoration can also be done by 2-D class
averaging [40, 9, 15, 24]. These methods require pairwise comparison and alignment of
images, unlike the preprocessing methods such as [4] and [7]. It is also shown in [7] that an
appropriate image preprocessing can significantly improve the results of 2-D class averaging.
Deep learning based methods were recently introduced for image denoising and enhancement
[20, 3, 11, 33]. Noise2noise [3] requires multiple video frames of the same micrograph, which
are not always available. Other CNN and GAN based methods [20, 11, 33] require clean
projections to form clean-noisy pairs of images to train the model, but the clean projections
are not available in the ab-initio reconstruction stage, and training with clean projections
of other molecules may introduce model bias.

3 Methodology

In this work, we directly estimate the amplitude contrast from the CTF-corrected and de-
noised images in the ab-initio stage of SPR. Our method is based on CWF with additional
constraints on the covariance matrix which we find realistic and useful for contrast estima-
tion.

In order to address the ACE problem, we first derive from (1) a simplified image for-
mation model that is independent of Ri and φ. We then propose our method to solve the
ACE problem under this model.
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3.1 A Simplified Image Formation Model

To demonstrate the simplified model, we first reshape the images in (1) as vectors and obtain

yi = ciAixi + ϵi (2)

where yi and xi are respectively the vectors of i-th noisy and clean images, Ai is the square
matrix operator corresponding to the convolution with hi, ϵi is the Gaussian noise vector
and ci is the contrast to be estimated. In this model, ci, xi and ϵi are unknown. However,
the power spectral density (PSD) of ϵi is assumed known as it can be estimated from
the corners of the observed images yi. We assume that Ai and its Fourier transform, the
CTF, are known, since they can often be accurately estimated in advance from the noisy
micrographs. Throughout this work, we assume that the CTFs are radially symmetric
by ignoring astigmatism. Without loss of generality (WLOG) we assume that the noise
distribution is white Gaussian whose covariance is σ2I. For colored Gaussian noise, one
can whiten the noise by applying W (noise covariance to the power −1/2) to yi, so that
Wyi = ciWAixi + Wϵi and the covariance of the whitened noise Wϵi is the identity
matrix. The goal of ACE is to estimate ci from the observed yi.

Without additional assumptions on xi and ci, the ACE problem is ill-posed due to the
scale ambiguity of xi and ci. To make it a well-posed problem, WLOG we assume that xi

and ci are random variables such that for all i ∈ [n],

1. ci and xi are independent of each other.

2. E(ci) = 1.

3. x⊤
i 1 = s for some constant s > 0, where 1 is the all-ones vector of the same size as

xi.

The first assumption is reasonable since the contrast ci primarily depends on the thickness of
the ice layer, which is indeed independent of the rotation Ri and consequently independent
of xi. The second assumption is needed to overcome the global scale ambiguity of ci. The
last assumption states that the sum of pixel values of the clean projection image is the same
for all clean images. This is a reasonable assumption, because for each i ∈ [n], the sum of
the elements in xi is approximately

∫ ∫
(
∫
φ(R−1

i r)dz)dxdy =
∫
φ(r)dr which is a constant

independent of i. In other words, the sum of pixel values of any 2-D projection image equals
the sum of 3-D voxel values. In fact, it is also invariant to translations (i.e., non-perfect
centering of the images).

We note that our model assumes that ci’s are identically distributed, but it does not
require the contrasts to be independent of each other. Namely, we allow correlations among
ci’s, which is often observed in experimental data. For example, two particle images that
are closely located in the same micrograph often share similar contrasts. In principle, this
information can be used to improve the contrast estimation, but this is left to future work.
We refer the reader to Figure 23 in Section 5.1 for further discussion.

We remark that the estimation of ci remains challenging due to the CTF that affects
the sum of pixel values and due to the high noise level. Thus, in order to obtain a good
estimate of ci, it is useful to denoise the image and to correct the CTF effect. A well-known
method for such image restoration is CWF [4], which is elaborated in the next subsection.
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3.2 Preliminaries: Covariance Wiener Filtering

CWF estimates cixi from yi by minimizing the expected mean squared error given an
estimated covariance matrix of cixi. Assume that the true covariance matrix of cixi, denoted
by Σcx, is given by an oracle. Then, under the model yi = Ai(cixi)+ϵi, the linear minimum
mean squared error (LMMSE) estimator is given by

ĉixi
CWF

= CWF(yi,Ai,Σcx) = argmin
ĉixi

E(∥ĉixi − cixi∥2|yi) (3)

= µ+ΣcxA
⊤
i (AiΣcxA

⊤
i + σ2I)−1(yi −Aiµ), (4)

where µ is the true mean of cixi.
We note that CWF naturally induces an optimal linear estimator of contrast given the

true covariance Σcx. Indeed, it can be easily shown that :

argmin
1⊤ĉixi

E(∥1⊤ĉixi − 1⊤cixi∥2|yi)

=1⊤µ+ 1⊤ΣcxA
⊤
i (AiΣcxA

⊤
i + σ2I)−1(yi −Aiµ) = 1⊤ĉixi

CWF
. (5)

Namely, 1⊤ĉixi
CWF

, the sum of pixel values of the CWF estimate of cixi, is the best linear
estimator of 1⊤cixi given Σcx. Note that 1⊤cixi = s · ci by the third assumption of our
model. Therefore, we have obtained the optimal linear estimator of contrast ci up to a global
constant s. This scale ambiguity can be solved by using the second assumption E(ci) = 1
in our model. That is, after obtaining the estimates of s · ci, we normalize the estimates by
a global constant so that the average of the set {1⊤ĉixi

CWF}i∈[n] is 1.
However, the optimal properties of the aforementioned estimates only hold when Σcx is

given, which is not true in practice. In [4], the mean of cixi is estimated by minimizing the
least squares error between the noisy images and the CTF transformed mean. Specifically,

µ̂ = argmin
µ

n∑
i=1

∥yi −Aiµ∥2. (6)

Similarly, the covariance matrix Σcx is estimated by minimizing the squared deviations
between the sample covariance of yi and the population covariance of Ai(cixi) + ϵi. That
is,

Σ̂cx = argmin
Σ

n∑
i=1

∥∥(yi −Aiµ̂)(yi −Aiµ̂)
⊤ − (AiΣA⊤

i + σ2I)
∥∥2
F
. (7)

By setting the first order derivative of (7) to zero, we end up with the following linear system
of equations:

n∑
i=1

A⊤
i AiΣ̂cxA

⊤
i Ai =

n∑
i=1

A⊤
i (yi −Aiµ̂)(yi −Aiµ̂)

⊤Ai + σ2
n∑

i=1

A⊤
i Ai. (8)

We note that the first term on the right hand side (RHS) of (8) corresponds to the sample
covariance of A⊤

i yi. However, yi often has dimension > 104 which is comparable to the
number of images. In this high dimensional setting, the sample covariance is not a consistent
estimator of the population covariance. As a result, an eigenvalue shrinkage method is
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applied to the RHS of (8) to improve the covariance estimation. At last, (8) is solved by
applying the conjugate gradient method. We refer the readers to [4] for more details.

We remark that under low SNR or insufficient number of samples, Σcx could be poorly
estimated. In such a case, the CWF method and its induced contrast estimator (5) are
far from being optimal. Therefore, there is still room for improvement on the CWF-based
contrast estimation. Indeed, the CWF-estimator does not fully exploit our model assump-
tions. As we show in the next subsection, the three assumptions of our model imply novel
constraints on Σcx which turn out to significantly improve contrast estimation.

3.3 Novel Constraints on the Covariance Matrices

The new constraints on the covariance matrix are stated in the following proposition. Let
Σx be the true covariance of xi and Var(c) be the variance of each ci.

Proposition 1. If the three assumptions for the model (2) are satisfied, then the following
two constraints hold:

1. Σcx = (Var(c) + 1)Σx + Var(c)µµ⊤ (9)

2. Σx1 = 0. (10)

This proposition suggests that the true covariance of cixi is the combination of two com-
ponents, one corresponds to the covariance without contrast variability whose eigenvectors
are perpendicular to the all-ones vector, and the other corresponds to a rank-one matrix
whose eigenvector is the mean. The derivation of the two constraints is simple. To prove
the first constraint, we use the identity that for any independent scalar random variable c
and random vector x, Cov(cx) = E(c2)Cov(x) + Var(c)E(x)E(x)⊤. By letting c = ci and
x = xi, we obtain that for any i ∈ [n]

Σcx = Cov(cx) = E(c2)Cov(x) + Var(c)E(x)E(x)⊤

= (Var(c) + E2(c))Σx +Var(c)µµ⊤.

By using the assumption E(ci) = 1, we conclude the first constraint. The second constraint
states that the variation of the sum of elements in xi is 0, namely the contrast variability
of clean signals is 0. It can be verified easily by using the third assumption of our model.
Specifically,

Σx1 = E
(
(xi − µ)(xi − µ)⊤

)
1 = E

(
(xi − µ)(x⊤

i 1− µ⊤1)
)
= 0,

where the last equality follows from the assumption that : x⊤
i 1 = µ⊤1 = s. In the next

subsection, we propose two methods that use the two covariance constraints to refine the
estimated covariance Σcx.

3.4 Refinement of Covariance Matrices

We first use the two covariance constraints (9) and (10) to estimate the contrast variance
Var(c). By combining the two constraints,

Σcx1 = (Var(c) + 1)Σx1+Var(c)µµ⊤1 = Var(c)µµ⊤1, (11)

where the second equality follows from the second covariance constraint. We note that (11)
relates Var(c) to Σcx and µ, where the latter two can be estimated from the noisy data.
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Given the estimated Σ̂cx and µ̂, the variance of the image contrast can be estimated by
least squares as follows.

V̂ar(c) = argmin
Var(c)

∥Σ̂cx1−Var(c)(µ̂⊤1)µ̂∥22 =
µ̂⊤Σ̂cx1

∥µ̂∥2µ̂⊤1
. (12)

We remark that the initially estimated Σ̂cx often does not satisfy the constraints in
Proposition 1. Therefore, we introduce two methods to enforce the covariance constraints

using the estimated V̂ar(c). We refer to the first method as semi-definite programming
(SDP).

SDP: We seek to find the closest positive semidefinite matrix to the initially estimated
Σ̂cx such that the two covariance constraints are satisfied. Namely, we seek a solution of
the following SDP problem.

Σ̂SDP
cx = argmin

ΣSDP
cx

∥∥∥ΣSDP
cx − Σ̂cx

∥∥∥2
F

(13)

subject to ΣSDP
cx = (V̂ar(c) + 1)ΣSDP

x + V̂ar(c)µ̂µ̂⊤

ΣSDP
cx ⪰ 0

ΣSDP
x ⪰ 0

ΣSDP
x 1 = 0.

Since ΣSDP
cx = (V̂ar(c) + 1)ΣSDP

x + V̂ar(c)µ̂µ̂⊤, ΣSDP
cx is positive semidefinite when ΣSDP

x is
so. Thus, one can drop the constraint ΣSDP

cx ⪰ 0, and plug in the first constraint of (13) to
ΣSDP

cx in its objective function. This yields the following SDP fomulation that optimizes for
ΣSDP

x .

Σ̂SDP
x = argmin

ΣSDP
x

∥∥∥∥∥ΣSDP
x − Σ̂cx − V̂ar(c)µ̂µ̂⊤

V̂ar(c) + 1

∥∥∥∥∥
2

F

(14)

subject to ΣSDP
x 1 = 0

ΣSDP
x ⪰ 0.

After solving Σ̂SDP
x , we immediately obtain Σ̂SDP

cx = (V̂ar(c) + 1)Σ̂SDP
x + V̂ar(c)µ̂µ̂⊤. Next,

we introduce a faster but heuristic alternative that uses the Gram-Schmidt (GS) process to
approximately solve (14).

Gram-Schmidt (GS) Process: We first note that the constraint ΣSDP
x 1 = 0 in (14) is

equivalent to that all the eigenvectors of ΣSDP
x are orthogonal to 1. Similar to (14), we seek

a positive semidefinite matrix ΣGS
x that is close to Σ̂x := (Σ̂cx − V̂ar(c)µ̂µ̂⊤)/(V̂ar(c) + 1)

whose eigenvectors are orthogonal to 1.
Let Σ̂x = V̂ D̂V̂ ⊤ be the eigenvalue decomposition of Σ̂x, where V̂ is the eigenmatrix

whose columns are eigenvectors of Σ̂x, and D̂ is the diagonal matrix of its eigenvalues. We
seek a refined covariance Σ̂GS

x = ÛΛ̂Û⊤ with refined eigenvalues and eigenvectors such that

Λ̂ is nonnegative (so that Σ̂GS
x ⪰ 0) and Û⊤1 = 0 (so that (Σ̂GS

x )⊤1 = 0), and Λ̂ and Û

are respectively close to D̂ and V̂ .
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The solution of Λ̂ is obtained by simply thresholding the negative values in D̂. That is,
Λ̂ = max(D̂, 0). The solution of the eigenmatrix Û is trickier, due to the nonconvex con-

straint Û⊤Û = I, namely the columns of Û (the eigenvectors of Σ̂GS
x ) form an orthonormal

basis. It asks to solve the following nonconvex optimization problem.

Û = argmax
U

Tr(V̂ ⊤U) (15)

subject to U⊤U = I

U⊤1 = 0.

Instead of directly solving (15), we argue that a simple Gram-Schmidt process on V̂ is often

sufficient to obtain a satisfying solution. Let V̂ = [v̂1, v̂2, . . . , v̂p] where p is the dimension
of each xi, and the eigenvectors are placed in descending order of eigenvalues.

Let Û := [û1, û2, . . . , ûp] and [1, V̂−p] := [1, v̂1, v̂2, . . . , v̂p−1] be p-by-p square matrices.

Application of Gram-Schmidt orthogonalization to [1, V̂−p] yields a new orthogonal matrix

[1, Û−p] := [1, û1, û2, . . . , ûp−1]. That is, û1 is computed by projecting v̂1 onto the orthog-
onal complement of 1 and then normalize to unit vector. Once ûi−1 for 1 ≤ i ≤ p − 1
are computed, ûi is computed by projecting v̂i onto the orthogonal complement of linear
subspace spanned by 1, û1, . . . , ûi−1 and then normalize. At last, the solution Û is obtained

by finding the orthogonal complement of Û−p to complete its missing column ûp. In this

way, the columns of Û form an orthonormal basis, and its first p−1 columns are orthogonal
to 1. Although ûp may not necessarily be orthogonal to 1, its eigenvalue is 0 in most of the

cases and thus won’t affect the solution of Σ̂GS
x . In practice, the GS process is done by the

QR decomposition for its better numerical stability.
Iterating from the top eigenvectors has two benefits. First, the top eigenvectors of Σ̂x are

more robust to the noise. That is, the top eigenvectors v̂1, v̂2, . . . of Σ̂x are often closer to
those of the true Σx. Due to the constraint Σx1 = 0, the top eigenvectors of Σ̂x often have
smaller correlation with 1. In other words, the top eigenvectors are cleaner and thus their
refinement is easier and more accurate, and therefore they should be put at the earlier stage
of the sequential projection procedure to reduce error accumulation. Second, iterating from
the top eigenvectors makes them more accurately projected to the orthogonal complement
of 1 with minimal changes to their original values. This is beneficial for contrast estimation
since these top eigenvectors are more important for explaining the contrast variations.

3.5 Ab-initio Contrast Estimation and Denoising

After applying the aforementioned SDP or GS method to the initial covariance matrix Σ̂cx,
we obtain the refined covariance Σ̂RF

cx = Σ̂SDP
cx or Σ̂GS

cx .
Recall that the CWF estimator of cixi is defined in (3). Our refined estimate of cixi for

each i ∈ [n] is

ĉixi
RF

= CWF
(
yi,Ai, Σ̂

RF
cx

)
. (16)

Then, by applying our model assumptions that 1⊤xi = s for all i ∈ [n] and E(ci) = 1, we
obtain our refined estimate of ci as

ĉi
RF =

1⊤ĉixi
RF

1
n

∑n
i=1 1

⊤ĉixi
RF
, (17)
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where the numerator is the contrast estimator up to s. The denominator is the normalization
factor to remove the scale ambiguity and enforce the average of ĉi

RF to be 1.
After estimating the contrasts, we present two methods for estimating the clean image

xi: the image normalization and 2-stage CWF.

Image Normalization
In the first approach, we estimate xi as

x̂RF
i =

ĉixi
RF

ĉi
RF

. (18)

That is, we simply normalize the estimated cixi by the estimated contrast ci, so that the
resulting images all share the same sum of pixel values.

2-Stage CWF
In the second method, we apply an additional CWF estimator to directly estimate xi. Recall
that the original version of CWF aims to estimate cixi. It treats cixi as a single variable
and considers the model yi = Ai(cixi) + ϵi. In order to directly estimate xi, we treat ci
as known and absorb it into the CTF term, and consider the model yi = (ĉi

RFAi)xi + ϵi.
Given this model, a natural estimate of xi is

x̂RF
i = CWF

(
yi, ĉi

RFAi, Σ̂
RF
x

)
. (19)

Since the refined Σ̂RF
x satisfies the constraint Σ̂RF

x 1 = 0, the resulting recovered image x̂RF
i

automatically has the same sum of pixel values. Ideally, if ĉi
RF = ci and Σ̂RF

x = Σx, then
(19) is the optimal linear estimator of xi.

3.6 Computational Issues and Steerable Basis

Although our model and methodology were presented in real image space for simplicity, in
practice, implementing the CWF-based methods in real image domain is computationally
intractable and memory demanding. For images of size L × L, the dimension of xi is of
order O(L2), and the covariance of xi in real space has O(L4) entries. This leads to high
time and space complexities that make the computation impractical.

Therefore, we follow [4] and expand the Fourier transformed images F(Ii) in the Fourier-
Bessel basis

ψk,q
r (θ, ξ) =

{
Nk,qJk(Rk,qξ/r)e

ıkθ ξ ≤ r
0 otherwise,

(20)

where 0 < r ≤ 1/2 is the band-limit radius of images (default = 1/2), k, q are respectively
angular and radial frequencies, (ξ, θ) are the polar coordinates in Fourier domain, Jk is
the Bessel function of the first kind of order k, Rk,q is the q-th root of Jk, and Nk,q =
(r
√
π|Jk+1(Rk,q)|)−1 is the normalization factor. We refer the readers to [39] for details of

the expansion.
Denote the image formation model in the Fourier-Bessel basis as

yFB
i = ciA

FB
i xFB

i + ϵi
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where AFB
i , xFB

i yFB
i are respectively the CTF, and the clean and noisy Fourier transformed

images in the Fourier-Bessel basis. Expanding images in Fourier-Bessel basis (or other
steerable basis) enjoys some nice properties. For example, image rotation in the Fourier-
Bessel domain is easy. Indeed, rotation of images corresponds to phase modulation of their
corresponding Fourier-Bessel coefficients. This relationship between rotation and phase
modulation enables easy and fast computation of the covariance matrix of any set of images
that are augmented by all their possible in-plane rotations and reflections. More importantly,
as shown in [39], the resulting covariance matrix of the augmented images is block diagonal,
where blocks are indexed by the angular frequency k. That is, the ((k1, q1), (k2, q2))-th entry
of the covariance matrix is nonzero only when the angular frequencies are equal, namely
k1 = k2. This reduces the number of variables in the covariance matrix from O(L4) to O(L3)
which is a significant saving of computation time and memory usage. Similarly, a radially
symmetric CTF in the Fourier-Bessel basis is also block diagonal and has the same block
structure as that of the covariance. As a result, the estimation of each diagonal block of
xFB
i is completely independent and decoupled from the rest of the blocks. Thus, the task of

estimating xFB
i is divided into O(L) independent tasks of much smaller sizes, which enables

faster and parallelized computation.
Although the Fourier-Bessel expansion facilitates fast computation of CWF, our model

and covariance refinement method require more careful adaptation to the Fourier Bessel
domain. The main issue is that the Fourier-Bessel transform preserves the ℓ2 norm by
Parseval’s identity, but not the sum of pixel values. As a result, 1⊤xFB

i = s and ΣFB
x 1 = 0

are not necessarily satisfied.
To address this issue, we observe that

1⊤xi = 1⊤F ∗F ∗
BFBFxi = 1⊤

FBx
FB
i , (21)

where F ,FB are the matrix operators of the Fourier and Fourier-Bessel transforms, F ∗,F ∗
B

denote their corresponding adjoint operators, 1FB = FBF1 is the Fourier-Bessel transform
of the Fourier-transformed all-ones image. Therefore, the new constraints in the Fourier-
Bessel domain are 1⊤

FBx
FB
i = s and ΣFB

x 1FB = 0. By replacing every 1 in the previous
formulation by 1FB, exactly the same argument automatically follows in the Fourier-Bessel
domain.

We finally remark that 1FB is only nonzero in the zero-th angular frequency. Indeed,
F1 is the dirac delta image Iδ whose only nonzero pixel is located at the origin. Let 1k,q

be the (k, q)-th coefficient of 1FB.

1k,q =

∫ ∫
Iδ(θ, ξ)ψ

k,q
r (θ, ξ)ξdξdθ = ψk,q

r (0, 0) = Nk,qJk(0) (22)

=

{
N0,q = 1

r
√
π|J1(R0,q)|

for k = 0,

0 otherwise,
(23)

where the last equality follows from that: Jk(0) = 1 when k = 0 and Jk(0) = 0 for k ̸= 0.
In view of (21) and (23), the contrasts of the real images are only determined by the zero-
th angular blocks of their Fourier-Bessel expansion. This is a favorable property from the
computational aspect. For example, when computing the numerator of (17), one can simply
take the dot product between the zero-th angular frequency blocks of the Fourier-Bessel
coefficients of 1 and ĉixi

RF
, without the need to access the entire vectors.
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3.7 Summary of the Algorithm and Computational Complexity

Our ACE and image restoration methods are respectively summarized in Algorithms 1 and
2.

Algorithm 1 Ab-initio Contrast Estimation

Input: {Ai}i∈[n], {yi}i∈[n], option=SDP or GS
Ai,0 ← extract the zero-th angular frequency diagonal block of Ai for i ∈ [n]
yi,0 ← extract the entries of yi corresponding to the zero-th angular frequency for i ∈ [n]
µ̂0 ← argminµ

∑n
i=1 ∥yi,0 −Ai,0µ∥2

Σ̂cx,0 ← argminΣ
∑n

i=1

∥∥(yi,0 −Ai,0µ̂0)(yi,0 −Ai,0µ̂0)
⊤ − (Ai,0ΣA⊤

i,0 + σ2I)
∥∥2
F

V̂ar(c)← µ̂⊤
0 Σ̂cx,010/(∥µ̂0∥2µ̂⊤

0 10)

Σ̂x,0 ← (Σ̂cx,0 − V̂ar(c)µ̂0µ̂
⊤
0 )/(V̂ar(c) + 1)

if option=SDP then

Σ̂RF
x,0 ← argminΣSDP

x,0

∥∥∥ΣSDP
x,0 − Σ̂x,0

∥∥∥2
F

subject to ΣSDP
x,0 10 = 0 ΣSDP

x,0 ⪰ 0

else
(d̂i , v̂i)

p
i=1 ← pairs of eigenvalues/eigenvectors of Σ̂x,0 sorted in descending order

D̂0 ← diag(max(d̂i, 0))

V̂0 ← [10, v̂1, v̂2, . . . , v̂p−1]

[10, Û0]← Gram-Schmidt(V̂0)

Û0 ← [Û0,vp]

Σ̂RF
x,0 ← Û0D̂0Û

⊤
0

end if
Σ̂RF

cx,0 ← (V̂ar(c) + 1)ΣRF
x,0 + V̂ar(c)µ̂0µ̂

⊤
0

ĉixi,0
RF ← CWF

(
yi,0,Ai,0, Σ̂

RF
cx,0

)
ĉi

RF ← n1⊤
0 ĉixi,0

RF
/
∑n

i=1 1
⊤
0 ĉixi,0

RF

Output: {ĉiRF}i∈[n]

We comment on the computational complexity of our methods. From [4], the overall
complexity for the original CWF is O(TDL4 + nL3). The first term corresponds to co-
variance estimation, where T is the number of conjugate gradient iterations for estimating
Σcx and D is the number of defocus groups. The second term corresponds to denoising by
Wiener filtering. Our contrast estimator takes two additional steps that cost extra computa-
tion. The covariance refinement by GS process takes O(L3) operations due to the eigenvalue
decomposition of the diagonal block of Σx corresponding to the zero-th angular frequency.
This step is negligible compared to the computational complexity of CWF. In contrast, the
SDP method suffers from much higher complexity. For both splitting conic solver (SCS)
[19] and interior point method [13], the per-iteration complexity is O(m3) where m = L2 is
the number of variables in the diagonal block of Σx corresponding to the zero-th angular
frequency. Therefore, the total complexity of our SDP method (using the aforementioned
solvers) is O(L6). Nevertheless, in our synthetic and experimental data L < 400 so em-
pirically we observe that SDP can still be implemented in less than one hour. The step
of estimating the image contrasts using the Fourier-Bessel basis (eq. (21)) requires O(nL)
operations, which is negligible compared to the cost of CWF. In summary, our method
with GS-refinement of covariance has similar complexity to that of the original CWF. Our
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Algorithm 2 Ab-initio Image Restoration

Input: {Ai}i∈[n], {yi}i∈[n], option=normalization or 2-stage

µ̂, Σ̂cx ← by solving (6), (7)

{ĉiRF}i∈[n], Σ̂
RF
cx,0, Σ̂

RF
x,0 ← by implementing Algorithm 1

Σ̂RF
cx ← replace the zero-th angular frequency diagonal block of Σ̂cx by Σ̂RF

cx,0

Σ̂RF
x ← replace the zero-th angular frequency diagonal block of Σ̂cx by Σ̂RF

x,0

if option = normalization then
ĉixi

RF ← by (16)
x̂RF
i ← by (18)

else
x̂i

RF ← by (19)
end if

Output: {x̂RF
i }i∈[n]

method with SDP-refinement of covariance has higher complexity but it is still practical.

4 Results for Synthetic Data

In this section, we compare our method with the original CWF method for contrast estima-
tion and image denoising using synthetic data. To generate the synthetic data, we create the
2-D clean images by projecting a 3-D volume from uniformly distributed viewing directions.
The images are downsampled to size 256×256. We use the 3-D volume of the P. falciparum
80S ribosome bound to E-tRNA, which can be freely obtained from the Electron Microscopy
Data Bank (EMDB) with ID number EMD-2660 [35]. We apply 10 different CTFs to the
projected clean images, whose defocus values range from 1 µm to 4 µm. For all CTFs, we
choose the voltage as 300 kV, the amplitude contrast as 7%, and the spherical aberration
as 2 mm. We then rescale the clean CTF-transformed images by image amplitude contrasts
that are i.i.d. uniformly distributed in [0.5, 1.5]. At last, we add additive white or colored
Gaussian noise. For the colored noise, we choose the noise power spectrum as 1/

√
k2 + 1 up

to a constant, where k is the radial frequency (in 1/(128 pixel size)) in the Fourier domain.
The pixel size is set as 1.34× 360/256 Å, where 360 is the original dimension of the volume
before downsampling.

We implement all algorithms on a cluster with 750GB shared memory and 72 cores run-
ning at 2.3 GHz, where 20 cores were used. We implement CWF using the ASPIRE package
[36] with its default setting. As for our methods, the SDP covariance refinement formula-
tion is solved in CVXPY [8] by its default solver SCS [19]. Our Python code is available at
https://github.com/yunpeng-shi/contrast-cryo, and is planned to be integrated into
ASPIRE.

We next comment on the runtime of the algorithms. The Fourier-Bessel expansion
for a batch of 1000 images takes 110 seconds. With 10 defocus groups, the covariance
estimation by CWF takes 1780 seconds for white noise and 2040 seconds for colored noise.
The covariance refinement by SDP takes 1.5 seconds, whereas for GS it is less than 1 second.
Image denoising by Wiener filtering of 1000 images takes 84 seconds. For the same images,
the runtime for computing contrasts from the Fourier-Bessel coefficients is less than one
second which is negligible.
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4.1 Synthetic Data with White Noise

Figure 1 shows an example of a clean image and its noisy counterparts at different SNRs.

clean SNR = 1 SNR = 0.1 SNR = 0.02 SNR = 0.01

Figure 1: An example of clean and noisy images with white noise. The defocus value for
the CTF of the noisy images in this example is 2.67 µm.

We next examine the performance of our estimator of contrast variance (12) under dif-
ferent SNRs and number of images. Since our simulated contrasts are uniformly distributed
on [0.5, 1.5], the ground truth variance is 1/12, and thus ideally the line plots in Figure 2
should align with the horizontal line y = 1. For small number of images n = 1000, our
method often underestimates the variability of contrast, especially under low SNR. In this
regime, our method mainly captures the magnitude of image noise, which is indeed assumed
as approximately a constant (so variance is small) across images. For medium size of n,
namely n = 10000, our method gives good estimate of contrast variance at SNR= 1, 0.1,
but tends to overestimate it when SNR goes lower. In this regime, the overestimation is
mainly due to the inaccurate estimation of µ and Σcx. Ideally, in the absence of noise, µ
and Σcx1 should be parallel to each other due to (11). When µ̂ and Σ̂cx1 are far from
being parallel, then one would expect a larger Var(c) to minimize the energy in (12). We
finally remark that when n = 105, we are able to accurately estimate Var(c) for SNR as low
as 1/100.
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Figure 2: The estimated variance of contrasts with varying SNR and number of images n.
The image noise is white Gaussian. The ground truth value of the y-axis is 1, because the
image contrasts are sampled from the uniform distribution on [0.5, 1.5].
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We next check the estimation of the covariance matrix Σcx. In Figure 3, we present
the line plot of the normalized estimation error eΣ := ∥Σ̂cx −Σcx∥2F /∥Σcx∥2F . We observe
from Figure 3 that the estimation error of the refined covariance matrix strongly depends on
the estimation error of Var(c). Indeed, when n = 10000 and SNR= 1/50 and 1/100, eΣ of
CWF-GS and CWF-SDP are both significantly larger than that of CWF. This large error is
mainly due to the inaccurate estimation of the contrast variance at those SNRs. Our refined
covariance matrices are more accurate under low SNR and large n, such as SNR= 1/100
and n = 105 where Var(c) is accurately estimated. We show in Figures 3-6 that although
the refinement of covariance matrices does not necessarily reduce the estimation error, it
plays a critical role for accurate contrast estimation.
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Figure 3: Normalized error of covariance estimates by different methods. The image noise
is white Gaussian.

To visualize the quality of contrast estimation by different methods, we present scatter
plots of estimated contrasts v.s. ground truth ones. Ideally, the points in scatter plots
should align well with the line y = x. We first show in Figure 4 the scatter plots of different
methods when n = 10000 and SNR = 1. “CWF-Oracle” refers to the CWF method with
ground truth mean and covariance. We note that the oracle is the best linear estimator
of the contrast. Our CWF-GS and CWF-SDP perform similarly and both of them achieve
near-oracle accuracy for contrast estimation, and they are significantly better than the plain
CWF.
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Figure 4: Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 1.
The image noise is white Gaussian. Ideally each scatter plot should align well with the line
y = x.
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Next, in Figure 5 we keep the number of images fixed and lower the SNR to 0.1. All
algorithms perform significantly worse than the results of SNR = 1. However, CWF-GS
and CWF-SDP produce more accurate contrast estimates than those of plain CWF and are
comparable to the oracle, which is consistent with Figure 4.
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Figure 5: Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 0.1.
The image noise is white Gaussian. Ideally each scatter plot should align well with the line
y = x.

Next, we show that the number of images often does not significantly affect the perfor-
mance of our methods. That is, unlike CWF, our method does not require a large sample
size for estimating the contrasts. In Figure 6, we reduce the number of images to 1000
while keeping SNR = 0.1. The contrast estimation by the plain CWF is much less accurate
after reducing the number of images. In contrast, our methods better maintain the quality
of contrast estimates after reducing n. This suggests that our method is more robust to
inaccuracies of the estimated covariance matrix.
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Figure 6: Scatter plots of estimated contrasts v.s. true contrasts. n = 1000, SNR = 0.1.
The image noise is white Gaussian. Ideally each scatter plot should align well with the line
y = x.

In Figure 7 we compare the contrast estimation error of different methods under different
SNRs and number of images. We use the averaged relative error

ec =
1

n

n∑
i=1

∣∣∣∣ ĉi − cici

∣∣∣∣ (24)
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to measure the performance of the contrast estimation. We limit the y-axis of the line
plot on the interval [0, 0.28] since any contrast estimation error above 0.28 is regarded as
non-informative. Indeed, a trivial contrast estimator that estimates every ci as 1 would give
the error close to 0.28 in expectation. We observe that when n = 10000, although the co-
variance matrices are not very accurately estimated, CWF-GS and CWF-SDP both achieve
performance that is comparable to the oracle. However, CWF needed 100000 samples to
reduce the gap to the oracle. Even with n = 100000, CWF is still slightly worse than the
oracle and our methods. Therefore, the key factor that determines the quality of contrast
estimation is not how covariance is close to the true one, but is whether the covariance is
enforced to satisfy the constraints stated in Proposition 1.
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Figure 7: Contrast estimation error under different SNRs and number of images. The image
noise is white Gaussian.

Next, we test the performance of the algorithms on image denoising. We compare the
plain CWF and the ones with our refined covariances. We also compare the denoised images
with image normalization and our 2-stage CWF procedure, introduced in Section 3.5. The
two previous methods we compare are CWF and CWF-norm [4]. The latter one is the
CWF with an image normalization step. The labels “-GS” and “-SDP” refer to usage of
the refined covariance matrix (estimated by our GS procedure and SDP method) for CWF.

Before presenting the estimation errors, we show an example of clean and noisy images
and denoised ones by different methods. In this example, SNR = 0.1 and n = 10000. From
the result of Figure 8, the denoised image by the original CWF with normalization looks
similar to the ones by our normalization methods, although they have slightly different
contrasts. The denoised images by our 2-stage methods have clearer fine details than those
that are denoised by other methods.

16



clean noisy CWF norm alized CWF

norm alized CWF-GS norm alized CWF-SDP 2-stage CWF-GS 2-stage CWF-SDP

Figure 8: Clean, noisy and denoised images with SNR = 0.1 and n = 10000. The image
noise is white Gaussian.

We evaluate the denoising performance by the normalized root mean squared error
(NRMSE) within a circular mask whose radius is half the image size. From Figure 9, CWF
with image normalization often gives large errors under low SNR and small to medium n.
Our image normalization and 2-staged methods consistently perform better than CWF and
CWF-normalization, where 2-staged methods are slightly better. We also observe that our
GS and SDP refinement yield similar estimation errors, where GS is slightly better under
low SNRs.
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Figure 9: NRMSE of the denoised images under different SNRs and the number of images.
The image noise is white Gaussian.

We further examine the contrast estimation error in each defocus group. In Figure 10
we compare the contrast estimation errors of different methods in each of the 10 defocus
groups for n = 10000 and SNR = 0.1. The defocus groups are sorted by defocus values
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in ascending order. In addition to the previously tested methods, we include a stronger
oracle that knows the true clean images (not just true covariance). It estimates the contrast
by ĉi = ⟨yi , Aixi⟩/∥Aixi∥22. We refer to this method as “Oracle”. On the right panel of
Figure 10 we test the contrast estimation when the observed noisy images are randomly
shifted by 1-5 pixels in x and y directions. From Figure 10, the contrast estimation errors of
both CWF and our methods tend to decrease when the defocus value increases. This makes
sense, since CTFs with larger defocus values have higher absolute values around the zero-th
frequency, and thus enjoy higher SNRs at low frequencies. When all images are centered,
the “oracle” indicates the best possible contrast estimation that a template-based method
can achieve, which obviously outperforms all other methods including the CWF-oracle. We
remark that “oracle” knows the true manifold of the clean images, whereas “CWF-oracle”
assumes a linear approximation of it. However, the new oracle is not robust to shifts, unlike
other methods. When the noisy images are shifted, the oracle, assuming it does not know
the shifts in the observation and only computes the dot product between the shifted yi and
centered Aixi, gives poor contrast estimation. To mitigate this issue, a low pass filter to yi

and Aixi is often needed.
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Figure 10: Average error per defocus group of contrast estimation by different methods.
n = 10000, SNR = 0.1. The image noise is white Gaussian. The left figure panel uses
centered noisy images. In the right panel, we randomly shifted the noisy images by 1-5
pixels in the x and y directions independently. In both panels, the two lines corresponding
to CWF-GS and CWF-SDP overlap with each other.

At last, in the left panel of Figure 11, we compare the NRMSE of the denoised images by
CWF with image normalization and our methods for each defocus group. On the right panel
we show the relationship between the NRMSE of the denoised images and their contrast
values. In particular, we divide the images into 10 groups by their true contrast values.
Namely, the images with contrasts between 0.5 and 0.6 are classified as the first contrast
group, and those with contrasts 0.6-0.7 are considered the second group and so on. We
do not show CWF with image normalization since it has significantly higher NRMSE than
other methods and will screw the scale of the y-axis. From the figure, for all methods,
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the NSMSEs often decrease when defocus values and contrast values increase. This agrees
with our argument that higher defocus and contrast correspond to higher SNRs at low
frequencies. However, with higher defocus values, more energy of clean signals is spilled
outside of the image disk [28], and CTFs have more zero-crossings, which may have negative
effects on image denoising. Indeed, we notice that when defocus values approach 4 µm, the
NRMSEs slightly increase. Overall, the 2-stage methods perform significantly better than
other methods.
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Figure 11: Average NRMSE of denoised images from different methods, per defocus group
(left figure) and per contrast group (right figure). n = 10000, SNR = 0.1. The image noise
is white Gaussian. In the right panel, the red and purple lines overlap with each other.

4.2 Synthetic Data with Colored Noise

We retest different methods on synthetic data with colored noise. The data generation
procedure is exactly the same as before, except that now we use colored noise whose power
spectrum decays with the radial frequency. Colored noise is more realistic in the sense
that it better mimics the noise statistics observed in experimental images. Our choice of
colored noise makes contrast estimation more challenging. Indeed, given the noise spectrum
1/
√
k2 + 1 (up to a constant) where k is measured in 1/(128 pixel size), under the same

SNR, the noise power spectrum in the zeroth frequency is expected to be 40 times larger
than that of the white noise. Since contrast (mean of the pixels) is all about the zeroth
frequency, the high noise at low frequencies poses a serious challenge.

Figure 12 shows an example of a clean image and noisy ones at different SNRs. Com-
paring with Figure 1, the particles are harder to identify by human eyes than in the case of
white noise. Indeed, starting from SNR=0.1, it already becomes hard to visually distinguish
the particle from the colored noise in the background.
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clean SNR = 1 SNR = 0.1 SNR = 0.02 SNR = 0.01

Figure 12: An example of clean and noisy images with colored noise. The defocus value for
the CTF of the noisy images in this example is 2.67 µm.

We next test the variance estimation for the contrasts. As shown in Figure 13, the
performance of the variance estimation is indeed worse than that for images with white noise.
For n = 1000, our method consistently underestimates the variance. For n = 10000, there is
an interesting transition from overestimation to underestimation between SNR= 1/50 and
1/100. This is likely due to that at SNR= 1/100, our method starts to learn the variance of
the average pixel values of noise which is close to 0. However, for n = 100000, we are able
to reliably estimate Var(c) up to SNR = 0.1.

0.0 0.5 1.0 1.5 2.0
log10(1/SNR)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

12
 * 

es
tim

at
ed

 v
ar

ia
nc

e

n=1000
n=10000
n=100000

Figure 13: The estimated variance of contrasts with varying SNR and n. The image noise
is colored Gaussian with decaying PSD. The ground truth of the y-axis is 1.

Figure 14 shows the covariance estimation error for the different methods. Similar to
the white noise case, the large errors of our methods when n = 10000 are mainly due
to overestimation of Var(c). We notice a slight drop of covariance estimation error at
SNR= 0.01 when n = 10000. This is due to the reduced error of contrast variance estimation
(see the orange line in Figure 13). However, as we show next, these refined covariance
matrices are key for accurate contrast estimation.
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Figure 14: Normalized error of covariance estimates by different methods. The image noise
is colored Gaussian with decaying PSD. The line of CWF does not appear in the left panel
due to its high error. In the right panel, the line of CWF overlaps with the lines of other
methods.

As before, we assess the quality of the contrast estimation through scatter plots. From
the result of Figure 15, all methods perform significantly worse than in the white noise case.
However our methods are still comparable to the oracle one and are considerably better
than the original CWF.
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Figure 15: Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 1.
The image noise is colored Gaussian with decaying PSD.

Next, we fix n and decrease SNR to 0.1. In Figure 16, the original CWF almost fails
since there is no clear linear association between its estimated contrasts and the true ones.
However, one can see a clear trend between the contrasts estimated by our methods and the
ground truth ones. Again, our methods achieve comparable accuracy to the oracle one.
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Figure 16: Scatter plots of estimated contrasts v.s. true contrasts. n = 10000, SNR = 0.1.
The image noise is colored Gaussian with decaying PSD.

We next keep the SNR and reduce the number of images to 1000. In Figure 17, the
performance gap between our methods and CWF is even larger, and our methods are still
comparable to the oracle. In both Figure 16 and 17 the scatter plots of our methods tend
to follow a straight line with a smaller slope, due to the high noise. Indeed, consider the
extreme case of pure noise images, the estimated contrasts should follow a horizontal line.
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Figure 17: Scatter plots of estimated contrasts v.s. true contrasts. n = 1000, SNR = 0.1.
The image noise is colored Gaussian with decaying PSD.

In Figure 18 we compare the contrast estimation error of different methods under dif-
ferent SNRs and number of images. We observe that the CWF-GS and CWF-SDP both
perform comparably to the oracle for n ≥ 10000. They also perform close to the oracle for
the small sample size n = 1000, which indicates their robustness to the sample size unlike
CWF. When n = 1000, the error of CWF is always above 0.28, thus it does not appear
in the plot. There is still a large gap between CWF and our methods (and oracle) when
n = 100000.
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Figure 18: Contrast estimation error under different SNRs and number of images. The
image noise is colored Gaussian with decaying PSD.

As for image denoising, we first show an example of clean and noisy images and denoised
ones by different methods. In this example, SNR = 0.1 and n = 10000. From the result of
Figure 19, the denoised image by the original CWF with normalization gives much lower
contrast than the ones by our normalization methods. The denoised images by our 2-stage
methods seem to have clearer fine details than those that are denoised by other methods.

clean noisy CWF norm alized CWF

norm alized CWF-GS norm alized CWF-SDP 2-stage CWF-GS 2-stage CWF-SDP

Figure 19: Clean, noisy and denoised images with SNR = 0.1 and n = 10000. The image
noise is colored Gaussian with decaying PSD.

Next, we compare the NRMSE of the denoised images by the different algorithms. From
Figure 20, CWF with image normalization is very unstable. It does not appear in the
first subplot due to exceeding the y-axis limit. Similar to the white noise case, our image
normalization and 2-staged methods often have smaller errors than other methods, where
2-staged methods are slightly better. Similar to the white noise case, our GS refinement
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yields slightly smaller estimation errors than the SDP method under low SNRs.
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Figure 20: NRMSE of the denoised images under different SNRs and number of images.
The image noise is colored Gaussian with decaying PSD.

Similar to the white noise case, we examine the relationship between contrast estimation
errors and the defocus values of the corresponding CTFs. In Figure 21 we compare the
average contrast estimation errors of different methods in each of the 10 defocus groups.
The defocus groups are sorted by defocus values in ascending order. On the right of Figure
21 we test the contrast estimation when the observed noisy images are randomly shifted by
1-5 pixels in the x and y directions. From Figure 21, the contrast estimation errors of both
CWF and our methods tend to decrease when defocus value increases. The instability of
the “oracle” method to the shifts of images is also observed.
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Figure 21: Average error per defocus group of contrast estimation by different methods.
n = 10000, SNR = 0.1. The image noise is colored Gaussian with decaying PSD. The left
panel uses centered noisy images. In the right panel, we randomly shift noisy images by 1-5
pixels in the x and y directions independently. In the right panel, the lines corresponding
to CWF-GS and CWF-SDP overlap with each other.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
defocus value ( m)

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

av
er

ag
e 

NR
M

SE

CWF
CWF-GS-norm
CWF-SDP-norm
CWF-GS-2-stage
CWF-SDP-2-stage

0.6 0.8 1.0 1.2 1.4
true contrast value

0.525

0.550

0.575

0.600

0.625

0.650

0.675

av
er

ag
e 

NR
M

SE

CWF
CWF-GS-norm
CWF-SDP-norm
CWF-GS-2-stage
CWF-SDP-2-stage

Figure 22: Average NRMSE of denoised images from different methods, per defocus group
(left panel) and per contrast group (right panel). n = 10000, SNR = 0.1. The image noise
is colored Gaussian with decaying PSD.

Same as the white noise case, in the left panel of Figure 22, we compare the NRMSE of
the denoised images by CWF and our methods within each defocus group. The right panel
shows the relationship between NRMSE of denoised images and their contrast values. From
the figure, for all methods, the NSMSE often decreases when defocus value and contrast
value increase. The results of this section suggest that the 2-stage methods outperform the
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other CWF-based methods, and we therefore expect them to be the method of choice also
for experimental data.

5 Results for Experimental Data

We compare our methods with CWF on three experimental datasets, which are freely down-
loadable from the Electron Microscope Pilot Image Archive (EMPIAR) database [14]. We
chose these datasets for a purely technical reason, as each micrograph in these datasets has
a single CTF, which reduces the total number of CTFs and runtime of our method. For
the datasets where each image has its own CTF, it is possible accelerate our method by
implementing in 2-D Fourier space the operations that involve the CTFs. However, to keep
the idea of this work clean and focused, we leave this modification to future work. Due
to the similar performance of our methods on the the three datasets, in this section we
only present the result for EMPIAR-10028 [35], and refer the reader to the supplementary
material for the results for EMPIAR-10005 [16] and EMPIAR-10073 [18].

For all datasets, we first normalize each individual image by the standard deviation
(std) of the pixel values at the image corners that are located outside a circular mask
with radius 0.45L, where L is the dimension of the square image. Next, for each defocus
group we estimate the PSD of the noise in the normalized images, using the pixel values
outside of the same mask. We then perform background subtraction by subtracting the
mean of pixel values outside the mask. For each defocus group, the images are whitened
by applying the single whitening filter that equals to the −0.5 power of the estimated
noise PSD of that defocus group. By doing this, we are assuming that the images in
the same micrograph have similar noise PSDs, in order to reduce the estimation error of
the noise PSD which could be quite large for a single image. Moreover, whitening by
defocus group accelerates our algorithm. In particular, given the whitened image formation
model Wiyi = ciWiAixi + Wiϵi, to recover xi we use the whitened CTFs WiAi. Using
distinct whitening filter Wi for all images increases the number of distinct CTFs and the
computational complexity of the existing implementation of CWF. We also note that we
have to estimate the PSD before the background subtraction, otherwise the estimated PSD
will vanish at the zeroth frequency and cause numerical issues when whitening the image.
The possibly inaccurately estimated PSD, together with imperfect centering of particles
and the ignored astigmatism in CTF, may cause imperfect CTF correction and additional
blurring in the restored images. However, we demonstrate in our experimental results that
our methods are more robust to these factors than the original CWF, especially for contrast
estimation. The machine and the number of cores we used for the experimental datasets
are the same as those of the synthetic simulations.

5.1 EMPIAR-10028

We test the algorithms on a dataset of the Plasmodium falciparum 80S ribosome bound to
the anti-protozoan drug emetine. The picked particles are downloadable from EMPIAR-
10028 [35]. Its 3-D reconstruction can be found on EMDB as EMD-2660 [35]. The dataset
consists of 105247 motion corrected and picked particle images of size 360 × 360 with 1.34
Å pixel size, from 1081 defocus groups. We estimate the covariance using all images, and use
21 defocus groups to estimate the contrast of individual images and then denoise the selected
images. The background subtraction, whitening, Fourier-Bessel expansion and covariance
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estimation took 10 hours. It took 5 seconds for SDP covariance refinement and less than
1 second for the GS one. We apply Wiener filtering to 21 defocus groups, which take 11
minutes. Contrast estimation from the Fourier-Bessel coefficients took less than one second.

We first examine the relationship between the contrasts of particle images and their
locations in a micrograph. Since the ground truth clean contrasts are not available, we use
the approximate ground truth contrasts that are obtained from template matching with
clean projections of the 3-D volume estimated by RELION (available in EMD-2660). In
order to do this, we first generate 1000 clean templates that are projected from uniformly
distributed viewing directions. Next, for each particle image, we find its viewing direction,
2-D in-plane rotation and shift by aligning its CWF-denoised image with each of the clean
template by the method of [22]. We found that using the denoised images often provide
more accurate alignment than using the raw images. To compute the oracle contrast of each
noisy image Yi, we apply its CTF to the aligned clean template and obtain Y ∗

i . However,
the contrast directly computed by

c∗i = ⟨Yi ,Y
∗
i ⟩/∥Y ∗

i ∥2F
can be sensitive to even slight errors in alignment, as we demonstrated in Figures 10 and
21 in synthetic data simulations. To mitigate this issue, we apply Gaussian smoothing to
both Yi and Y ∗

i before computing the “ground truth” contrast using the above formula. We
choose an envelope function with a B-factor 1000 as our Gaussian filter. We remark that
the clean projections are only used to generate approximate ground truth for evaluation,
and are not used in CWF and our methods.

Each subplot of Figure 23 corresponds to one micrograph, where each dot represents a
picked particle image in that micrograph. The location of the dots are the location of the
particle images in that micrograph, whose color represents the oracle contrast by template
matching. The defocus values of the three micrographs (from left to right) are respectively
0.8131 µm, 1.9676 µm, and 2.6643 µm. Figure 23 suggests the existence of local correlations
of image contrasts. Indeed, many pairs of nearby particles have very similar contrasts.
However, the correlation of contrasts is only present within very small sub-regions of the
micrograph.
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Figure 23: Demonstration of the relationship between the contrast of picked particle and
their locations in the micrographs of EMPIAR-10028. Each dot corresponds to a particle
image, whose color represents its estimated contrast.

We next present a box plot of both oracle contrasts (top subplot) and the contrasts
estimated by CWF-GS (bottom subplot) for each of the 21 defocus groups in Figure 24. We
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ignore the result from CWF-SDP as it is very similar to the one of CWF-GS. We also ignore
the result from CWF, since its contrast estimation is not accurate (see later in Figure 25)
and thus its box plot is not informative. From left to right in each subfigure, the defocus
values are sorted in ascending order, ranging from 0.8131 µm to 2.6643 µm. In each box
plot, the 5 horizontal lines, from top to bottom, respectively correspond to max value, 75%
quantile, median, 25% quantile and min value. The two box plots are similar, even though
their contrasts are estimated using completely different methods. One can also see a clearer
trend from the second subfigure (our method) that micrographs with higher defocus values
tend to have higher contrast. This makes sense, as CTFs with higher defocus values preserve
more low frequency information, which yields higher SNR in low frequencies. Interestingly,
both subfigures show that contrast variation within each micrograph is often larger than
the variance of the median contrast of each micrograph (the variance of the y-values of the
orange lines). This possibly indicates that using a single contrast value per micrograph, as
assumed in the 3-D iterative refinement stage, is not appropriate.

Next, we present the scatter plot between the estimated contrasts and the oracle contrast.
It is clear from Figure 25 that our estimates have much better correlation with the oracle.
We remark that we do not expect a strong correlation in any case, since the oracle itself
is noisy and suffers from imperfect alignment. However, this is strong evidence that our
methods provide much better contrast estimates than CWF.
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Figure 24: Box plot of the oracle contrasts (top) and our estimated contrasts (bottom) in 21
defocus groups of the dataset EMPIAR-10028. The defocus values are sorted in ascending
order, ranging from 0.8131 µm to 2.6643 µm.

We next compare the image denoising performance by CWF and the ones with our
refined covariance matrix. Since image normalization only affects the global scale of the
image and normalized CWF performs poorly, we only show the denoised images without
normalization. We also found that the 2-stage CWF often performs worse than the 1-
stage version, possibly due to violation of assumptions in our synthetic model, such as
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Figure 25: The scatter plots of the estimated contrast v.s. the oracle contrast for three
defocus groups in the dataset EMPIAR-10028. The dashed line corresponds to the function
y = x.

imperfect centering and astigmatism in CTF. Thus, we recommend applying the one-stage
algorithm for experimental datasets, and we compare their denoised images as follows. From
Figure 26, all methods produce dark areas around the boundary of the particle. These dark
rings are likely due to the imperfect CTF correction by CWF. The denoised images by
our methods have less dark areas, comparing to that of CWF. Since negative pixel values
are often observed in CTF-affected clean images, these dark rings in CWF-denoised images
are possibly due to inaccurate CTF-correction, which suggests better CTF correction by
our methods. Furthermore, we observe better denoised images by our methods with closer
contrast to the clean templates.

clean noisy CWF CWF-GS CWF-SDP

Figure 26: Denoising results of EMPIAR-10028.

At last, to quantitatively compare the denoising results of different methods, we compute
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the Fourier ring correlations (FRC) between the denoised images and their aligned clean
templates. That is, for each pair of two images I1 and I2 and their Fourier coefficient vectors
f1,r,f2,r at radial frequency r, we compute

FRC(r) =
ℜ(f∗

1,rf2,r)

∥f1,r∥∥f2,r∥
,

where ℜ denotes taking the real part of a complex number. For each method, we compute
the average FRC between the denoised images and the clean templates over the 2015 images
from 21 defocus groups. We notice that FRC is very sensitive to image rotations and shifts.
With slight error in image alignment, the FRC of all methods decreases rapidly as r increases.
As a result, when alignment errors are present, FRC may not reflect the true image quality.
However, even from the first few frequencies, the FRCs of CWF-based methods are much
higher than that of the näıve phase flipping method. We also notice that CWF-denoised
images have large errors in the first two frequencies, mainly due to its limitations in handling
contrast variations. Since the clean templates are only aligned and registered with CWF-
denoised images, the comparison is a bit unfair to our methods, as our methods may suffer
from larger alignment errors. However, even in this scenario, our methods achieve much
better FRC at the first two radial frequencies due to the better contrast estimation.
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Figure 27: The average Fourier ring correlation between denoised images and the aligned
clean templates over 2015 images from EMPIAR-10028.

6 Conclusion

We introduced an effective algorithm for estimating the amplitude contrast of individual
images and the overall contrast variability in the ab-initio stage. Our method refines the
initial estimated covariance so it satisfies additional constraints that follow from the image
formation model by tomographic projection. Results for both synthetic and experimental
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datasets indicate consistently better contrast estimation by our methods than CWF. On
synthetic data, the contrast estimation errors of our methods are comparable to those of an
oracle, even with small number of images. We also demonstrate that our method improves
the image denoising result of CWF. Among the various contrast estimation and image de-
noising techniques that were considered in this paper, following the results for experimental
datasets we recommend using CWF-GS (see Algorithm 1 with option=GS in Section 3.7)
for contrast estimation and CWF-GS with image normalization for image denoising (see Al-
gorithm 2 with option=normalization in Section 3.7). There are also some interesting future
directions. For example, one can try techniques based on common-lines to directly estimate
the rotations of molecules by using the denoised and normalized images from our methods
with rudimentary 2-D class averaging [2]. Normalizing the images may also lead to improve-
ment of 2-D class averaging procedures. Another interesting application of our method is to
use our estimated contrasts to initialize their values in the iterative refinement procedure of
RELION [24]. As for the computational aspect, one can modify the original CWF method so
it can more efficiently handle per-image CTF, rather than a small number of defocus groups.
Our Python code is available at https://github.com/yunpeng-shi/contrast-cryo which
is planned to be integrated into ASPIRE [36].
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