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A B S T R A C T

This paper presents order reduction techniques for nonlinear quasi-periodic systems subjected to external
excitations. The order reduction techniques presented here are based on the Lyapunov–Perron (L–P) Trans-
formation. For a class of non-resonant quasi-periodic systems, the L-P Transformation can convert a linear
quasi-periodic system into a linear time-invariant one. This Linear Time-Invariant (LTI) system retains the
dynamics of the original quasi-periodic system. Once this LTI system is obtained, the tools and techniques
available for analysis of LTI systems can be used, and the results could be obtained for the original
quasi-periodic system via the L–P Transformation. This approach is similar to the Lyapunov–Floquet (L–F)
transformation to convert a linear time-periodic system into an LTI system and perform analysis and control.

Order reduction is a systematic way of constructing dynamical system models with relatively smaller states
that accurately retain large-scale systems’ essential dynamics. This work presents reduced-order modeling
techniques for nonlinear quasi-periodic systems subjected to external excitations. The methods proposed here
use the L–P Transformation that makes the linear part of transformed equations time-invariant. In this work,
two order reduction techniques are suggested. The first method is simply an application of the well-known
Guyan like reduction method to nonlinear systems. The second technique is based on the concept of an
invariant manifold for quasi-periodic systems.

The ‘quasi-periodic invariant manifold’ based technique yields ‘reducibility conditions’. These conditions
(referred to in the perturbation literature as resonance conditions) help us understand the system’s various types
of resonant interactions. These resonances indicate energy interactions between the system states, nonlinearity,
and external excitation. To retain the essential dynamical characteristics, one must preserve all these ‘resonant’
states in the reduced-order model. Thus, if the ‘reducibility conditions’ are satisfied then only, a nonlinear order
reduction based on the quasi-periodic invariant manifold approach is possible. It is found that the invariant
manifold approach yields good results. These methodologies are general and can be used for parametric study,
sensitivity analysis, and controller design.
1. Introduction

Order reduction is constructing small order systems from the large-
cale structure, which capture the dominant dynamics [1]. In the design
nd development process, engineers often analyze complex dynamical
ystems governed by a large set of integrodifferential (ordinary/partial)
quations. These systems are complicated to solve analytically, and
ne must resort to numerical techniques [2]. While solving these dy-
amical systems numerically, one has to consider various issues like
onvergence, numerical truncation errors, and, most importantly, the
imited computational resources and time. To simulate the dynamical
ystem’s response accurately within a reasonable amount of time, one
an construct an equivalent small-scale system known as the ‘reduced
rder model’ that will approximate the large-scale system dynamics [3,
]. This approach simplifies a sizeable dynamical system by replacing
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it with an equivalent small-scale system known as the Model Order
Reduction (MOR).

Researchers have used order reduction of linear systems using mul-
tiple techniques. Some of the methods include error minimization [5],
pole clustering [6], transfer function-based [7], and Pade approxi-
mation [8], to mention a few. For a comprehensive overview, we
refer to Ref. [9]. In addition, nonlinear order reduction is studied by
researchers from a structural point of view in the second-order and
state–space form [10–12]. For order reduction of the time-periodic
system, researchers utilized the L–F Transformation and performed
order reduction. We refer to Refs. [13–17] for details on this approach.

The order Reduction procedure comprises the following steps.
1. A study of the large-scale system and identifying the dominant states
pertaining to the dominant dynamics.
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2. Elimination of the non-dominant states either by simply neglecting
their contribution or replacing them with the appropriate functions of
dominant states.
3. Formulation of an equivalent reduced-order system consisting only
of the dominant states.

This work concentrates on the ‘automatic’ order reduction of an
important class of engineering systems known as the ‘nonlinear quasi-
periodic systems’ [18–20]. These systems have quasi-periodic coeffi-
cients and in the state–space form expressed as

𝐱̇ = 𝐀(𝑡)𝐱 + 𝐟 (𝐱, 𝑡) + 𝐅(𝑡) (1)

where 𝐀(𝑡) is an 𝑛 × 𝑛 matrix with quasi-periodic coefficients and
𝐟 (𝐱, 𝑡) is a nonlinear function with monomials of 𝐱, 𝐅(𝑡) is the external
deterministic excitation, and 𝐱 is an 𝑛 vector of appropriate dimensions.
The objective of order reduction is to construct a reduced-order system

𝐱̇𝑟 = 𝐀𝑟(𝑡)𝐱𝑟 + 𝐟𝑟(𝐱𝑟, 𝑡) + 𝐅𝑟(𝑡) (2)

that captures the essential dynamics of the large-scale system. It is
noted that 𝐀(𝑡) the matrix is quasi-periodic and contains incommen-
surate frequencies. To the best of the author’s knowledge, no current
techniques would allow direct order reduction from the Eq. (1) to the
q. (2).
The reducibility of a linear quasi-periodic system has been the sub-

ect of research in the scientific community. Many excellent references
iscuss the reducibility of quasi-periodic systems [21–26]. Recently,
aswa and Redkar presented a technique based on L-F Transformation,
tate augmentation, and normal form to reduce linear quasi-periodic
ystem into an LTI system [27]. Very recently, Subramanian and Redkar
resented a method to compute L-P Transformation based on intuitive
tate augmentation and normal forms [28]. This technique can be uti-
ized to calculate a closed-form expression for the L–P Transformation.
n this paper, we use the L–P transformation-based approach presented
n Refs. [28,29] to obtain the LTI representation of the quasi-periodic
ystem and perform the order reduction. For clarity, it is noted that
he reducibility of a quasi-periodic system means converting a linear
uasi-periodic system into an LTI system of the same dimension. Order
eduction means reducing the size (or the number of states) of the
riginal quasi-periodic system or its LTI representation obtained via the
-P Transformation.
This paper briefly reviews the L–P transformation computation,

onditions for reducibility, and applications. The linear and nonlinear
rder reduction techniques are outlined in section two. Section three
resents an application- Mathieu Hill-type equation for which the L–P
ransformation can be determined using the state augmentation and
ormal forms. The reduced-order models are constructed using linear
nd nonlinear techniques for this system. Section five discusses the
esonant interaction. Section six presents examples of the effectiveness
f the order reduction approach near resonances. In the end, in section
ive, discussions and conclusions are presented.

. Mathematical preliminaries

.1. Computation of the L-P transformation

A quasi-periodic dynamical system, without any external excitation,
an be expressed as

̇ = 𝐀(𝑡)𝐲; (3)

here A(t) is a 𝑛 × 𝑛 matrix containing a finite number (k) of incom-
ensurable frequencies (k ≥ 2)

(𝑡) = 𝐴(𝜔1𝑡,… ..., 𝜔𝑘𝑡) ∀𝑘 ≥ 2 (4)

t is noted that A(t) is continuous and periodic in each argument. Still,
he ratio of any two frequencies is irrational [25]. It can be observed

hat the dynamical system given by the Eq. (4) is linear, and the

2

ethod of normal forms [30] is inapplicable. However, the parametric
xcitation terms can be considered fictitious states. Therefore, the linear
onautonomous system given by the equation can be expressed as a
onlinear autonomous system.
Consider the most general form of the Eq. (3) with quasi-periodicity

rovided by

̇ = (𝐁0 + 𝐁(𝑡))𝐱 (5)

here 𝐀(𝑡) expressed as a constant matrix 𝐁0 and a
uasi-periodic matrix 𝐁(𝑡) of appropriate dimensions. It is important to
note that we assume the eigenvalues (𝜆) of 𝐁0 and the fundamental
frequencies (𝜔) of 𝐁(𝑡) satisfying the diophantine condition [31] to
avoid small divisors

|𝜆𝑖 − 𝜆𝑗 +
√

−1(𝑘, 𝜔)| ≥ 𝑐
|𝑘|𝛾

∀𝑘 ∈ Z𝑟∖{0} (6)

where |𝑘| = |

|

𝑘1|| +⋯ + |

|

𝑘𝑟|| and 𝑐 is a constant.
Typically, 𝐁(𝑡) comprises of ∑𝑛

𝑖=1(𝑎𝑖Cos(𝜔𝑖𝑡) + 𝑏𝑖Sin(𝜔𝑖𝑡)) type terms
where 𝜔𝑖 is the frequency of quasi-periodic excitation (c.f. Eq. (4)).
Assuming 𝑞𝑖 = Cos(𝜔𝑖𝑡) and 𝑝𝑖 = Sin(𝜔𝑖𝑡) the Eq. (5) can be expressed
s

𝐱̇ = 𝐁0𝐱 + 𝐟 (𝐱) (7)

where 𝐱 = [𝐱,𝐩,𝐪]𝑇 , 𝐩 = [𝑝1, 𝑝2,… , 𝑝𝑛]𝑇 , 𝐪 = [𝑞1, 𝑞2,… , 𝑞𝑛]𝑇 and
Applying the modal Transformation 𝐱 = 𝐌𝐳, if 𝐁0 has semi-simple

eigenvalues, the Eq. (7) is transformed into

𝐳̇ = 𝐉𝐳 +𝐌−1𝐟 (𝐳) (8)

where 𝐉 is the Jordan form of 𝐁0 (assumed to have semi-simple eigen-
values). The diagonal elements of the 𝐉 matrix contain the linear
matrix’s (𝐁0) eigenvalues and frequencies of parametric excitations
[𝜆𝑛+1 … 𝜆𝑛+𝑚] that are incommensurate.

𝐉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆1

𝜆2

⋱

𝜆𝑛

𝝎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,𝝎 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆𝑛+1

⋱

𝜆𝑛+𝑚

⎤

⎥

⎥

⎥

⎥

⎦

(9)

The system shown in the Eq. (8) is amenable to an application of
Normal Forms [30]. A near identity transformation [30] (of the form
given by Eq. (10)) is applied to the Eq. (8).

= 𝐯 + 𝐡𝑟(𝐯) (10)

here 𝐡𝑟(𝐯) is a formal power series in 𝐯 of degree 𝑟 with 𝑇 periodic
oefficients that leads to

̇ = 𝐉𝐯 −
[

𝜕𝐡𝑟(𝐯)
𝜕(𝐯)

𝐉𝐯 − 𝐉𝐡𝑟(𝐯)
]

+ 𝐟𝑟(𝐯) (11)

The higher-order nonlinear terms in the Eq. (11) are eliminated by
onsidering the following condition
𝜕𝐡𝑟(𝐯)
𝜕(𝐯)

𝐉𝐯 − 𝐉𝐡𝑟(𝐯) + 𝐟𝑟(𝐯) = 0 (12)

where
𝐡𝑟(𝐯) =

𝑠
∑

𝑗=1

∑

𝑚𝑟

𝜈=𝛼
∑

𝜈=−𝛼
ℎ𝑗𝑚𝜈 |𝐯|𝑚 𝐞𝑗 , 𝐟𝑟(𝐯) =

𝑠
∑

𝑗=1

∑

𝑚𝑟

𝜈=𝛼
∑

𝜈=−𝛼
𝑓𝑗𝑚𝜈 |𝐯|𝑚 𝐞𝑗 ,

𝑟 = (𝑚1, 𝑚2..),
𝑛
∑

𝑖=1
𝑚𝑖 = 2, |𝐯|𝑚 = 𝑣𝑚1

1 𝑣𝑚22 ..𝑣𝑚𝑛
𝑛

nd 𝐞𝑗 is the 𝑗th member of the natural basis
After solving the Eq. (12), the solvability expression for a given

egree of nonlinearity can be expressed as

𝑗𝑚𝜈 =
𝑓𝑗𝑚𝜈 (13)
𝐦𝑟.𝝀 − 𝜆𝑗
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where 𝝀 =
[

𝜆1, 𝜆2, 𝜆3....𝜆𝑛, 𝜆𝑛+1 … 𝜆𝑛+𝑚
]𝑇 are the eigenvalues of 𝐉,

𝐦𝑟.𝝀 − 𝜆𝑗 ≠ 0 (14)

uppose the solvability condition [23] given by Eq. (14) is satisfied. In
hat case, one can obtain the linear equation given by the Eq. (15) and
the near identify Transformation given by the Eq. (10).

𝐯̇ = 𝐉𝐯 (15)

The near identity transformation given by the Eq. (10) is wholly known
in the non-resonant case and 𝐡𝑟(𝐯) contains the terms that explicitly
depend upon fictitious states 𝐩 and 𝐪. One can substitute these fictitious
tates in terms of their closed-form expression 𝑞𝑖 = Cos(𝜔𝑖𝑡), and 𝑝𝑖 =
Sin(𝜔𝑖𝑡) that yields 𝐡𝑟(𝐯, 𝑡) leading to the following form of the near
dentity transformation

= [𝐈 +𝐐(𝑡)]𝐯 ≈ 𝐐̃(𝑡)𝐯 (16)

his Transformation is similar to the Lyapunov-Floquet (L-F) Transfor-
ation [14,32] but for quasi-periodic systems.

imitations;
One important aspect is that this technique uses the normal form

echnique, which can be viewed as an extension of the higher-order
veraging method [33,34] and has the same limitations as the averag-
ng. This approach may not yield accurate results when the nonlinearity
s very strong (i.e., very strong parametric excitation in the present
ase) or the linear term is absent (i.e., 𝐁0 = 𝟎 c.f. Eq. (5)). On the
ther hand, to the best of the author’s knowledge, this approach is the
nly approach that yields the L-P Transformation given by the Eq. (16)
n a closed-form. The authors have successfully used this approach to
nalyze linear and nonlinear quasi-periodic systems.

.2. Computation of the inverse of the L-P transformation

For parametrically excited quasi-periodic linear systems of the
q. (3) form, the L-P Transformation is sufficient for analysis. However,
he inverse of the L-P Transformation is needed for quasi-periodic
onlinear systems or quasi-periodic linear/nonlinear systems with de-
erministic or stochastic excitations. The L-P Transformation is a matrix
here the matrix elements contain a truncated quasi-periodic Fourier
eries. Therefore, inverting a quasi-periodic matrix is not a trivial
roblem. This section presents two possible approaches to obtain the
nverse L-P Transformation.

ymbolic Computation: In minimal cases, when the L-P Transforma-
ion matrix (given by Eq. (16)) is small (2 × 2) and contains only a few
erms, Symbolic computation software like Mathematica or Maple may
e able to find the inverse. However, the inverse computed with this
irect approach should be checked for the following conditions.
̃−1(0) = 𝐈

̃−1(𝑡) × 𝐐̃(𝑡) = 𝐈
(17)

he expression provided for 𝐐−1(𝑡)may need further simplification for
ase in future use.

eural Network: One can also use a dynamical method using a recur-
ent neural network proposed for inversion of the time-varying matrix.
ne could use the gradient method [35], Zhang dynamics [36–38], or
hen dynamics [37] to find an inverse. This section briefly presents the
hang dynamics approach [36] that could be used for inverting the L-P
ransformation.
Consider a time-varying matrix 𝐘(𝑡) with inverse 𝐖(𝑡) = 𝐘−1(𝑡) so

hat the Eq. (18) is valid

(𝑡)𝐖(𝑡) = 𝐈
(18)
(𝑡)𝐖(𝑡) − 𝐈 = 𝟎 a

3

e assume 𝐘(𝑡) is known and 𝑑𝐘(𝑡)
𝑑𝑡 exists. The objective is to find 𝐖(𝑡)

sing the following equation

(𝐖(𝑡), 𝑡) ≡ 𝐘(𝑡)𝐖(𝑡) − 𝐈 (19)

here 𝐄(𝐖(𝑡), 𝑡) is a matrix-valued error function. The derivative of the
rror function 𝐄̇(𝐖(𝑡), 𝑡) should be selected such that 𝐄(𝐖(𝑡), 𝑡) → 𝟎.
hus, 𝐄̇(𝐖(𝑡), 𝑡) can be chosen as
𝑑𝐄(𝐖(𝑡), 𝑡)

𝑑𝑡
= −𝛤𝐅(𝐄(𝐖(𝑡), 𝑡)) (20)

here 𝛤 is a scaling factor for the convergence and 𝐅(𝐄(𝐖(𝑡), 𝑡)) is
alled an activation function or matrix mapping recurrent neural net-
ork.
Differentiating Eq. (19) w.r.t. time and substituting Eqs. (19) and

20) yields

(𝑡)𝐖̇(𝑡) = −𝐘̇(𝑡)𝐖(𝑡) − 𝛤𝐅(𝐄(𝐖(𝑡), 𝑡))

(𝑡)𝐖̇(𝑡) = −𝐘̇(𝑡)𝐖(𝑡) − 𝛤𝐅(𝐘(𝑡)𝐖(𝑡) − 𝐈)
(21)

he Eq. (21) is a matrix differential equation that can be solved for
(𝑡) using an appropriate initial condition. In the current paper, 𝐘(𝑡)

s the L-P transformation matrix 𝐐̃(𝑡) and 𝐖(𝑡) is the inverse of L-P
ransformation 𝐐̃−1(𝑡). Thus Eq. (21) can be written as

̃ (𝑡) ̇̃𝐐−1(𝑡) = − ̇̃𝐐(𝑡)𝐐̃−1(𝑡) − 𝛤𝐅(𝐐̃(𝑡)𝐐̃−1(𝑡) − 𝐈) (22)

ne has to select an appropriate activation function and scaling con-
tant 𝛤𝐅() to achieve convergence. Then, the Eq. (22) can be numer-
cally integrated with the initial condition 𝐐̃−1(0) = 𝐈 to determine
̃−1(𝑡). For more details on the Zhang Neural Network, its application,
nd proof of convergence, we refer to Ref. [38].

. Order reduction techniques

.1. Order reduction via linear projection

Consider a nonlinear quasi-periodic system described by the Eq. (1).
pplying the L-P Transformation 𝐱(𝑡) = 𝐐(𝑡)𝐳(𝑡) produces

̇ (𝑡) = 𝐉𝐳(𝑡) +𝐐−𝟏(𝑡)𝐟 (𝐳, 𝑡) +𝐐−𝟏(𝑡)𝐅(𝑡) ≡ 𝐉𝐳(𝑡) + 𝐰(𝐳, 𝑡) + 𝐅(𝑡) (23)

where 𝐉 is the constant matrix and 𝐰(𝐳, 𝑡) represents an appropriately
defined nonlinear quasi-periodic vector consisting of monomials of 𝑧𝑗 .

Again, the objective of order reduction is to replace the nonlinear
quasi-periodic system given by Eq. (23) with an equivalent system
provided by

𝐳̇𝑟(𝑡) = 𝐉𝑟𝐳𝑟(𝑡) + 𝐰𝑟(𝐳𝑟, 𝑡) + 𝐅𝑟(𝑡) (24)

We partition the Eq. (23) as
{

𝐳̇𝑟

𝐳̇𝑠

}

=

[

𝐉𝑟

0

0

𝐉𝑠

]{

𝐳𝑟

𝐳𝑠

}

+

{

𝐰𝑟(𝐳𝑟, 𝐳𝑠, 𝑡)

𝐰𝑠(𝐳𝑟, 𝐳𝑠, 𝑡)

}

+

{

𝐅𝑟(𝑡)

𝐅𝑠(𝑡)

}

(𝑎) (25)

where 𝐳𝑠 is an (𝑛 − 𝑟) vector of non-dominant states, 𝐉𝑠 is the ma-
trix block of dimension (𝑛 − 𝑟) × (𝑛 − 𝑟) corresponding to the non-
dominant states as defined earlier and 𝐰𝑟(𝐳𝑟, 𝐳𝑠, 𝑡) and 𝐰𝑠(𝐳𝑟, 𝐳𝑠, 𝑡) are
the monomials of 𝐳(of order 𝑖) with quasi-periodic coefficients.

In the linear technique, the contribution of the non-dominant states
is considered insignificant and hence neglected. Thus, the reduced-
order model is given by

𝐳̇𝑟(𝑡) = 𝐉𝑟𝐳𝑟(𝑡) + 𝐰𝑟(𝐳𝑟, 0, 𝑡) + 𝐅𝑟(𝑡) (26)

The Eq. (26) is the reduced-order model of the actual large-scale
ystem described by the Eq. (25). The Eq. (26) can be integrated
umerically and using the transformation 𝐱(𝑡) = 𝐐(𝑡)𝐓𝐳𝑟(𝑡), where 𝐓 =
𝐈𝑟×𝑟 𝟎𝑟×(𝑛−𝑟)

]𝑇 all the states in 𝐱 can be recovered.
This linear projection technique is simple and easy to implement.

t may or may not provide accurate results. The selection of dominant
tates depends upon the judgment of the analyst. It does not give a
lear insight into system dynamics if the system behavior is complex

nd involves internal and parametric resonance.
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3.2. Order reduction using invariant manifold

This methodology is based on the ‘Invariant Manifold Theory’. Ac-
cording to this theory, there exists a relationship between the dominant
‘‘master’’ and the non-dominant ‘‘slave’’ states of the system. It is
possible to replace (under certain conditions) the non-dominant states
with dominant states. Thus, the order of the system can be reduced.

We assume that forcing frequency is incommensurate with the
frequency of quasi-periodic parametric excitation. The constraint (or
manifold governing) equations relating to ‘master’ and ‘slave’ states are
complex. Still, they admit the solution in the form of asymptotic ex-
pansion. The relationship between the dominant and the non-dominant
states of the system will involve contributions from the forcing and
nonlinearity. If there are no resonances, replacing the non-dominant
states with the dominant ones is possible.

Once again, consider a nonlinear quasi-periodic system given by the
Eq. (23) in the L-P transformed domain that is further partitioned as
the Eq. (25). After ordering and expanding the nonlinear terms, we
obtain.

𝐳̇𝑟 = 𝐉𝑟𝐳𝑟 + 𝜀𝐰𝑟2(𝐳𝑟, 𝐳𝑠, 𝑡) + 𝜀2𝐰𝑟3(𝐳𝑟, 𝐳𝑠, 𝑡) + 𝜀3𝐰𝑟4(𝐳𝑟, 𝐳𝑠, 𝑡) +⋯

𝜀𝑖−1𝐰𝑟𝑖(𝐳𝑟, 𝐳𝑠, 𝑡) + 𝜀𝑖−1𝐎(|𝐳|𝑖) + 𝐅𝑟(𝑡)(𝑎)

̇ 𝑠 = 𝐉𝑠𝐳𝑠 + 𝜀𝐰𝑠2(𝐳𝑟, 𝐳𝑠, 𝑡) + 𝜀2𝐰𝑠3(𝐳𝑟, 𝐳𝑠, 𝑡) + 𝜀3𝐰𝑠4(𝐳𝑟, 𝐳𝑠, 𝑡) +⋯

+𝜀𝑖−1𝐰𝑠𝑖(𝐳𝑟, 𝐳𝑠, 𝑡) + 𝜀𝑖−1𝐎(|𝐳|𝑖) + 𝐅𝑠(𝑡)(𝑏)

(27)

where 𝜀𝑛−1𝐰𝑟𝑛(𝐳, 𝑡) include the terms of monomials of order 𝑛 in ‘master’
dynamics and 𝜀𝑛−1𝐰𝑠𝑛(𝐳, 𝑡) include terms of monomials of order 𝑛 in
‘slave’ dynamics. In this approach, we assume a nonlinear relationship
between the dominant (𝐳𝑟) and the non-dominant (𝐳𝑠) states as

𝐳𝑠 = 𝐡01(𝑡) + 𝜀(𝐡02(𝑡) + 𝐡12(𝐳𝑟, 𝑡) + 𝐡22(𝐳𝑟, 𝑡))

𝜀2(𝐡03(𝑡) + 𝐡13(𝐳𝑟, 𝑡) + 𝐡23(𝐳𝑟, 𝑡) + 𝐡33(𝐳𝑟, 𝑡))

𝜀3(𝐡04(𝑡) + 𝐡14(𝐳𝑟, 𝑡) + 𝐡24(𝐳𝑟, 𝑡) + 𝐡34(𝐳𝑟, 𝑡) + 𝐡44(𝐳𝑟, 𝑡)) +⋯

(28)

ere 𝐡𝑖𝑗 (𝐳𝑟, 𝑡) are the unknown quasi-periodic vector coefficients. Sub-
titution of the Eq. (28) into (27) yields

̇ 𝑠 = 𝐡̇01(𝑡) + 𝜀{𝐡̇02(𝑡) +
𝜕
𝜕𝑡
(𝐡12(𝐳𝑟, 𝑡) + 𝐡22(𝐳𝑟, 𝑡))

𝜕
𝜕𝐳𝑟

(𝐡12(𝐳𝑟, 𝑡) + 𝐡22(𝐳𝑟, 𝑡)) ⋅ 𝐳̇𝑟}

+𝜀2{𝐡̇03(𝑡) +
𝜕
𝜕𝑡
(𝐡13(𝐳𝑟, 𝑡) + 𝐡23(𝐳𝑟, 𝑡) + 𝐡33(𝐳𝑟, 𝑡))

𝜕
𝜕𝐳𝑟

(𝐡13(𝐳𝑟, 𝑡) + 𝐡23(𝐳𝑟, 𝑡) + 𝐡33(𝐳𝑟, 𝑡)) ⋅ 𝐳̇𝑟}

𝜀3{𝐡̇04(𝑡) +
𝜕
𝜕𝑡
(𝐡14(𝐳𝑟, 𝑡) + 𝐡24(𝐳𝑟, 𝑡) + 𝐡34(𝐳𝑟, 𝑡) + 𝐡44(𝐳𝑟, 𝑡))

𝜕
𝜕𝐳𝑟

(𝐡14(𝐳𝑟, 𝑡) + 𝐡24(𝐳𝑟, 𝑡) + 𝐡34(𝐳𝑟, 𝑡) + 𝐡44(𝐳𝑟, 𝑡)) ⋅ 𝐳̇𝑟} +⋯

(29)

ropping spatial and temporal arguments for brevity, Eq. ((27)-b) can
e rewritten as
̇ 𝑠 = 𝐉𝑠 ⋅ {𝐡01 + 𝜀(𝐡02 + 𝐡12 + 𝐡22) + 𝜀2(𝐡03 + 𝐡13 + 𝐡23 + 𝐡33)

+𝜀3(𝐡04 + 𝐡14 + 𝐡24 + 𝐡34 + 𝐡444) +⋯
𝑛
∑

=4
𝜀𝑚((𝐡0𝑚+1 +

𝑚+1
∑

𝑘=1
𝐡𝑘𝑚+1), 𝑡)

+𝜀𝐰𝑠2(𝐡01 + 𝜀(𝐡02 + 𝐡12 + 𝐡22) + 𝜀2(𝐡03 + 𝐡13 + 𝐡23 + 𝐡33)

𝜀3(𝐡04 + 𝐡14 + 𝐡24 + 𝐡34 + 𝐡444) +⋯
𝑛
∑

=4
𝜀𝑚(𝐡0𝑚+1 +

𝑚+2
∑

𝑘=1
𝐡𝑘𝑚+1), 𝑡)

𝜀2𝐰𝑠3(𝐡01 + 𝜀(𝐡02 + 𝐡12 + 𝐡22) + 𝜀2(𝐡03 + 𝐡13 + 𝐡23 + 𝐡33)
3
+𝜀 (𝐡04 + 𝐡14 + 𝐡24 + 𝐡34 + 𝐡44) +⋯)}

4

𝑛
∑

𝑚=4
𝜀𝑚(𝐡0𝑚+1 +

𝑚+1
∑

𝑘=1
𝐡𝑘𝑚+1), 𝑡) + 𝜀3𝐰𝑠4(𝐡01 + 𝜀(𝐡02 + 𝐡12 + 𝐡22)

+𝜀2(𝐡03 + 𝐡13 + 𝐡23 + 𝐡33) + 𝜀3(𝐡04 + 𝐡14 + 𝐡24 + 𝐡34 + 𝐡444) +⋯
𝑛
∑

=4
𝜀𝑚(𝐡0𝑚+1 +

𝑚+1
∑

𝑘=1
𝐡𝑘𝑚+1), 𝑡)

+𝜀𝑖−1𝐰𝑠𝑖(𝐡01 + 𝜀(𝐡02 + 𝐡12 + 𝐡22) + 𝜀2(𝐡03 + 𝐡13 + 𝐡23 + 𝐡33)

+𝜀3(𝐡04 + 𝐡14 + 𝐡24 + 𝐡34 + 𝐡444) +⋯
𝑛
∑

=4
𝜀𝑚(𝐡0𝑚+1 +

𝑚+1
∑

𝑘=1
𝐡𝑘𝑚+1), 𝑡)}

+𝐅𝑠(𝑡)

(30)

ubstituting the Eqs. (27) and (28) into the Eq. (29) and equating it
o the Eq. (30) yields a complex partial differential equation involving
arious orders of 𝜀. By correlating the terms of the same order of 𝜀,
e obtain the equations, which need to be solved to determine 𝐡0𝑚+1(𝑡)
nd 𝐡𝑘𝑚+1(𝐳𝑚, 𝑡)
Collecting the terms in order of 𝜀0 yields

𝐡̇01(𝑡) = 𝐉𝑠𝐡01(𝑡) + 𝐅𝑠(𝑡) (31)

The Eq. (31) is a linear equation involving pure temporal arguments.
The solution of the Eq. (31) can be determined using the convolution
integral [39] as

𝐡01(𝑡) = 𝐞𝐉𝑠𝑡𝐡01(0) + ∫

𝑡

0
𝐞𝐉𝑠(𝑡−𝜏)𝐅𝑠(𝜏)𝑑𝜏 (32)

f the forcing 𝐅(𝑡) is harmonic with frequency 𝑘𝜔𝑓 , then after the L-
Transformation, the frequency of harmonic excitation 𝐅(𝑡) becomes
+∞
𝑝1=−∞

∑∞
𝑝2=−∞

(𝐩 ⋅𝝎𝑝 + 𝑘𝜔𝑓 ), where 𝝎𝑝 is the vector containing quasi-
periodic frequencies in the L-P Transformation 𝝎𝑝 = {𝜔1 𝜔2},𝐩 =
{𝑝1 𝑝2}𝑇 .

Expressing forcing in the most general form as

𝐅𝑠(𝑡) =
+∞
∑

𝑘=−∞

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞
𝐂𝑝1𝑝2𝑘𝐞

𝑖(𝐩⋅𝝎𝑝+𝑘𝜔𝑓 )𝑡 (33)

If the eigenvalues of 𝐉𝑠 are purely imaginary and given by 𝜆𝑝; 𝑝 =
1, 2,… , 𝑠 then the solution can be written as

𝐡01(𝑡) =
𝑠
∑

𝑗=1

∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞

∞
∑

𝑘=−∞
(𝐶𝑗𝑝1𝑝2𝑘

𝐞𝑖(𝑛𝜔𝑝+𝑘𝜔𝑓 )𝑡

𝑖(𝐩 ⋅ 𝝎𝑝 + 𝑘𝜔𝑓 − 𝜆𝑗 )
𝑒𝑗

− 𝐶𝑗𝑝1𝑝2𝑘
𝐞𝑖𝜆𝑗 𝑡

𝑖(𝐩 ⋅ 𝝎𝑝 + 𝑘𝜔𝑓 − 𝜆𝑗 )
𝑒𝑗) (34)

It can be seen that if 𝐩 ⋅ 𝝎𝑝 + 𝑘𝜔𝑓 − 𝜆𝑗 = 0 for any combination, 𝐡01(𝑡)
cannot be found out, and the system is said to be in ‘linear resonance’.
This resonance is referred to as a ‘primary’ or a ‘main resonance’ in
perturbation analysis.

Collecting the terms at the order of 𝜀1 yields

𝐡̇02(𝑡) = 𝐉𝑠𝐡02(𝑡) −
𝜕𝐡12
𝜕𝐳𝑟

𝐅𝑟 + 𝐰𝑠20 (𝑡) (35)

𝜕𝐡12
𝜕𝑡

+
𝜕𝐡12
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 +
𝜕𝐡22
𝜕𝐳𝑟

𝐅𝑟(𝑡) − 𝐉𝑠𝐡12 = 𝐰𝑠21 (𝐳𝑟, 𝑡) (36)

𝜕𝐡22
𝜕𝑡

+
𝜕𝐡22
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 − 𝐉𝑠𝐡22 = 𝐰𝑠22 (𝐳𝑟, 𝑡) (37)

It can be seen that Eqs. (35), (36) and (37) are coupled equations.
However, the Eq. (37) can be solved independently. Assuming the most
general form of nonlinearity and expanding the known and unknown
terms in multiple Fourier series as

𝐡22(𝐳𝑟, 𝑡) =
𝑠
∑∑

+∞
∑

+∞
∑

ℎ𝑗𝑚𝑝1𝑝2𝜈 𝑒
𝑖(𝐩⋅𝝎)𝑡

|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (38)
𝑗=1 𝐦 𝑝1=−∞ 𝑝2=−∞
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𝐰𝑠22 (𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞
𝑎𝑗𝑚𝑝1𝑝2𝜈𝑒

𝑖(𝐩⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (39)

|

|

𝐳𝑟||
𝐦
̃ = 𝑧𝑚1

1 𝑧𝑚2
2 … 𝑧𝑚𝑟

𝑟 , 𝑖 =
√

−1, 𝑚1 +⋯ ... + 𝑚𝑟 = 2;

𝑝 = {𝜔1 𝜔2},𝐩 = {𝑝1 𝑝2}
𝑇

Collecting the terms to solve for the unknowns yields the ‘reducibility
condition’ given by the Eq. (40),

𝑖(𝐩 ⋅ 𝝎) +
𝑟
𝛴
𝑙=1

(𝑚𝑙𝜆𝑙) − 𝜆𝑝 ≠ 0 (40)

here all the terms appearing in the Eq. (40) are defined before.
In the absence of resonances 𝐡22(𝐳𝑟, 𝑡) can be obtained. At this

tage, forcing frequency does not appear in the Eq. (40), implying
o direct interaction between the nonlinearity and the external exci-
ation. However, we construct the solution using Eqs. (35), and (36)
orcing interacts with the nonlinearity, giving additional ‘resonance
onditions’.
To find out the solution to the Eq. (36), which contains the contri-

ution from the nonlinearity 𝐰𝑠2(𝐳𝑟, 𝑡), we expand the known and the
nknown terms in the multiple Fourier series of the form

𝐡12(𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

+∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
ℎ𝑗𝑚𝑝1𝑝2𝜈 𝑒

𝑖(𝐩̃⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (41)

𝑟𝑠1 (𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
𝑎𝑗𝑚𝑝1𝑝2𝜈𝑒

𝑖(𝐩̃⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (42)

|

|

𝐳𝑟||
𝐦
̃ = 𝑧𝑚1

1 𝑧𝑚2
2 … 𝑧𝑚𝑟

𝑟 , 𝑖 =
√

−1, 𝑚1 +⋯ ... + 𝑚𝑟 = 1;

𝝎 =
{

𝜔1 𝜔2 𝜔𝑓
}

; 𝐩̃ =
{

𝑝1 𝑝2 𝑝3
}𝑇

A term-by-term comparison yields

ℎ𝑗𝑚𝜈 =
𝑎𝑗𝑚𝜈

𝑖(𝐩̃ ⋅ 𝝎) + 𝜆𝑙 − 𝜆𝑝
(43)

he ‘combined reducibility condition’ can be expressed as

𝑖(𝐩̃ ⋅ 𝝎) + 𝜆𝑙 − 𝜆𝑝 ≠ 0 (44)

t can be observed that all the terms appearing in the Eq. (35) are free
rom spatial arguments, and they can be solved using convolution, as
iscussed before. The forcing terms 𝐰𝑠20(𝑡)(with a square type term in

𝐡01(𝑡)) appearing due to 𝐰𝑠2(𝐳𝑟, 𝑡) is known from the Eq. (32) , which
an be expressed in the form

𝑠20 (𝑡) =
𝑠
∑

𝑗=1

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
𝑎𝑗𝑚𝜈𝑒

𝑖(𝐩̃⋅𝝎)𝑡𝑒𝑗 (45)

where 𝑖 =
√

−1, 𝝎 =
{

𝜔1 𝜔2 𝜔𝑓
}

; 𝐩̃ =
{

𝑝1 𝑝2 𝑝3
}𝑇 and 𝜕𝐡12

𝜕𝐳𝑟
𝐅𝑟

s known from the Eq. (34).
However, the Eq. (35) cannot be solved if 𝜆𝑠 = 𝐩̃ ⋅ 𝝎, which can be

ritten as

𝑠 = 𝑝1𝜔𝑝 + 𝑝2𝜔𝑛𝑙 + 𝑝3𝜔𝑓 (46)

The exact combination will be determined by the kind of terms present
in the forcing.

As we collect the terms in the order of 𝜀2, we obtain

𝐡̇03(𝑡) = 𝐉𝑠𝐡03(𝑡) +
𝜕𝐡13
𝜕𝐳𝑟

𝐅𝑟(𝑡) −
𝜕𝐡12
𝜕𝐳𝑟

𝐰𝑚20 (𝑡)
⏟⏟⏟
[𝐡𝟎𝟏(𝑡)]2

+ 𝐰𝑠230 (𝑡)
⏟⏟⏟
𝐡01(𝑡)⋅𝐡02(𝑡)

+ 𝐰𝑠30 (𝑡)
⏟⏟⏟
[𝐡01(𝑡)]3

(47)

𝜕𝐡13
𝜕𝑡

+
𝜕𝐡22
𝜕𝐳𝑟

𝐰𝑚20 (𝐳𝑟, 𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

+
𝜕𝐡13
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 +
𝜕𝐡23
𝜕𝐳𝑟

𝐅𝑟
[𝐡01(𝑡)]2

5

= 𝐉𝑠𝐡13 + 𝐰𝑠231 (𝐳𝑟, 𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐡02(𝑡)⋅𝐳𝑟+𝐡01(𝑡)⋅𝐡12(𝐳𝑟 ,𝑡)

+ 𝐰𝑠31 (𝐳𝑟, 𝑡)
⏟⏞⏞⏟⏞⏞⏟
[𝐡01(𝑡)]2⋅𝐳𝑟

(48)

𝜕𝐡23
𝜕𝑡

+
𝜕𝐡23
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟+
𝜕𝐡33
𝜕𝐳𝑟

𝐅𝑟 = 𝐉𝑠𝐡23+ 𝐰𝑠232 (𝐳𝑟, 𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐡12(𝐳𝑟 ,𝑡)⋅𝐳𝑟+𝐡01(𝑡)⋅𝐡22(𝐳𝑟 ,𝑡)

+𝐰𝑠32 (𝐳𝑟, 𝑡)
⏟⏞⏞⏟⏞⏞⏟
𝐡01(𝑡)⋅𝐳𝑟

(49)

𝜕𝐡33
𝜕𝑡

+
𝜕𝐡33
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 = 𝐉𝑠𝐡33 + 𝐰𝑠233 (𝐳𝑟, 𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐡22(𝐳𝑟 ,𝑡)⋅𝐳𝑟

+ 𝐰𝑠33 (𝐳𝑟, 𝑡) (50)

The Eq. (47) has only temporal arguments; the Eq. (48) is linear in
patial arguments; the Eq. (49) depends upon quadratic spatial argu-
ents, and the Eq. (50) involves cubic spatial arguments. As before,
ne has to solve these equations sequentially.
It can be observed that the Eq. (50) can be solved independently

nd involves contribution from 𝐰𝑠2(𝐳𝑟, 𝑡) denoted by 𝐰𝑠233 (𝐳𝑟, 𝑡). To solve
his equation, we expand the known terms and unknown terms in the
ultiple Fourier series (c.f. Eq. (37))

𝐡33(𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

+∞
∑

𝑝2=−∞
ℎ𝑗𝑚𝜈 𝑒

𝑖(𝐩⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (51)

𝑠33 (𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞
𝑎𝑗𝑚𝜈𝑒

𝑖(𝐩⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (52)

|

|

𝐳𝑟||
𝐦
̃ = 𝑧𝑚1

1 𝑧𝑚2
2 … 𝑧𝑚𝑟

𝑟 , 𝑖 =
√

−1, 𝑚1 +⋯ ... + 𝑚𝑟 = 3;

= {𝜔1 𝜔2},𝐩 = {𝑝1 𝑝2}
𝑇

It is possible to determine 𝐡33(𝐳𝑟, 𝑡) if the following’ reducibility condi-
tion’ is satisfied.

𝑖(𝐩 ⋅ 𝝎) +
𝑟
𝛴
𝑙=1

(𝑚𝑙𝜆𝑙) − 𝜆𝑝 ≠ 0 (53)

Once 𝐡33(𝐳𝑟, 𝑡) is known, we can solve the Eq. (49). This equation
contains terms arising from the product of 𝜕𝐡33(𝐳𝑟 ,𝑡)

𝜕𝐳𝑟
𝐅𝑟(𝑡) (where 𝐅𝑟(𝑡)

is the forcing on the master states), the contribution from quadratic
𝐰𝑠2(𝐳𝑟, 𝑡) nonlinearity (denoted by 𝐰𝑠232 (𝐳𝑟, 𝑡)), and contribution from
cubic nonlinearity 𝐰𝑠3(𝐳𝑟, 𝑡)(represented by 𝐰𝑠32 (𝐳𝑟, 𝑡)). As before, we
expand the known terms (marked as 𝐰𝑠𝑘(𝐳𝑟, 𝑡)) and the unknown terms
(𝐡23(𝐳𝑟, 𝑡) in multiple Fourier series of the form

𝐡23(𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

+∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
ℎ𝑗𝑚𝑝1𝑝2𝑝3𝜈 𝑒

𝑖(𝐩̃⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (54)

𝐰𝑠𝑘(𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
𝑎𝑗𝑚𝑝1𝑝2𝑝3𝜈𝑒

𝑖(𝐩̃⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (55)

|

|

𝐳𝑟||
𝐦
̃ = 𝑧𝑚1

1 𝑧𝑚2
2 … 𝑧𝑚𝑟

𝑟 , 𝑖 =
√

−1, 𝑚1 +⋯ ... + 𝑚𝑟 = 2;

𝝎 =
{

𝜔1 𝜔2 𝜔𝑓
}

; 𝐩̃ =
{

𝑝1 𝑝2 𝑝3
}

As before, we can obtain 𝐡23(𝐳𝑟, 𝑡) via term-by-term comparison if and
only if the following ‘combined reducibility condition’ is satisfied.

𝑖(𝐩̃ ⋅ 𝝎) +
𝑟
𝛴
𝑙=1

(𝑚𝑙𝜆𝑙) − 𝜆𝑝 ≠ 0 (56)

It can be observed that this ‘combined reducibility condition’ involves
a contribution from the forcing.

Once 𝐡23(𝐳𝑟, 𝑡) is known, we can solve the Eq. (48) which contains
the contribution from 𝐰𝑠3(𝐳𝑟, 𝑡)(denoted by 𝐰𝑠31 (𝐳𝑟, 𝑡)) and 𝐰𝑠2(𝐳𝑟, 𝑡)

(represented by 𝐰𝑠31 (𝐳𝑟, 𝑡)) and
𝜕𝐡23(𝐳𝑟 ,𝑡)

𝜕𝐳𝑟
𝐅𝑟(𝑡) To determine 𝐡13(𝐳𝑟, 𝑡), we

expand the known and the unknown terms in the multiple Fourier series
of the form given by Eq. (41) and Eq. (42), respectively and obtain the
‘combined reducibility condition’ given by Eq. (44).

Further, to obtain 𝐡03(𝑡), we use the convolution theorem, as before.
However, it can be seen from the Eq. (47) (which contains only tem-
oral arguments), the forcing terms arise from 𝜕𝐡13 𝐅 (𝑡) (forcing on the
𝜕𝐳𝑟 𝑟
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master states), and nonlinear terms 𝐰𝑠2(𝐳𝑟, 𝑡) 𝐰𝑠3(𝐳𝑟, 𝑡) and are denoted
as 𝐰𝑠𝑞 (𝑡), which can be expressed as

𝐰𝑠𝑞 (𝑡) =
𝑠
∑

𝑗=1

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
𝑎𝑗𝑚𝜈𝑒

𝑖(𝐩̃⋅𝝎)𝑡𝑒𝑗 (57)

where 𝑖 =
√

−1, 𝝎 =
{

𝜔1 𝜔2 𝜔𝑓
}

; 𝐩̃ =
{

𝑝1 𝑝2 𝑝3
}𝑇 .

The Eq. (47)cannot be solved if

𝜆𝑠 = 𝐩̃ ⋅ 𝝎. (58)

t is possible to continue the procedure discussed above to construct
he relationship between ‘slave’ and ‘master’ states to the desired order
nd recover various ‘resonance conditions’ involving contributions from
xternal excitation and nonlinearity at multiple orders.

. Applications

Consider a coupled undamped Mathieu Hill-type nonlinear quasi-
eriodic system subjected to external excitation given by

𝑥̈ + (𝑎1 + 𝑏1 cos𝜔1𝑡 + 𝑐1 cos𝜔1𝑡)𝑥 + 𝑥2𝑦 = 𝐴1 cos(𝜔𝑡)

𝑦̈ + (𝑎2 + 𝑏2 cos𝜔1𝑡 + 𝑐2 cos𝜔2𝑡)𝑥 + 𝑦2𝑥 = 𝐴2 cos(𝜔𝑡)
(59)

he Eq. (59) can be expressed as

𝑑
𝑑𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥

𝑥̇

𝑦

𝑦̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

𝐀̃1(𝑡) 𝟎

𝟎 𝐀̃2(𝑡)

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥

𝑥̇

𝑦

𝑦̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

𝑥2𝑦

0

𝑦2𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

cos(𝜔𝑡)

0

cos(𝜔𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(60)

where 𝐀̃1(𝑡) =

[

0 1

−(𝑎1 + 𝑏1 cos𝜔1𝑡 + 𝑐1 cos𝜔2𝑡) 0

]

,

̃2(𝑡) =

[

0 1

−(𝑎2 + 𝑏2 cos𝜔1𝑡 + 𝑐2 cos𝜔2𝑡) 0

]

Applying the L-P Transformation 𝐱(𝑡) = 𝐐(𝑡)𝐳(𝑡) and its inverse to
he Eq. (60) yields an equation similar to the Eq. (23)

𝑑
𝑑𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1

𝑧2

𝑧3

𝑧4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

𝐉1 𝟎

𝟎 𝐉2

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1

𝑧2

𝑧3

𝑧4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓11(𝐳, 𝑡)

𝑓12(𝐳, 𝑡)

𝑓21(𝐳, 𝑡)

𝑓22(𝐳, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹11(𝑡)

𝐹12(𝑡)

𝐹21(𝑡)

𝐹22(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(61)

Where

𝐉1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

−𝜆1 +
𝑏1

2(𝐶2𝜆3
(

−4𝜆3+𝜆3
)

+𝐶1𝜆4
(

−4𝜆1+𝜆4
))

(

4𝜆1−𝜆3
)

𝜆3
(

4𝜆1−𝜆4
)

𝜆4

)

√

𝜆1
0

0

(

𝜆1 + 𝑏12
(

𝐶1
4𝜆1𝜆3−𝜆32

+ 𝐶2
4𝜆1𝜆4−𝜆42

))

√

𝜆1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐉2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

−𝜆2 +
𝑏2

2(𝐶3𝜆3(−4𝜆3+𝜆3)+𝐶4𝜆4(−4𝜆1+𝜆4))
(4𝜆2−𝜆3)𝜆3(4𝜆2−𝜆4)𝜆4

)

√

𝜆2
0

0

(

𝜆2 + 𝑏2
2
(

𝐶3

4𝜆2𝜆3−𝜆32
+ 𝐶4

4𝜆2𝜆4−𝜆42

))

√

𝜆2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜆1 = 𝑎1, 𝜆2 = 𝑎2, 𝜆3 = 𝜔1, 𝜆4 = 𝜔2𝐶1 and 𝐶2 are constant depending
upon the initial conditions of the fictitious states. For more details on
the computation of 𝐉, we refer to Ref. [22]. At this point, we have to
select master and slave states. Assuming eigenvalues of the 𝐉1 matrix
are closer to 𝜔 (the frequency of external excitation), we choose 𝐳𝑟 =
{𝑧1, 𝑧2}𝑇 as the master states and 𝐳𝑠 = {𝑧3, 𝑧4}𝑇 as the slave states and
artition Eq. (61) similar to the Eq. (25).

𝐳̇𝑟
}

=

[

𝐉𝑟 0
]{

𝐳𝑟
}

+

{

𝐰𝑟(𝐳𝑟, 𝐳𝑠, 𝑡)
}

+

{

𝐅𝑟(𝑡)
}

(𝑎) (62)

𝐳̇𝑠 0 𝐉𝑠 𝐳𝑠 𝐰𝑠(𝐳𝑟, 𝐳𝑠, 𝑡) 𝐅𝑠(𝑡)

6

Where

𝐉𝑟 = 𝐉1, 𝐉𝑠 = 𝐉2,𝐰𝑟(𝐳𝑟, 𝐳𝑠, 𝑡) = {𝑓11(𝐳, 𝑡), 𝑓12(𝐳, 𝑡)}𝑇 ,

𝐰𝑠(𝐳𝑟, 𝐳𝑠, 𝑡) = {𝑓21(𝐳, 𝑡), 𝑓22(𝐳, 𝑡)}𝑇

𝐅𝑟(𝑡) = {𝐹11(𝑡), 𝐹12(𝑡)}𝑇 ,𝐅𝑠(𝑡) = {𝐹21(𝑡), 𝐹22(𝑡)}𝑇
In this particular case,

𝑎1 = 3, 𝑎2 = 5, 𝑏1 = 𝑏2 = 𝑐1 = 𝑐2 = 2.5,

𝜔1 = 2𝜋 rad∕s, 𝜔2 = 7 rad∕s, 𝜔 = 1 rad∕s, 𝐴1 = 1, 𝐴2 = 1

𝐉1, 𝐉2 are given as

𝐉1 =
[

−1.78𝑖 0

0 +1.78𝑖

]

, 𝐉2 =
[

−2.29𝑖 0

0 +2.29𝑖

]

(63)

One can apply order reduction techniques discussed in Section 3.

(a) Order reduction using the linear method
Eq. (62) comprises of 4 states

{

𝑧1 𝑧2 𝑧3 𝑧4
}𝑇 . Following the

procedure outlined in Section 3.1, we neglect the contribution from
the non-dominant states 𝐳𝑠 =

{

𝑧3 𝑧4
}𝑇 , and the system dynamics is

approximated by
{

𝑧̇1

𝑧̇2

}

=
[

𝐉1
]

{

𝑧1

𝑧2

}

+

{

𝑓11(𝑧1, 𝑧2, 0, 0, 𝑡)

𝑓22(𝑧1, 𝑧2, 0, 0, 𝑡)

}

+

{

𝐹11(𝑡)

𝐹12(𝑡)

}

(64)

The Eq. (64) is the reduced-order model of the system described by
the Eq. (62). This reduced-order system is integrated numerically with
typical initial conditions. All the states in 𝐱 are obtained using the
L-P𝐱(𝑡) = 𝐐(𝑡)𝐳(𝑡) Transformation. This solution is called linear reduced-
order system response. This response can be compared with the original
system’s response calculated via numerical integration of the Eq. (59).
The time trace comparison is shown in Figs. 1 and 2. Fig. 3 compares
phase planes for the original and the reduced-order system via the
linear technique. It can be noticed that the linear reduced-order model
fails to capture the dynamics of the original system. One reason for
this failure is that the slave states are also excited by forcing 𝐅𝑠(𝑡) that
is completely ignored in the reduced-order model. The linear order
reduction technique may yield acceptable results when the eigenvalues
corresponding to slave states have negative real parts or no forcing on
slave states. However, in general, the linear order reduction approach
for nonlinear quasi-periodic systems subjected to external excitation
may not yield accurate results. For clarity, the Welch power spectrum
for the original system response is compared with the Welch power
spectrum for the linearly reduced system in Fig. 4. These power spec-
trums do not match, indicating that the original system’s dynamics
(frequency content) are not captured in the linearly reduced-order
system.

(b) Order reduction using an invariant manifold
As discussed earlier, we try to relate the non-dominant states to the

dominant states by a quasi-periodic nonlinear transformation. Suppose
the system does not exhibit any resonances (like the case under consid-
eration). In that case, the ‘reducibility condition’ is satisfied, and the
system order can be reduced.

We start with the Eq. (62) and select the same states [𝐳𝑟 =
{

𝑧1 𝑧2
}𝑇 ] as the dominant states and try to find a nonlinear quasi-

periodic relationship of the form given by the Eq. (28) . For this
particular example, the relationship between 𝐳𝑠 and 𝐳𝑟 are

𝐳𝑠 =
∑

𝑖
𝐡𝑖(𝑧1, 𝑧2,𝑡) ≡ 𝐇(𝑧1, 𝑧2, 𝑡), 𝑠 = 3, 4 (65)

where 𝐡𝑖 =
∑

𝐦
𝐡𝑖(𝑡)𝑧

𝑚1
1 … 𝑧𝑚2

2 ,𝐦 = (𝑚1, 𝑚2)𝑇 , 𝑚1 + 𝑚2 = 3 (66)

Here 𝐡𝑖(𝑡) are the unknown quasi-periodic vector coefficients. We
ubstitute the Eq. (65) into the Eq. (62). After expanding 𝐡𝑖(𝑡) and
𝐰𝑠(𝑧𝑟, 𝑡)(𝑠 = 3, 4) in the Fourier series and neglecting the terms of
higher-order, we obtain the relationship between the dominant and the
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Fig. 1. Time trace comparisons of original and the reduced-order system via the linear
approach 𝑥(𝑡) v/s time.

Fig. 2. Time trace comparisons of original and the reduced-order system via the linear
approach 𝑥̇(𝑡) v/s time.

non-dominant states as

𝑧3 = 𝐇1(𝑧1, 𝑧2, 𝑡), 𝑧4 = 𝐇2(𝑧1, 𝑧2, 𝑡) (67)

he Eq. (67) is substituted into Eq. (62)-a to get the reduced-order
odel as
𝑧̇1

𝑧̇2

}

=
[

𝐉1
]

{

𝑧1

𝑧2

}

+

{

𝑤1(𝑧1, 𝑧2, 𝑡)

𝑤2(𝑧1, 𝑧2, 𝑡)

}

+

{

𝐹11(𝑡)

𝐹12(𝑡)

}

(68)

The Eq. (68) is the reduced-order model of the system described
y the Eq. (62). As before, this reduced-order system is integrated
umerically with typical initial conditions. All the states in 𝐱 are
btained using the L-P𝐱(𝑡) = 𝐐(𝑡)𝐳(𝑡) Transformation. This solution is
alled nonlinear reduced-order system response. Similar to the linear
educed-order system analysis, the nonlinear reduced-order system re-
ponse can be compared with the original system’s response calculated
ia numerical integration of the Eq. (58). The time trace comparison
s shown in Figs. 5 and 6. Fig. 7 compares phase planes for the
riginal and the reduced-order system via the nonlinear technique. It
an be noticed that the nonlinear reduced-order model captures the
7

Fig. 3. Phase plane comparisons of original and the reduced-order system via the linear
approach 𝑥(𝑡) v/s 𝑥̇(𝑡).

Fig. 4. Welch Power Spectral density comparison of original and the reduced-order
system via the linear approach.

dynamics of the original system quite well. For additional insight, the
Welch power spectrum for the original system response is compared
with the Welch power spectrum for the nonlinearly reduced system
in Fig. 8. These power spectrums match, indicating that the original
system’s dynamics (frequency content) are captured in the nonlinearly
reduced-order system. These symbolic computations were performed
using Mathematica™.

5. Resonant interactions

Nonlinear quasi-periodic systems can exhibit complex dynamics
with resonant interactions. The system can exhibit primary resonance,
secondary resonance, internal resonances, and combination resonances.
The example presented in section four does not have any resonances.
However, it is possible to recover the resonance conditions as the order
reduction is carried out via the invariant manifold approach.

One can follow the procedure discussed in section three to ob-
tain the relationship between ‘slave’ states (to be eliminated) and
‘master’ states (to be retained) to desired order and recover various
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Fig. 5. Time trace comparisons of original and the reduced-order system via the
nonlinear approach 𝑥(𝑡) v/s time.

Fig. 6. Time trace comparisons of original and the reduced-order system via the
nonlinear approach 𝑥̇(𝑡) v/s time.

Fig. 7. Phase plane comparisons of original and the reduced-order system via the
nonlinear approach 𝑥(𝑡) v/s 𝑥̇(𝑡).
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Fig. 8. Welch Power Spectral density comparison of original and the reduced-order
system via the nonlinear approach.

resonance conditions involving contributions from external excitation
and nonlinearity at multiple orders.

Typically, the states with eigenvalues (or exponents) that are close
to the frequency external excitation indicate a stronger interaction and
dominate the response and hence can be chosen as the master states.
It is to be noted that in the absence of damping, the response of the
resonant system is unbounded, and the system is said to be in primary
resonance (c.f. Eq. (34)). For clarity, this resonance condition is given
by

𝐩 ⋅ 𝝎𝑝 + 𝑘𝜔𝑓 − 𝜆𝑗 = 0 (69)

here the terms appearing in the Eq. (69) are defined before. It can
be noted that the resonance conditions imply a strong coupling leading
to energy interaction in external forcing and various modes (or states)
of the system. If the resonances are present, then the reducibility con-
ditions discussed are not satisfied, and order reduction is not possible
due to the presence of an irremovable coupling.

As the harmonic balance is carried out at 𝜀 (c.f. equations (35) to
(39)), one yields the combined reducibility condition given by the Eq.
(40) reproduced here for clarity.

𝑖(𝐩 ⋅ 𝝎) +
𝑟
𝛴
𝑙=1

(𝑚𝑙𝜆𝑙) − 𝜆𝑝 ≠ 0 (70)

where all the terms appearing in the Eq. (70) are defined before. The
Eq. (70) indicates the energy interaction between the master states
and slave states. The absence of quasi-periodic parametric excitation
(𝐩 ⋅ 𝝎) = 𝟎 yields the classic secondary resonance condition discussed
n perturbation literature. It is important to note that the L-P Trans-
ormation contributes to (𝐩 ⋅ 𝝎) terms in equations (69) and (70)
leading to many resonance conditions due to quasi-periodic Fourier
series representation of the Transformation.

Harmonic balance carried out in 𝜀2(c.f. equations (47) to (50)) leads
to the resonance condition given by the Eq. (56). It is important to note
that the Eq. (47) is purely temporal and cannot be solved if secondary
resonances indicated by the Eq. (58) are present.

For a special case, when only cubic nonlinearity is present, the
relationship between ‘master’ and ‘slave’ states can be expressed as

𝐳𝑠 = 𝐡01(𝑡) + 𝜀(𝐡03(𝑡) + 𝐡13(𝐳𝑟, 𝑡) + 𝐡23(𝐳𝑟, 𝑡) + 𝐡33(𝐳𝑟, 𝑡)) (71)

Following the same procedure discussed above, when we collect the
terms of 𝜀0 we obtain the Eq. (31) that can be solved by convolution.
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However, as we collect the terms of the order 𝜀1, we obtain

𝐡̇03(𝑡) = 𝐉𝑠𝐡03(𝑡) +
𝜕𝐡13
𝜕𝐳𝑟

𝐅𝑟(𝑡) + 𝐰𝑠30 (𝑡)
⏟⏟⏟
[𝐡01(𝑡)]3

(72)

𝜕𝐡13
𝜕𝑡

+
𝜕𝐡13
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 +
𝜕𝐡23
𝜕𝐳𝑟

𝐅𝑟 = 𝐉𝑠𝐡13 + 𝐰𝑠31 (𝐳𝑟, 𝑡)
⏟⏞⏞⏟⏞⏞⏟
[𝐡01(𝑡)]2⋅𝐳𝑟

(73)

𝜕𝐡23
𝜕𝑡

+
𝜕𝐡23
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 +
𝜕𝐡33
𝜕𝐳𝑟

𝐅𝑟 = 𝐉𝑠𝐡23 + 𝐰𝑠32 (𝐳𝑟, 𝑡)
⏟⏞⏞⏟⏞⏞⏟
𝐡01(𝑡)⋅[𝐳𝑟]2

(74)

𝜕𝐡33
𝜕𝑡

+
𝜕𝐡33
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 = 𝐉𝑠𝐡33 + 𝐰𝑠33 (𝐳𝑟, 𝑡) (75)

hese equations can be solved by expanding the known and unknown
erms in the multiple Fourier series of appropriate form and term by
erm comparison similar to equations ((50),(49),(47) and (48)) yield
he ‘reducibility condition’ and ‘combined reducibility conditions’ similar
o equations (53), (56),(44) and (58).
Let us consider a special case when forcing on the ‘slave’ states is

ero and the Eq. (25) takes the form
{

𝐳̇𝑟

𝐳̇𝑠

}

=

[

𝐉𝑟

0

0

𝐉𝑠

]{

𝐳𝑟

𝐳𝑠

}

+

{

𝜀𝐰𝑟(𝐳𝑟, 𝐳𝑠, 𝑡)

𝜀𝐰𝑠(𝐳𝑟, 𝐳𝑠, 𝑡)

}

+

{

𝐅𝑟(𝑡)

0

}

(𝑎) (76)

here all the terms appearing in the Eq. (76) are defined before. To
btain the invariant manifold expression, we express the relationship
etween ‘master’ and ‘slave’ states as (c .f. Eq. (28))

𝑠 = 𝜀(𝐡02(𝑡) + 𝐡12(𝐳𝑟, 𝑡) + 𝐡22(𝐳𝑟, 𝑡))

𝜀2(𝐡03(𝑡) + 𝐡13(𝐳𝑟, 𝑡) + 𝐡23(𝐳𝑟, 𝑡) + 𝐡33(𝐳𝑟, 𝑡))

𝜀3(𝐡04(𝑡) + 𝐡14(𝐳𝑟, 𝑡) + 𝐡24(𝐳𝑟, 𝑡) + 𝐡34(𝐳𝑟, 𝑡) + 𝐡44(𝐳𝑟, 𝑡)) +⋯

(77)

s we follow the procedure to determine manifold constraint equation
s described earlier, we obtain for 𝜀1(c.f. equations (35)–(37))

𝐡̇02(𝑡) = 𝐉𝑠𝐡02(𝑡) −
𝜕𝐡12
𝜕𝐳𝑟

𝐅𝑟 (78)

𝜕𝐡12
𝜕𝑡

+
𝜕𝐡12
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 − 𝐉𝑠𝐡12 = −
𝜕𝐡22
𝜕𝐳𝑟

𝐅𝑟(𝑡) (79)

𝜕𝐡22
𝜕𝑡

+
𝜕𝐡22
𝜕𝐳𝑟

𝐉𝑟𝐳𝑟 − 𝐉𝑠𝐡22 = 𝐰𝑠22 (𝐳𝑟, 𝑡) (80)

here the Eq. (80) is the same as the Eq. (37). However, equations
78) and (79) do not include any contribution form 𝐰𝑠2(𝐳𝑟, 𝑡) as 𝐡01(𝑡)
(or 𝐅𝑠(𝑡)) is absent. However, the nonlinear interaction between ‘master
forcing’ and ‘slave’ states give rise to term 𝜕𝐡22

𝜕𝐳𝑟
𝐅𝑟(𝑡) in the Eq. (79) and

ubsequently the term 𝜕𝐡12
𝜕𝐳𝑟

𝐅𝑟 in the Eq. (78), which are known. The Eq.
(80) can be solved by expanding the known and unknown terms in the
multiple Fourier series given by equations (38) and (39) yielding the
same ‘reducibility condition’ provided by the Eq. (40). Further, to solve
the Eq. (79), we have to expand the known and unknown terms in the
multiple Fourier series of the form

𝐡12(𝐳𝑟, 𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

+∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
ℎ𝑗𝑚𝜈 𝑒

𝑖(𝐩̃⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (81)

𝜕𝐡22
𝜕𝐳𝑟

𝐅𝑟(𝑡) =
𝑠
∑

𝑗=1

∑

𝐦

+∞
∑

𝑝1=−∞

∞
∑

𝑝2=−∞

+∞
∑

𝑝3=−∞
𝑎𝑗𝑚𝜈𝑒

𝑖(𝐩̃⋅𝝎)𝑡
|

|

𝐳𝑟||
𝐦
̃ 𝑒𝑗 (82)

|

|

𝐳𝑟||
𝐦
̃ = 𝑧𝑚1

1 𝑧𝑚2
2 … 𝑧𝑚𝑟

𝑟 , 𝑖 =
√

−1, 𝑚1 +⋯ ... + 𝑚𝑟 = 1;

𝝎 =
{

𝜔1 𝜔2 𝜔𝑓𝑚

}

; 𝐩̃ =
{

𝑝1 𝑝2 𝑝3
}

where 𝜔𝑓𝑚 is the frequency of ‘master forcing’ and all other terms are
defined before. A term by term comparison yields the expression similar
9

to Eq. (43) and ‘combined reducibility condition’ given by (c.f. Eq. (70))

𝑖(𝑝1𝜔𝑝 + 𝑝2𝜔𝑛𝑙 + 𝑝3𝜔𝑓𝑚 ) + 𝜆𝑙 − 𝜆𝑝 ≠ 0 (83)

To obtain 𝐡12(𝐳𝑟, 𝑡) the ‘combined reducibility condition’ given by the Eq.
(83) should be satisfied. Let us consider a special case when 𝑝1 = 𝑝2 = 0.
hus, the Eq. (83) yields

𝑖(𝑝3𝜔𝑓𝑚 ) + 𝜆𝑙 − 𝜆𝑝 ≠ 0 (84)

which implies when the difference between the exponent of ‘master’
states and the ‘slave’ states equals the integral multiple of the ‘master
forcing’ frequency order cannot be reduced. When the parametric
excitation is small (and the exponents approach the natural frequency
of the linearized autonomous system 𝜔𝑛) Eq. (84) can be expressed as

𝑖(𝑝3𝜔𝑓𝑚 ) + 𝜔𝑛𝑟 − 𝜔𝑛𝑠 ≠ 0 (85)

This result is well-known in the perturbation literature. Assuming all
the ‘combined reducibility conditions’ are satisfied, we obtain 𝐡12(𝐳𝑟, 𝑡)
and solve the Eq. (78), which involves contribution from 𝐡12(𝐳𝑟, 𝑡) in
the form 𝜕𝐡12

𝜕𝐳𝑟
𝐅𝑟(𝑡)(which depends upon time alone). The solution of

the Eq. (78) can be obtained via the convolution provided 𝜆𝑠 ≠ 𝐩̃ ⋅ 𝝎
(𝜆𝑠 ≠ 𝑝1𝜔𝑝 +𝑝2𝜔𝑛𝑙 +𝑝3𝜔𝑓𝑚 ). For a particular case when 𝑝1 = 𝑝2 = 0, this
ondition can be written as

𝑠 ≠ 𝑝3𝜔𝑓𝑚 (86)

which states that the order cannot be reduced if the ‘slave’ states
resonate with ‘master forcing’. Again, under the small parametric exci-
tation assumption, the condition given by the Eq. (86) can be expressed
as

𝜔𝑛𝑠 ≠ 𝑖(𝑝3𝜔𝑓𝑚 ) (87)

which is obtained by various researchers via perturbation analysis. It
is possible to continue to get the condition at a higher order of non-
linearity (𝜀2, 𝜀3, .. ). In conclusion, the results obtained by ‘reducibility
condition’ and ‘combined reducibility condition’ contain the resonance
conditions obtained via perturbation analysis.

6. Examples of resonant interaction

Consider the coupled undamped Mathieu Hill-type nonlinear quasi-
periodic system subjected to external excitation given by Eq. (59). After
the L-P Transformation, the system can be expressed as the Eq. (62),
where all the terms appearing in the Eq. (62) are defined before. In this
section, we consider the effectiveness of the order reduction technique
as the system approaches the primary resonance (given by Eq. (69)),
internal resonance (given by Eq. (70)), and secondary resonance given
by Eq. (86)).

As mentioned earlier, a primary resonance condition indicates a
tight coupling between the external forcing and master states, and the
system response is dominated by the resonant modes. Consider the
following system parameters

𝑎1 = 3, 𝑎2 = 5, 𝑏1 = 𝑏2 = 𝑐1 = 𝑐2 = 2.5, 𝜔1 = 2𝜋 rad∕s,

𝜔2 = 7 rad∕s, 𝜔 = 1.58 rad∕s, 𝐴1 = 1, 𝐴2 = 1

the 𝐉1, 𝐉2 are given as

𝐉1 =
[

−1.78𝑖 0

0 +1.78𝑖

]

, 𝐉2 =
[

−2.29𝑖 0

0 +2.29𝑖

]

It can be observed that for the given system parameters and external
forcing, for (𝐩 ⋅ 𝝎) = 𝟎 (the constant term in the L-P Transformation),
the system is close to primary resonance.

𝑘𝜔𝑓 − 𝜆𝑗 ≈ 0

This leads to the ‘‘small divisor problem’’ as the denominator of terms in
the Eq. (34) approaches zero. It can be observed that the total response
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Fig. 9. Time trace comparisons of original and the reduced-order system via the linear
approach 𝑥(𝑡) v/s time when the 𝜀 = 0.2 close to primary resonance.

f the system is dominated by the resonant (‘‘master’’) states. As long
s the system response is bounded, the invariant manifold-based order
eduction technique can capture the system’s behavior to some degree.
t can be noted that when the denominator of the terms in the Eq. (34)
s zero, the response becomes infinite due to singularity. Close to the
ingularity, the order reduction results are dominated by the stability
f the numerical integration algorithm and floating-point precision.
ypically, based on our experience, when running on Intel-i7, 32 GB
AM, Mathematica 11, and MATLAB 2020b, the reduced-order model
esults were close to the original system when the master states were
lose to (but not in exact) resonance 𝑘𝜔𝑓 − 𝜆𝑗 = 𝜀, 𝜀 ≥ 0.2 when we
sed ODE solvers in MATLAB for numerical integration. As 𝜀 ≤ 0.2,
he numerical integration algorithms displayed warnings and could not
eet integration tolerances.
The ‘‘small divisor problem’’ has received significant attention in

he nonlinear dynamics community and studied by researchers using
AM theory [40], general direct methods (Siegel’s method) [41], and
heir extensions. We are currently working on a paper that explicitly
ddresses order reduction of the quasi-periodic system near resonance
here the ‘‘small divisor problem’’ is significant where one has to use
he KAM theory and other analysis methods.
On the other hand, reduced-order model obtained via the linear

pproach did not capture the dynamics of the original system when
he system was close to primary resonance. Figs. 9 and 10 show the
ime trace comparison of the original and reduced systems via linear
nd nonlinear methods, respectively. It can be observed that the time
race of the nonlinear reduced-order system is more in agreement with
he original system. However, as the system is undamped, the response
s amplified but bounded.
The system is said to be in internal resonance when the resonance

ondition given by the Eq. (88) is satisfied (c.f. Eq. (70))

𝑖(𝐩 ⋅ 𝝎) +
𝑟
𝛴
𝑙=1

(𝑚𝑙𝜆𝑙) − 𝜆𝑝 = 0 (88)

For (𝐩 ⋅ 𝝎) = 𝟎(the constant term in the L-P Transformation) and the
parameters

𝑎1 = 3, 𝑎2 = 5, 𝑏1 = 𝑐1 = 2.5, 𝑏2 = 𝑐2 = 3.8, 𝜔1 = 2𝜋 rad∕s,

2 = 7 rad∕s, 𝜔 = 1 rad∕s, 𝐴1 = 1, 𝐴2 = 1

the 𝐉1, 𝐉2, 𝐶1 and 𝐶2 are given as

1 =

[

−1.78𝑖 0
]

, 𝐉2 =
[

−5.1𝑖 0
]

0 +1.78𝑖 0 +5.1𝑖

10
Fig. 10. Time trace comparisons of original and the reduced-order system via the
nonlinear approach 𝑥(𝑡) v/s time when the 𝜀 = 0.2 close to primary resonance.

c.f. Eq. (88), the system is close to 3:1 internal resonance given by
𝑟
𝛴
𝑙=1

(𝑚𝑙𝜆𝑙) − 𝜆𝑝 = 0;𝑚 = 3 (89)

When the system is close to 3:1 internal resonance, similar to the
primary resonance case, the denominator of the terms in the Eq. (40)
approaches zero due to a ‘‘small divisor problem’’. When running
on Intel-i7, 32 GB RAM, Mathematica 11, and MATLAB 2020b, the
reduced-order model results were initially close to the original system
when the master states were close to (but not in exact) internal res-
onance with the slave states

𝑟
𝛴
𝑙=1

(𝑚𝑙𝜆𝑙) − 𝜆𝑝 = 𝜀, 𝜀 ≥ 0.20. However, as
time increased, the time traces of the nonlinear reduced system and the
original system diverged. The Poincare’ plots showed a similar structure
but were different in magnitude. The detailed discussion and sensitivity
of the long-term response of the reduced-order system near resonance
will be reported elsewhere. For 𝜀 ≤ 0.2, the numerical integration algo-
rithms displayed warnings and could not meet integration tolerances.
The reduced-order model, via the linear approach, did not capture the
dynamics of the original system when the system was close to internal
resonance.

The validity of the order reduction approach was studied further
when the system was close to secondary resonances, i.e., 𝜆𝑙 − 𝜆𝑝 <
𝜀; 𝜀 = 0.2 c.f. Eq. (84) and 𝜆𝑠 − 𝑝3𝜔𝑓𝑚 < 𝜀; 𝜀 = 0.2 c.f. Eq. (86),
the numerical integration algorithms displayed warning and could not
meet integration tolerances. Thus, for the typical system parameters
used for demonstration in this paper 𝜀 = 0.2 appears to be a threshold
where numerical solvers can maintain the integration tolerances. This
threshold 𝜀 is dependent on the system parameters, type of numerical
integration solver/software used, and machine precision. The validity
of order reduction close to resonance and associated ‘‘small divisor
problem’’ is an exciting topic and needs further attention to under-
stand the convergence, resonance interactions, stability of numerical
integration techniques, and limitations.

7. Discussion and conclusions

This paper presents a technique for obtaining a reduced-order model
of a nonlinear quasi-periodic system subjected to external excitation.
The central idea is to assume a quasi-periodic transformation with
unknown coefficients between the master and the slave states. This
Transformation can be determined by collecting the terms of the same
order and solving them using harmonic balance. In the solution process,
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we obtain reducibility conditions that indicate resonances between sys-
tem states, nonlinearity, and external excitation. The linear resonance
condition is also obtained as we find the solution of quasi-periodic
Transformation. One crucial point is deciding which states to retain
and which ones to eliminate. Initially, one could start with the states
corresponding to eigenvalues close to external excitation frequencies
and start the order reduction process. The resonance interactions in
the nonlinear quasi-periodic system are complex. In order reduction,
one may see a ‘‘small divisor’’ problem. Such a case indicates resonant
interaction, and these resonant states must be included in the master
states. It can be noted that with the advent of symbolic software like
Mathematica and Maple, the procedure for order reduction can be au-
tomated [42]. One can consider quasi-periodic and external excitation
as fictitious states and carry out the order reduction. This approach
is presented in Ref. [43], and further simplification via the method of
normal form can be achieved as discussed in Ref. [44] for autonomous
systems.

It is emphasized that the methods proposed in this work are ap-
plicable when the quasi-periodic system is almost reducible and meets
the reducibility conditions given in Refs. [26,34]. It is essential to
observe that the small divisor problem needs to be addressed during the
computation of the L-P transformation and while performing the order
reduction of the L-P transformed system. It is respectfully noted that
a general L-P transformation for the quasi-periodic system, like the L-F
transformation for the periodic system, is impossible as the Floquet type
theory does not exist for the quasi-periodic system. However, almost
reducibility can be proved under certain conditions for a class of quasi-
periodic systems. These cases are discussed with rigorous mathematical
proofs in Refs. [23–26]. It is noted that many engineering systems
fall under this class of problems and are amenable to the approach
presented in this paper.

For the reducible (or almost reducible) quasi-periodic systems, the
reduced-order models based on the L-P transformation and invariant
manifold approach will contain all the essential dynamics. The re-
sponses of the reduced-order system quantitatively and qualitatively
are similar to the original system. This reduced-order system can be
simplified using the method of normal forms. One can study this
simplified system for bifurcation and control. The reduced-order system
can be used to optimize essential parameters, study sensitivity, and
design controllers.

NOMENCLATURE
𝐱 - 𝑛 vector of states
𝐀(𝑡) - 𝑛 × 𝑛 time quasiperiodic matrix
𝐟 (𝐱, 𝑡) - nonlinear n vector such that 𝐟 (0, 𝑡) = 0
𝐐(𝑡) - L-P transformation matrix of dimension 𝑛 × 𝑛
𝐌 - Modal matrix of dimension 𝑛 × 𝑛
𝐳 - 𝑛 vector of the L-P transformed states
𝐳𝑟 - 𝑟(𝑟 << 𝑛) vector of dominant states
𝐳𝑠(𝑡) - 𝑠(𝑠 + 𝑟 = 𝑛) vector of non-dominant (slave) states
𝐉𝑟 - 𝑟 × 𝑟 Jordan block corresponding to dominant states
𝐇(𝐳𝑟, 𝑡) - Nonlinear quasi-periodic invariant manifold function relat-

ing the non-dominant states to dominant states
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