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ARTICLE INFO ABSTRACT
Keywords: This paper presents order reduction techniques for nonlinear quasi-periodic systems subjected to external
Order reduction

excitations. The order reduction techniques presented here are based on the Lyapunov-Perron (L-P) Trans-
formation. For a class of non-resonant quasi-periodic systems, the L-P Transformation can convert a linear
quasi-periodic system into a linear time-invariant one. This Linear Time-Invariant (LTI) system retains the
dynamics of the original quasi-periodic system. Once this LTI system is obtained, the tools and techniques
available for analysis of LTI systems can be used, and the results could be obtained for the original
quasi-periodic system via the L-P Transformation. This approach is similar to the Lyapunov-Floquet (L-F)
transformation to convert a linear time-periodic system into an LTI system and perform analysis and control.

Order reduction is a systematic way of constructing dynamical system models with relatively smaller states
that accurately retain large-scale systems’ essential dynamics. This work presents reduced-order modeling
techniques for nonlinear quasi-periodic systems subjected to external excitations. The methods proposed here
use the L-P Transformation that makes the linear part of transformed equations time-invariant. In this work,
two order reduction techniques are suggested. The first method is simply an application of the well-known
Guyan like reduction method to nonlinear systems. The second technique is based on the concept of an
invariant manifold for quasi-periodic systems.

The ‘quasi-periodic invariant manifold’ based technique yields ‘reducibility conditions’. These conditions
(referred to in the perturbation literature as resonance conditions) help us understand the system’s various types
of resonant interactions. These resonances indicate energy interactions between the system states, nonlinearity,
and external excitation. To retain the essential dynamical characteristics, one must preserve all these ‘resonant’
states in the reduced-order model. Thus, if the ‘reducibility conditions’ are satisfied then only, a nonlinear order
reduction based on the quasi-periodic invariant manifold approach is possible. It is found that the invariant
manifold approach yields good results. These methodologies are general and can be used for parametric study,
sensitivity analysis, and controller design.

Quasi-periodic systems
Lyapunov-Perron Transformation
Normal forms

1. Introduction it with an equivalent small-scale system known as the Model Order
Reduction (MOR).

Order reduction is constructing small order systems from the large- Researchers have used order reduction of linear systems using mul-
scale structure, which capture the dominant dynamics [1]. In the design
and development process, engineers often analyze complex dynamical
systems governed by a large set of integrodifferential (ordinary/partial)
equations. These systems are complicated to solve analytically, and
one must resort to numerical techniques [2]. While solving these dy-

namical systems numerically, one has to consider various issues like

tiple techniques. Some of the methods include error minimization [5],
pole clustering [6], transfer function-based [7], and Pade approxi-
mation [8], to mention a few. For a comprehensive overview, we
refer to Ref. [9]. In addition, nonlinear order reduction is studied by
researchers from a structural point of view in the second-order and

convergence, numerical truncation errors, and, most importantly, the
limited computational resources and time. To simulate the dynamical
system’s response accurately within a reasonable amount of time, one
can construct an equivalent small-scale system known as the ‘reduced
order model’ that will approximate the large-scale system dynamics [3,
4]. This approach simplifies a sizeable dynamical system by replacing
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state-space form [10-12]. For order reduction of the time-periodic

system, researchers utilized the L-F Transformation and performed

order reduction. We refer to Refs. [13-17] for details on this approach.
The order Reduction procedure comprises the following steps.

1. A study of the large-scale system and identifying the dominant states

pertaining to the dominant dynamics.
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2. Elimination of the non-dominant states either by simply neglecting
their contribution or replacing them with the appropriate functions of
dominant states.

3. Formulation of an equivalent reduced-order system consisting only
of the dominant states.

This work concentrates on the ‘automatic’ order reduction of an
important class of engineering systems known as the ‘nonlinear quasi-
periodic systems’ [18-20]. These systems have quasi-periodic coeffi-
cients and in the state-space form expressed as

x = A@Dx +f(x,1) + F() (@)

where A(r) is an n X n matrix with quasi-periodic coefficients and
f(x,1) is a nonlinear function with monomials of x, F(¢) is the external
deterministic excitation, and x is an n vector of appropriate dimensions.
The objective of order reduction is to construct a reduced-order system

X, =A.@0x, +f.(x.,1)+F.(1) 2

that captures the essential dynamics of the large-scale system. It is
noted that A(¢) the matrix is quasi-periodic and contains incommen-
surate frequencies. To the best of the author’s knowledge, no current
techniques would allow direct order reduction from the Eq. (1) to the
Eq. (2).

The reducibility of a linear quasi-periodic system has been the sub-
ject of research in the scientific community. Many excellent references
discuss the reducibility of quasi-periodic systems [21-26]. Recently,
Waswa and Redkar presented a technique based on L-F Transformation,
state augmentation, and normal form to reduce linear quasi-periodic
system into an LTI system [27]. Very recently, Subramanian and Redkar
presented a method to compute L-P Transformation based on intuitive
state augmentation and normal forms [28]. This technique can be uti-
lized to calculate a closed-form expression for the L-P Transformation.
In this paper, we use the L-P transformation-based approach presented
in Refs. [28,29] to obtain the LTI representation of the quasi-periodic
system and perform the order reduction. For clarity, it is noted that
the reducibility of a quasi-periodic system means converting a linear
quasi-periodic system into an LTI system of the same dimension. Order
reduction means reducing the size (or the number of states) of the
original quasi-periodic system or its LTI representation obtained via the
L-P Transformation.

This paper briefly reviews the L-P transformation computation,
conditions for reducibility, and applications. The linear and nonlinear
order reduction techniques are outlined in section two. Section three
presents an application- Mathieu Hill-type equation for which the L-P
Transformation can be determined using the state augmentation and
normal forms. The reduced-order models are constructed using linear
and nonlinear techniques for this system. Section five discusses the
resonant interaction. Section six presents examples of the effectiveness
of the order reduction approach near resonances. In the end, in section
five, discussions and conclusions are presented.

2. Mathematical preliminaries
2.1. Computation of the L-P transformation

A quasi-periodic dynamical system, without any external excitation,
can be expressed as

y =A@)y; 3

where A(t) is a n X n matrix containing a finite number (k) of incom-
mensurable frequencies (k > 2)

A() = Aot ... v t) Yk 22 4

It is noted that A(t) is continuous and periodic in each argument. Still,
the ratio of any two frequencies is irrational [25]. It can be observed
that the dynamical system given by the Eq. (4) is linear, and the
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method of normal forms [30] is inapplicable. However, the parametric
excitation terms can be considered fictitious states. Therefore, the linear
nonautonomous system given by the equation can be expressed as a
nonlinear autonomous system.

Consider the most general form of the Eq. (3) with quasi-periodicity
provided by

x =B, +B()x 5)

where A(r) expressed as a constant matrix B, and a
quasi-periodic matrix B(r) of appropriate dimensions. It is important to
note that we assume the eigenvalues (1) of B, and the fundamental
frequencies (w) of B(r) satisfying the diophantine condition [31] to
avoid small divisors

14 = 4+ V=1, )| 2 #VkeZ’\{O} 6)
where |k| = |k;|+ - + |k, | and c is a constant.

Typically, B(¢) comprises of Z,’.’Zl(a,-Cos(w,-t) + b;Sin(w;?)) type terms
where w; is the frequency of quasi-periodic excitation (c.f. Eq. (4)).
Assuming g; = Cos(w;?) and p; = Sin(w;?) the Eq. (5) can be expressed
as

X = ByX +f(®) %)

where X = [x,p.ql”, p=[p;.p. ..., 4 =4;. 93, ... . 4,]” and
Applying the modal Transformation x = Mz, if B, has semi-simple
eigenvalues, the Eq. (7) is transformed into

z=Jz+M 'f(z) (8)

where J is the Jordan form of ﬁo (assumed to have semi-simple eigen-
values). The diagonal elements of the J matrix contain the linear
matrix’s (B,) eigenvalues and frequencies of parametric excitations
[Ayt1 -+ Ansm] that are incommensurate.

A

n+m

12 ln+l

n+m

[0}

The system shown in the Eq. (8) is amenable to an application of
Normal Forms [30]. A near identity transformation [30] (of the form
given by Eq. (10)) is applied to the Eq. (8).

z=v+h.(v) (10)

where h,(v) is a formal power series in v of degree r with T periodic
coefficients that leads to
oh,(v)

=-1%m

Jv—=Jh,()| +1£.(v) 1D

The higher-order nonlinear terms in the Eq. (11) are eliminated by
considering the following condition

oh,.(v)
a(v)

where

b= T 3 b e b= ¥ ¥ e,

j=1 m, v=—«a j=l m, v=—a

Jv—Jh,(v)+£.(v)=0 12)

n
m, = (my, m,..), E m; =2, |v|" = v’lnl vg’z..vr”
i=1
and e; is the jth member of the natural basis
After solving the Eq. (12), the solvability expression for a given
degree of nonlinearity can be expressed as
f Jjmv

= 13
T m A 13
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where 4= [41, Ay, Agedyys gy oo A ]T are the eigenvalues of J,

*nt+m
m,.A—4;#0 a4

Suppose the solvability condition [23] given by Eq. (14) is satisfied. In
that case, one can obtain the linear equation given by the Eq. (15) and
the near identify Transformation given by the Eq. (10).

v=Jv (15)

The near identity transformation given by the Eq. (10) is wholly known
in the non-resonant case and h,(v) contains the terms that explicitly
depend upon fictitious states p and q. One can substitute these fictitious
states in terms of their closed-form expression ¢; = Cos(w;?), and p; =
Sin(w;?) that yields h,(v,7) leading to the following form of the near
identity transformation

z=[1+ Qv ~ Qv (16)

This Transformation is similar to the Lyapunov-Floquet (L-F) Transfor-
mation [14,32] but for quasi-periodic systems.

Limitations;

One important aspect is that this technique uses the normal form
technique, which can be viewed as an extension of the higher-order
averaging method [33,34] and has the same limitations as the averag-
ing. This approach may not yield accurate results when the nonlinearity
is very strong (i.e., very strong parametric excitation in the present
case) or the linear term is absent (i.e., By = 0 c.f. Eq. (5)). On the
other hand, to the best of the author’s knowledge, this approach is the
only approach that yields the L-P Transformation given by the Eq. (16)
in a closed-form. The authors have successfully used this approach to
analyze linear and nonlinear quasi-periodic systems.

2.2. Computation of the inverse of the L-P transformation

For parametrically excited quasi-periodic linear systems of the
Eq. (3) form, the L-P Transformation is sufficient for analysis. However,
the inverse of the L-P Transformation is needed for quasi-periodic
nonlinear systems or quasi-periodic linear/nonlinear systems with de-
terministic or stochastic excitations. The L-P Transformation is a matrix
where the matrix elements contain a truncated quasi-periodic Fourier
series. Therefore, inverting a quasi-periodic matrix is not a trivial
problem. This section presents two possible approaches to obtain the
inverse L-P Transformation.

Symbolic Computation: In minimal cases, when the L-P Transforma-
tion matrix (given by Eq. (16)) is small (2 x 2) and contains only a few
terms, Symbolic computation software like Mathematica or Maple may
be able to find the inverse. However, the inverse computed with this
direct approach should be checked for the following conditions.

Q=1
Q'HxQ =1

The expression provided for Q~!(f)may need further simplification for
ease in future use.

a7

Neural Network: One can also use a dynamical method using a recur-
rent neural network proposed for inversion of the time-varying matrix.
One could use the gradient method [35], Zhang dynamics [36-38], or
Chen dynamics [37] to find an inverse. This section briefly presents the
Zhang dynamics approach [36] that could be used for inverting the L-P
Transformation.

Consider a time-varying matrix Y(¢) with inverse W(t) = Y~!(r) so
that the Eq. (18) is valid
YOW@) =1

18
YOWH-1I=0
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We assume Y(¢) is known and % exists. The objective is to find W(r)
using the following equation

EW®),n =YW -1 19)

where E(W(?),7) is a matrix-valued error function. The derivative of the
error function E(W(),7) should be selected such that E(W(),7) — 0.
Thus, E(W(t), 1) can be chosen as

EVOD — remw, ) 20)
where I' is a scaling factor for the convergence and F(E(W(?),1)) is
called an activation function or matrix mapping recurrent neural net-
work.

Differentiating Eq. (19) w.r.t. time and substituting Egs. (19) and
(20) yields
Y(OW() = -YOW() — TFEW(),1)

. . 21D

YOW(E) =-YOW@E) — TF(Y®)W(@) - 1)
The Eq. (21) is a matrix differential equation that can be solved for
W(r) using an appropriate initial cgndition. In the current paper, Y(7)
is the L-P transfgrmation matrix Q(r) and W(¢) is the inverse of L-P
Transformation Q~!(z). Thus Eq. (21) can be written as

QQ~'1 = -QQ~' 1) - FFQMQ~" 1) -1 (22)

One has to select an appropriate activation function and scaling con-
stant I'F() to achieve convergence. Then, the Eq. (22) can be numer-
ically integrated with the initial condition 6‘1(0) = I to determine
(N)‘l(t). For more details on the Zhang Neural Network, its application,
and proof of convergence, we refer to Ref. [38].

3. Order reduction techniques
3.1. Order reduction via linear projection

Consider a nonlinear quasi-periodic system described by the Eq. (1).
Applying the L-P Transformation x(t) = Q(#)z(r) produces

(1) = Jz() + QL (f (2, 1) + Q"L F () = Jz(r) + w(z, 1) + f(t) (23)

where J is the constant matrix and w(z,t) represents an appropriately
defined nonlinear quasi-periodic vector consisting of monomials of z;.

Again, the objective of order reduction is to replace the nonlinear
quasi-periodic system given by Eq. (23) with an equivalent system
provided by

z,(1) =J,z,(t) + w.(z,,1) + F,.(1) 24)
We partition the Eq. (23) as

0 P A ) £
= + + (a) (25)
Zg 0 J Zg w(zZ,,Zg,1) F ()
where z; is an (n — r) vector of non-dominant states, J, is the ma-
trix block of dimension (n — r) X (n — r) corresponding to the non-
dominant states as defined earlier and w,(z,,z,1) and w(z,,z,,1) are
the monomials of z(of order i) with quasi-periodic coefficients.

In the linear technique, the contribution of the non-dominant states

is considered insignificant and hence neglected. Thus, the reduced-
order model is given by

z.(t) = J,z.(t) + w,.(z,,0,1) + F.(1) (26)

The Eq. (26) is the reduced-order model of the actual large-scale
system described by the Eq. (25). The Eq. (26) can be integrated
numerically and using the transformation x(r) = Q(#)Tz,(r), where T =
[T O,X(,,_,)]Tall the states in x can be recovered.

This linear projection technique is simple and easy to implement.
It may or may not provide accurate results. The selection of dominant
states depends upon the judgment of the analyst. It does not give a
clear insight into system dynamics if the system behavior is complex
and involves internal and parametric resonance.
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3.2. Order reduction using invariant manifold

This methodology is based on the ‘Invariant Manifold Theory’. Ac-
cording to this theory, there exists a relationship between the dominant
“master” and the non-dominant “slave” states of the system. It is
possible to replace (under certain conditions) the non-dominant states
with dominant states. Thus, the order of the system can be reduced.

We assume that forcing frequency is incommensurate with the
frequency of quasi-periodic parametric excitation. The constraint (or
manifold governing) equations relating to ‘master’ and ‘slave’ states are
complex. Still, they admit the solution in the form of asymptotic ex-
pansion. The relationship between the dominant and the non-dominant
states of the system will involve contributions from the forcing and
nonlinearity. If there are no resonances, replacing the non-dominant
states with the dominant ones is possible.

Once again, consider a nonlinear quasi-periodic system given by the
Eq. (23) in the L-P transformed domain that is further partitioned as
the Eq. (25). After ordering and expanding the nonlinear terms, we
obtain.

z, =)z, + W, (Z,,Z,1) + ezwrg,(z,, z,,1) + e3wr4(zr, Z, 1)+ -
+e ', (2, 2,, 1) + €71 0(z|") + F,(1)(a)
) s (27)
7, = J 2, + W, (Z,,2,,1) + € W3(Z,,Z;,1) + £ Wy(Z,,2,,1) + -
+e T w2, 2, 1) + €71 0(I2]) + F(1)(b)

where "~ !w,,(z, 1) include the terms of monomials of order » in ‘master’

dynamics and &"'w,,(z,t) include terms of monomials of order n in
‘slave’ dynamics. In this approach, we assume a nonlinear relationship
between the dominant (z,) and the non-dominant (z,) states as

2z, = hy (1) + (hgy (1) + N5 (2, 1) + Dy (2, 1))

+€2(hg3(t) + hy5(z,, 1) + N3 (z,, 1) + D33 (2, 1)) (28)
+&3 (s (1) + h14(2,, 1) + Dpy(z,, 1) + M3y (2, 1) + gy (z,, 1)) + -+

Here h;, ;(z,,1) are the unknown quasi-periodic vector coefficients. Sub-
stitution of the Eq. (28) into (27) yields

1(z) + s{hoz(t) + —(hlz(z,, 1+ hzz(zr, 1)

+67(h12(lr, 0 +hy(z,.0) - 2,}

- a - - -
+&*{hg3 (1) + E(hl.?(zr’ 1) +hy;(z,, 1) + hy3(z,, 1))

0 = _ _ 29
+67(h13(z” t) +hy3(z,, 1) + hy3(z,,0) - 2.}

+63 (g, (1) + %(Hl 4@ 1) + Ny (2,, 1) + gy (z,, 1) + Dy (2, 1))

+aiz,(ﬁ”(zf’ 1)+ hoy (2, 1) + 3y (2, 1) + Wy (2,, 1)) - 2,} + -

Dropping spatial and temporal arguments for brevity, Eq. ((27)-b) can
be rewritten as

z, =J, - (hy, +e(hgy + hyy + hyy) + £2(hys + hy3 + hyy + hyy)

+53(Ho4 +hyy +hyy +hyy +hy) +
m+1

Z e"((hgyyy + Z by i1)s )

m=4
+ew,,(hy; + e(hg, + g + Do) + €2(h; + hy5 + hys + hy3)

+&3(hgy +hyy + Doy +hyy + D) + -

n m+2
Z ‘C'km(hOm+1 + Z hkm+1)’ t)
m=4 k=1

+&2w s (hy; + e(hgy + hyy + hoy) + €2(hg; + hy5 + hog + hy3)

+63(hgy + My + hyy +hyy + )+ )
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n m+1
Z " (g, + Z By ), D) + €Wy (hgy + e(hgy +hyy +hyy)
m=4 k=1
+€2(hg; + M3 + By + hyy) + 3 (hgy + My + By + oy + ) + -
n m+1
Z " (hgyyy + Z By 1) 1)
m=4 k=1
il T Y T T (30)
+e'7 wy;(hy; + e(hgy +hyy +hy) +e7(hy; +hy3 +hys +hss)
+&3 (Mg + My + hoy + gy +hyyy) + -
n m+1

Z e™(hgypy + Z By i1), D}
m=4 k=1
+F, (1)

Substituting the Egs. (27) and (28) into the Eq. (29) and equating it
to the Eq. (30) yields a complex partial differential equation involving
various orders of ¢. By correlating the terms of the same order of e,
we obtain the equations, which need to be solved to determine h,,,(?)
and h,,(z,.1)

Collecting the terms in order of ° yields

oy (1) = 3 b, (0 + F, () 31

The Eq. (31) is a linear equation involving pure temporal arguments.
The solution of the Eq. (31) can be determined using the convolution
integral [39] as

t
hy, (1) = es'hy,; (0) + /0 el =IF (1)dr (32)

If the forcing F(s) is harmonic with frequency kw/, then after the L-
P Transformation, the frequency of harmonic excitation F() becomes
Z;;Z—oo Y ——(P @, + ko), where ®, is the vector containing quasi-

periodic frequencies in the L-P Transformation ®, = {0, ,},p =
{pi Pz}T~
Expressing forcing in the most general form as
+oo +o0 ey
F,(t) = 2 Z z Cp]pzke;(p‘“’ﬂ”“’f)’ (33)

k=—00 p|=—00 py=—c0

If the eigenvalues of J, are purely imaginary and given by Ep; p =
1,2, ..., s then the solution can be written as

h01(’)‘z 2 Z 2 (« Jp1p2k

Jj=1p1==00 pp=—00 k=—0c0
1/1 t

;(ﬁ(upﬁ-kwf )3

—ej
c®, + ko, — A;)

C]P]szl(p @ +kwf i ) ) (34)
It can be seen that if p- @, + ko, — A; = 0 for any combination, HOl(t)
cannot be found out, and the system is said to be in ‘linear resonance’.
This resonance is referred to as a ‘primary’ or a ‘main resonance’ in
perturbation analysis.

Collecting the terms at the order of ¢! yields

oh
hoa (1) = 3By (1) — ‘2 F + W, (1) (35)
oh,, oh oh —
712 12J, z, + a—”F 0= Iy, =W (2.1) (36)
oh,, oh —

(;2 aT”J z, = Jhy =Wy, (z,.1) (37)

It can be seen that Egs. (35), (36) and (37) are coupled equations.
However, the Eq. (37) can be solved independently. Assuming the most
general form of nonlinearity and expanding the known and unknown
terms in multiple Fourier series as

hyy(z,.1) = 22 2 Z hjmpipyv € o® [z, |®e; (38)

Jj=1 m pj=—c0 pp=—c0
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522(z”t) - Z Z Z Z Jmpll)z‘/ z(a))t |Z |N ej (39)

j=1 m p1=—o0 py=—c0
m m m m =
|z,|~—z1'z22 Lz i =V=1l,m +

={w, wz},ﬁ= {m Pz}T

et m, =2

Collecting the terms to solve for the unknowns yields the ‘reducibility
condition’ given by the Eq. (40),

ip- o)+ Zmdp) = 1, #0 (40)

where all the terms appearing in the Eq. (40) are defined before.

In the absence of resonances h,,(z,.r) can be obtained. At this
stage, forcing frequency does not appear in the Eq. (40), implying
no direct interaction between the nonlinearity and the external exci-
tation. However, we construct the solution using Egs. (35), and (36)
forcing interacts with the nonlinearity, giving additional ‘resonance
conditions’.

To find out the solution to the Eq. (36), which contains the contri-
bution from the nonlinearity w,(z,,7), we expand the known and the
unknown terms in the multiple Fourier series of the form

+o0

+oo
hlZ(Zr’f)—ZZ Z Z Z R iy pyv € l(pm”ZlN j (41)

Jj=1 m p1=—00 py=—00 p3=—00

400 0

N
Wrs, (2 1) = Z Z Z 2 Z jmp; pyv© o/Eor ||® e, (42)
e

—00 py=—00 p3=—00

|z [® = 2" 207 . 2=V =Lm 4.

={o, o o;};b={p p b}

+m,.=1;

A term-by-term comparison yields

Ajmy
_Nj—_ (43)
ip-o)+ 4 -4,

jmy =
The ‘combined reducibility condition’ can be expressed as
iP-®)+A4—1,#0 44)

It can be observed that all the terms appearing in the Eq. (35) are free
from spatial arguments, and they can be solved using convolution, as
discussed before. The forcing terms w,,(f)(with a square type term in
hy, (1)) appearing due to w,,(z,,7) is known from the Eq. (32) , which
can be expressed in the form
N +oo o0 +o0 _
Ws20(t) = Z Z Z Z ajﬁvei(p‘a)tej (45)
j=1 p1==00 py=—c0 p3=—o0

where i = \/—_1 o={0 o
is known from the Eq. (34).

However, the Eq. (35) cannot be solved if 4, = p - ®, which can be
written as

o }sb={n m p) and Z2F,

Ay = D@, + prwy, + P30y (46)

The exact combination will be determined by the kind of terms present
in the forcing.
As we collect the terms in the order of 2, we obtain

612

ho}(’) =J hos(f) + F (1) —

Wi, () + Weo, () + W (D) (47)
r — — — —
Thgr 12 hoy(Dhe () [h (D13

oh; oh
a—; + ﬁzzwmzo(z,,t) +
" N——

ohyy
0z,

ahlg CLIER P F
Y/
az, rér ; r

thoy (O
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=Jh3+  wp (Z.0) +wg (2.0 48
_ T —
hy, (1)-z,+hg; (1)-h 5 (z,.,1) [hg; (D15 -2z,
ohy; oh oh
723 f‘lr r + lF =] h2’% + w5232 (Z,., I) +ws32 (Z,-, I) (49)
Y _ _
hyo @02, +ho (Do (2,.0) Doy (02,
ohy;  ohy
= T oz, 23,2, =Jhy + W (2, 1) + W3, (2, 1) (50)

———
hy,(z,.0)2,

The Eq. (47) has only temporal arguments; the Eq. (48) is linear in
spatial arguments; the Eq. (49) depends upon quadratic spatial argu-
ments, and the Eq. (50) involves cubic spatial arguments. As before,
one has to solve these equations sequentially.

It can be observed that the Eq. (50) can be solved independently
and involves contribution from w,(z,, ) denoted by w,_ . (z,, 7). To solve
this equation, we expand the known terms and unknown terms in the
multiple Fourier series (c.f. Eq. (37))

R N a2 51)
j=1 m pi=—c0 py=—co
s +00 o0 -
W, (Z,,1) = 2 2 Z z ajmvei(p“”)’ |z, [®e; (52)
j=1 W pi=—c0 py=—c0

|z, |® =222 i = V=Lm + A m =3

o={o, o},p=1{p Pz}T

It is possible to determine 533(1,, t) if the following’ reducibility condi-
tion’ is satisfied.

iP- o)+ él(m,/l,) -7, #0 (53)

Once 533(zr,t) is known, we can solve the Eq. (49). This equation

contains terms arising from the product of MF (1) (where F (1)
is the forcing on the master states), the COIltI'lbu'[lOIl from quadratic

W,,(2,,1) nonlinearity (denoted by wy, (z.,1), and contribution from
cubic nonlinearity wg;(z,,t)(represented by wS32(z,,t)). As before, we
expand the known terms (marked as w, (z.,?)) and the unknown terms
(hy3(z,, 1) in multiple Fourier series of the form

+0o
h23(zr’t) = Z Z 2 Z Z N ipy papsv @ oor |z, |~ ej (54

Jj=1 m P1:—°° pr=— P3*—°°

‘k(zr’t)_zz Z Z 2 4 jimpy pyp3ve or |Z|~e (55)

Jj=1 m pj=—00 pp=—00 p3=—00

|z.|® =222 i = V=lom 4 m, =2

1
o={0w o, wf};p={1)1 Py p3)

As before, we can obtain 523(z,, t) via term-by-term comparison if and
only if the following ‘combined reducibility condition’ is satisfied.

- r -
i@+ 2 mi)~4,#0 (56)
It can be observed that this ‘combined reducibility condition’ involves
a contribution from the forcing.

Once hy;(z,, 1) is known, we can solve the Eq. (48) which contains
the contribution from w(z,,7)(denoted by wg (z..,1)) and wy(z,,1)

(represented by w; (z,,7)) and MF (t) To determine h,;(z,,1), we
s3) \Er r 1 r

expand the known and the unknown terms in the multiple Fourier series
of the form given by Eq. (41) and Eq. (42), respectively and obtain the
‘combined reducibility condition’ given by Eq. (44).

Further, to obtain 5030), we use the convolution theorem, as before.
However, it can be seen from the Eq. (47) (which contains only tem-

poral arguments), the forcing terms arise from o"” F,(t) (forcing on the
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master states), and nonlinear terms w,(z,,) W(z,,7) and are denoted
as wsq(t), which can be expressed as

s

+o00 0 +o00
w,0=3 ¥ ¥ ¥ amd® (57)

Jj=1 p1=—00 py=—00 p3=—c0

- _ ~ T
wherei=V-1L,@={0, o, ow;}:P={p pn p} -
The Eq. (47)cannot be solved if

A=p @ (58)

It is possible to continue the procedure discussed above to construct
the relationship between ‘slave’ and ‘master’ states to the desired order
and recover various ‘resonance conditions’ involving contributions from
external excitation and nonlinearity at multiple orders.

4. Applications

Consider a coupled undamped Mathieu Hill-type nonlinear quasi-
periodic system subjected to external excitation given by

X + (a) + by coswt + ¢q cosw t)x + Xy = A cos(wt)

(59

V=4 (ay + by cosw t + ¢, cosw,yt)x + yx = A, cos(wt)
The Eq. (59) can be expressed as

x X 0 0
PR X] ) 0 X x%y cos(wt)
— = - + + (60)
iy 0 Aollyl |o 0

y y y2x cos(wt)

~ 0 1
where A, (1) = s
—(a; + by cos it + c;cosw,rt) 0
0 1

A1) =
—(ay + bycoswit+cycoswyt) 0
Applying the L-P Transformation x(r) = Q(#)z(¢) and its inverse to
the Eq. (60) yields an equation similar to the Eq. (23)

z) z) Sz, 1) F
FRES J, 0 Zy f12(z, 1) Fi(1)
= = + + (61)
"z 0 Ll|z a1z, 1) Fy ()
Zy4 Z4 S (2,1 Fy) (@)
Where
<_/1 . blz(czfls(*4/13+A'3)+C1A'4(*4A'1+A'4)))
! (441=73) 43 (441 =44 ) A4 o
ven
Ji= A4 b2 9,9
. VPOV \ -2 T aaag-ag2
Var
b2 (Cy 43 (=443+43)+Cy Ay (—44,+4,))
(-2 + SR o
Vi
"o 0 (’12 + b’ (usz—hz + 4A‘:AC:—U ))
Vi

A =a,d = ay, A3 = w,4 = ,C; and C, are constant depending
upon the initial conditions of the fictitious states. For more details on
the computation of J, we refer to Ref. [22]. At this point, we have to
select master and slave states. Assuming eigenvalues of the J, matrix
are closer to w (the frequency of external excitation), we choose z, =
{z1,2,}7 as the master states and z, = {z3,2z,}7 as the slave states and
partition Eq. (61) similar to the Eq. (25).

Z, J. 0 z, w,.(2,,Zg,1) F.(?)
Wl e e e
Zg 0 Jg Z, W(Z,,Zg,1) F,(1)
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3. =31 = 1wz 2. 1) = { f1,@.0), f122 D},
Where w,(z,,2,,1) = {f2,(z,1), f2,(z,1)}T

F. (1) = {F,(0), Fla )}, Fy(0) = (Fy (), Fpy()}T
In this particular case,

ay=3,a,=5b=by=c; =¢c, =25,
w, =2x rad/s,w, =7 rad/s,w=1rad/s,A; =1,4;, =1

J,, J, are given as

—1.78i 0 —2.29i 0
J| = 5 Jz = (63)
0 +1.78i 0 +2.29i

One can apply order reduction techniques discussed in Section 3.

(a) Order reduction using the linear method

Eq. (62) comprises of 4 states {z; z, z3 z4}T. Following the
procedure outlined in Section 3.1, we neglect the contribution from
the non-dominant states z, = {z; z4}T, and the system dynamics is
approximated by

Zy Z f11(21,2,0,0,0) F

SR B P S V) S
Z 2 [2(21,2,,0,0,7) F, (@)
The Eq. (64) is the reduced-order model of the system described by
the Eq. (62). This reduced-order system is integrated numerically with
typical initial conditions. All the states in x are obtained using the
L-Px(r) = Q(1)z(¢) Transformation. This solution is called linear reduced-
order system response. This response can be compared with the original
system’s response calculated via numerical integration of the Eq. (59).
The time trace comparison is shown in Figs. 1 and 2. Fig. 3 compares
phase planes for the original and the reduced-order system via the
linear technique. It can be noticed that the linear reduced-order model
fails to capture the dynamics of the original system. One reason for
this failure is that the slave states are also excited by forcing F,(¢) that
is completely ignored in the reduced-order model. The linear order
reduction technique may yield acceptable results when the eigenvalues
corresponding to slave states have negative real parts or no forcing on
slave states. However, in general, the linear order reduction approach
for nonlinear quasi-periodic systems subjected to external excitation
may not yield accurate results. For clarity, the Welch power spectrum
for the original system response is compared with the Welch power
spectrum for the linearly reduced system in Fig. 4. These power spec-
trums do not match, indicating that the original system’s dynamics
(frequency content) are not captured in the linearly reduced-order
system.

(b) Order reduction using an invariant manifold

As discussed earlier, we try to relate the non-dominant states to the
dominant states by a quasi-periodic nonlinear transformation. Suppose
the system does not exhibit any resonances (like the case under consid-
eration). In that case, the ‘reducibility condition’ is satisfied, and the
system order can be reduced.

We start with the Eq. (62) and select the same states [z, =
{z zz}T] as the dominant states and try to find a nonlinear quasi-
periodic relationship of the form given by the Eq. (28) . For this
particular example, the relationship between z, and z, are

z,= ) (2,2, = H(zp, 25,1), s = 3,4 (65)
i
where h; =Y h,0)z)" .. 232 W = (my,my)" my +my =3 (66)
m

Here ﬁ,-(t) are the unknown quasi-periodic vector coefficients. We
substitute the Eq. (65) into the Eq. (62). After expanding E(t) and
w(z,,0)(s = 3,4) in the Fourier series and neglecting the terms of
higher-order, we obtain the relationship between the dominant and the
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non-dominant states as

z3=H,(z), 25,1), 24 =Hy(z,2,,0) (67)

The Eq. (67) is substituted into Eq. (62)-a to get the reduced-order
model as

Z zZy w,(zy,2,1) F,(®
98 SR o ) 5 VS SR
Z Zy Wy(2y,23,1) Fip (1)

The Eq. (68) is the reduced-order model of the system described
by the Eq. (62). As before, this reduced-order system is integrated
numerically with typical initial conditions. All the states in x are
obtained using the L-Px(t) = Q(r)z(t) Transformation. This solution is
called nonlinear reduced-order system response. Similar to the linear
reduced-order system analysis, the nonlinear reduced-order system re-
sponse can be compared with the original system’s response calculated
via numerical integration of the Eq. (58). The time trace comparison
is shown in Figs. 5 and 6. Fig. 7 compares phase planes for the
original and the reduced-order system via the nonlinear technique. It
can be noticed that the nonlinear reduced-order model captures the
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system via the linear approach.

dynamics of the original system quite well. For additional insight, the
Welch power spectrum for the original system response is compared
with the Welch power spectrum for the nonlinearly reduced system
in Fig. 8. These power spectrums match, indicating that the original
system’s dynamics (frequency content) are captured in the nonlinearly
reduced-order system. These symbolic computations were performed
using Mathematica™.

5. Resonant interactions

Nonlinear quasi-periodic systems can exhibit complex dynamics
with resonant interactions. The system can exhibit primary resonance,
secondary resonance, internal resonances, and combination resonances.
The example presented in section four does not have any resonances.
However, it is possible to recover the resonance conditions as the order
reduction is carried out via the invariant manifold approach.

One can follow the procedure discussed in section three to ob-
tain the relationship between ‘slave’ states (to be eliminated) and
‘master’ states (to be retained) to desired order and recover various
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resonance conditions involving contributions from external excitation
and nonlinearity at multiple orders.

Typically, the states with eigenvalues (or exponents) that are close
to the frequency external excitation indicate a stronger interaction and
dominate the response and hence can be chosen as the master states.
It is to be noted that in the absence of damping, the response of the
resonant system is unbounded, and the system is said to be in primary
resonance (c.f. Eq. (34)). For clarity, this resonance condition is given
by

p~cop+kwf—/lj=0 (69)
where the terms appearing in the Eq. (69) are defined before. It can
be noted that the resonance conditions imply a strong coupling leading
to energy interaction in external forcing and various modes (or states)
of the system. If the resonances are present, then the reducibility con-
ditions discussed are not satisfied, and order reduction is not possible
due to the presence of an irremovable coupling.

As the harmonic balance is carried out at ¢ (c.f. equations (35) to
(39)), one yields the combined reducibility condition given by the Eq.
(40) reproduced here for clarity.

r -

ip- o)+ ZmAp) = 2, #0 (70)
where all the terms appearing in the Eq. (70) are defined before. The
Eq. (70) indicates the energy interaction between the master states
and slave states. The absence of quasi-periodic parametric excitation
(p - ®) = 0 yields the classic secondary resonance condition discussed
in perturbation literature. It is important to note that the L-P Trans-
formation contributes to (p - @) terms in equations (69) and (70)
leading to many resonance conditions due to quasi-periodic Fourier
series representation of the Transformation.

Harmonic balance carried out in £2(c.f. equations (47) to (50)) leads
to the resonance condition given by the Eq. (56). It is important to note
that the Eq. (47) is purely temporal and cannot be solved if secondary
resonances indicated by the Eq. (58) are present.

For a special case, when only cubic nonlinearity is present, the
relationship between ‘master’ and ‘slave’ states can be expressed as

z, = ho, (1) + (g3 (1) + W 5(Z,. 1) + M3 (z,. 1) + hys(z,. 1)) (71)

Following the same procedure discussed above, when we collect the
terms of ” we obtain the Eq. (31) that can be solved by convolution.
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However, as we collect the terms of the order ¢!, we obtain

aﬁ
hm =1 hm(t) +

F.()+ W3, (1) (72)
Zr ~——
[ho; ()13
oh; ohg, ohys — _
e + ?J,z, + ?F =Jh;3 +wg (2,0 (73)
" " ~——
[hoi (]2,
oh,; oh oh
723 + az” Jz, + *3 F =Jhy; + W (2,.1) (74)
——
ho; (0)[z,12
aﬁ33 ah33
T B_J z, = J,hs; + W3, (Z,.1) (75)

These equations can be solved by expanding the known and unknown
terms in the multiple Fourier series of appropriate form and term by
term comparison similar to equations ((50),(49),(47) and (48)) yield
the ‘reducibility condition’ and ‘combined reducibility conditions’ similar
to equations (53), (56),(44) and (58).

Let us consider a special case when forcing on the ‘slave’ states is
zero and the Eq. (25) takes the form

z J, 07 (=2 EW,(Z,, 2, 1) F.(t)
= + + (@) (76)
Zg 0 Jg Z, EW(Z,,Z,1) 0
where all the terms appearing in the Eq. (76) are defined before. To

obtain the invariant manifold expression, we express the relationship
between ‘master’ and ‘slave’ states as (c .f. Eq. (28))

z, = e(hoy(t) + h (2. 1) + Moy (z,. 1))
+€2(hg3(t) + hy53(Z,, 1) + N3 (z,, 1) + hys (2, 1)) 77)
+63 (o (1) + M4 (2. 1) + Ny (2, 1) + hyy (2, 1) + Dy (2, 1) + -

As we follow the procedure to determine manifold constraint equation
as described earlier, we obtain for £!(c.f. equations (35)-(37))

- _ oh

hoo(1) = oy (1) = —2F, 78)
r

oh,, oh,, _ ohy,

7 —J z, JShIZ = —a—szr(t) (79)

oh,, ohy, —

7 + a_ZrJrzr - JShZZ = ws22 (Z,, 1) (80)

where the Eq. (80) is the same as the Eq. (37). However, equa_tions
(78) and (79) do not include any contribution form w,(z..?) as hy, (r)
(or F,(7)) is absent. However, the nonlinear interaction between ‘master

forcing’ and ‘slave’ states give rise to term ah” F,(?) in the Eq. (79) and

subsequently the term ’”"2 F, in the Eq. (78) Wthh are known. The Eq.
(80) can be solved by expandlng the known and unknown terms in the
multiple Fourier series given by equations (38) and (39) yielding the
same ‘reducibility condition’ provided by the Eq. (40). Further, to solve
the Eq. (79), we have to expand the known and unknown terms in the
multiple Fourier series of the form

+00

+o0
R 0=3 % ¥ ¥ X hm T, 1)

Jj=1 m pj=—00 pp=—00 p3=—co

N
ahzzF( ZZ z Z Z :(pﬁt |Z |~ e, (82)
|z,|'11 = zm'z;"2 e Zy i = \/—_1,m| +otm, =1
wr 1B={p P 3}

where o, is the frequency of ‘master forcing’ and all other terms are
defined before. A term by term comparison yields the expression similar
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to Eq. (43) and ‘combined reducibility condition’ given by (c.f. Eq. (70))
;(plcop + Py + p3wy )+ A — Ep #0 (83)

To obtain h,(z,, 1) the ‘combined reducibility condition’ given by the Eq.

(83) should be satisfied. Let us consider a special case when p, = p, = 0.
Thus, the Eq. (83) yields
i(p3wy, )+ A=Ay #0 (84)

which implies when the difference between the exponent of ‘master’
states and the ‘slave’ states equals the integral multiple of the ‘master
forcing’ frequency order cannot be reduced. When the parametric
excitation is small (and the exponents approach the natural frequency
of the linearized autonomous system ®,) Eq. (84) can be expressed as

i(py; )+ @, —o, #0 (85)

This result is well-known in the perturbation literature. Assuming all
the ‘combined reducibility conditions’ are satisfied, we obtain hy,(z,,)
and solve the Eq. (78), which involves contribution from le(z 1) in
the form ‘ZF,(t)(whlch depends upon time alone). The solution of
the Eq. (78) can be obtained via the convolution provided A, # p - @
(45 # p@, +pyw, + p3wy ). For a particular case when p; = p, =0, this
condition can be written as

Ay # P30y (86)

which states that the order cannot be reduced if the ‘slave’ states
resonate with ‘master forcing’. Again, under the small parametric exci-
tation assumption, the condition given by the Eq. (86) can be expressed
as

@, # f(p3wf'n) (87)

which is obtained by various researchers via perturbation analysis. It
is possible to continue to get the condition at a higher order of non-
linearity (2,€%,.. ). In conclusion, the results obtained by ‘reducibility
condition’ and comblned reducibility condition’ contain the resonance
conditions obtained via perturbation analysis.

6. Examples of resonant interaction

Consider the coupled undamped Mathieu Hill-type nonlinear quasi-
periodic system subjected to external excitation given by Eq. (59). After
the L-P Transformation, the system can be expressed as the Eq. (62),
where all the terms appearing in the Eq. (62) are defined before. In this
section, we consider the effectiveness of the order reduction technique
as the system approaches the primary resonance (given by Eq. (69)),
internal resonance (given by Eq. (70)), and secondary resonance given
by Eq. (86)).

As mentioned earlier, a primary resonance condition indicates a
tight coupling between the external forcing and master states, and the
system response is dominated by the resonant modes. Consider the
following system parameters

ay=3,ay=5b =by=c¢; =¢c, =2.5,w =2z rad/s,
wy =Trad/s,w=158rad/s,A| =1,4; =1

the J,, J, are given as

—1.78i 0 —2.29i 0
J| = 5 Jz =
0 +1.78i 0 +2.29i

It can be observed that for the given system parameters and external
forcing, for (p - ®) = 0 (the constant term in the L-P Transformation),
the system is close to primary resonance.

koy—2;~0

This leads to the “small divisor problem” as the denominator of terms in
the Eq. (34) approaches zero. It can be observed that the total response
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Fig. 9. Time trace comparisons of original and the reduced-order system via the linear
approach x(f) v/s time when the £ = 0.2 close to primary resonance.

of the system is dominated by the resonant (“master”) states. As long
as the system response is bounded, the invariant manifold-based order
reduction technique can capture the system’s behavior to some degree.
It can be noted that when the denominator of the terms in the Eq. (34)
is zero, the response becomes infinite due to singularity. Close to the
singularity, the order reduction results are dominated by the stability
of the numerical integration algorithm and floating-point precision.
Typically, based on our experience, when running on Intel-i7, 32 GB
RAM, Mathematica 11, and MATLAB 2020b, the reduced-order model
results were close to the original system when the master states were
close to (but not in exact) resonance ko, —4; =€, 202 when we
used ODE solvers in MATLAB for numerical integration. As ¢ < 0.2,
the numerical integration algorithms displayed warnings and could not
meet integration tolerances.

The “small divisor problem” has received significant attention in
the nonlinear dynamics community and studied by researchers using
KAM theory [40], general direct methods (Siegel’s method) [41], and
their extensions. We are currently working on a paper that explicitly
addresses order reduction of the quasi-periodic system near resonance
where the “small divisor problem” is significant where one has to use
the KAM theory and other analysis methods.

On the other hand, reduced-order model obtained via the linear
approach did not capture the dynamics of the original system when
the system was close to primary resonance. Figs. 9 and 10 show the
time trace comparison of the original and reduced systems via linear
and nonlinear methods, respectively. It can be observed that the time
trace of the nonlinear reduced-order system is more in agreement with
the original system. However, as the system is undamped, the response
is amplified but bounded.

The system is said to be in internal resonance when the resonance
condition given by the Eq. (88) is satisfied (c.f. Eq. (70))

r —_
iPp-o)+ ZmA) = 4, =0 (88)
For (p - ) = 0(the constant term in the L-P Transformation) and the
parameters

ay =3,ay=5,by =c; =25,by = ¢, =3.8,w; =2x rad/s,
wy =7rad/s,w=1rad/s,A; =14, =1

the J;, J,, C; and C, are given as

—1.78i 0 =5.1i 0
Jl = ,Jz =
0 +1.78i 0 +5.1i
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nonlinear approach x(#) v/s time when the £ = 0.2 close to primary resonance.

c.f. Eq. (88), the system is close to 3:1 internal resonance given by

é](m,/l,) -A,=0m=3 (89)
When the system is close to 3:1 internal resonance, similar to the
primary resonance case, the denominator of the terms in the Eq. (40)
approaches zero due to a “small divisor problem”. When running
on Intel-i7, 32 GB RAM, Mathematica 11, and MATLAB 2020b, the
reduced-order model results were initially close to the original system
when the master states were glose to (but not in exact) internal res-
onance with the slave states §1(m,l,) — Ep = g, > 0.20. However, as
time increased, the time traces of the nonlinear reduced system and the
original system diverged. The Poincare’ plots showed a similar structure
but were different in magnitude. The detailed discussion and sensitivity
of the long-term response of the reduced-order system near resonance
will be reported elsewhere. For ¢ < 0.2, the numerical integration algo-
rithms displayed warnings and could not meet integration tolerances.
The reduced-order model, via the linear approach, did not capture the
dynamics of the original system when the system was close to internal
resonance.

The validity of the order reduction approach was studied further
when the system was close to secondary resonances, i.e., 4, — Ep <
eg;¢ = 02 cf. Eq. (84) and 4, — p3wy < €€ = 0.2 c.f. Eq. (86),
the numerical integration algorithms displayed warning and could not
meet integration tolerances. Thus, for the typical system parameters
used for demonstration in this paper € = 0.2 appears to be a threshold
where numerical solvers can maintain the integration tolerances. This
threshold ¢ is dependent on the system parameters, type of numerical
integration solver/software used, and machine precision. The validity
of order reduction close to resonance and associated “small divisor
problem” is an exciting topic and needs further attention to under-
stand the convergence, resonance interactions, stability of numerical
integration techniques, and limitations.

7. Discussion and conclusions

This paper presents a technique for obtaining a reduced-order model
of a nonlinear quasi-periodic system subjected to external excitation.
The central idea is to assume a quasi-periodic transformation with
unknown coefficients between the master and the slave states. This
Transformation can be determined by collecting the terms of the same
order and solving them using harmonic balance. In the solution process,
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we obtain reducibility conditions that indicate resonances between sys-
tem states, nonlinearity, and external excitation. The linear resonance
condition is also obtained as we find the solution of quasi-periodic
Transformation. One crucial point is deciding which states to retain
and which ones to eliminate. Initially, one could start with the states
corresponding to eigenvalues close to external excitation frequencies
and start the order reduction process. The resonance interactions in
the nonlinear quasi-periodic system are complex. In order reduction,
one may see a ‘“small divisor” problem. Such a case indicates resonant
interaction, and these resonant states must be included in the master
states. It can be noted that with the advent of symbolic software like
Mathematica and Maple, the procedure for order reduction can be au-
tomated [42]. One can consider quasi-periodic and external excitation
as fictitious states and carry out the order reduction. This approach
is presented in Ref. [43], and further simplification via the method of
normal form can be achieved as discussed in Ref. [44] for autonomous
systems.

It is emphasized that the methods proposed in this work are ap-
plicable when the quasi-periodic system is almost reducible and meets
the reducibility conditions given in Refs. [26,34]. It is essential to
observe that the small divisor problem needs to be addressed during the
computation of the L-P transformation and while performing the order
reduction of the L-P transformed system. It is respectfully noted that
a general L-P transformation for the quasi-periodic system, like the L-F
transformation for the periodic system, is impossible as the Floquet type
theory does not exist for the quasi-periodic system. However, almost
reducibility can be proved under certain conditions for a class of quasi-
periodic systems. These cases are discussed with rigorous mathematical
proofs in Refs. [23-26]. It is noted that many engineering systems
fall under this class of problems and are amenable to the approach
presented in this paper.

For the reducible (or almost reducible) quasi-periodic systems, the
reduced-order models based on the L-P transformation and invariant
manifold approach will contain all the essential dynamics. The re-
sponses of the reduced-order system quantitatively and qualitatively
are similar to the original system. This reduced-order system can be
simplified using the method of normal forms. One can study this
simplified system for bifurcation and control. The reduced-order system
can be used to optimize essential parameters, study sensitivity, and
design controllers.

NOMENCLATURE
X - n vector of states
A(1) - n X n time quasiperiodic matrix
f(x,1) - nonlinear n vector such that £(0,¢) =0
Q(?) - L-P transformation matrix of dimension n X n
M - Modal matrix of dimension n x n
z - n vector of the L-P transformed states
z, - r(r << n) vector of dominant states
z,(1) - s(s + r = n) vector of non-dominant (slave) states
J, - rxr Jordan block corresponding to dominant states
H(z,,?) - Nonlinear quasi-periodic invariant manifold function relat-
ing the non-dominant states to dominant states
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