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Abstract—Advances in Artificial Intelligence (AI) and wireless
technology are driving forward the large deployment of intercon-
nected smart technologies that constitute Cyber-Physical Systems
(CPS) and Internet of Things (IoT) for many commercial and
military applications. CPS is characterised by a communica-
tion, computing and control engineering based on large volume
of data originating from various devices, plants, sensors, etc.
Wireless technologies have enabled the ease of networking and
communications for both CPS and IoT, by providing massive
and critical connectivity and control mechanisms. However, they
are prone to challenges such as low latency, throughput, and
scheduling. Recent research trends focus on how to intelligently
use data from CPS units to enhance wireless connectivity in
CPS. Artificial Intelligence tools, particularly AI systems and
machine learning (ML) algorithms, have been widely applied in
literature to develop efficient schemes for wireless CPS/IoT. This
paper presents a review on the role of Artificial Intelligence in
wireless networking for CPS and IoT. In particular, we focus
on machine learning paradigms such as Transfer Learning,
Distributed Learning, and Federated Learning, that have evolved
as building blocks for the utilization of large data for learning,
adaptation, and predictions in CPS and IoT systems that leverage
wireless networking. Furthermore, we also highlight challenges
faced by current and future wireless networks pertaining to
CPS/IoT, that are yet to be addressed.

Index Terms—Artificial Intelligence (AI), Machine Learning
(ML), Wireless Networks, Cyber-Physical Systems (CPS), Inter-
net of Things (IoT),Distributed Learning, Federated Learning,
Transfer Learning

I. INTRODUCTION

The Internet of Things (IoT) and Cyber-Physical Systems
(CPS) are widely used paradigm for describing the intercon-
nection of physical devices that communicate information and
can be controlled remotely [1], [2], [3], [4], [5]. Recent ad-
vances in wireless technology has enabled the use of wireless
sensors, mobile devices, and other smart devices for a wide va-
riety of commercial and military applications. The connections
and communications for these interconnected wireless devices
can be either in the homogeneous or heterogeneous domains.
Most of the IoT and CPS devices are comprise of physical
objects such as smart vehicles, drones, smart appliances, and
other machines/machinery etc., that are embedded with sensors
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for either a single specific application or multiple applications.
Another emerging CPS based paradigm is the fourth industrial
revolution, also referred to as Industry 4.0, that describes the
digitization of traditional manufacturing/production, products
and other industrial ecosystems. [1], [2]

CPS has tight combination of communication, computing
and control engineering that leverages data driven approaches
with massive amount of data generated by massive number of
inter-connected multitude of devices. This data, once collected,
can assist in the digital transformation of industry and decision
making. The plethora of connected devices require a wireless
network architecture that is adaptive in real time, and robust
to support the large data transfer. While also simultaneously, it
is being able to improve Quality of Service (QoS) and Quality
of Experience (QoE) for end users by making intelligent
decisions. To expand in detail, future wireless networks are
expected to handle critical missions at higher data rates, lower
costs, and lower latency in communication, in addition to
ensuring that the information services meet the CIA (Confi-
dentially, Integrity and Availability) principles of information
security [6], [5].

Furthermore, it is projected that the number of CPS and
IoT connected devices will triple by 2023 compared to 2017
[7]. According to the Cisco annual report in 2020, there
will be 3.6 per-capita, (approximately 29 billion) network
devices, out of which 14.7 billion will be IoT connected
devices by 2023 [8]. Future IoT will consist of massive
amount of devices and sensors generating enormous data and
will require uninterrupted communication between the IoT

Fig. 1: Scope of this survey covering intersection of AI/ML
and wireless networking for CPS/IoT applications.
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TABLE I: List of acronyms.

Acronym Full meaning Acronym Full meaning
3GPP 3rd Generation Partnership Project MIMO Multiple-Input and Multiple-Output

AI Artificial Intelligence ML Machine Learning
AMI Advanced Metering Infrastructure NB-IOT Narrowband IoT
ANN Artificial Neural Network NOMA Non-Orthogonal Multi Access
ASR Automatic Speech Recognition PCA Principal Component Analysis
BLE Bluetooth Low Energy PF Proportional Fair
C2M Consumer-to-manufacturer Q-Learning Quality Learning
CIA Confidentially, Integrity and Availability QoE Quality of Experience
CNN Convolutional Neural Network QoS Quality of Service
CPS Cyber-Physical Systems RF Radio Frequency

CSMA/CA Carrier Sense Multiple Access/ Collision Avoidance
CTF Channel Transfer Function RL Reinforcement Learning
DBN Deep Belief Networks RNN Recurrent Neural Network
DL Deep Learning RR Round Robin

DRL Deep Reinforcement Learning RS Random Scheduling
DQN Deep Q-Network RSS Received Signal Strength

FDML Feature Distribution Machine Learning SAE Stacked Auto Encoders
FL Federated Learning SG Stochastic Gradient

FNN Feedforward deep Neural Network SNR Signal to Noise Ratio
GAN Generative Adversarial Networks SON Self Organized Network
IoT Internet of Things SSP Stale Synchronous Parallel

KNN K-Nearest Neighbor SVM Support Vector Machine
LoRa Long Range TL Transfer Learning

LPWAN Low Power Wide Area Network UE User Equipment
LTE Long-Term Evolution WiFi Wireless Fidelity

M2M Machine-to-machine Wi-SUN Wireless Smart Utility Network
MAC Media Access Control WLAN Wireless Local Area Network

M-BUS Meter-Bus WM-Bus Wireless Meter Bus
MDP Markov Decision Process WNAN Wireless Neighborhood Area Network

WPAN Wireless Personal Area Network

devices, as well as the network technologies (physical and
software). Based on these projections, millions of data packets
will be transferred. Therefore, optimization of wireless links
and networks to process such enormous data with minimum
delay will play a critical role for data gathering and sending
back the decision parameters for AI enabled systems. These
challenges are complex and require advance hardware and
software to be developed using data from network perfor-
mance metrics and emerging CPS/IoT architectures, based on
both traditional statistical and AI techniques. For example,
self-driving cars communicate with roadside sensors, traffic
signals, traffic signs, other vehicles, other road side units,
pedestrians, etc. [9], [10], via sensors, embedded wireless
modules, and software/algorithms. In order to have a fully
autonomous vehicle, critical challenges such as the integration
of multiple protocols in the presence of heterogeneous wireless
technologies, robustness of connected vehicles upon failure
of traffic and roadside sensors, and the dynamic actions of
vehicles under uncertainties such as bad weather, and hu-
man failures, amongst others, need to be addressed. Another
example is the smart healthcare system, where information
technology has been widely used in a variety of applications
such as remote patient monitoring, robotic surgery sensor, and
glucose monitoring [11]. To adequately deliver these critical
services for Healthcare-CPS, design challenges such as data
collection, communication, diversified data analysis and data-
driven decision making among others, must be addressed

A. Wireless Communications in CPS/IoT

There are several wireless technologies suitable for CPS

and IoT applications. These technologies may be classified
into short, medium, and long range, based on operational
frequency and coverage range. Some of these technologies
operate in either licensed spectrum (e.g Narrowband IoT (NB-
IoT), Cellular) or unlicensed spectrum (e,g Sigfox, LoRa) [12].
We examine the different technologies in each coverage range.

1) Short Range: Short range wireless communication uses
technologies whose signals have travel limits of about ≈ 150
meter [12]. Wireless technologies in short range that can be
used to interconnect IoT devices includes Bluetooth, ZigBee,
Z-Wave, M-Bus, Wi-Fi, X-Bee, etc., and are used in Wireless
Personal Area Network (WPAN) and Wireless Local Area
Network (WLAN). Bluetooth signals operate in the 2.4 GHz
band and use frequency hopping to limit interference when
multiple devices are connected. Since it’s range is about 10
meters, it is only suitable for IoT devices in close proximity.
Several research works [13], [14], [15], [16], [17] have sug-
gested the use of Bluetooth due to its economic advantage and
current utilization in most electronic devices. In [16], [17], the
authors presented a Bluetooth BLE-backscatter approach for
data uplink from a sensor tag to existing Bluetooth-enabled
smartphones and tablets without any hardware or software
modification. Zigbee is a low-power IEEE 802.15.4 wireless
mesh network standard. Majority of Zigbee operates in 2.4
GHz. Due to its low power and high data rate, Zigbee is
one of the main wireless technology protocols for WPAN.
Researchers are currently extending its application to several
IoT networks. [18], [19]. Wi-Fi is the most widely used
network in homes, with a lot of research in literature focusing
on Wifi for IoT [20], [21], [22]. The authors of [20], studied
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the use of non-conventional WiFi enabled IoT devices based
on convention network access point for indoor localization
problem pertaining to fingerprint maps.

2) Medium Range: Wireless Neighborhood Area Network
(WNAN) such as Wireless Smart Utility Network (Wi-SUN)
and Wireless Meter Bus (WM-Bus) offer medium range com-
munications, where the range is about ≈ 5−10 km [31], [12],
[32]. Wi-SUN is used to enable seamless connectivity between
smart-IoT devices, with a coverage of about 5 km [31]. WM-
Bus is a star topology network developed for smart metering
and Advanced Metering Infrastructure (AMI) applications,
which governs communication links between data collection
devices and water/gas/electric systems.

3) Long Range: Long range wireless technologies for IoT
devices have a range of up to 100 km and are referred to as
Low Power Wide Area Networks (LPWAN). Some LPWANs
are licensed (Narrowband IoT and LTE-Machine), while others
are unlicensed (e.g LoRa, Sigfox). Studies are currently on-
going to fully develop and apply these technologies [33],
[34],[35].

The massive data collected by sensors in CPS and IoT can
use wireless communications to exchange the data as well
as the data can be used with AI/ML to address challenges
associated communications in CPS/IoT, including communi-
cation related issues. AI has shown significant importance for
future wireless communication and networking for CPS/IoT.
The three-essential part of IoT/CPS are communication net-
work, devices, and data. The core high-level requirements
of IoT/CPS are communication, control, and computation,
and together they form what is known as the 3C building
block of CPS [36]. Table III shows some research efforts that
applies AI/ML to IoT/CPS in order meet the IoT/CPS 3C
requirements.

B. Summary of Related Surveys

AI for wireless networking in CPS, IoT and Industry 4.0 has
been extensively investigated. Thus, related research articles
& surveys are already present in literature, such as the works
from Ahmadi et al., Lu et al., and Wu et al., [54], [55], [56].
The authors of [23] reported on Artificial Neural Network
(ANN) based techniques for wireless networks, with detailed
architecture of ANN and how it can be implemented in many
wireless network application. They identified several wireless
communication challenges that could be addressed via ANN
techniques and analyzed several emerging applications and
potential future works that would be significantly improved
by the deployment of an ANN. The authors of [24] provided
an overview of techniques, frameworks and applications of
neural networks for wireless networking. Deep learning (DL)
approaches to wireless networks have also been intensively
investigated, and literature provides several reviews on the
topic [25], [57], [26]. These surveys, while providing an
overview of various applications of deep neural networks, are
also focused on certain specific applications [58], [25]. The

authors of [58] provide an in-depth theoretical description
of deep learning for wireless network resource allocation. In
[25], the authors provide an extensive review of deep learning
schemes for wireless network performance enhancement. They
analyzed promising future applications, such as the practical
implementation on wireless platforms, DL for defining con-
gestion threshold, and DL for link failure prediction in data
transmission.

In [28], the authors reviewed DRL framework for diverse
network problems including data rate control, network access
and connectivity, and wireless caching. The authors in [29]
provided a survey of machine learning algorithms including
DL and RL for Self-Organized Networks (SON). The authors
of [30] categorized and reviewed machine learning techniques
and applied deep learning to mobile edge catching in a
dynamic complex environment. Authors in [27] presented
a DL architecture and discussed the importance of DL for
future IoT data analytics challenges and its potential for future
technologies. For more detailed surveys on wireless IoT/CPs,
wireless technologies for IoT/CPs, readers are encouraged to
read surveys by Li et al., Ahmadi et al., adn Lin et al,. [56],
[59], [60]

Although the papers [23], [24] provided helpful insights,
they do not address emerging distributed learning paradigms
(e.g federated learning, collaborative learning, etc.) that are
dominating how machine learning can be used in large net-
works of connected devices/sensors in CPS.

C. Contributions

This article provides a survey of AI/ML techniques applied
to enable wireless networking for CPS and IoT systems. Our
contribution to current state of the art via this survey consists
of 3 major aspects:

• ML applications in wireless technologies: We provide a
brief summary of the most widely used wireless tech-
nologies for CPS and IoT applications, then review the
ML techniques that have been applied to solve some of
the challenges of wireless networks for IoT and CPS.

• ML techniques and their literature review related to IoT
and CPS: A description of each of the machine learning
paradigm will be done and the recent research related
to them will be discussed, especially those applications
pertaining to wireless networks for IoT/CPS.

• Open Challenges: This section is dedicated to discussing
open challenges in wireless networking for CPS and IoT
systems that AI techniques can be used to fill the gap,
and the future work needed to create robust AI systems
for IoT/CPS.

D. Paper Organization

The rest of this paper is organized as follows: In Section
II, we present different types of machine learning approaches,
including newly evolved learning paradigms such as Transfer
learning, Distributed learning, and Federated learning for
wireless networking. Open challenges and future research
directions in wireless networking for IoT and CPS will be
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discussed in Section III. Finally, Section IV summarizes and
concludes this paper.

II. AI/ML FOR WIRELESS NETWORKING FOR CPS/IOT

As mentioned previously, machine learning is a sub field
of artificial intelligence that involves learning and inferencing
using computational learning methods [61], [62]. ML uses
experience (i.e available information that are typically in
electronic data form) to make accurate decisions [62]. It can
be categorized into three main techniques; supervised learning,
unsupervised learning, and reinforcement learning.This section
discusses these different types of ML techniques and frame-
works that are used for wireless networking. A taxonomy for
the different ML techniques is provided in Figure 2. In each
section, a review of relevant papers relating to IoT and wireless
networks follows the discussion.

1) Supervised Learning: Supervised machine learning is
a class of learning algorithms that originated from learning
by example. In supervised learning there is an input variable
or feature X , and an output variable or target Y , that the
learning process is trying to predict. An algorithm is used
to learn the mapping function from the input to the output.
During the training of a supervised learning algorithm, the
training data-set consists of inputs paired with correct outputs.
Learning stops when the algorithm achieves an acceptable
level of performance. After the training process, a supervised
learning algorithm determines the output (unseen) given new
input.

In general form, the objective is to learn a function h : X Y
using a given training set (x(i), y(i)), such that the hypoth-
esis function h(x) is a predictor of the corresponding value
of y [63]. Supervised learning’s typical application problem
includes regression and classification as shown in Figure 2.
Commonly used supervised learning techniques include ANN,
K-Nearest Neighbour(KNN), Support Vector Machine (SVM),
[64], [65] .

In [48], SVM was used to predict the WiFi coverage and
harvest radio frequency (RF) energy. Here the SVM is used
as a supervised learning approach for regression because
of its ability to penalize error during training with its loss
function term, and maintaining adequate complexity with its
regularization term [48]. The model harvests RF energy for
efficient deployment in IoT scenarios. In [42], supervised
learning algorithms, KNN and Random Forests were used to
classify network traffic in an IoT mobile device analysis. A
similar approach can be found in [43], where supervised ML
was applied to measure data to classify indoor environments
using different RF signatures. The authors compared different

ML algorithm(SVM,KNN, Decision Tree, etc) (SVM, KNN,
Decision Tree, etc)to evaluate the most effective model for
three RF signature metrics, Channel Transfer Function (CTF),
CTF auto-correlation and Received Signal Strength (RSS). The
authors of [52], applied support vectors in a mission critical
system where monitoring indoor air quality is important. The
model takes sensor data as input for the SVM algorithm and
used the output in the control of air quality to notify humans
about the air quality condition.

2) Unsupervised Learning: Machine learning algorithms
that learn patterns from unlabelled data are categorized as
unsupervised. Unsupervised learning algorithms classify sam-
ple data into meaningful classes based on the correlation or
similarities that exist between the samples [66]. The ability
to infer from unlabelled data makes unsupervised learning
a promising approach for real-world problems such as in
CPS/IoT where data is generally unlabelled. Unsupervised
learning is common in modern deep learning algorithms, and
is widely considered as the dominant learning approach for
the future. However, its application to real world wireless
network problems are yet to be fully manifested [24]. The
most commonly used unsupervised ML algorithms are K-mean
clustering, Principal Component Analysis (PCA), and Neural
networks.

Unsupervised ML algorithms have been used in the litera-
ture for different problems in wireless networking pertaining
to IoT and CPS. In [67], the authors proposed a priority
scheduling technique based on K-Means clustering algorithm
to minimize transmission delay, reduce collision rate and
maximize throughput of Long Range WAN (LoRaWAN) in
IoT systems. The authors of [51] proposed a solution for
delivering critical capabilities to the tactical edge. Important
capabilities are enhanced by using K-means and Software-
Defined Networking to increase the number of users that are
connected to the wireless mesh networks via IoT devices in the
battlefield. A digital twin of the environment is used to eval-
uate and validate whether the proposed K-Means clustering
based topology management solution is capable of establishing
and maintaining route through reduction of packet overhead
in large wireless mesh networks. In [68], the authors leverage
K-means clustering to develop a new optimization algorithm
known as K-means Multi-group Quantum Particles Swamp
Optimization, for deployment of actuator nodes in CPS. K-
means clustering was used to generate an initial solution to
improve the search efficiency of the Quantum Particles Swamp
optimization algorithm. The paper [44], aimed to address
latency minimization in CPS and implementation of network
intelligence services in network virtualization based middle-

TABLE II: A summary of survey works on machine learning for CPS and IoT

Related works Overview Supervised Unsupervised Reinforcement Deep Learning Distributed Federated Transfer
[23] Overview of ANNs for wireless networking. ✓ ✓ ✓ ✓
[24] Survey of NNs for applications in wireless networks. ✓ ✓ ✓ ✓
[25] Survey of the applications of DL algorithms for different network layers. ✓ ✓ ✓ ✓ ✓
[26] Survey of the crossovers between DL & wireless/mobile networks. ✓ ✓ ✓ ✓ ✓
[27] Survey of ML & DL techniques for analytics and learning in the IoT. ✓ ✓ ✓ ✓ ✓
[28] Tutorial & survey for DRL approaches in communications and networking. ✓ ✓ ✓ ✓ ✓
[29] Survey on learning techniques of self-organizing networks (SON) solutions in cellular networks. ✓ ✓ ✓ ✓ ✓
[30] Survey on DRL for mobile edge caching problems. ✓ ✓ ✓ ✓

This work Survey on AI/ML techniques for wireless IoT/CPS ✓ ✓ ✓ ✓ ✓ ✓ ✓
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TABLE III: AI/ML Approaches to Wireless IoT/CPS.

AI/ML Research Endeavors to enhance deployment of IoT/CPS
Automation & Control Computation Communication

• RL and DRL techniques application to
automatic network reconfiguration are reported
in [37], [38], [39].

• Distributed ML framework was proposed for
fast convergence of Stochastic Gradient descent
when used at the edge devices of IoT systems
[40], [41]

• KNN and Random Forest were used to
classify network traffic in an IoT mobile device
analysis [42], [43]

• K-mean based AI solution was used to achieve
minimum-latency communication in CPS En-
ergy Internet ecosystem [44].

• FL was used for proper scalability between
radio resource block and the numbers of clients
involve in training process [45], [46], [47]

• SVM was used to predict WiFi Coverage and
to harness RF energy [48].

• Recursive PCA cluster framework was used
in [49], [50] for data aggregation, control and
fault diagnosis.

• DNN and Deep TL were utilized to mini-
mize latency for uplink in a MIMO cloud radio
network.

• K-mean was used to reduced the numbers
of users connected to a wireless network IoT
systems in battlefield scenario [51].

• SVM was used by [52], where indoor air
quality is being control.

• K-mean was used in data clustering for
effective classification as reported in [53].

boxes. The authors proposed a k-means based AI solution
to address these problems. In [53], the authors used a K-
mean algorithm in a deep learning framework to cluster het-
erogeneous data. In [49], a recursive PCA cluster framework
was proposed, where the method helps to overcome problems
associated with detection of irregular sensor output, and data
aggregation in IoT systems. The recursive PCA algorithm was
used for sensor data aggregation after gathering the data into
clusters. An automobile CPS online implementation problem
was investigated in [50], a control and fault diagnosis frame-
work based on recursive total principle component regression
was proposed.

3) Reinforcement Learning: Reinforcement learning (RL)
is a process in which the model or agent periodically takes a
sequence of actions enabled by a feedback loop between the
model algorithm and the environment [69], [70]. The actions of

the agent follow a game-like situation based on the interaction
with the environment. The algorithm employs a trial and error
approach to converge at a solution. There is a reward or penalty
for the actions that the agent performed. Typically a RL system
or agent interacts with its environment, senses the state of the
environment and its own current state, then selects an action
to be taken. The main terminology for reinforcement learning
is broadly divided into four terms: Policies defines how the
agent states and actions at a given time; Reward function
defines the rewards or penalties that the environment sent to
an agent for each action taken; Value function represents the
expected total reward for an agent starting from a particular
state; Environment model represent the state and actions that
can be taken by an agent. Reinforcement learning has been
widely used in literature in the form of deep reinforcement
learning, for many wireless networking application and CPS

Fig. 2: A classification of machine learning into supervised, Un-supervised, and Reinforcement learning. classification also
include data parallelism paradigm
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and IoT systems. Further details on reinforcement learning can
be found in [69], [29].

In [37], the authors proposed a reinforcement learning based
approach by designing policies to automatically reconfigure
network systems and control systems dynamically in an in-
dustrial IoT system, the network systems include wireless
cyber physical components. The authors of [38], developed
a route planning algorithm based on deep RL to avoid service
interruption and congestion in a smart grid CPS. In [39], an
optimization problem was formulated for service placement,
scheduling and resource allocation under uncertainty for an
industrial CPS, this formulation included a deep Q-network to
assist in scheduling decisions. Transfer reinforcement learning
using Q-learning algorithm has also been studied in [71],
[72], [73]. [71] studied a reinforcement learning approach for
experience transfer in context awareness where a demonstrator
agent has the privilege to access context aware policy. A
Q-learning algorithm was proposed that converges to a true
value function without any form of bias. [74] evaluated the
potential of Q-learning as a strategy for minimizing network
congestion by developing a Q-learning framework for channel
bandwidth allocation for uncertain network communication in
CPS applications.

A. Federated Machine Learning
Federated learning is an efficient distributed machine frame-

work that supports learning at multiple user equipment or
network edge using local training data. [75], [76], [77], [78]
In federated learning, the training process is decentralized to
ensure data security and privacy. The learning task is solved
by each user equipment (UEs)/clients, which then updates the
model parameters to a central (federated) server. The datasets
of each UE are never updated to the global server. The global
server maintains the current global model parameters and
communicates (until the model converges or is interrupted) the
global algorithm states or models to selected UEs for further
training to improve current model. Figure 3 shows a federated
learning model with each client performing an uplink upload
(θ

′

1, . . . , θ
′

k), while the federated server manages the downlink
upload (θ

′+1) and parameter aggregation.
Definition: Considering K numbers of clients. Dk ≜

{xj , yj}K1 is the number of data samples available during
training for client k. The sample data Dk may not be identical.
Also, a given Dk may not have label yj for training, hence,
learning may be self-supervised or unsupervised. The clients
jointly train the federated model, without sharing their respec-
tive local data during the process. xk is a matrix of data set
with its rows representing samples and columns representing
features. The space of the features is denoted by X , the space
of the label is Y , and I is the sample IDs space. X ,Y , I con-
stitute the complete training data set. The objective is to solve
the global loss function J(θ) =

∑K
k=1

|Dk|
D Jk(θ), after train-

ing local model of participating clients, using their respective
loss function Jk(θ) = 1/|Dk|

∑|Dk|
j f(xj , yj ; θ). Federated

learning can be classified into three categories [78]; horizontal
federated learning Xi = Xj , Yi = Yj , Ii ̸= Ij∀i ̸= j, vertical
federated learningXi ̸= Xj , Yi ̸= Yj , Ii = Ij∀i ̸= j, and
federated transfer learning, Xi ̸= Xj , Yi ̸= Yj , Ii ̸= Ij∀i ̸= j.

Federated machine learning is a recently developed AI
technique, that can aid wireless smart devices in analysis and
intelligent decision making by training the clients using data
observed or generated from their environment. AI/ML have
been used extensively in literature to enable edge computing,
with the aim of improving quality of experience (QoE) and re-
ducing network traffic. Edge computing itself is a distribution
computing paradigm aimed at bringing computation process
close to user locations in order to improve services request
response time and reduce bandwidth utilization. Therefore,
FL makes a perfect framework for edge computing. [79]
developed a criterion for evaluating the performance of the
learning system, and provided closed form solutions for com-
munication resource allocation in wireless federated learning
system. [80] proposed a robust FL framework for wireless
communication that is robust against malicious devices, and
capable of reducing communication overhead.

In response to the need for a reliable wireless communi-
cation and an efficient data privacy scheme for better qual-
ity of experience for users, considerable research has been
undertaken. [81] proposed a FL based algorithm for wireless
network with a learning rate that is adjustable to environmental
change. Their research evaluates the performance of FL (par-
ticularly convergence rate) using practical scheduling policies
( random scheduling (RS), round robin (RR), and proportional
fair (PF)). Since FL involves transmitting stochastic gradient
and deep learning parameters across wireless channels, large
latency in training can arise. Also, an enormous amount
of energy is required to maintain communication between
the devices and the FL server. The authors of [82] focused
on improving performance associated with federated learning
aggregation latency by utilizing non-orthogonal multi access
(NOMA) in their evaluation. In addition, since federated learn-
ing algorithm requires frequent update of gradient parameters,
the network may become overloaded. To alleviate this burden,
compression of gradient parameter and reduction of frequency
of upload during training are considered possible solutions.

Some research has been focused on designing new gradient
descent methods to reduce the update rate [83], [84]. The
schemes from [83], [84] assume an error-free update, and
that radio resources at the client are dedicated [45]. However,
enormous number of clients may be involved to achieve proper
scalability. A possible solution for the scalability problem
between the radio resources block and number of clients
involved, has been presented in the study by [45], [46], [47],
using analog transmission scheme that employs over-the-air
computation that allows sharing of common blocks by the
clients. The scheme proposed in [85], exploits simultaneous
transmission with waveform superposition over a multi access
channel. Essentially these methods require trade-offs between
the number of connected clients, signal to noise ratio (SNR)
and learning metric. Other studies have approached the poten-
tial overload in network problem by compressing stochastic
gradients (SGs) either by quantization or by sparse [86], [87],
[88].
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Fig. 3: An Illustration of Federated Learning Framework where clients report learning parameters to FL server and FL server
broadcasts the global model after aggregating the parameters received from clients.

B. Distributed Machine Learning

Distributed machine learning refers to the process of split-
ting model training into multiple mini processors working
in parallel to improve performance, accuracy and accelerate
model training [89]. These multiple mini processors are known
as worker nodes. Distributed machine learning also allows
training data sets that are naturally distributed making it a
promising approach for remote training in real world scenar-
ios of IoT and CPS paradigms. The demand for distributed
machine learning algorithm has grown significantly over the
past decade due to the availability of massive data that are
easily generated as a result of continuous development of
newer technologies. Distributed machine learning algorithms
are suitable for computationally intensive tasks, which makes
it widely applicable to deep learning training of big data.
In distributed machine learning, workload is divided into n
segments to run simultaneously on n worker nodes. The two
main types of distributed training are data parallelism and
model parallelism.

1) Data Parallelism: In data parallelism, data is distributed
across multiple nodes that train the subsets of data. Data paral-
lelism is the most widely used ML distribution approach. It is
applicable in any ML program by splitting data into multiple
worker nodes. The worker nodes subsequently operate on their
own data-set using the same algorithm. Data parallelism is
applicable to ML algorithms with the assumption that data
samples are independent and have an identical distribution
[90].

2) Model parallelism: Model parallelism segments parallel
paths of a model to run simultaneously on different nodes.
Here, the parallel part of a model is segmented into different
parts to run simultaneously on worker nodes using the same
data. The worker nodes only synchronize their shared parame-
ters. Since the nodes operate on subsection of the model, large
models using deep learning can be executed.

Definition: Consider data x to be trained with model
A = Aj1, ...AjN in model parallel algorithms, where the
model parameters Aj are not, in general, independent of
each other. The model A is partitioned and assigned to
worker nodes p = 1, ..., P working in parallel and updated
by running update function ∆L. The model is defined as
A(t) = F (A(t− 1),

∑P
p=1 ∆(A(t− 1), xp)). Where Sp,(t−1)

is the scheduling function that restricts δL to the subset of A.
The model parallel algorithms are effective only when each
iteration of parallel updates is restricted to a subset of mutually
independent parameters [91]. Further details on the definition
can be found in [91].

Some distributed ML models focus on convergence speed to
reduce the model training time in the presence of massive data
and large model. Convergence solution have been proposed for
both gradient descent and Stochastic gradient descent [40],
[41]. In [40], the authors proposed a convergence solution for
feature distributed machine learning (FDML) that analyzes
asynchronous model parallel stochastic gradient descent in
a version similar to widely used Stale Synchronous Parallel
(SSP) algorithm. In this scheme, every participating worker
node is responsible for updating its own local features and
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only upload its predicted model to a central model server.
SVM learning algorithms have been used for sensor networks
[92], [93]. These solutions take advantage of the fact that
SVM is a quadratic optimization problem and allows the use
of existing convex optimization methods. In [92], a gossip
based incremental SVM algorithm was developed for a fully
distributed communication between sensor nodes.

C. Deep Learning

The evolution of deep learning (DL) is the most promising
one within the field of machine learning. It allows for learning
using multiple levels of abstractions in multiple layers to
discover intricate structures that are in large datasets. Deep
learning uses back propagation algorithm to determine changes
that need to be made to the internal parameters in each
layer[94]. Although the current applications of deep learning
are in image processing, speech recognition, video and natural
language processing, it has the capability as a ML techniques
for other fields. For example the amount of big data that future
CPS and Iot systems can generate will require deep learning
for intrinsic analysis.

Supervised deep learning includes fully connected Feed
forward Deep Neural Networks (FNN), Recurrent Deep Neural
Network (RNN), Convolutional Feed forward Deep Neural
Networks (CNN), while unsupervised DL includes Deep Be-
lief Networks (DBN) and Stacked Auto Encoders (SAE)
[95], [96] and cyber-deception in wireless systems [97]. In
[98], the authors aim to optimize the data collection in IoT
networks with edge computing. A deep learning solution was
proposed for dynamic network clustering in IoT networks with
edge servers. A semi supervised DL framework for indoor
localization based on Bluetooth in an IoT system was proposed
in [27]. The framework deploys variational autoencoders as the
main inference engine for the model’s optimal policies. In IoT
and CPS systems, the edge devices generate data samples that
need to be properly labelled, and appropriate sample labels
pose a challenge to the network. A semi-supervised deep Q-
learning framework for human activity recognition in health
based IoT was proposed in [99] by efficiently evaluating the
improperly labelled sensor data, and using them to train the
classifier to intelligently auto label. The authors of [100],
formulated an offloading problem for IoT uplink MIMO Cloud
Radio access network with latency as constraint, and utilized
supervised deep neural network and deep transfer learning
to learn from the proposed solution in order to enhance the
performance of the algorithm.

D. Transfer Learning

Transfer learning (TL) aims to improve the ability to learn a
new task on a target domain through the transfer of knowledge
from a related task that has already been learned [101].
In contrast to other ML approaches that based learning on
training separate isolated models for specific tasks and datasets
without retaining any knowledge, TL leverages knowledge (e.g
weight, features) from previous trained models to train a new
model. Essentially, it involves the re-use of an already trained
model for a different problem. TL learning can help reduce the

dependency on many target domain data training [102]. Deep
TL has been proposed in [103] for physical layer security
in wireless communication systems by considering contested
wireless environment such as wireless IoT in battlefield. Figure
4 is an illustration of the concept of transfer learning. For
instance, in applications such as Automatic Speech Recogni-
tion (ASR), assuming that the task, say Ts, is to recognize a
native English language speaker, given dataset D1, an ASR
model is trained and tuned to classify the speaker from an
unseen data from the same domain. We must be able (in ideal
situation) to use the knowledge to detect a native speaker in
New York (Target task, Tt) given dataset D2, if the trained
model of Ts generalized well. However, this is not always the
case due to performance degradation and possibility of source
model not generalizing well. The potential of TL has made
it popular in many promising applications in literature, hence,
algorithms that facilitate use of TL are of interest in CPS and
IoT development communities. Some early transfer learning
approaches can be found in [104], [105], [106], for transfer of
ML, in context of cognitive framework [106] and for planning
task [105].

Recently, TL has been applied for many applications in
wireless networking, CPS and IoT systems. In [107], [108],
a deep transfer learning framework was developed for human
activity recognition by exploiting channel state information of
WiFi. The algorithm first extracts and classifies features using
deep convolutional neural networks by transforming channel
state information to images, then uses transfer learning to infer
knowledge from the pre-trained model. [109] applied transfer
learning between nodes in the same network of sensors.
The authors used classifier ensemble random trees to create
activity recognition model at a specific node and transfer the
knowledge to another node within the same network. The
scheme was tested for both relocation scenario (the training
moved to an unknown location) and replacement scenario (a
new node replaced the node at the training location). [100]
used deep transfer learning in their scheme to adjust NN in
dynamic IoT system. A deep transfer learning model has also
been used in [110] to propose a tag signal detection in ambient
back-scattering communications to reduce energy utilization in
IoT systems.

Table IV shows some of the research work that utilize ML
techniques to enhance IoT/CPS.

III. RESEARCH CHALLENGES AND PERSPECTIVES

CPS and IoT have massive number of devices connected
and large scale sensor networks that monitor physical environ-
ment and communicate largely via wireless links/technologies
based on the desired sensor application. Wireless networking
for CPS is subjected to many communication problems that
includes throughput, latency and bandwidth etc. For CPS to
effectively map and characterize physical plants and commu-
nicate effectively, reliable data and information exchange is
required. In this section, we present challenges that come with
wireless IoT/CPS and current studies aiming to apply AI/ML
to enhance network connectivity, reliable data exchange, and
security in IoT systems.
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TABLE IV: AI/ML Research for Wireless IoT/CPS.

Approach Objective Merit (+) and Limitation (-)
K-mean clustering algorithm for Colli-
sion rate and transmission delay mini-
mization of LoRaWAN based IoT sys-
tem [67].

To enable the throughput maximization
for users that are connected to the wire-
less mesh network via IoT devices.

+ Scalable to large data set.
+ Reduce interference in wireless Net-
work.
- Results depends on number of nodes.

Irregular sensor output detection using
PCA cluster framework [49].

Data aggregation and outlier detection
in IoT/CPS system.

+ Reduce computation burden on sen-
sor nodes.
- Centralized model/single point of fail-
ure.

Online implementation scheme for con-
trol and fault detection of vehicular
CPS using recursive Principal Compo-
nent Regression [50].

To enhance road safety and transporta-
tion system using high-level control and
management scheme enabled by CPS.

+ Minimize irrelevant memory utiliza-
tion.
+ Parallel-running batch processes
monitoring.
- Limited key performance indicator.

Route planning algorithm based on
DRL [38].

To avoid service interruption and con-
gestion in smart grid CPS.

+ Low risk impact.
- Complexity.

Q-learning for bandwidth allocation in
communication networks [74].

To reduce congestion in communication
network for CPS application.

+ Applicable to complicated Nonlinear
systems.
- Computational Complexity.

A framework to analyse FL conver-
gence in context of wireless networks
[81].

To analyse the effectiveness of schedul-
ing policies for FL used in wireless
networking.

+ Eliminate single point of failure
+ enhance information security and pri-
vacy
+ Reduced complexity.
- Cost: computation burden on UEs.

FL framework for resources allocation
in wireless networks [79].

To allow decentralized DNN training
for wireless system.

+ Eliminate single point of failure.
+ Enhance information security and pri-
vacy.
+ Reduced complexity.
- Cost: computation burden on UEs.

Deep Q-learning for intelligent auto la-
belling [99].

Human activity recognition in health-
care based IoT.

+ Suitable for large data.
+ Applicable to weakly labeled data.

TL model was used to infer knowledge
from a DL pre-trained model to ex-
tract channel state information of WiFi
[107], [108].

Human activity recognition. + Use small data set due transfer of pre-
trained model.
+ Reduce computational complexity.
- Require function transferred to be
generic.

Supervised NN and Deep TL are used
to solve the problem of offloading com-
putational task to a MIMO cloud in IoT
application [100].

To enhance radio access network per-
formance.

+ Low complexity solution.
+ Fast computational time.

Deep TL model for tag signal detection
[110].

To minimize energy utilization for tag
network of IoT system.

+ Use small data set due transfer of pre-
trained model.

A. Connectivity

An objective of IoT/CPS is to allow exchange of data
between connected devices irrespective of their geographical
locations. AI/ML techniques are used in IoT systems to train
data dependent models for informed decision and better QoS.
This data exchange requires reliable communication network
to achieve desire QoS objectives as well to collect reliable
data for AI/ML training. However, due to ubiquitous nature of
CPS and IoT systems, network connectivity is a challenge task
that goes beyond traditional computer networking. Network
connectivity in IoT described how an IoT equipment or device
can be connected to a communication link beyond its local
network, typically via wireless links, and establish or allow
communication with another device in the IoT network. A
solution is to develop scheduling schemes that can ensure
connectivity in the IoT systems, by minimizing the network
latency and maximizing the throughput. Power management
and scalability are also important in network connectivity.

1) Scheduling in IoT/CPS: Time scheduling, i. e the order
of executing task, is an important factor to be consider when
deploying IoT systems, and when AI/ML models are to be
used. Time scheduling can help manage application run time
and increase throughput in the network. In IoT and CPS
networks, throughput needs to be maximized to ensure reliable
communication between elements of the network, including
machine to machine communication (M2M). When scheduling
task execution order, it is important to consider other factors
that are directly related to scheduling and may also cause net-
work throughput failure. Factors such as bandwidth capacity,
limited power at edge devices, and availability of alternative
network communication links all need to be considered in
developing effective task scheduling system for better quality
of service. For example, transferring DL models from an IoT
device to another utilizes bandwidth due to large model size,
and may cause low throughput or communication failure for
other devices in the IoT network, therefore this task should
be executed during the specific window with less bandwidth
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Fig. 4: An Illustration of Transfer Learning Framework

requirement. Resources allocation, i.e which machine the task
is assigned to, is another perspective for scheduling resources
to maximize throughput when AI/ML is deployed in CPS
and IoT systems. Resources allocation is a challenging task
due to the heterogeneous nature of device in IoT systems.
Resource allocation is a challenge that impact in connectivity
because of the difficulty in determining, at any instance, the
memory capacity of edge device in large IoT networks. This
is challenging because many edge device perform task and
store data independently without the need to inform any other
device in the network. Therefore, resource allocation schemes
are important in scheduling task such as AI/ML modeling and
training, to any device in CPS and IoT networks.

2) Power Management in CPS/IoT: Power management
is another constraint that needs to be considered to ensure
that connectivity remain established in IoT systems. Power
management requirements increase with increase in number
of devices. Some IoT and CPS devices such as actuators and
machines are located where AC power is available, while
others are in remote area, and they largely depend on battery
power. Limitation of battery life pose a lasting challenge for
AI/ML application in IoT networks despite improvements in
storage technologies. It is important to develop solutions that
can constantly monitor battery status of IoT devices to identify
which one need to be recharged, which one may result in
packet loss during routing, and which device has sufficient
power to run AI algorithms.

3) Scalability: Massive deployment of CPS will require
addition of new devices or applications to an existing CPS
architecture or redesign of the current architecture for smooth
integration. Expectations may include demands from different
bandwidth, spectrum sharing, and automation. Effective route
optimization and spectrum sharing will play a significant role
in network architecture design, an example application to
UAV is proposed using ML algorithm in [123]. In particular,
transfer learning can be use to learn and store knowledge
of a specific architecture, the knowledge can then be reused

when network architecture changes or when a CPS domain
is matched. Future work in AI/ML for IoT/CPS will need
to address the challenges of developing network architecture
standard that works across different connected device, while
simultaneously maintain robustness in connectivity.

B. Latency in AI/ML deployment in CPS and IoT systems
Emergence of GPUs and other advanced technologies that

makes it easier to process data at faster rate, contributes to
the increased use of AI/ML in IoT systems. Most ML models
require GPUs to timely and efficiently process large set of
data that it needs to yield better results. These GPUs are
largely available only in centralized or cloud infrastructures
where storage and power are generally not limited. Therefore,
one way of deploying AI in CPS and IoT, is to send data
from sensors and edge devices to large units to be trained
by ML models. In this approach, AI/ML deployment in IoT
introduces additional latency in the system, and it generally
not reliable in system with low latency requirement. Some
devices may require low latency due to the rate at which they
communicate their data, while others may communicate at
very high rate. For example, Industrial IoT applications cannot
afford system delays and latency needs to be minimized.
Hence, deployment of AI/ML will only be effective if capacity
is increase and latency minimization is developed. In contrast,
an electric smart meter sends data at high intervals. In some
cases these kinds of devices will have to coexist, communicate
autonomously and use the same communication link. Also, due
to the increasing numbers of connected devices in wireless
networking of CPS, non-deterministic latency is one of the
challenges of wireless networking for CPS [111], [112]. One
of the recent 3GPP identified performance objective is to
deliver a 20-byte application layer packet at a latency of about
10 seconds or less (from event triggering to packet ready
to be transmitted), as the uplink is required for applications
delivering critical service [113]. However, this latency depends
on network and application requirements and how critical the
application is to the overall network. In other to effectively
apply AI/ML in IoT systems, It important to ensure latency is
in the IoT systems, and latency imposed by the introduction
of AI/ML in the system are minimized.

Recent trends in CPS and IoT focus on minimizing network
latency. The authors of [114] used a federated decentralized
learning paradigm to approach latency minimization problem
in a multi-access edge computing IoT network. The task is
formulated as a hospital-resident assignment task, acknowl-
edging the facts that numbers of IoT devices can be large,
an incomplete matching is performed. In [115], the authors
consider a massive IoT system that has limited capacity and
transmitting either periodic or critical information. A multi-
state learning framework with finite memory was developed
to allow heterogeneous IoT devices to allocate their limited
resources in order to satisfy latency requirement. In their
scheme, critical messages are prioritized by reallocating com-
munication resources to information/messages that are delay
intolerance. Furthermore, the scheme is capable of analyzing
the expected network delay.
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The work in [116] studied downlink scheduling challenge
for an industrial IoT system where the aim is to minimize the
probability of transmission failure when the controller needs to
send commands to multiple actuators. A generative adversarial
network (GAN) framework is exploited to derive an arbitrary
distribution framework using historical data samples for train-
ing.
C. Distributed Machine Learning for Wireless IoT/CPS

In distributed machine learning, a large process is split into
multiple small processes working together to accelerate the
model training process. Some nodes (e.g mobile phone, laptop
etc. ) of an IoT system can be designed to perform local
computational processes if enabled with adequate computa-
tional resources (processors, RAM, RoM, etc). Decentralized
computing has been currently extended to distributive learning
methods, making it suitable for training models at the edge
devices without the need to consider the entire network.
This is possible because in many IoT/CPS networks, datasets
originates from sensors and actuators at the edge devices.
Distributive machine learning paradigms, such as, Federated
learning and Distributive non-collaborative learning algorithms
have been developed for this purpose. For instance federated
learning has been applied to handle scalability between the
radio resources block and number of devices in a network,
network overload and power allocation [47], [87], [46]. This
concept can be deployed for open challenges such as how ML
techniques can be used to allocate critical missions to a device
or deliver information during network resource allocation that
is based not only on active device but also on how each device
handles new assignment/mission. In some cases, where it is not
possible to have all required data at a node/clients, training can
be done by sharing the data-set. Furthermore, computational
processes consume large amount of energy and it is not
economically viable to make each device and plant module
perform all the computational processes. Hence, its important
to device a scheme to distribute computation processes and
model training processes. In such cases, distributive collabora-
tive learning will be the most promising learning paradigm. It
is a topic of future research on how ML techniques can be used
to enhance wireless network of IoT systems using datasets that
maybe non-identically distributed with energy and bandwidth
constraints.

D. Artificial Intelligence for IoT/CPS

Artificial Intelligence, Machine Learning and IoT/CPS are
now synonymous with each other as both IoT and CPS rely
heavily on AI/ML systems. AI for IoT/CPs holds tremendous
growth and innovation potential. With advances in both IoT
and CPS being dependent on the wireless technologies to
maintain efficient operations, Artificial Intelligence will play
a vital role in ensuring the availability and dependability of
these systems. Since IoT/CPS both rely on the multitude of
sensors and machines, AI systems can provide data-analysis
and predictions with the accuracy and precision needed for
a seamless and efficient operations. AI systems will play
a critical role in IoT/CPS data fusion, analysis, prediction
and security. With cost-effective, streamlined and distributed

AI systems connected via the wireless networks, challenges
such as data-fusion, security and privacy for the data still
remain a large hurdle. While a plethora of new techniques
and methodologies are available in literature for AI prediction
and analysis in IoT/CPS such as blockchain, edge-learning and
edge-computing [117], [118], [119]. Future work in AI for
IoT/CPS will need to address the challenges of multi modal
data-fusion and security of AI in IoT/CPS.

For data-fusion a plethora of challenges plague the advance-
ments of AI in IoT. Challenges range from data modality to
operational timing and fusion level. Data modality is at the
heart of IoT/CPS where sensors collect data from a variety of
modalities. Data from all different modalities must be handled
and analyzed properly via appropriate fusion schemes and
methods. Data registration is another major challenge for AI
systems in IoT/CPS as incoming data from different modalities
need to be calibrated properly and transformed into a common
frame for accurate and efficient data fusion. Data trivialness
can be a major challenge for data-fusion in applications such as
IoT and Smart-cities. The data collected from the numerous
sensors can be both trivial and non-trivial,which affects the
data fusion process. One way to overcome this is via feature
extraction prior to the fusion process. Operational timing is
another vital factor for data-fusion, specially for dynamic, real-
time applications where different sensors might be operating
under different frequencies, rates and environments. Therefore,
different time scales must be incorporated to address the
differences within the data from varying sensors or modalities.
[120], [121]

E. Security and Primacy in AI enabled Wireless IoT/CPS

AI security is also a vital challenge facing IoT/CPS. With
millions of smart devices connected via wireless networks,
the privacy and security of consumer data is at the fore-front
of research topics for the field. With advances in adversarial
attacks against AI/ML systems, IoT devices must be robust
to protect against any potential threats. Due to the varying
and large attack surface areas involved with CPS/IoT, AI/ML
systems must be both proactive and reactive in their defense
against adversarial attacks to protect consumer data security
and privacy. AI/ML systems in IoT will have to be robust
against a number of different adversarial attacks. Different
attacks need to be detected and dealt with via appropriate
counter measures. An in-depth review on the security of
AI/ML systems and IoT/CPS is provided in [122], [123],
[124], [70], [125]

IV. SUMMARY

In this paper we have provided a comprehensive survey
on the use of artificial intelligence and machine learning for
wireless CPS/IoT systems. We enumerate the most widely
used and most promising wireless technologies and their
respective range of operation that can be potentially be used
for AI/ML enabled CPS and IoT networks. Furthermore, we
review main types of machine learning techniques and other
machine learning paradigms that are commonly used in AI/ML
enabled CPS and IoT networks, and identified current literature
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that focuses on machine learning for wireless networking for
IoT/CPS. Finally, we provided open challenges for AI/ML
enabled CPS and IoT networks and potential future research
directions.
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