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ABSTRACT
The paradigm of AutoML has created an opportunity to enable ML
for the masses. Emerging industrial-scale cloud AutoML platforms
aim to automate the end-to-end ML work�ow. While many works
have looked into automated feature engineering, model selection,
or hyper-parameter search in AutoML, little work has studied a
crucial step that serves as an entry point to this work�ow: ML
feature type inference. The semantic gap between attribute types
(e.g., strings, numbers) in databases/�les and ML feature types (e.g.,
Numeric, Categorical) necessitates type inference. In this work, we
formalize and standardize this task by creating the �rst ever bench-
mark labeled dataset, which we use to objectively evaluate existing
AutoML tools. Our dataset has 9921 examples and a 9-class label
vocabulary. Our labeled data also o�ers an alternative approach
to automate this task than existing rule-based or syntax-based
approaches: use ML itself to predict feature types. We collate a
benchmark suite of 30 classi�cation and regression tasks to assess
the importance of type inference for downstreammodels. Empirical
comparison on our labeled data shows that an ML-based approach
delivers a lift of an average 14% and up to 38% in accuracy for
identifying feature types compared to prominent industrial tools.
Our downstream benchmark suite reveals that the ML-based ap-
proach outperforms existing industrial-strength tools for 47 out of
60 downstream models. We release our labeled dataset, models, and
downstream benchmarks in a public repository with a leaderboard.
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1 INTRODUCTION
The paradigm of automated machine learning (AutoML) is begin-
ning to help democratize machine learning for the masses [1]. Cloud
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Figure 1: Typical work�ow in AutoML platforms.

vendors have released AutoML platforms such as Google’s Cloud
AutoML [2] and Salesforce’s Einstein [3] that build ML models on
millions of datasets from thousands of small-and-medium enter-
prises automatically. The central goal of these platforms is to get an
accurate model for the prediction task while achieving maximum
possible automation of the end-to-end ML work�ow, especially
on structured data, including data transformations and feature en-
gineering, as well as model building and hyperparameter tuning.
The automation of these steps has been intensively studied in the
ML/data mining [1, 4] and database communities [5, 6]. However,
a crucial gateway step to this whole work�ow has received much
less attention so far: ML feature type inference.

Datasets are typically loaded as �les into the AutoML platforms.
As Figure 1 illustrates, ML feature type inference is the very �rst
step needed for ML over structured data. Features could be Numeric,
Categorical, or something else, as shown in Figure 1. Determining
the correct feature type is crucial for the whole work�ow to work
well: what data transformations to apply, how to extract features,
and how to feed signals to the downstream models. For instance, if
a column is inferred to be of type Timestamp, then several useful
features such as day, month, and year are often extracted automati-
cally for the downstream model. Thus, the accuracy of feature type
inference is critical for the downstream model’s accuracy, and in
turn, the e�ectiveness of the entire ML platform.

Feature type inference is also performed automatically by many
ML platforms, e.g. TransmogrifAI in Einstein [7], Tensor�ow Data
Validation (TFDV) in TensorFlow Extended [8], and AutoGluon
from AWS [9]. But surprisingly, there is no objective evaluation to
date of how good their automation of this task is. Thus, mistakes
in their automated feature type inference can propagate and may
degrade the work�ow. For instance, consider what TFDV does on
the illustrative dataset for a common ML task, customer churn
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CustID Gender Salary ZipCode XYZ Income HireDate Churn

1501 ‘F’ 1500 92092 005 ‘USD 15000’ ‘05/01/1992’ ‘Yes’

1704 ‘M’ 3400 78712 003 ‘25384’ ‘12/09/2008’ ‘No’

Figure 2: A simpli�ed Customers data for churn prediction.

prediction in Figure 2. It wrongly calls many Categorical features
with integer values as Numeric, e.g., ZipCode. This can cause the
downstream model to produce garbage results. Moreover, Income is
inferred as Categorical even though it has numbers embedded. Such
issues can lead to loss of information and can potentially reduce
the accuracy of the model, or even cause it to fail in some scenarios.

One might ask: Why cannot AutoML platform users manually
verify their feature types? From our conversations with AutoML
platform engineers at Salesforce and Google, we learned that their
AutoML tools are used on over tens of thousands of datasets, adding
up to millions of features in production settings. Forcing users to
manually annotate features can lead to a tedious, slow, and error-
prone process that also violates the promise of automation. Many
domain users who may not have much ML expertise may not like
the platform asking them to manually mark ML feature types. Thus,
AutoML platform engineers prefer ever more accurate automation
of this task. Clearly, this requires them to objectively measure the
accuracy of their AutoML tool on the given task.

1.1 This Paper’s Focus
Our Focus. We initiate work on benchmarking and objectively
quantifying the task of ML feature type inference in existing open-
source industrial-strength AutoML tools. We formalize and stan-
dardize this task by creating a benchmark labeled dataset. This will
enable an objective progress measurement, akin to ImageNet’s role
in vision [10]. Moreover, this will help objectively evaluate and
improve AutoML platforms by enabling answers to key questions:
How good are AutoML tools? How can one do better? How does the
accuracy of type inference a�ect downstream ML model’s accuracy?

Challenge. We �rst explain why feature type inference is hard to
automate for existing rule-based or syntax-based systems. Datasets
are typically loaded from RDBMSs, data lakes, or �lesystems as �at
CSV �les into AutoML platforms. Thus, there exists a semantic gap
between feature types for ML and attribute types in databases/�les.
The latter tells us the syntactic datatypes of columns such as integer,
real, or string. This semantic gapmeans reading syntax as semantics
often leads to nonsensical results. For instance, consider Figure 2
again. Attributes such as CustID, Salary, and ZipCode are stored as
integers, but only Salary is useful as Numeric. CustID is unique for
every customer, hence it can not be generalized for ML. ZipCode
is Categorical, even though it is stored as integers. In fact, this
issue is ubiquitous in real-world datasets, since categories are often
encoded as integers, e.g., item code, state code, etc.

Scope. Our focus is on relational/tabular data, which can be stored
in any format (CSV, JSON, XML, etc.) and with any �lesystems. Note
that our focus is not to study any upstream processing steps that
users might performwhen they load their �les into the AutoML tool.
Also, our focus is not on feature engineering and transformation

steps over the columns with the inferred types. We focus only on
the ML feature type inference step. Admittedly, this is just one step
in the entire end-to-end ML work�ow, but we believe that studying
this step in depth is critical to improve existing AutoML platforms,
as we �nd that accurate type inference is critical for achieving high
downstream model accuracy. Equally importantly, the predictions
are more interpretable with accurate feature types.

1.2 Benchmark Comparisons
Our Labeled Dataset and Label Vocabulary. Creating labeled
data for the task requires a common formalized label vocabulary,
which is important to create because the dichotomy of Numeric
vs. Categorical is not usually enough for categorizing feature types
of raw columns. For instance, column HireDate in Figure 2 stores
Date type values. Thus, we need more classes. We survey existing
AutoML data prep tools and collect their feature type vocabulary
into a common, practically useful set of labels that can be reused
by any AutoML platform, as Figure 3 shows.We gather and hand-
label the very �rst large meta-dataset for benchmarking feature type
inference. Our dataset has 9921 columns from 1240 real data �les
from sources such as Kaggle and UCI ML repository. Our labeling
process took about 90 man-hours across 5 months.

Current Limitation. We admit that �les on Kaggle and UCI ML
repository may not be representative of the truly “in-the-wild”
dataset as it may have undergone some pre-processing. But, it
is impractical for researchers to get access to large numbers of
publicly releasable data from enterprises and organizations due to
legal restrictions. Thus, Kaggle and UCI are the closest sources we
have to the real-world data. We believe that our exploratory work is
the �rst step in the direction of objectively evaluating AutoML tools.
We hope that this work starts a conversation around enhancing
such benchmark datasets.

Approaches to Type Inference. There are open-source tools such
as Pandas [11], TransmogrifAI [7], TFDV [8], and AutoGluon [9]
that automate this task. They all happen to be either rule-based or
syntax-based. In contrast to prior approaches, our labeled dataset
also presents an alternative approach to type inference: use ML
itself to automate this task. We cast ML feature type inference as a
multi-class classi�cation problem and use ML models to bridge the
semantic gap. We extract signals from raw data �les that a typical
data scientist may look at to identify the feature type.We summarize
the signals in a feature set, which we use to build standard ML
models on our labeled data. We empirically compare the ML-based
approach enabled by our labeled data and existing public tools on
our labeled test dataset.

Semantic TypeDetectionTools.Recent tools such as Sherlock [12]
and AutoType [13] perform column-level semantic type detection
for automated data discovery and cleaning. The semantic type vo-
cabulary of these tools is not directly usable for the AutoML setting
because a semantic type can belong to multiple ML feature types.
This is by design because the application motivations are di�erent:
semantic type detection tools are aimed at Business Intelligence
(BI) tool users to browse attributes more easily, not AutoML users.
Thus, it is complementary to our focus. To understand whether
such tools can be ported to the AutoML setting, we use a rule-based
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approach to map Sherlock’s semantic types to our vocabulary and
evaluate it on our dataset.

Downstream Benchmark Suite. To understand the impact of
the accuracy of ML feature type inference task on the downstream
models, we create a downstream benchmark: 30 curated real-world
datasets containing classi�cation and regression tasks from di-
verse application domains such as healthcare, retail, sports, etc.
The benchmark enables us to answer two key questions: (1) How
does wrong type inference a�ect downstream performance? (2)
How accurate are the downstream models delivered by the prior
tools and the ML-based approach using our labeled data relative to
performance with true feature types?

Empirical Evaluation and Analysis. An empirical comparison
of di�erent approaches on our labeled data shows that the ML-
based approach delivers a lift of an average 14% and up to 38% in
accuracy compared to existing tools for identifying feature types.
We then evaluate and compare di�erent ML models on our dataset.
Overall, Random Forest outperforms the other models and achieves
the best 9-class accuracy of 92.6%. We perform an ablation study
on our ML models to characterize what types of features are useful.

Our empirical evaluation on the downstream benchmark suite
shows that an ML-based approach using our labeled data delivers
the most accurate downstream model against the prior tools for
47 out of 60 downstream models. In addition, we �nd that the
wrong types inferred by existing tools often lead to a signi�cant
decrease in the downstream model’s accuracy relative to their true
accuracy. For instance, Pandas underperforms over truth in 45
out of 60 cases. Finally, we release a repository containing our
labeled dataset, trained ML models, downstream benchmarks, and
announce a leaderboard for community contributions.
In summary, our work makes four key contributions.

1. A new benchmark task and dataset. To the best of our
knowledge, this is the �rst work to formalize and rigorously
benchmark the task of ML feature type inference. We create
the �rst large benchmark labeled datasets for this task with
a readily practically useful 9-class label vocabulary.

2. Benchmarking alternate tools and approaches. Using
our new data, we perform extensive empirical comparisons
of open source and industrial (Auto)ML tools. Perhaps sur-
prisingly, we �nd that even o�-the-shelf ML models with
standard featurization trained on our data signi�cantly out-
perform all prior approaches.

3. Downstream benchmark suite. The curated benchmark
o�ers evidence that the downstream model’s performance
can bene�t by accurately determining feature types. We �nd
that an ML model trained on our data for feature type infer-
ence often leads to more accurate downstream models than
prior tools.

4. Real-world impact. Google collaborated with us to inte-
grate our best performing ML models into TFDV to improve
its inference of Categorical [14]. Google engineers are now
reviewing it on internal benchmarks for adoption. AWS and
OpenML [15] have also expressed interest in adopting our
data and models for production use. Also, we release a public
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Figure 3: Feature type vocabularymapping of TFDV, Pandas,
TransmogrifAI, and AutoGluon to our vocabulary

competition on our labeled dataset to invite contributions to
create/augment datasets, better featurizations, and models.

2 OUR DATASET
This section discusses our e�orts in creating the labeled dataset.
We discuss how we design the label vocabulary, the data sources,
the signals we extract from the columns that enable us to inspect
the columns succinctly, and the labelling process.

2.1 Label Vocabulary
Most ML models ultimately operate over only 2 (�nal) feature types:
Numeric (continuous set) and Categorical (discrete set). Thus, each
example (or column) has to be labelled as either of the two classes.
However, we �nd that this bifurcation is not enough. This is because
many other column types such as Date, URL, and Primary Keys are
inevitable in the raw data �le. Moreover, we �nd that the data �le
may not contain enough information to determine the feature type
of a column, even for humans, e.g., column XYZ in Figure 2. Thus,
we need more classes. We surveyed how the existing open source
data prep tools such as Google’s TFDV [8], TransmogrifAI in Sales-
force Einstein [7], and AutoGluon from Amazon AWS [9] approach
type inference and perform type-speci�c feature transformations.
Figure 3 shows the feature type vocabulary of these tools. Inspired
by this, we distill a common and practically useful set of labels for
our vocabulary. We discuss the labels below.

(1) Numeric. These attributes are quantitative in nature and can
directly be utilized as a Numeric feature for the downstream ML
model. For instance, Salary is Numeric, while ID attributes such as
CustID or integers representing encodings of discrete levels are not.

(2) Categorical. These attributes contain qualitative values that
can directly be utilized as Categorical features for the downstream
ML model. There are two major sub-classes: nominal and ordinal.
Ordinal features have a notion of ordering among its values, while
nominal do not. For instance, Year is ordinal, while ZipCode is
nominal. Names and coded real-world entities from a known �nite
domain set are also Categorical. One often needs to alter the syntax
of Categorical features for the downstream model, e.g., one-hot
encoding in Scikit-learn or explicitly cast as a “factor” variable in R.
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(3) Datetime. This class represents attributes containing date or
timestamp values, e.g., “7/11/2018”, and “21hrs:15min:3sec.” One may
choose to extract custom features, either Numeric or Categorical
or both through standard featurization routines. For instance, the
month of the year can be Categorical, while time can be Numeric.
Note that, such feature engineering decisions are not focus of this
work since they are typically application-speci�c.

(4) Sentence. This class represents attributes containing textual
values with semantic meaning. For instance, a passage of text may
provide rich semantic information for a sentiment analysis applica-
tion. One may choose to extract custom features, either Numeric or
Categorical, or both through standard featurization routines. For
instance, the AutoML platform developer can route such columns
to an =-gram featurization routine or a routine to get Word2Vec
embeddings from an English sentence for the downstream model.
Again, we leave such downstream feature engineering decisions
that come after type inference to the AutoML platform developer.

(5) URL. This class is for attributes whose values follow the URL
standards [16]. This requires that the attribute values begin with
a protocol followed by a sub-domain and a domain name. Any
following information such as a �le path is optional.

(6) EmbeddedNumber. This class denotes attributes with “messy”
syntax that preclude their direct use as Numeric or Categorical
features. Thus, they require some form of processing before being
used as as features. For instance, a number may be present along
with string(s) denoting a measurement unit (“30 Mhz” or “USD
45” ) and/or special characters (“5,00,000” ). In all cases, a number
is typically extracted and the units are standardized (if applicable).
One would typically use regular expressions or custom Python/R
scripts for such extraction, e.g., converting “USD 45” to 45.

(7) List. These attributes contain a list of items separated by a
delimiter. One may write custom scripts to extract the domain of
the list values and get new features for the downstream model.

(8) Not-Generalizable. An attribute in this class is a primary key
in the table or has (almost) no informative values to be useful as
a feature. Similarly, a column with only one unique value in the
whole table o�ers no discriminative power and is thus useless. Such
attributes are most unlikely to be used as features for the down-
stream model because they are not “generalizable.” For example,
CustID belongs to this class, since every future customer will have a
new CustID. It is quite unlikely that one can get any useful features
from it. Note that an attribute categorized as Not-Generalizable does
not mean that it can never be useful for the downstream model.
One may obtain some features from such attributes through more
custom processing or domain knowledge. In contrast, even though
attributes such as Income and Date may have all unique values in
their columns, they are still generalizable. Thus, they belong to
Embedded Numbers and Datetime respectively since it is highly
likely that one can extract useful features from them.

(9) Context-Speci�c. This class is a catch-all for attributes that
require human intervention either to determine their feature types
and/or to inspect their values to build custom featurization routines.

The following examples illustrate this class. (1) Attributes wherein
the data �le does not have enough information even for a human
to judge its feature type. Such columns typically have meaningless
names, e.g., XYZ in Figure 2. Judging the feature type would require
manually tracing down the provenance of how this column came to
be using external “data dictionaries” maintained by the application
or speaking to the data creator. (2) Attributes whose values require
manual inspection for extracting useful features, e.g., JSON objects,
geo-locations, addresses, or other complex objects that contain
information dump about the data.

Our 9-class label vocabulary, while limited, is already practi-
cally useful for AutoML platforms. The label vocabulary can also
give other insights to an AutoML platform developer. For instance,
they could look for tables to join when faced with a large-domain
Categorical feature such as ZipCode. They could route attributes
marked as Embedded Numbers or Datetime to suitable Python/R
scripts. Moreover, they could dispatch the columns that are marked
Not-Generalizable for any missing values or errors in data entry to
appropriate libraries. Finally, they could prompt for user interven-
tion on only the columns that are marked Context-Speci�c. This can
reduce user time spent on annotation signi�cantly.

2.2 Data Sources
We gather 1240 CSV data �les from sources such as Kaggle and UCI
ML repository. Each column of the CSV �le is just one example
for our task. We obtain 9921 examples from all data �les. Note
that we do not always use all the columns from a single data �le
for labeling. We explain this in Section 2.4. Kaggle and UCI ML
are the largest public data sources that are closest to real-world
datasets. However, we note a caveat that the �les on Kaggle and
UCI ML may have undergone some pre-processing. It is almost
impossible for researchers to get access to large numbers of truly
“in-the-wild” data from enterprises and other organizations and
make them publicly available due to legal restrictions. But the crux
of our point in this paper is this: even on data �les from Kaggle
and UCI, existing open-source and industrial tools yield relatively
poor accuracy compared to the ML models trained on our data
(Section 4.2). Thus, we believe our work is a promising start towards
objectively evaluating AutoML platforms.

2.3 Base Featurization
To identify the feature type of a raw column, a human data scientist
may look at the column name, some sample values in the column,
and even descriptive stats about the column. For instance, just
by reading the attribute name, ZipCode, an interpretable string, a
human can tell its feature type is Categorical. Thus, we represent
the columns in a more concise way such that it emulates what a
typical data scientist may look at to determine the feature type.
We call this step Base Featurization. We extract the following base
features for every column in the raw data �le.

(1) Column name. We extract the column name as it can give
crucial semantic clues for the feature type.

(2) Column values. A human would typically inspect some values
in the column to make sure they make sense. For instance, values
with decimal points are likely to mean Numeric features, while
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values with delimiters are likely lists. Thus, we extract 5 randomly
sampled distinct attribute values from the column. We choose 5 be-
cause we think it is a reasonable number for a human to understand
the column and determine the feature type when doing manual
labeling (Section 2.4). However, this number can very well be higher
or lower. It can be even tuned when building an ML model or a
heuristic. In fact, from the ablation study of the ML models built
on the base features, we �nd that even one or two sample values
may be good enough to build an accurate model (Table 2).

(3) Descriptive statistics. Finally, a human would look at some
descriptive stats about the column. For instance, if the human �nds
that all values in the column are NaNs, then they might classify
the column as Not-Generalizable. Considering this, we extract 25
descriptive stats for a column such as the total number of values,
the absolute number and % of NaNs relative to total values, the
absolute number and % of distinct values relative to total values,
mean, and standard deviation. We provide the complete list of these
features in the technical report [17].

Each column in the raw data �le is an example in the new base
featurized �le and we manually label every example of the base
featurized �le. The base featurization step also helps to deliver an
ML-based approach to type inference (Section 4.3).

2.4 Labelling Process
We �rst use base featurized columns from 360 source �les to label
them in one of the nine classes. But, we �nd that they only contain a
small handful of examples for the classes:URL, List, Sentence, Embed-
ded Number, and Datetime. Thus, we use an additional 880 source
data �les to only label the examples for the under-represented
classes. We extract these examples from additional sources as we
did not want to create a heavily skewed class label distribution to
get good con�dence on all classes. Note that augmenting classes
where the number of examples is under-represented is a common
practice in the ML literature [18–21]. Since our benchmark con-
tains multiple class-level accuracy metrics (discussed in Section 4.1),
inspecting them can provide more con�dence with the class pre-
dictions. Furthermore, we �nd that many data �les have a series
of column names such as xyz1, xyz2, and so on. Thus, we drop the
columns with a repeating series of names.

To reduce the cognitive load of labelling, we follow the following
process. Initially, we manually label 500 examples. We then use
Random Forest with 100 estimators to perform 5-fold nested cross-
validation (CV). The model achieves a classi�cation accuracy of
around 74% on the test set (average across 5 folds).We use thismodel
to predict a class label on all of the 9921 examples. We then group
all the examples by these predicted labels and inspect all of them
manually. Such grouping helps reduce the cognitive load caused
by class context switches during labeling. The labeling process took
about 90 man-hours across 5 months.

We also tried to crowdsource labels on the FigureEight platform
but abandoned this e�ort because the label quality was too low
across two trial runs. We suspect such high noise arises because
this task is too technically nuanced for lay crowd workers relative
to popular crowdsourcing tasks like image recognition. Devising
better crowdsourcing schemes for our task with lower label noise

is an avenue for future work. We summarize our crowdsourcing
results in the technical report [17].

2.5 Data Statistics
The distribution of class labels in our labeled dataset is: Numeric
(36.6%), Categorical (23.3%), Datetime (7%), Sentence (3.9%), URL
(1.5%), Embedded Number (5.7%), List (2.4%), Not-Generalizable
(10.6%), and Context-Speci�c (8.9%). We provide a complete break-
down of the cumulative distribution by class for di�erent descriptive
statistics in the technical report [17].

3 APPROACHES COMPARED
In this section, we discuss the di�erent approaches to type infer-
ence. We �rst discuss existing open-source tools that all happen
to be either rule-based or syntax-based. We then brie�y discuss an
intuitive rule-based baseline to check if a set of rules can accurately
capture our labeled dataset. Finally, we explain how our labeled
dataset is used to build ML models.

3.1 Existing Tools
Figure 3 shows the feature type vocabulary of these tools and how
they map to our label vocabulary.

Tensor�ow Data Validation (TFDV). TFDV is a tool to analyze
and transform ML data in TensorFlow Extended (TFX) pipeline [8].
TFDV uses heuristics to infer ML feature types such as numeric,
categorical, time or date domain, or natural language text from the
descriptive statistics about the column. The users can then review
the inferred feature types and can update them manually.

Pandas. Pandas is a Python library that provides tools for data
analysis and data transformations. It infers syntactic types such as
integer, �oat, or object [11]. It also provides a utility function that
can check the column for the datetime type.

TransmogrifAI. This is an AutoML library for structured data in
Salesforce’s AutoML platform called Einstein [7]. TransmogrifAI
supports rudimentary automatic feature type inference over primi-
tive types such as Integer, Long, Double, Timestamp, and String. It
also has an extensive vocabulary for feature types such as email,
phone numbers, zipcodes, etc. However, users have to manually
specify these types for their data.

AutoGluon-Tabular. AutoGluon is an end-to-end AutoML frame-
work from AWS [9]. It classi�es each column into numeric, categor-
ical, date/time, text, or columns that needs to be discarded because
they can’t be classi�ed into any of the classes.

Sherlock. Sherlock [12] is a distantly-supervised deep-learning-
based tool that identi�es 78 semantic types such as Age, Code,
Duration, etc. But the semantic types are not directly usable for
AutoML because the same semantic type can span di�erent ML
feature types. For instance, Duration type can be either Numeric
(e.g., time elapsed in seconds), Categorical (e.g., time duration be-
longing to a discrete set), Datetime (e.g. the exact timestamp), or
even Sentence (e.g., duration mentioned in words).

We �nd that out of 78 semantic types, 55 types can be uniquely
mapped to one single class of our label vocabulary. The number
of types that are mapped to 2, 3, and 4 classes of our label vocabu-
lary are 18, 3, and 2, respectively. We release the mapping between
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Raw CSV file1. Base 
Featurization

# Attribute
Name

Descriptive Statistics Sample Values
Mean % Distinct Vals … Sample1 Sample2 …

1 Salary 42.75 75 34 56

2 CustID 102.5 100 102 104

3 XYZ 2.5 75 002 001

4 ZipCode 92092.75 50 92093 92092

5 Income 100 USD 100 1000

CustID
(Varchar)

Zipcode
(Int)

Income
(Varchar)

Salary 
(Int)

XYZ
(Varchar)

101 92092 12000 25 005

102 92093 USD 100 56 001

103 92093 50000 34 002

104 92093 1000 56 002

3. Model-specific 
feature extraction

# bigrams 
on Name Stats bigrams 

on sample1
1 sa,al, … … 34

2 cu, us, st, … … 10, 02

3 xy, yz … 00, 02

4 zi, ip, pc, … … 92,20, …

5 in, nc, … … us, sd, …

ML model 
trained on our 
labeled data

Gender CName
M AMAZ

F MSFT

M GOOGL

M MSFT

Label
Confidence

Gender CName

Numeric 0 0

Categorical 0.99 0.45

Context-Specific 0.01 0.55

… … …

User may intervene 
to inspect Context-
Specific or less 
confident columns 

4. Training

New CSV file

Model Predictions

# Labels
1 Numeric

2 Not-Generalizable

3 Context- Specific

4 Categorical

5 Embedded Number

2. Manual  
Labeling

5. Inference

Figure 4: Work�ow showing our labeling process and how our data is used for ML-based feature type inference.

Sherlock semantic types and our label vocabulary in the technical
report [17]. We use a rule-based approach on top of Sherlock to
identify one single feature type given a column. We discuss exam-
ples to illustrate how we map semantic types to our feature types
in the technical report [17].

3.2 Rule-based Baseline
We use this approach to validate if a set of rules can accurately
represent our labeled dataset. We write 11 rules to capture all the
classes using a �owchart-like structure. We provide two examples
below. (1) To identify List, non-empty sample values are matched
with a regular expression based check of a series of characters
separated by a type of delimiter such as ; | , etc. (2) If either
of the % of NaNs or % of unique values in the column are greater
than 99.99% then we mark it as Not-Generalizable. We describe the
complete rule-based approach in the technical report [17].

3.3 ML-based Approach using our Data
As shown in Figure 4, we use our labeled data to build standard
ML models. Base Featurization is a common step for all ML models.
Some ML models cannot operate on the raw characters of attribute
names or sample values. Thus, we extract hand-crafted feature sets
from the attribute names and sample values. We then train several
classical ML models, :-NN with a distance function tuned for our
task, and a CNN. Finally, the pre-trained model is used to infer
feature types for columns in an “unseen” CSV �le. At the scale of
AutoML platforms where there are potentially millions of columns,
human intervention can be costly and slow. The models output
predictions and the corresponding con�dence scores for each class.
Thus, an ML-based approach allows users to intervene to prioritize
their e�ort towards Context-Speci�c types or columns with low
con�dence scores that may need more human attention.

3.3.1 Feature Extraction. The attributeswith similar names can
likely belong to the same class. For instance, both attributes temper-
ature_jan and temperature_feb are Numeric. Similarly, knowing that
the sequence of characters are numbers followed by a “/,” can give
an indication of Datetime. Based on these intuitions, we extract an
=-gram feature set from the attribute names and sample values.

Notation.We denote the descriptive stats by XBC0CB , the attribute
name byX=0<4 , and randomly sampled attribute values byXB0<?;4
(�rst sampled value referred to as XB0<?;41 and similarly for other
values). We leverage the commonly used bigram features on the
attribute name (denoted by X2=0<4 ) and sample value (X2B0<?;4 ).

3.3.2 Classical ML models. We consider classical models: Lo-
gistic Regression, RBF-SVM, and Random Forest. Note that they can-
not operate on raw characters of attribute names or sample values.
Thus, we use features: XBC0CB , X2=0<4 , X2B0<?;41, and X2B0<?;42.
For scale-sensitive models such as RBF-SVM and logistic regression,
we standardize XBC0CB to have mean 0 and standard deviation 1.

3.3.3 Nearest Neighbor. Most implementations of :-NN use a
simple Euclidean distance. But, we can adapt the distance function
for the task at hand by de�ning the weighted distance function as:

3 = ⇢⇡ (-=0<4 ) + W · ⇢⇠ (-BC0CB )
Here, ⇢⇡ (resp. ⇢⇠) is the edit distance (resp. euclidean distance)

between -=0<4 (resp. -BC0CB ) of a test example and a training ex-
ample. W is the parameter that needs to be tuned during training.

3.3.4 CNN. Inspired by the success of CNN on short text classi�-
cation tasks [22, 23], we leverage a character-level CNN for our task.
The network takes attribute name, descriptive stats, and sample
values as input and outputs the class from the label vocabulary. We
present the architecture and layers of CNN in the tech report [17].

4 EMPIRICAL STUDY AND ANALYSIS
We now empirically compare the industrial open source tools and
ML models on the accuracy of type inference. This is the very
�rst empirical comparison of this sort of these tools, thanks to our
new benchmark labeled dataset. The headline result is that our ML
models substantially surpass these prior tools on test accuracy.

4.1 Methodology and Setup
Methodolody. We partition our labeled dataset into a train and
held-out test set with 80:20 ratio. We perform 5-fold nested cross-
validation of the train set, with a random fourth of the examples in
a training fold being used for validation during hyper-parameter
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Table 1: Binarized class-speci�c accuracy of di�erent approaches on our benchmark labeled held-out test dataset. The bold
fonts highlight the most accurate approach/model per class.

Feature Type Metric
Open-source Industrial Tools Sherlock + 

Rules

Baseline Models trained on our data

TFDV Pandas TransmogrifAI AutoGluon Rule-based Log Reg CNN Rand Forest

Numeric

Precision 0.657 0.614 0.605 0.646 0.599 0.773 0.909 0.929 0.934

Recall 1 1 1 1 0.359 0.946 0.943 0.941 0.984

Accuracy 0.814 0.776 0.767 0.805 0.683 0.882 0.946 0.953 0.97

Categorical

Precision 0.396

- -

0.667 0.311 0.577 0.808 0.846 0.913

Recall 0.652 0.534 0.707 0.457 0.884 0.928 0.943

Accuracy 0.691 0.831 0.567 0.798 0.925 0.945 0.966

Datetime

Precision 0.985 0.956 1 1 0.89 0.559 0.951 0.925 0.945

Recall 0.475 0.915 0.454 0.844 0.801 0.135 0.972 0.965 0.972

Accuracy 0.962 0.991 0.961 0.989 0.979 0.931 0.994 0.992 0.994

Sentence

Precision 0.472

- -

0.516 0.354 1 0.913 0.725 0.865

Recall 0.457 0.902 0.554 0.043 0.793 0.804 0.902

Accuracy 0.951 0.956 0.932 0.956 0.987 0.977 0.989

Not-
Generalizable

Precision

- - -

0.465 0.692 0.216 0.732 0.81 0.934

Recall 0.53 0.042 0.507 0.732 0.66 0.86

Accuracy 0.883 0.893 0.747 0.947 0.937 0.978

Context-
Specific

Precision

-

0.08 0.074

-

0.192 0.211 0.747 0.741 0.859

Recall 0.295 0.295 0.168 0.195 0.621 0.663 0.705

Accuracy 0.609 0.582 0.851 0.853 0.944 0.946 0.961

tuning. We use a standard grid search for hyper-parameter tuning.
We describe the grids in the technical report [17]. We also did a
5-fold leave-data �le out cross-validation to “stress-test” the ML
models for new data �les. The raw data �les were split into 60:20:20
train, validation, and test partitions where each partition has all
columns of a particular data �le. Thus, the test partition has columns
of the raw data �les that themodel has not seen before. The trends of
the leave-data �le out approach are similar to the former approach;
so, we discuss its results in the technical report [17].

Experimental Setup. We use CloudLab [24] with custom Open-
Stack pro�le running Ubuntu 18.04 with 10 Intel Xeon cores and
192GB of RAM. For TFDV, Transmogrifai, AutoGluon, and Pandas,
we use version number 0.22.2, 0.7.0, 0.0.11, and 0.25.3 respectively.

Metrics. Our key metric is prediction accuracy for the 9-class task.
We also use class-speci�c binarization metrics such as precision,
recall, F1 score, and confusion matrix.

4.2 Comparison of All Approaches
We compare ML models trained on our dataset against open-source
tools on our held-out test data. Figure 3 showed the feature type
vocabulary of these tools and how theymap to our vocabulary. Since
none of these tools support our full 9-class vocabulary, we report

results on binarization of our classes: Numeric vs. all Non-Numeric,
Categorical vs. all Non-Categorical, and similarly for others.

Results. Table 1 presents the precision, recall, and overall 2 x 2 di-
agonal accuracy results of all approaches on our benchmark labeled
held-out test set1. We report F1 score and full confusion matrices
in the technical report [17]. We present the results in-depth below.

(1) We see that the ML models achieve signi�cantly higher accuracy
than all industrial tools across the board for all feature types. For
instance, a lift of 28% and 14% in accuracy in predicting Categorical
compared to TFDV and AutoGluon respectively. Of all approaches,
Random Forest achieves the highest accuracy in inferring the types.

(2) Interestingly, all the existing tools have a high recall on Numeric
but very low precision. This is because their heuristics are syntactic,
which leads them to wrongly classify many Categorical features
such as ZipCode as Numeric. The ML models have a slightly lower
recall on Numeric. This is because, with many features thrown, they
get slightly confused and could wrongly predict a Numeric type as

1 Since publication, we have released version 2 of our labeled dataset where 32 examples
are relabeled after feedback on Github [25]. We �nd only minor changes in the results
without altering any of our trends, conclusions, or takeaways discussed here. Note
that our labeled dataset is a living public repository on Github which we anticipate to
grow in the future. Please refer to our public repository for the up-to-date results.
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Table 2: Full 9-class test accuracy of the ML models trained on our data with di�erent feature sets. - ⇤
=0<4 ,-

⇤
B0<?;41,-

⇤
B0<?;42

denote bigram features (-2=0<4 ,-2B0<?;41,-2B0<?;42) for classical ML models and raw character-level features
(-=0<4 ,-B0<?;41,-B0<?;42) for CNN and :-NN. The bold fonts highlight the most accurate feature set for that model.

Xstats X*name X*sample1 Xstats, X*name Xstats, X*sample1 X*name, X*sample1 X*sample1, X*sample2
Xstats, X*name,
X*sample1

Xstats, X*name,
X*sample1, X*sample2

Logistic
Regression 0.6862 0.7293 0.6603 0.8428 0.7763 0.8043 0.7144 0.8578 0.8643

RBF-SVM 0.8213 0.777 0.6521 0.8724 0.7845 0.8159 0.7131 0.8761 0.8712

Random
Forest 0.9121 0.7785 0.6657 0.9259 0.8956 0.8346 0.7374 0.9216 0.9096

CNN 0.6809 0.8019 0.6805 0.8692 0.7965 0.8655 0.7763 0.8788 0.8701
k-NN 0.8605 0.7839 - 0.8796 - - - - -

non-numeric. But, the ML models have much higher precision and
high overall accuracy.

(3) Heuristics for identifying Datetime by all the existing tools have
high precision, even higher than the ML models. However, their
rules do not capture manyDatetime type instances (e.g., an attribute
named BirthDate “19980112”); thus, they have a much lower recall.

(4) The heuristic rules of AutoGluon and TFDV are largely depen-
dent upon the number of words in a string for accurately inferring
Sentence type. Thus, a column with most of its values having a large
number of words will likely get inferred as Sentence by these tools.
However, a Categorical or Context-Speci�c column (e.g., containing
JSON object) can satisfy the criteria provided by the rules. Thus,
AutoGluon and TFDV have low precision on Sentence. On the other
hand, the ML-based approaches have much higher precision.

OtherCommercial Tools.There exist other commercial tools that
also automate the ML feature type inference task such as Google
AutoML Tables [26], DataRobot [27], and Trifacta [28]. However,
since these systems are closed source, we do not know how these
tools work. It is also hard to evaluate their accuracy because: (1)
DataRobot has no public/free trial version of their platform. We got
no response to our demo request. (2) AutoML Tables and Trifacta
only o�er GUI-based usage where users must upload the raw CSV
�les manually to identify the feature types. Both these tools do
not provide any programmatic way for evaluation. So, we cannot
evaluate their accuracy automatically. We manually uploaded 5
CSV �les from our raw data. All 15 categoricals encoded as integers
were (wrongly) classi�ed as Numeric by both tools. Since it is hard
to draw any generalizable conclusion if these tools have the same
issues as TFDV, AutoGluon, and TransmogrifAI, we leave it to
future work to assert this more systematically.

4.3 Comparison of ML-based Approaches
Rule-based Baseline. The 9-class classi�cation accuracy on the
held-out test set is only 54%.We observe that this approach achieves
95% and 46% recall in classifying Numeric and Categorical respec-
tively. The recall for Categorical is low because a category encoded
as a number is wrongly classi�ed as Numeric. Admittedly, our rules
are not exhaustive and one can always come up with more rules to

improve the accuracy. However, writing rules for every little corner
case is excruciating and will likely never be comprehensive.

Sherlock. Sherlock with a rule-based approach that maps their
semantic types to our label vocabulary has an accuracy of just
42%. This is because their semantic type vocabulary is not suitable
towards identifying ML feature types. The number of Sherlock
semantic types (out of 78) that are mapped to ML feature types are:
14 to Numeric, 50 to Categorical, 4 to Datetime, 7 to Sentence, 11
to Embedded Number, 2 to List and Not-Generalizable, and 18 to
Context-Speci�c. Since Categorical type occur most frequently, more
examples in our labeled dataset are disproportionately confused
with this feature type. For instance, many integerNumeric attributes
are confused with semantic types that often contains discrete set
of integers (such as Credit and Class). Interestingly, Sherlock has a
high precision of 89% in identifying Datetime correctly, even with
just 4 semantic type mapped to Datetime.

ClassicalMLModels. Table 2 presents the 9-class accuracy results
of the classical ML models using di�erent feature sets1. We present
the 5-fold held-out train and validation accuracy in the technical
report [17]. For logistic regression, we see that the descriptive stats
alone are not enough, as it achieves an accuracy of just 69% on
the held-out test set. But, for RBF-SVM and Random Forest, the
accuracy with stats alone is already 82% and 91% respectively. In-
corporating bigrams of the attribute name into logistic regression
leads to a whopping 15% lift in accuracy. However, adding more
sample values does not give any rise in accuracy, except for logis-
tic regression. Overall, Random Forest achieves the best 9-class
accuracy of 93% using bigrams on the attribute name along with
descriptive statistics.

CNN and Nearest Neighbor. Table 2 also shows the CNN and
:-NN accuracy1. We see that with just -=0<4 , the CNN accuracy
is already 82%. The descriptive stats lift the accuracy further by
8%. We �nd that sample values are not that useful, yielding only a
minor lift. With:-NN, we observe that with only Euclidean distance
on descriptive statistics, the accuracy is already at 86%. The edit
distance on the attribute name approach achieves an accuracy of
78%. Finally, with our weighted edit distance function from Section
4.4, :-NN achieves a high 88% accuracy.
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Table 3: Examples of errors made by RandomForest. Nu-
meric (NU ), Categorical (CA), Datetime (DT ), Sentence (ST ),
Not-Generalizable (NG), Embedded Number (EN ), URL, List
(LST ), and Context-Speci�c (CS) are feature types.

# Attribute 
Name

Sample
Value

Total 
Values

% Distinct
Values % NaNs Label RF

Prediction
A s1p1c2area 50 9597 3.6 45.2 NU CS

B Tenure Status Own house,
rent lot 41544 0.02 0 CA ST

C End March 4, 1797 45 97.8 2.2 DT EN

D Name Battle of 
Riverrun 38 100 0 ST NG

E %White 18.90% 192 58.9 0 EN CA

F Countries ru; uk; mx 1359 32.9 46.3 LST EN

G q19TalToolResumeScreen #NULL! 25090 0.008 6 NG CA

H Livshrmd 151 9597 1.17 42.3 CS NU

4.4 Analysis of Errors
We now explain the behavior of the best performing Random Forest
on our held-out test dataset (shortened henceforth as "OurRF") by
inspecting the raw datatype of the column values. Table 3 shows
examples of columns and the corresponding prediction made by
OurRF. We present the full confusion matrix of the predicted class
by OurRF vs actual data type of the attribute value in the technical
report [17]. We intuitively explain the errors by class below.

Numeric and Context-Speci�c. We see that OurRF is less likely
to misclassify a Numeric attribute whose values are �oats or neg-
ative numbers compared to integers. We observe that with inte-
gers, OurRF gets most confused with Context-Speci�c class, e.g.,
s1p1c2area (Table 3 example(A)). This is possibly because of the
non-sensical attribute name. Similarly, Context-Speci�c integers are
most commonly misclassi�ed with Numeric (Table 3 example(H)).

Categorical andNot-Generalizable.When the sample values are
strings with more than one token, OurRF is more likely to misclas-
sify Categorical as Sentence or Context-Speci�c (Table 3 example(B)).
Not-Generalizable types are often confused with Categorical. For
instance, q19TalTool-ResumeScreen (Table 3 example(G)) has only 2
values in its domain: “NULL!” and “ResumeScreen.” However, OurRF
treats “NULL!” as a separate category. Thus, OurRF is lacking in its
semantic understanding ability of sample values.

Other types.We �nd that our model achieves high precision and
recall in inferring other types such asDatetime and URL. In addition,
List types are often confused with Embedded Number (Table 3
example(C)) even though there is no number available for extraction.
This can be due to few available training examples for List type.

4.5 Prediction Runtimes and Extensions
We evaluate the running time of ML models in the online phase, i.e,
to make predictions on a new column. This involves base featuriza-
tion, model-speci�c feature extraction (only needed for the classical
models), and inference time. The measurements were made on the
test set and averaged. All the models �nish in under 0.2 sec per
column. For classical models, the additional feature extraction dom-
inates the overall runtime. Since SVM and :-NN are distance-based

Table 4: (A) Type Inference accuracy on 30 downstream
datasets. (B)Number of downstreamdatasetswhere tools un-
derperform, match, or outperform the ground truth down-
stream performance or the best performing tool. OurRF is
the Random Forest for type inference trained on our data.
LR denotes downstream linear model (Logistic/Linear re-
gression) and RF denotes downstream Random Forest.

Logistic Regression Random Forest

PD TFDV AGL OurRF PD TFDV AGL OurRF
Underperform truth 23 18 19 11 21 17 16 9
Match truth 6 10 10 16 7 11 12 19
Outperform truth 1 2 1 3 2 2 2 2
Best performing 
tool for a dataset 9 11 10 23 10 14 16 24

(B)

Pandas TFDV AutoGluon OurRF

Column Coverage 300 535 553 566

Type inference accuracy 
given coverage 90.3% 75% 71.4% 91.2% 

(A)

methods, they have the highest runtime. Overall, CNN is the fastest.
We present the time breakdown in the technical report [17].

Our benchmark and ML-based approach can be easily extended
to support new additional types, including semantic types [12]. We
showcase the the e�ort needed for this extension in the context of
two semantic data types that are commonly used in BI applications:
Country and State. We �nd that the overhead of supporting these
additional types in terms of programming cost, feature engineering
cost, and labeling cost is minimal to almost none. We present the
complete discussion in the technical report [17].

5 DOWNSTREAM BENCHMARK SUITE
To complete the loop on type inference, we now empirically study if
doing feature type inference accurately is essential for downstream
model accuracy. Thus, we verify if there are cases where doing
wrong type inference may improve, reduce, or match the down-
stream accuracy relative to true feature types. From Section 4.3, we
saw that type inference accuracy is highest for the Random Forest
(OurRF) among all ML-based approaches. Thus, we compare the
OurRF against the industrial and open source tools on a suite of
downstream tasks we collected and curated.

5.1 Datasets
The impact of type inference is dependent on the dataset and the
downstream prediction task. Since there are unboundedly many
datasets and downstream tasks, for the sake of tractability we got 30
“unseen” datasets fromKaggle, UCIML repository, andOpenML [15]
for evaluation. Since classi�cation tasks are more common in prac-
tice, we got 25 datasets for such tasks, and 5 for regression tasks.
Table 5 presents the downstream datasets with descriptions such
as their number of columns, target classes, and di�erent feature
types and attribute types they contain. We ensure representation
of various combinations of feature types with many di�erent data
types (ints, �oats, string, dates, timestamps, and even primary keys).
We did not cherry-pick a dataset to particularly suit one approach
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Table 5: Accuracy comparison of downstream models using inferred types from Random Forest trained on our labeled data
(OurRF) against Pandas (PD), TFDV, and AutoGluon (AGL), relative to accuracy with true feature types. Datasets involve (A)
Classi�cation taskswith accuracymetric (B) Regression taskswithRMSEmetric.Numeric(NU ),Categorical(CA),Datetime(DT ),
Sentence(ST ),Not-Generalizable (NG), Embedded Number (EN ), URL, List (LST ), and Context-Speci�c (CS) are feature types. |A|
is the number of columns/attributes in that dataset. |Y| is the number of target classes. PK denote primary keys. * denotes the
cases where OurRF prediction is either EN or CS, where user intervention can help improve model accuracy or generalization.

Feature 
Types

Raw Attribute 
Types Dataset |A| |Y|

Logistic Regression Random Forest

Truth PD TFDV AGL OurRF Truth PD TFDV AGL OurRF

NU
Int, Float Cancer 9 2 60.8 +0 +0 +0 +0 66.7 +0 +0 +0 +0
Int Mfeat 216 10 92.5 +0 +0 +0 -2.7 91.8 +0 +0 +0 -2.3

CA

String Nursery 8 5 92.8 -0.9 +0 +0 +0 98.2 -3.9 +0 +0 +0
String Audiology 69 24 73 -1.3 +0 -1.3 +0 72.2 -0.9 +0 -1.3 +0
Int Hayes 4 3 74.1 -14.1 -14.1 -14.1 +0 78.5 -14.1 -14.1 -14.1 +0
Int Supreme 7 2 99.3 -14.5 -17.1 -14.5 +0 99.4 +0 +0 +0 +0
Int, String Flares 10 2 90.8 +0 +0 +0 +0 89.2 +0.3 +0.3 +0.3 +0
Int, String Kropt 6 18 39.4 -6.9 -6.9 -6.9 +0 68.8 -3.4 -3.4 -3.4 +0
Int, String Boxing 3 2 80.7 -24.4 -25.2 -25.2 -34.1 78.5 -17 -11.9 -11.9 -28.9

NU + CA

Int, String Flags 28 2 68.2 -6.2 -3.6 -6.7 -4.1* 75.9 -1 -2.6 -2.6 -3.1*
Int,Float,String Diggle 8 2 99.9 +0 +0 +0 -5.8 99.9 +0 +0 +0 +0
Int, Float Hearts 13 2 84.9 -0.7 -1.6 -0.7 +0 86.2 -1.3 -3 -1.3 +0
Int, Float Sleuth 10 2 68.9 -3.3 -3.3 -3.3 +0 76.7 +0 +0 +0 +0

CA + NG Int, String Apnea2 3 2 92 -6.7 -0.6 -0.6 -0.6 90.1 -2.3 -0.8 -0.8 -0.8
NU + CA + ST Int, String Auto-MPG 8 3 89.1 -4.8 -8.6 -8.6 -15.9 95.2 +0.5 -18.9 -18.9 -20.5
NU + CA + EN Int,Float,String Churn 19 2 79.1 -0.7 +0.1 -0.1 +0.2 78.7 -0.2 -0.9 -0.8 -0.3

NU + DT + EN Int, Float,  
String, Date NYC 6 15 55.8 +0 -0.1 -0.3 -0.3 67.6 +0 +0.5 +0.8 +0.8

ST String BBC 1 5 97.1 -6.9 +0 +0 +0 96.3 -13.1 +0 +0 +0
DT + ST String, Date Articles 3 2 98.8 -2.1 +0 +0 +0 99.0 -3.2 +0 +0 +0
NU+CA+ST+NG Int,String,PK Clothing 10 5 66.7 -9.2 -9.1 -9.2 +0 64.2 -2.2 -4.9 -2.6 +0

NU + DT + NG Int, String, 
Time, PK IOT 4 2 83.8 -0.3 +0 +0 +3.6* 93.8 -1.4 +0 +0 +0*

NG + CA Int,String, PK Zoo 17 5 75.6 -13.4 -11.1 -8.9 -2.2 77.8 -15.6 -8.9 -6.7 -4.4

NU+CA+EN+NG Int,Float,String PBCseq 18 2 68.6 -1.3 +0.5 +0.5 +6.2* 73 -1.2 -0.1 -0.1 +2.2*

NU + CA + LST 
+ NG + CS

Int, Float, 
String, PK Pokemon 40 36 65.84 -52.2 -52.4 -52.6 -0.6 88.1 -3.9 -3.2 +0 +0

NU + CA + DT +
URL + NG + CS

Int,Float,Date,
String, Time President 26 57 39.5 -7.9 -7.9 -8 -0.9 81.7 -29.4 -23.1 -28.8 -2.1

Feature 
Types

Raw Attribute 
Types Dataset |A|

Linear Regression – L2 Regularization Random Forest

Truth PD TFDV AGL OurRF Truth PD TFDV AGL OurRF

CA Int MBA 2 0.363 +0.05 +0.05 +0.05 -0 0.384 +0.09 +0.08 +0.09 -0

NU + CA
Int Vineyard 3 2.97 +2 +2 +2 -0 2.7 +0.37 +0.37 +0.37 -0
Int, String Apnea 3 2206.2 +62.5 -0 -0 -0 1355.7 +1972.7 -0 -0 -0

DT Date Accident 1 466 -0 +384.6 -0 -0 589.7 -0 +474.8 -0 -0
NU + CA + 
EN + NG Int, String Car Fuel 11 11.3 -0.09 +0.16 +0.14 +0.01* 11.7 +0.33 +1.1 +0.9 +0.03*

(A)

(B)
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over another. Overall, we have 566 columns across 30 downstream
datasets. We manually label all the columns with their true fea-
ture type. The datasets and their source details are available on the
Github repository [25].

5.2 Models and Metrics
In terms of downstreammodel evaluation, we present both extremes
of bias-variance tradeo� [29]: L2-regularized Logistic regression
(high bias, low variance) for classi�cation, L2-regularized Linear
regression (high bias, low variance) for regression, and Random
Forest (low bias, high variance) for both classi�cation and regres-
sion. Thus, we have 60 downstream models in total. We use the
accuracy metric scaled to 100 for the classi�cation tasks and the
root mean squared error (RMSE) metric for the regression tasks.

5.3 Tools compared
We compare Pandas (PD), TFDV, AutoGluon (AGL), and OurRF,
relative to the truth on 30 downstream datasets. We map the feature
types inferred by these tools to our label vocabulary as per Figure 3.
Columns that are inferred Numeric are retained as is, Categorical
columns are one-hot encoded, Sentence columns are routed through
TF-IDF [30], URLs are specially processed through a word-level
bigrams, Not-Generalizable columns are dropped, and the rest of
the types are featurized with bigrams. After featurization, we use
the same methodology as in Section 4.1 for evaluation. Note that
one can plug-in any alternate featurization scheme to derive more
useful features. However, such feature engineering decisions can
be application-speci�c and are not the focus of this work.

5.4 Results
5.4.1 Type Inference Results. Table 4 (A) shows the type in-
ference accuracy of all tools on the downstream datasets. We see
that OurRF can correctly infer the feature types for 516 out of 566
columns in these 30 datasets. Pandas has a seemingly high accuracy
of 90% but note the low coverage of columns by its vocabulary,
which makes it bene�t from high recall. It cannot predict on the
other columns at all. The accuracy of TFDV and AutoGluon is much
lower than OurRF; their coverage is also slightly lower than OurRF.

5.4.2 Downstream Model Performance. Table 5 presents the
end-to-end comparison of downstream models built with feature
types inferred by Pandas, AutoGluon, TFDV, and OurRF relative
to the true feature types. Table 4 (B) o�ers summary statistics on
how the tools perform relative to the ground truth and other tools.
We �nd that, for a given dataset and a downstream model, OurRF
performs worse than the best performing tool for only 13 out of
60 downstream models. Moreover, OurRF underperforms the truth
(perfect feature type predictions) for only 20 downstream mod-
els. In contrast, Pandas, TFDV, and AutoGluon underperform for
signi�cantly more models: 44, 35, and 35 respectively. We present
the CDFs of the magnitude of the di�erence in downstream perfor-
mance with di�erent approaches compared to Truth in the technical
report [17]. We explain the results in-depth below.

1.Whydoeswrong type inference hurt downstreamaccuracy?
Table 5 shows that wrong type inference almost always leads to a
drop in accuracy compared to the accuracy with true feature types.

Moreover, the amount of drop depends upon how many feature
types are wrongly classi�ed and how predictive those features are
for the target. For instance, wrong type inference leads AutoGluon
and TFDV to underperform on 35 out of 60 downstream models.
This led to a reduction of an average of 7% and up to 52% in accuracy
compared to the ground truth-based model. We explain the com-
mon patterns of how wrong type inference a�ected downstream
accuracy in the technical report [17].

We empirically studied if the gap in downstream model accuracy
caused by wrong type inference relative to the true feature types
be bridged by giving multiple representations of the column at the
same time to the downstream model. We studied this in the context
of Numeric vs Categorical dichotomy of the integer columns of our
downstream datasets. We again found that accurate inference of
feature types is critical to building accurate downstream models.
We present the complete evaluation and additional insights in the
technical report [17].

2. Why does wrong type inference of integer Categorical of-
ten not hurt downstream Random Forest?
Although the categories encoded as integers in Supreme, Flags,
Sleuth, and Vineyard are misclassi�ed by Pandas, AutoGluon, and
TFDV, the accuracy of Random Forest either does not drop or drops
only marginally. This is because the Categorical features in these
datasets are either ordinal and/or have binary domain size. Random
Forest has zero bias and thus can potentially represent all categories
by doing splits on integers. Linear models, which have lower VC-
dimension, cannot do this. Thus, the linear models often see much
higher accuracy with OurRF than prior tools.

3. How can OurRF exploit user intervention to lift accuracy?
Car Fuel has two Embedded Number columns. Although they are
predicted correctly by OurRF, a human can intervene to extract their
values to use them as Numeric instead of the current bigramization.
Thus, a user-in-the-loop can further improve downstream model.
Moreover, such intervention can even help Flagswhere aCategorical
feature was erroneously predicted as Context-Speci�c by OurRF.

4. Why is outperforming truth not necessarily bene�cial?
On IOT, we observe the lift in accuracy due to a Numeric column
called “temp” (denoting temperature) being classi�ed as Context-
Speci�c. This may not be desired because interpretability can be
a concern in this application. Predictions are more explainable
when using temperature data as Numeric feature than bigrams. We
present more such cases in the technical report [17].

5.5 Summary
Overall, OurRF achieves a high accuracy of 91.2% for inferring
feature types on 30 unseen datasets fromKaggle, UCIML repository,
and OpenML. Moreover, we �nd that wrong feature type inference
almost always leads to an accuracy drop for the downstream model
relative to the ground truth, except for the Random Forest on ordinal
and/or binary domain Categorical. More importantly, our labeled
dataset is valuable to build an accurate downstream model because
even standard MLmodels like Random Forest trained on our labeled
data achieve the highest accuracy against existing tools for 47 out
of 60 downstream models.
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6 DISCUSSION

6.1 Public Release and Leaderboard
We have released a public repository on GitHub with our entire
labeled data for the ML feature type inference task [25]. We also
release the pre-trained ML models: k-NN, logistic regression, RBF-
SVM, Random Forest, and the CNN. The repository tabulates the
precision, recall, and accuracy of all models and existing open-
source approaches. The repository includes a leaderboard for public
competition on the hosted dataset with 9-class classi�cation accu-
racy and per-class precision, recall, and binarization accuracy being
the metric. We release the downstream benchmark suite containing
30 datasets and the associated code for running the benchmark.
Also, we release the raw 1240 CSV �les and we invite researchers
and practitioners to use our datasets and contribute to augmenting
them and creating better featurizations and models.

6.2 Takeaways
6.2.1 For Practitioners. We make all the models and featuriza-
tion routines available for use by wrapping them under functions
in a Python library [25]. The ML models can be integrated for fea-
ture type inference into existing data prep environments. We have
already integrated our pre-trained models with TFDV to improve its
inference of Categorical [14]. We are also planning to collaborate
with AWS and OpenML on more such integration. We welcome
inquiries from more practitioners interested in adopting or enhanc-
ing our benchmark. For visual tools such as Excel and Trifacta [28],
designing new user-in-the-loop interfaces that account for both
model’s prediction and human’s judgement remains an open re-
search question.

6.2.2 For Researchers. We see three main avenues of improve-
ment for researchers wanting to improve accuracy: better features,
better models, and/or getting more labeled data.

First, designing features that can perfectly capture human-level
reasoning is an open research question. We found that descriptive
stats and attribute names are most useful for prediction, while raw
attribute values have only marginal utility. Thus, one can consider
designing better featurization routines for them. Second, capturing
more semantic knowledge of attributes with an alternative neural
architecture is another open problem. Finally, based on our analysis
in Section 4.4, one potential way to increase the accuracy is to create
more labeled data in categories of examples where ML models
get confused, e.g., for List type. Weak supervision and denoising
with Snorkel [31] and/or Snuba [32] is one potential mechanism to
amplify labeled datasets and teach the ML models to learn better.

7 RELATEDWORK
AutoML Platforms. Several AutoML tools such as AutoWeka [33]
and Auto-sklearn [34] have an automated search process for model
selection, allowing users to spend no e�ort for algorithm selection
or hyper-parameter search. However, these AutoML systems do not
automate the ML feature type inference task. Several tools perform
automatic data transformation steps and generate a set of useful
features given a dataset [35, 36]. However, Deep Feature Synthesis
algorithm [36] assumes that the ML feature types are provided
explicitly as input, while ExploreKit [35] operates on the syntactic

types. Thus, such automatic feature engineering tools can bene�t
by leveraging the ML models trained on our labeled data.

Other end-to-endAutoML platforms such as EinsteinAutoML [3],
AutoML Tables [26], and AutoGluon [9] do automate the type in-
ference task. We believe that the standardization of the task and
our benchmark labeled dataset is valuable to objectively compare
and improve their AutoML platforms. The ML models trained on
our labeled dataset can be integrated into such AutoML platforms
to improve their type inference accuracy. In addition, other ML
platforms such as Airbnb’s Zipline [37], Uber’s Michelangelo [38],
Facebook’s FBLearner Flow [39], and commercial platforms such
as H20.AI [40] and DataRobot [27] are complementary to our focus
and they can also bene�t by adopting models trained on our data.
ML Data Prep and Cleaning. Auto-Type [13] is a semantic type
detection tool that synthesizes type detection logic for semantic
types such as EAN Code, Swift Code, etc. But it too is complementary
and not directly usable for AutoML just like Sherlock. DataLinter is
a rule-based tool that inspects a data �le and raises potential data
quality issues as warnings to the user [41]. However, ML feature
type inference must be done manually. Many works study program
synthesis-based approaches [5, 42–44] and/or visual interfaces [28]
to reduce manual data transformation grunt work in data prep.
There is also much work on reducing data validation and cleaning
e�ort (e.g., [6, 45, 46]). Our work further this general direction on
reducing manual e�ort but it is complementary to all these prior
works: our paper is the �rst to formalize and benchmark ML feature
type inference in AutoML platforms.
Database Schema Inference. DB schema inference has been ex-
plored in some priorwork. Google’s BigQuery does syntactic schema
detection when loading data from external data warehouses [47].
[48] infers a schema from JSON datasets by performing map and
reduce operations using pre-de�ned rules. But DB schema infer-
ence task is syntactic. For instance, the attribute type with integer
values has to be identi�ed as an integer. In contrast, with ML type
inference the attributes with type integer can be Categorical.
Benchmarks. OpenML AutoML Benchmark focuses on under-
standing the automation of model selection and hyper-parameter
search components of the ML work�ow [49]. However, they do not
cover any data prep steps. CleanML benchmark focuses on studying
the e�ect of data cleaning operations on downstream models [50].
However, they do not handle the feature type inference task. Thus,
both benchmarks are orthogonal to our work.
Data/Model Repositories. OpenML [15] is an open-source col-
laborative repository for ML practitioners and researchers to share
their models, datasets, and work�ows for reuse and discussion. Our
labeled datasets can be made available to the OpenML community
to invite more contributions for augmenting the current labeled
dataset and for building more sophisticated models. Hence, our
work is complementary to OpenML.
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