Sensei: Self-Supervised Sensor Name Segmentation

Jiaman Wu, Dezhi Hong, Rajesh K. Gupta, Jingbo Shang

Department of Computer Science and Engineering, University of California San Diego, CA, USA

Halicioglu Data Science Institute, University of California San Diego, CA, USA

{j4wu, dehong, gupta, jshang} @eng.ucsd.edu

Abstract

Sensor names as alphanumeric strings typi-
cally encode their key contextual information
such as their function or physical location. We
focus here on sensors used in smart build-
ing applications. In these applications, sen-
sor names are curated in a building vendor-
specific manner using different structures and
esoteric vocabularies. Tremendous manual ef-
fort is needed to annotate sensor nodes for
each building or even to just segment these
sensor names into meaningful chunks for in-
telligent operation of buildings. We propose
here a fully automated self-supervised frame-
work, Sensei, that can learn to segment sensor
names without any human annotation. We em-
ploy a neural language model to capture the
underlying structure in sensor names and then
induce self-supervision based on information
from the language model to build the segmen-
tation model. Extensive experiments on five
real-world buildings comprising thousands of
sensors demonstrate the superiority of Sensei
over baseline methods.

1 Introduction

Sensor name segmentation seeks to partition a sen-
sor name string into semantic segments. It is an
essential task to enable smart building applica-
tions (Weng and Agarwal, 2012) that critically de-
pend upon understanding the context of sensory
data. For example, to increase the flow of air to
improve air quality, such an application will need
to identify and locate the airflow controller for the
specific area. Such a controller is identified as a
control point associated with a specific actuator
such as a variable air valve. This is typically done
manually by searching appropriate strings in the
name that refer to specific sensor or actuator type
and/or its location. This information is encoded as
a concatenation of segments. Correct segmentation
of sensor names is a key first step. Note, we use

Sensor Name: SDH. AH2A MIN.OAD
Segmentation: S DH‘ . ‘AH 2 A‘_)M IN.OAD
Sensor Name: SODA4R731__ASO
Segmentation: SOD‘A 4‘R7 3 1‘7 7‘ASO

Rt

Figure 1: Sensor names adopt distinctive structures and
vocabularies in different buildings, thus requiring man-
ual effort to interpret.

sensor to refer to both sensors and actuators in a
building application.

Figure 1 shows examples of sensor names con-
sisting of multiple segments, each encoding key
context about the sensor (building name, loca-
tion, sensor type, etc). Thus, the sensor name
SODA4R731__ASO should be segmented as SOD
(building name), A4 (equipment id), R731 (room
id), and ASO (measurement type — area tempera-
ture setpoint). Note that the meanings of the same
punctuation may vary; for example, ‘_’ can be a
delimiter or part of a segment.

Currently, sensor name segmentation requires
domain knowledge and tedious manual effort due
to its building-specific nature. Sensor names are
created by building vendors, and as we see from
Figure 1, in different buildings they usually adopt
distinctive structures and vendor-specific esoteric
vocabularies. Thus, constructing a sensor name
segmentation model involves a building systems
technician to comprehend these sensor names and
then design rules to segment and annotate these
names. There are no universal pre-defined pars-
ing rules such as regular expressions for sensor
names. This obscurity of sensor data remains a ma-
jor obstacle to the wide adoption of smart building
applications from both cost and efficiency perspec-
tives (Bhattacharya et al., 2015a).

We need an automated solution for sensor name
segmentation. Despite the recent progress in apply-

1017

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1017-1027
August 1-6, 2021. ©2021 Association for Computational Linguistics

Bag-of-Models

() Break (?) Unknown

©) Tie

(ensemble'm denoise) @@@@ T Final Predictions: SDH|.[RAHO3|_|CFM “- RNNUnits [] Char Emb.

Tie-Break-Unknown Pseudo Labels for Segmentation (?) are skipped for training)

«—@»s«@»D«@»H«@».«&R«@»A«@*H@O@%@» @»c@»w@»m«@«m@ & @ Q

I I I I I I l

4 . 4 » -

éé@ﬁﬁﬁ

08:09

Character-Level Neural Languagc Model (capturc the underlying naming pattern)

I I I

0()15 081

K
ﬁﬁit>§

PDF of P(x;|xq, ..., X;—1)

Figure 2: Overview of Sensei: We induce pseudo labels for segmentation using the transition probabilities from a
character-level neural language model. Segmentation model training uses the hidden states from this model.

ing active learning (Schumann et al., 2014; Hong
et al., 2015b; Balaji et al., 2015; Koh et al., 2018;
Shi et al., 2019) and transfer learning (Hong et al.,
2015a; Jiao et al., 2020) to sensor name interpreta-
tion, all these methods still require human annota-
tion effort and thus they are not fully automated.

We propose here a novel self-supervised seg-
mentation framework, Sensei, to segment sensor
names into meaningful chunks without any human
effort. This would enable understanding of impor-
tant contextual information at scale and enable new
regime of building applications. Figure 2 presents
an overview.

Sensei builds upon the observation that sensor
names are not randomly generated. Instead, in-
stallers of building management system would gen-
erally follow some underlying pattern for naming.
For instance, in some buildings, the sensor name
often starts with the building name, followed by
the room id and type of measurement. Further,
technicians would generally use similar phrases
to express the same concept (e.g., “temperature”
would be encoded as “T”, “temp”, or “ART”), at
least within the same building. Based on this obser-
vation, we first employ a character-level neural lan-
guage model (Karpathy et al., 2015) to capture the
latent generative pattern in sensor names. This lan-
guage model learns the probability of observing a
character in the sensor name given all the preceding
characters. Intuitively, the segment boundaries in a
sensor name should highly correlate with this prob-
ability. Frequent transitions would have a higher
probability than the infrequent ones, which might
well imply the start of another segment. Therefore,
we induce pseudo segmentation labels by setting

a pair of thresholds on these transition probabili-
ties, and then build a binary classifier to segment
sensor names upon their contextualized representa-
tions produced by the language model. Since these
pseudo labels may contain noise, we create an en-
semble of independent classifiers, each trained on

a uniformly random subset of the pseudo labels, in

order to further improve the efficacy.

To the best of our knowledge, Sensei is the first
framework for sensor name segmentation without
human annotation. This paper makes the following
contributions:

* We study an important problem of fully auto-
mated sensor name segmentation.

* We propose a novel self-supervised framework
Sensei, which leverages a neural language model
to capture the underlying naming patterns in sen-
sor names and produces pseudo segmentation
labels for training binary classifiers.

* We conduct extensive experiments on five real-
world buildings comprising thousands of sensor
names. Sensei on average achieves about 82%
in Fy, roughly a 20-point improvement over the
best compared unsupervised method.

Reproducibility. Our code and datasets are readily

available on Github'.

2 The Sensei Framework

Sensei consists of three steps:

* Train a neural language model (NLM) at the char-
acter level to capture the underlying naming pat-
terns in sensor names;

* Generate Tie-Break-Unknown pseudo la-

"https://github.com/work4cs/sensei

1018

https://github.com/work4cs/sensei

bels using two thresholds, ¢y and ¢, decided by
inspecting the distribution of transition proba-
bilities (i.e., likelihood of observing the current
character given the previous ones);

* Train a set of segmentation models based on the
pseudo labels to mitigate the effect of noise in
these labels.

We next elaborate on each step.

2.1 Language Model for Underlying Patterns

As sensor names are created by humans (e.g., a
technician with knowledge about building particu-
lars), they often follow a certain naming convention
(e.g., start with the building name, then room id,
and then type). The names also have an internal
consistency, that is, within a building, segments of
sensor names corresponding to the same kind of
information (e.g., location or function) would use
similar phrases; e.g., the concept of “room” would
be encoded as “RM”, “R”, or similar variants. This
prompts us to model the generative patterns in these
names such that given the characters seen so far we
can predict the next one. This coincides with the
language modeling task in NLP.

Since the sensor name segmentation task works
on characters, we adopt a popular character-level
neural language model to capture the underly-
ing sensor naming pattern, the classical Char-
RNN (Karpathy et al., 2015) architecture, and use
LSTM (Hochreiter and Schmidhuber, 1997) as the
RNN model. Note that, our method is compatible
with any character-level neural language models.

Given a character sequence of length N, X =
(x1,x9,...,2N), the Char-RNN learns the proba-
bility of observing a character given all the previous
characters, namely, p(z;4+1|%1, T2, ..., x;). During
this process, we will obtain an embedding vector
x; for each character z;, and a hidden state vec-
tor h; after observing the characters from x; to z;.
A softmax layer is then applied to h; to predict a
distribution pP; over the entire vocabulary:

exp (wjhi)
> exp (w)hhy)’

where w,. is the linear transformation for character
c. The cross-entropy between p; and the one-hot
encoding of x; is used as the loss function for
this character.

Given a building, we train the Char-RNN on all
its sensor names. As each sensor name is indepen-
dent of each other, we can have the same initial

~

Pi(C) = p(C|l‘1, To, ...

,ZE@') —

--- Tie Precision = The Best Threshold

Break Precision —— Probability Density Function

1.0
0.125 _‘?
0.8 0.100
a

O 0.6
= 0.075
© —
o =
0.4 0.050 ‘3
3
0.2 0.025 re}
—
0.0 0.000 &

0.0 0.1 0.2 0.30.40.50.6 0.7 0.8 0.9 1.0
Threshold

Figure 3: Plots of P;(z;41) histogram (grey bars) and
Tie/Break precision curves for an example building.
The “sweet spot”, achieving a great balance between
the tie- and break-precision scores, is highly aligned
with the peak in the histogram.

hidden state for each sensor name to ensure sen-
sor names do not interfere with each other. Once
the model converges, we apply it to all the sensor
names to obtain the character transition probabil-
ities, i.e., Pi(x;+1). The perplexity of the trained
Char-RNN in our experiments is typically small
(i.e., < 0.3 per batch with batch size 32). There-
fore, we believe it captures the underlying naming
pattern within the input building well.

2.2 Pseudo Labels from Transition
Probabilities

Inspired by (Shang et al., 2018b), we use Tie
and Break to decide the segmentation results.
The transition between two adjacent characters
(x;, z;41) is labeled as (1) Break when we should
segment after character x;, or (2) Tie otherwise,
denoting that the two successive characters belong
to the same segment.

For a given character sequence x1, x2,...,ZN,
we hypothesize that the transition probability
pi(zi4+1) obtained from Char-RNN is closely re-
lated to the Tie/Break relation between x; and
ZTz+1. Intuitively, the Char-RNN model should pro-
duce a high likelihood for common transitions in
sensor names, €.g., substrings for building name,
room, and common sensor types. Therefore, when
Char-RNN suggests a low transition probability,
the transition is very likely to be a Break; other-
wise, the possibility of a Tie becomes higher.

We empirically verify our hypothesis via data
analysis of an example building as shown in Fig-
ure 3. We present the probability density from
histogram of p;(z;+1). In addition, based on the
ground-truth segmentation results, we plot the Tie

1019

and Break precision curves w.r.t. different thresh-
olds. The Tie Precision refers to the ratio of Tie
transitions among all the transitions above a certain
threshold, while the Break Precision refers to the
ratio of Break transitions among all the transitions
below a certain threshold. One can observe that
the“turning” points on the break precision curve
are highly correlated to the peaks in the histogram.
An uptick on the break precision curve indicates
that there might be abundant same patterns in the
bin of probabilities, which typically are more likely
to be Ties. Therefore, the thresholds should be
below the probability bins with high frequency to
classify the steep upslope regions as Tie.

If one wants to set up a single threshold on
Pi(xiy1) to classify all transitions into {Tie,
Break} in an unsupervised manner, the highest
peak in the “confidence” interval [0.550, 0.950] on
the distribution (e.g., 0.771 in Figure 3) would be a
good choice to achieve a high F; score. We gener-
alize this threshold selection criterion to the other
buildings, and as we shall demonstrate in our ex-
periments, such a selection strategy gives results
close to grid search that uses ground-truth labels.

In addition to Tie and Break, we mark those
uncertain transitions as Unknown. We need to
decide on two thresholds, g and ¢, and catego-
rize the transitions according to three transition
probability intervals, [0, o], (to,t1), and [t1, 1], de-
noting Break, Unknown, and Tie, respectively,
as the pseudo labels. We wish these pseudo labels
would be of high accuracy while having a sufficient
amount of labels. Based on our observations, the
above single threshold criterion satisfies ¢;. Con-
sidering that Breaks are considerably fewer than
Ties, we should decide on a Break more care-
fully. The highest peak in a narrowed high preci-
sion interval [0.050, 0.150] would be appropriate
(e.g., 0.101 in Figure 3).

2.3 Ensemble to De-noise Pseudo Labels

There could exist errors in these automatically in-
duced pseudo labels, so we leverage the idea of
ensemble learning to mitigate the impact of such
errors on the final predictions (Breiman, 1996).
Specifically, we independently sample a subset of
pseudo labels to train K binary classifiers and then
average their predictions. In the pseudo labels, the
number of Tie transitions is usually much higher
than that of Break. To balance the training data,
we sample € - M Tie and Break labels, respec-

tively, from all the pseudo labels, where M is the
number of Break transitions and e is a small coef-
ficient between 0O to 1 for sampling a subset (e.g.,
€ = 0.1). Such a sampling strategy makes the label
errors less likely to affect every binary classifier, so
the final prediction becomes more accurate.

All types of binary classifiers could be used to
construct the ensemble. We adopt a Multi-Layer
Perceptron (MLP) as the binary classifier. For the
i-th transition, we retrieve the hidden state vector
h; yielded by the Char-RNN and feed it as input
to the MLP. The final prediction is the average of
predictions from the K classifiers. As the training
data is sampled in a balanced way, we simply use
0.5 as the threshold to decide on Tie or Break.

3 Experiments

We empirically evaluate Sensei on datasets from
real-world buildings and discuss our results as well
as findings of particular interest.

3.1 Datasets and Pre-processing

We collected the sensor names from five office
buildings contracted with four different building
vendors at three different sites located in differ-
ent geographic regions. We also collected the
character-level ground-truth labels of these names
from their building vendors. We adopted the BIO
tagging scheme in generating labels, marking the
beginning (B), inside (I), and outside (O) of each
segment (e.g., for location or function). Table 1
summarizes details of each building.

Digits. The digits in sensor names indicate de-
tailed and specific information such as room or
equipment identifiers, so preserving the variety in
numbers does not help our segmentation task. Con-
versely, it disturbs the transition probability distri-
bution and thus confuses the model in predicting
the next characters — the model would only need
to learn and recognize the transitions from digit to
digit, as opposed to the specific values (e.g., “1”
to “2” or “4” to “3”). Therefore, we replace all
numerical digits with the same digit “0”.

Punctuation and Whitespace. There are sym-
bols such as underscores and whitespace in sensor
names that are inserted by technicians at the time of
metadata construction. We leave them as-is for our
model to learn their meanings because the mean-
ings of these characters vary from case to case.
This is, in fact, one of the major challenges in this

1020

Table 1: Statistics of five buildings in our experiments. These builds are from three different campuses: Buildings
SDH and IBM are from the first campus, APM and EBU from the second, and SOD from the third. Example

sensor names are also listed for reference.

Building #Sensors #Segments #Characters Example Sensor Name
SDH 2,551 2~5 7~ 31 SDH.AH1_RHC-4:CTL STPT
IBM 1,366 2~3 6 ~ 28 1F_FCU10.11_.13_23_COLLAB
APM 1,079 1~7 4~ 34 AP&M-CRAC-2-MIG-009.COOLING ON-OFF
EBU 1,074 2~3 7~ 35 EBU3B.3RD FLR AVG CLG-PID1
SOD 1,335 2~ 4 14 SODC3P0O9DP_STA

sensor name segmentation problem. For example,
the sensor name “SODH1______ L_L” should be seg-
mented as “SOD|H1|______ |L_L”, with the three seg-
ments corresponding to its building name, equip-
ment id, and measurement type, respectively. The
underscores between “H1” and “L_L” are padded
to make the sensor name fixed-length, while the
underscore inside “L_L” connects two initial letters
(i.e., for a Lead-Lag sensor, commonly existing in
water pumps).

3.2 Evaluation Metrics

We evaluate the performance of all the considered
methods by the Fy, precision, and recall scores. A
segment is represented as a span with the starting
and the ending character indices. A predicted seg-
ment is correct if and only if there exists an exactly
same segment in the ground truth. Therefore, we
define the precision and recall as follows:

prec — |Sar| N |Spred|
‘éhﬁfﬂ

_ |Sar| N |Spred|
|Sar|

Y Y

where Sgr is the set of ground-truth spans and
Spreq is the predicted set. The F; score is the
harmonic mean of precision and recall. We report
the averaged F; score of all sensor names, which is
relatively unbiased (Opitz and Burst, 2019).

As we mentioned before, there will be some ex-
tra delimiters between segments. Therefore, during
the evaluation, we ignore segments containing only
delimiter(s) in both ground truth and predicted seg-
ments. When calculating the start and end indices
for predicted segments, we also skip their prefix
and suffix delimiters. The same process here ap-
plies to the evaluation of all methods.

3.3 Compared Methods

We compare Sensei with the following methods:

* Delimiter. There are punctuation (such as “-
” and “_”) and whitespace characters in sensor
names, and they could indicate the boundaries

between segments. Therefore, this method seg-
ments a sensor name by delimiters (i.e., non-
alphanumeric characters). This method mainly
serves as a sanity check.

e NLTK TweetTokenizer. NLTK (Bird et al.,
2009) provides a tweet tokenizer to segment a
string into tokens according to predefined regular
expressions (regexes). We directly apply it to
segment our sensor names.

* CoreNLP. We adopt the pre-trained tokenizer in
the CoreNLP package? (Manning et al., 2014),
which adopts the Universal Dependencies® ver-
sion 2 (UD v2) standard for segmentation .

» Stanza. We also adopt Stanza* and use its built-
in neural tokenizer (Qi et al., 2020) following UD
v2. This method combines convolutional filters
and bidirectional LSTM to realize tokenization
and sentence segmentation as a tagging task (Qi
et al., 2018).

* N-gram-LM. Character-level N-gram language
model (N-gram-LLM) can also provide charac-
ter transition probabilities. To obtain an “upper
bound” of the N-gram-LM’s performance, we ap-
ply a grid search technique of Sensei-GS detailed
in the following to find the optimal threshold on
the test set. As most segments in the ground
truth contain fewer than 5 characters, we tried N
from 1 to 5 and reported on the best performance.
However, this model does not offer any repre-
sentations that we can use to train the ensemble
classifiers for the “break/tie” decisions.

* BayesSeg. Topic segmentation divides a doc-
ument into topic-coherent segments. An unsu-
pervised Bayesian model, BayesSeg® (Eisenstein
and Barzilay, 2008), is used to segment char-

https://stanfordnlp.github.io/

CoreNLP/

3Universal Dependencies is a framework of annota-
tion guidelines by open community effort. https://
universaldependencies.org/

*https://stanfordnlp.github.io/stanza/

Shttps://github.com/jacobeisenstein/
bayes-seg

1021

https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://universaldependencies.org/
https://universaldependencies.org/
https://stanfordnlp.github.io/stanza/
https://github.com/jacobeisenstein/bayes-seg
https://github.com/jacobeisenstein/bayes-seg

acters of sensor names as a topic segmentation
task that decides the boundary between sentences.
However, this method requires to manually spec-
ify the number of segments, which is a parameter
we do not know without human input.

* ToPMine. ToPMine (EI-Kishky et al., 2014) pro-
vides a method that groups frequent words into
phrases in an unsupervised manner and incorpo-
rates these phrases into topic modeling. We adapt
the model to work at the character level. That
is, we regard each character of sensor names as
a word in document and group characters into
segments as group words into phrases.

* SeNsER. Besides the above unsupervised meth-
ods, we compare with a transfer learning model,
SeNsER (Jiao et al., 2020), a supervised method
that uses both source and target buildings’ raw
sensor names and source building’s annotations
to learn a sensor name tagger for use in the target
building.

Note that, we do not use custom regexes to seg-

ment sensor names because they require tremen-

dous manual effort to create in order to exhaustively
cover all the possible substring patterns, which de-
viates from our self-supervised problem setting.

Moreover, since different buildings follow differ-

ent sensor naming conventions, manual effort is

required from domain experts to create regexes on

a per-building basis, which is a costly process.

We also compare with two ablations of our method:

¢ Sensei-Forward (Sensei-FW). It leaves out the
self-supervised ensemble learning. Specifically,
we keep the Char-RNN to obtain the distribution
of observing next characters, and then find the
single threshold as stated in Section 2.2.

¢ Sensei-Backward (Sensei-BW). This is similar
to the forward counterpart. The only difference
is that the Char-RNN takes as input the reversed
sensor names. As we shall see in the results, this
method does not add much value to our task due
to the intrinsic irregularity of sensor names when
examined backward.

We further examine a method using grid search
based on ground truth for threshold tuning to verify
the effectiveness of our threshold decision:

* Sensei-GridSearch (Sensei-GS). Compared to
Sensei-FW, this method finds the best thresh-
old for deciding Tie using ground-truth labels,
i.e., it searches through all the possible threshold
values on the transition probability distribution
and picks the one producing the best segmenta-

tion results. This method is only used to demon-
strate that a single threshold chosen based on the
transition distribution (as detailed in Section 2.2)
gives results reasonably close to the best we can
achieve for Sensei-FW using the ground truth.

3.4 Experimental Setup

We modify the Char-RNN library® and use
Keras (Chollet et al., 2015) to implement our
method. As our method is unsupervised, we do not
employ the commonly used early-stopping scheme
when training the Char-RNN. Instead, we train our
models for 100 epochs and empirically find this to
be sufficient. All the thresholds have three decimal
places. We assign Ties as positives and Breaks
as negatives. For binary classifier, any supervised
learning algorithm (e.g., logistic regression, SVM,
etc) would accommodate our need in this work.
We choose a vanilla Multilayer Perceptron with 2
fully-connected layers, each with 64 cells. We set
the number of binary classifiers in our ensemble,
K, at 100. The subsampling rate for the ensem-
ble, €, is 10% and for each subsampling, we use
pandas with the iteration index as seed. Training
a Sensei model on a Colab GPU with 12GB RAM
takes less than 40 minutes for each building. For
the other compared methods, we tune at our best
based on the recommended settings in their papers
or repositories and report the best performance.

3.5 Main Results and Analysis

Experimental results for all the unsupervised meth-
ods are summarized in Table 2. Overall, Sensei
significantly outperforms all the compared meth-
ods, attributed to its strategy of complementing
the language model with a self-supervised ensem-
ble classifier. Besides the variants of Sensei, the
N-gram-LM baseline achieves the second-best per-
formance among all the other unsupervised meth-
ods, with an average 62.13% in F; across all the
buildings. This also illustrates the usefulness of a
language model. By contrast, our Sensei achieves
over 80% in F;, which demonstrates a 20-point
improvement over N-gram-LM.

When looking at the F; scores of baselines in-
cluding Delimiter, ToPMine, BayesSeg, and the
off-the-shelf tokenizers in NLTK, Stanza, and
CoreNLP, they are not competitive; this highlights
the need for a solution to our challenging problem.

®https://github.com/sherjilozair/
char-rnn-tensorflow

1022

https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow

Table 2: Performance of Sensei and compared methods on the five test buildings.

SDH IBM

APM

EBU SOD

Methods | Prec Rec Fi | Prec Rec Fi | Prec

Rec Fi |Prec Rec F; |Prec Rec F; |AvgFy

33.21
18.34
17.09
9.30
60.23
1.74
16.83

47.18
31.86
13.46
6.95
73.73
2.17
3142

38.47|52.61
22.75| 0.07
14.75| 0.04
7.82 | 0.0
65.70|77.48
1.92 |19.72
21.76|27.83

65.87
0.05
0.02

0.0

79.53

28.54

38.86

57.80| 3.10
0.06 | 3.95
0.03
0.0

78.09

23.25

31.86

Delimiter
NLTK
CoreNLP
Stanza
N-gram-LM
BayesSeg
ToPMine

2.51

39.31 30.88

39.37 56.61
9.72 10.18
14.39 30.63

37.73|46.54
23.75| 0.04
12.691 0.11
892 | 0.0
56.96|57.54
18.82(45.07
2.85 |15.38

23.95
0.02
0.06

0.0

73.71

34.16

26.17

31.51| 33.81
0.03 | 10.12
0.07 | 12.35
3.86
62.13
18.54
19.04

4.44
4.07

3.56 |32.00
3.99 |120.76
34.20|15.86
257 (9.21
45.72|51.06
9.88 |15.05
19.46| 2.11

46.60
27.78
10.58
9.09
66.62
25.16
4.55

2.75 .
64.18
38.84
19.27

0.0
44.84
79.76
86.84

Sensei-BW 0.98
Sensei-FW
Sensei-GS

Sensei

10.93
61.17
61.17
87.00

11.00
74.45
74.45
83.64

9.18 | 0.0
66.56 |39.97
66.56|79.84
84.95 | 84.81

0.0
53.40
80.43
90.80

38.58 55.58
38.58 55.58
70.23 77.98

1.69 |19.22
53.78(58.38
53.78|58.38
80.39 |85.81

11.33
74.18
74.18
87.53

13.77
64.87
64.87
86.43

5.23
54.97
61.91
82.36

386 1.53 | 1.04
44.81|47.94
44.81|47.94

73.21|78.10

4.66
64.65
64.65
85.77

Table 3: Transfer learning performance among buildings by SeNsER (Jiao et al., 2020).

SDH IBM

APM EBU SOD

Source Bldg | Prec Rec F; | Prec Rec

F1 | Prec

Rec Fi |Prec Rec F; |Prec Rec F

SDH | 99.87
IBM | 78.79
APM | 75.53
EBU | 74.68
SOD | 48.44

99.79
85.72
78.58
84.99
39.15

99.83 | 87.11
82.11] 99.80
77.03 | 77.81
79.50 | 84.60
43.30| 74.56

76.28
99.90
58.20
82.20
61.10

81.34
99.85
66.59
83.38
67.16

91.20
76.07
99.07
88.24
5.85

69.7329.75
64.89 | 29.45
68.09 | 19.68
99.58 | 3.40
11.53]99.75

69.30
66.12

39.23 33.84
39.71 33.82
36.26 25.52
6.72 4.52
99.77 99.76

83.72 87.30|70.10
59.23 66.60 | 63.70
98.31 98.69|69.07 67.14
84.99 86.59|99.72 99.44
2.89 3.87 |16.76 8.79

The performance of Delimiter confirms the fact
that the semantics of these delimiters are mixed. If
one recalls the examples in Table 1, vendors usually
use delimiters in sensor names. Sometimes, these
delimiters well indicate the segment boundaries.
However, as we illustrated in the example sensor
name “SOD|H1|______ |L_L”, punctuation could be
also used within the segment, and therefore simply
segmenting at delimiters results in a considerable
amount of false positives.

From Sensei-FW to Sensei, there is a significant
boost, roughly 27 points in F; on average. Since the
major difference between Sensei and Sensei-FW is
our self-supervised ensemble learning module, we
empirically verified its power.

Comparing Sensei-FW and Sensei-BW, we ob-
serve that the forward version performs dramati-
cally better. Sensei-FW also performs better than
Delimiter, ToPMine, and all the pre-trained tok-
enizers in all cases. By contrast, Sensei-BW takes
the reversed sensor names as input but performs
much worse than Sensei-FW. We notice that this
is because there are not sufficient variations in the
sensor string patterns when being looked at back-
ward, compared to the forward case. For exam-
ple, there are names like “SODA4R731__ASO” and
“SODA1R516__VAV”, and the Sensei-FW model
can see various substrings (e.g., “ASO” and “VAV”)

following the common pattern “SODAOR000__".
Variations as such provide enough information
for the model to learn where to segment. How-
ever, when reversed, the above example becomes
“OSA__000R0OADOS” and the prefix “OSA” sees no
variations following, which makes it nearly impos-
sible for Sensei-BW to figure out the right segmen-
tation. Consequently, Sensei-FW better captures
generative patterns while Sensei-BW achieves poor
segmentation results.

Comparing Sensei-FW and Sensei-GS, one can
observe that, in most cases (4 datasets out of 5),
Sensei-FW finds the best single threshold found
by Sensei-GS. Note that Sensei-GS utilizes the
ground truth to exhaustively search among all the
possible thresholds, while Sensei-FW decides the
threshold based on the transition distribution with-
out requiring any labels. This small difference in
performance indicates that our data-driven thresh-
old finding solution based on the distribution is
reasonable and reliable.

From Table 3 we see that the performance of
transfer learning varies drastically across buildings.
This is because, as the method takes a transfer learn-
ing approach, its performance highly hinges on
how similar the sensor names in the source build-
ing are to those in the target building. For example,
APM and EBU are from the same vendor, and thus

1023

Table 4: Performance of Sensei using different amounts of sensor names for training.

SDH IBM APM EBU SOD
Percentage (%) ‘ #Sensors F. ‘ #Sensors F. ‘ #Sensors F, ‘ #Sensors F. ‘ #Sensors F.
25 637 72.67 341 75.95 269 39.99 268 33.50 333 57.86
50 1,275 92.28 683 71.84 539 48.99 537 47.77 667 85.62
75 1,913 86.38 1,024 85.04 809 57.61 805 70.45 1,001 85.31
100 2,551 84.95 1,366 86.84 1,079 73.21 1,074 80.39 1,335 86.43

SeNsER is relatively more effective on these two
buildings. Moreover, since APM has more diverse
patterns than EBU as shown in Table 4, it is rea-
sonable that the transfer from APM to EBU results
in a higher score than the opposite. Additionally,
SOD are so different from all the other buildings
that transfers to SOD produce poor results. The
noticeable high diagonal scores, whose source and
target buildings are the same (i.e., learning within
a building), provide an upper-bound reference. We
shall also note that, referring to the last row in
Table 2, Sensei outperforms SeNsER on four build-
ings except for APM, as Sensei is focused on more
effectively capturing patterns inside a building.

3.6 Effect of Number of Sensors

As Sensei framework is fully automated in a self-
supervised manner, its performance is solely af-
fected by the amount and variety of sensor names
available for learning the segmentation classifier.
As shown in Table 4, Sensei generally gets bet-
ter performance with more sensor names available
with an exception of Building SDH. We hypothe-
size that the performance relates more closely to
the variety of sensor name patterns in the dataset
rather than the number of sensor names.

3.7 Case Studies and Discussions

We next showcase some examples that Sensei cor-
rectly segments, in order to illustrate its capability.

“Flukes” for False Positives. In Building IBM,
some of the Breaks are recognized as Ties by
Sensei-FW and Sensei-GS. For example,

OF |_| SRVC|_|DODODODOO,
GF|_|SRVC|_|QR000_000,

are mistakenly segmented as

OF_SRVC|_|DODODODOO,
GF_SRVC|_|QR000_.000.

By contrast, Sensei avoids the mistakes by learn-
ing the pattern from many other sensor names. The
following case is a great example.

GEF | _|LGHT | - | COFFEEDOCK.
GF|_|FRONTAISLE | _| LHS,
OF | _| FCU_KWH.

There are only 89 occurrences of “_| LGHT | ” com-
pared to 177 of “_| SRVC|”. Thus, with a lower
transition probability, it can be recognized as a
Break before “_| LGHT |”. Many similar cases
can teach Sensei that Break is more likely in this
pattern, facilitating its performance.

“Flukes” for False Negatives.
contains many cases as follows:
SOD|AQ|RO0O|__|ASO,
SOD|AOQ|ROOO | _-| AGN.

Building SOD

Sensei-FW, and even Sensei-GS which employs
the ground truth, are not able to segment these
names correctly; they instead segment them as

SOD|AO|ROOO|__IA|SO,
SOD|AO|ROOO|__]A|GN,

because of the same prefix “SODAOROO00__A”.

By contrast, Sensei is able to correctly segment
them owing to the self-supervised ensemble learn-
ing, which is more robust to noise in pseudo labels.

Discussion. We notice that even though Sensei
on average achieves about 80% in Fy, it still has
limitations. Sensei is sensitive to the variation of
patterns in datasets—the patterns cannot be too
varied or too monotonous.

4 Related Work

There are three lines of prior and related work,
namely, sensor metadata mapping, language model,
and phrase mining.

Sensor Metadata Tagging. Sensor Metadata
Tagging refers to the process of parsing and an-
notating the sensor metadata (or sensor name) for
understanding a sensor’s key context, including the
measurement type (Balaji et al., 2015; Hong et al.,
2015b), location (Bhattacharya et al., 2015b), rela-
tionships with others (Koh et al., 2018), and many
more (Schumann et al., 2014). The majority body

1024

of work exploits an active learning-based proce-
dure (Settles, 2009), where it iteratively selects an
“informative” and “representative” metadata exam-
ple for a domain expert to label, in order to learn a
model to annotate the metadata. Complementary
to the use of textual metadata, there are also efforts
exploring the use of time-series data for inferring
the sensor context (Koc et al., 2014; Pritoni et al.,
2015; Hong et al., 2015a). While they can signif-
icantly reduce the required manual labeling, they
still rely on the availability of at least one human
annotator to segment, parse, and provide labels.

By contrast, the method proposed in this work is
fully automated, i.e., completely removing humans
from the process, and we demonstrate its use in
an essential first step—segmenting a sensor name
string into meaningful substrings.

Language Model and Tokenization. Language
models originate from the areas of natural language
processing and information retrieval (Schiitze et al.,
2008). They aim at modeling the likelihood of ob-
serving one token given all the tokens before it,
capturing the underlying language patterns. Recent
advances in deep learning have pushed the lan-
guage modeling from traditional n-gram models to
neural language models (Kiros et al., 2014; Karpa-
thy et al., 2015; Kim et al., 2016; Peters et al., 2018;
Devlin et al., 2018), achieving significantly better
performance using recurrent neural networks.

Analogizing sensor names to human languages,
we employ neural language models to capture the
underlying naming pattern. As we seek to segment
a sensor name string into substrings, we choose the
classic Char-RNN model (Karpathy et al., 2015).
In general, any character-level language models are
applicable in our method.

One can also view our problem as tokenization
of sensor names. We thus compare with multi-
ple existing tokenizers provided in NLTK Twitter,
Standford CoreNLP (Manning et al., 2014), and
Stanza (Qi et al., 2020). As we demonstrate in the
evaluation, our method significantly outperforms
these methods in segmenting sensor names.

Phrase Mining. Treating characters as words,
our problem can be viewed as an unsupervised
phrase mining problem with phrasal segmentation
as output. Existing methods mainly leverage sta-
tistical signals based on term frequency in the
corpus (Deane, 2005; Parameswaran et al., 2010;
Danilevsky et al., 2014; El-Kishky et al., 2014).

Among all these methods, ToPMine (EI-Kishky
et al., 2014) is arguably the most effective one.
Our method Sensei significantly outperforms ToP-
Mine in our empirical evaluation. There exist
weakly/distantly supervised phrase mining meth-
ods (Liu et al., 2015; Shang et al., 2018a); however,
such supervision signals (e.g., Wikipedia) are diffi-
cult to obtain for building sensors.

5 Conclusions and Future Work

Smart buildings critically rely upon contextual in-
formation associated with its sensors and actuators
to appropriately sense and operate building subsys-
tems. Such contextual information appears in the
form of sensor metadata that is part of the installa-
tion of building management system. In this paper,
we have presented Sensei, a system for automated
segmentation of metadata information. Sensei is a
fully automated method without requiring human
labels that employs a character-level neural lan-
guage model to capture the underlying generative
patterns in building sensor names. Based on the
probability distribution of character transitions (i.e.,
likelihood of observing the current character give
the previous ones), it decides on two thresholds
for sifting out examples for which it is confident
to be Tie or Break. Considering these pseudo-
labeled examples as supervision, Sensei constructs
an ensemble of binary classifiers to segment sen-
sor names with the information provided by the
language model. We conducted experiments on
the sensor names from five real-world buildings,
and Sensei on average achieves F; > 80% in seg-
menting sensor names, a roughly 20-point improve-
ment over the best compared unsupervised method.
Our ongoing work addresses pre-training methods
for the language model to improve Sensei’s perfor-
mance and its use in standard NLP tasks.

Acknowledgement

We thank reviewers for the anonymous comments
and suggestions to improve this work. This work
was supported in part by National Science Founda-
tion 1940291 and 2040727. Any opinions, findings,
and conclusions or recommendations expressed
herein are those of the authors and should not be
interpreted as necessarily representing the views, ei-
ther expressed or implied, of the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for government purposes
notwithstanding any copyright annotation hereon.

1025

References

Bharathan Balaji, Chetan Verma, Balakrishnan
Narayanaswamy, and Yuvraj Agarwal. 2015. Zo-
diac: Organizing large deployment of sensors
to create reusable applications for buildings. In
BuildSys, pages 13-22. ACM.

Arka Bhattacharya, Joern Ploennigs, and David Culler.
2015a. Short paper: Analyzing metadata schemas
for buildings: The good, the bad, and the ugly.
In Proceedings of the 2nd ACM International Con-
ference on Embedded Systems for Energy-Efficient
Built Environments, pages 33—34. ACM.

Arka A Bhattacharya, Dezhi Hong, David Culler,
Jorge Ortiz, Kamin Whitehouse, and Eugene Wu.
2015b. Automated metadata construction to support
portable building applications. In BuildSys, pages
3-12. ACM.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

Leo Breiman. 1996. Bagging predictors. Machine

learning, 24(2):123-140.

Francois Chollet et al. 2015. Keras. https://keras.
io.

Marina Danilevsky, Chi Wang, Nihit Desai, Xiang Ren,
Jingyi Guo, and Jiawei Han. 2014. Automatic con-
struction and ranking of topical keyphrases on col-
lections of short documents. In Proceedings of the
2014 SIAM International Conference on Data Min-
ing, pages 398—406. SIAM.

Paul Deane. 2005. A nonparametric method for extrac-
tion of candidate phrasal terms. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 605-613.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Eisenstein and Regina Barzilay. 2008. Bayesian
unsupervised topic segmentation. In Proceedings of
the 2008 Conference on Empirical Methods in Natu-
ral Language Processing, pages 334-343.

Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare R
Voss, and Jiawei Han. 2014. Scalable topical phrase
mining from text corpora. Proceedings of the VLDB
Endowment, 8(3):305-316.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Dezhi Hong, Hongning Wang, Jorge Ortiz, and Kamin
Whitehouse. 2015a. The building adapter: Towards
quickly applying building analytics at scale. In
BuildSys.

Dezhi Hong, Hongning Wang, and Kamin Whitehouse.
2015b. Clustering-based active learning on sensor
type classification in buildings. In Proceedings of
the 24th ACM International on Conference on In-
formation and Knowledge Management, pages 363—
372. ACM.

Yang Jiao, Jiacheng Li, Jiaman Wu, Dezhi Hong, Ra-
jesh Gupta, and Jingbo Shang. 2020. SeNsER:
Learning cross-building sensor metadata tagger. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 950-960.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel.
2014. Multimodal neural language models. In In-
ternational Conference on Machine Learning, pages
595-603.

Merthan Koc, Burcu Akinci, and Mario Bergés. 2014.
Comparison of linear correlation and a statistical de-
pendency measure for inferring spatial relation of
temperature sensors in buildings. In BuildSys, pages
152-155. ACM.

Jason Koh, Bharathan Balaji, Dhiman Sengupta, Ju-
lian McAuley, Rajesh Gupta, and Yuvraj Agarwal.
2018. Scrabble: transferrable semi-automated se-
mantic metadata normalization using intermediate
representation. In Proceedings of the 5th Confer-
ence on Systems for Built Environments, pages 11—
20. ACM.

Jialu Liu, Jingbo Shang, Chi Wang, Xiang Ren, and Ji-
awei Han. 2015. Mining quality phrases from mas-
sive text corpora. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management
of Data, pages 1729-1744.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55-60.

Juri Opitz and Sebastian Burst. 2019. Macro f1 and
macro fl. arXiv preprint arXiv:1911.03347.

Aditya Parameswaran, Hector Garcia-Molina, and
Anand Rajaraman. 2010. Towards the web of con-
cepts: Extracting concepts from large datasets. Pro-
ceedings of the VLDB Endowment, 3(1-2):566-577.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

1026

https://keras.io
https://keras.io

Marco Pritoni, Arka A Bhattacharya, David Culler, and
Mark Modera. 2015. Short paper: A method for
discovering functional relationships between air han-
dling units and variable-air-volume boxes from sen-
sor data. In BuildSys, pages 133-136. ACM.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160-170, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Anika Schumann, Joern Ploennigs, and Bernard Gor-
man. 2014. Towards automating the deployment of
energy saving approaches in buildings. In Proceed-
ings of the 1st ACM Conference on Embedded Sys-
tems for Energy-Efficient Buildings, pages 164—167.
ACM.

Hinrich Schiitze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval. In Proceedings of the international com-
munication of association for computing machinery
conference, volume 4.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren,
Clare R Voss, and Jiawei Han. 2018a. Automated
phrase mining from massive text corpora. [EEE

Transactions on Knowledge and Data Engineering,
30(10):1825-1837.

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018b. Learning named
entity tagger using domain-specific dictionary. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2054-2064.

Zixiao Shi, Guy R Newsham, Long Chen, and H Burak
Gunay. 2019. Evaluation of clustering and time se-
ries features for point type inference in smart build-
ing retrofit. In Proceedings of the 6th ACM Inter-
national Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, pages 111-
120.

Thomas Weng and Yuvraj Agarwal. 2012. From build-
ings to smart buildings—sensing and actuation to
improve energy efficiency. IEEE Design & Test of
Computers, 29(4):36—44.

1027

