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Abstract
Climate change, extreme weather events, and water scarcity have severely impacted the agricultural sector. Under scarce 
conventional water supplies, a farm faces a decision between reducing production through deficit irrigation and leveraging 
alternative water and energy resources to continue producing large quantities of crops and these investments would have 
to be balanced against an unknown climate. Therefore, we develop a framework for farm investment decisions structured 
as a two-stage stochastic quadratically constrained linear program that maximizes farm profit over a 25-year period while 
considering an uncertain future climate and the costs of investing and operating various electricity and water technologies. 
We create four representative climate futures and two climate probability distributions that represent different beliefs that the 
decision maker might have about the likelihood of each climate scenario occurring. Then, we compare four solutions where 
decisions are made on information ranging from perfectly knowing the climate and weather to only the average precipita-
tion. Our results show that expected profit and crop yield heavily depend on a decision maker’s given climate probability 
distributions. Aggressively preparing for an extreme climate can cause significant losses if a more moderate climate is real-
ized. Furthermore, given a future climate, year-to-year weather variability can also corrode the potential cost savings from 
investing in alternative resources. The insights from this framework can help agricultural decision makers determine how to 
address climate uncertainty, water scarcity, and to a limited degree weather variability via investments in alternative water 
and electricity resources that can help improve resilience and fortify profits.

Keywords Climate risk management · Water scarcity · Stochastic programming · Food–energy–water systems · 
Desalination · Agriculture

1 Introduction

As climate change intensifies and essential resources like 
water become more scarce, planning for these risks has 
become essential. To address these needs, we create a 
two-stage stochastic programming framework that makes 
first-stage investment decisions for alternative water and 

electricity capacity additions under climate uncertainty and 
second-stage operational decisions after the uncertainty is 
realized. In this work, we apply this framework to an agri-
cultural setting where climate uncertainty and water scar-
city present risks not just for farm owners but for everyone. 
Therefore, the main objectives of this case study are to inves-
tigate how a farm can manage the risk of climate uncertainty, 
how water scarcity affects its operations, and to examine 
how well this framework performs at advising a decision 
maker on the investments they can make to mitigate both 
climate uncertainty and resource scarcity.

Prolonged droughts associated with climate change and 
increased water withdrawals at unsustainable rates, from 
sources like aquifers, have placed a significant strain on 
water resources for both municipal and agricultural uses. In 
fact, some farmers have found it more profitable to sell water 
rather than use it to grow crops (Sengupta 2021). As the 
population grows, there will be less water from traditional 
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sources available for agriculture. However, there are uncon-
ventional sources of water that could become profitable 
inputs to agricultural production when conventional water 
or crop prices increase. These unconventional water sources 
can be far below ground and/or have higher concentrations 
of contaminants like salt. Finding cost-effective ways to 
access these unconventional water sources and then applying 
treatment as necessary to help make agricultural production 
more robust in the face of climate and weather uncertainties 
is essential to preserve increasing scarce water resources.

In this paper, we propose a model that maximizes profit 
by balancing crop yield, water treatment and pumping costs, 
and the costs of the electricity required to pump and treat 
the water. Integrated food–energy–water systems allow 
for the flexibility to take advantage of the cost savings and 
resources that would not be available if a farm relied only on 
centralized resources. Under scarce conventional water sup-
plies, a farm faces a decision between reducing production 
through deficit irrigation and leveraging alternative water 
resources to continue producing large quantities of crops. 
Importantly, leveraging alternative water resources typically 
requires additional energy inputs and this energy could be 
obtained from the grid or from distributed energy resources. 
These investments would have to be balanced against an 
unknown climate and weather where the amount of precipi-
tation available could vary wildly from year-to-year. There-
fore, we develop a framework for farm investment decisions 
structured as a two-stage stochastic quadratically constrained 
linear program (QCLP) that maximizes farm profit over a 
25-year period while considering an uncertain future climate 
and the costs of investing and operating various electricity 
and water technologies.

To investigate our main objectives, we compare solutions 
where the weather and climate are known before an invest-
ment decision is made (Perfect Information), the climate but 
not the weather are known before the investment decisions 
(Known Climate Unknown Weather), investment decisions 
are made by hedging all possible climates and weathers (Sto-
chastic), and investment decisions are made based on the 
average climate (Expected Value).

To investigate different climate futures we create four 
representative climates—Dry, Dry-Moderate, Moderate, 
and Wet—that inform a Markov chain that produces annual 
precipitation values that correlate with a given climate. For 
example, the Dry climate is more likely to produce low pre-
cipitation years and the Wet climate is more likely to pro-
duce high precipitation years.

Furthermore, we consider two different climate probabil-
ity distributions—Equally Probable and Dry Most Likely—
that represent different beliefs that the decision maker 
might have about the likelihood of each climate scenario 
occurring. The Equally Probable probability represents the 
belief all climates are equally likely and the Dry Most Likely 

probability represents the belief that the Dry climate is the 
most likely. The decision maker needs these climate prob-
ability distributions in order to make an investment decision.

Our model shows that climate uncertainty is the biggest 
factor affecting potential profit and weighting your invest-
ment based on a climate that does not occur can severely 
impact profits. Optimally hedging investment decisions can 
balance this downside risk, but when the possible climates 
trend toward a moderate climate, optimally hedging provides 
little benefit over simply preparing for the average possible 
climate. Nonetheless, even though climate uncertainty is the 
biggest factor affecting profit, the year-to-year weather varia-
bility for a given climate can also cause significant swings in 
profit. The variability in precipitation from year-to-year can 
erode profits by having an alternative water and/or electricity 
investment be undersized one year and oversized another. 
Understanding how these uncertainties can affect a farm’s 
optimal investment decisions and by extension their profit 
is vastly important, and this model provides a framework to 
provide these insights.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews relevant literature on climate risk manage-
ment, food–energy–water modeling, and crop production 
functions. Section 3 details the framework formulation, 
solution types, model parameterization, and the climate 
and climate probability distribution calculations. Section 4 
details the results of the study and Sect. 5 summarizes the 
most significant findings.

2  Background

2.1  Climate risk management

The main driving force for this work is understanding how 
climate uncertainty and accompanying resource scarcity will 
impact agricultural operations and what can be done to miti-
gate that. This subsection addresses the literature related to 
climate uncertainty.

As climate change takes hold, extreme weather events 
and resource scarcity are expected. These uncertainties will 
affect decision makers who make a wide variety of decisions 
from energy decisions (Leibowicz 2018), climate policy 
(Moreno-Cruz and Keith 2013), and economics via carbon 
pricing (Nordhaus 1992).

In the agricultural setting, climate change has already 
impacted the livelihood of farmers in the Ecuadorian Andes 
(Blackmore et al. 2021), the Northern Ethiopian Highlands 
(Adamseged et al. 2019), and Sub-Saharan Africa (Guido 
et al. 2020). As a result, how farmers should respond to these 
climate risks is becoming more important.

Anderson and Kyveryga (2016) illustrated how long-term 
climate data and observations could be used to quantify 
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climate risks. Wheeler and Lobley (2021) surveyed UK 
farmers to determine how and/or if they were adapting to 
increased climate risk and if the creation of farmer specific 
tools would help farmers adapt to climate risks. Laureti et al. 
(2021) applied a spatial stochastic frontier model to inves-
tigate in Southern Italy if their was spatial heterogeneity in 
crop water efficiency and to encourage policy makers to con-
sider more water efficient crop choices like diffusion of crops 
more suitable to water scarcity. We created the framework 
outlined in this work to be an adaptable tool that farmers 
could use to access and prepare for climate risk.

In Texas, the uncertainty in water planning presents the 
biggest problem for the heavily agricultural state. Werner 
and Svedin (2017) found that the Texas water plan does not 
adequately prepare for climate change. Furthermore, Jones 
and van Vliet (2018) note that water scarcity in Texas is not 
only a result of increasing water withdrawals, but of increas-
ing water salinity. Nonetheless, researchers have increas-
ingly investigated how to adapt to climate risks in Texas, for 
example (Shrum et al. 2018) investigated how a Texas ranch 
could adapt to water scarcity to maintain protein production. 
Nielsen-Gammon et al. (2020) provided general insights 
into how different drought and climate projections could 
help Texas water planners prepare for a climate uncertain 
future. The same water uncertainty and potential scarcity 
that affects the water supply also directly affects crop growth 
for farmers. This study tests our framework by using a water 
constrained farm in Texas as a case study.

This work expands upon the climate change management 
literature by creating a framework that allows farmers to 
tailor a strategy to mitigate climate risk and resource scar-
city. This framework investigates the how different climate 
futures could affect farmers via the investment decisions 
they will have to make in the present and how those invest-
ment decisions and the climate will affect their operational 
decisions in the future.

2.2  Food–energy–water modeling

Our model investigates three distinct sectors—food, energy, 
and water—that each have their own distinct modeling lit-
erature. As drought, climate change, and urbanization stress 
fresh water sources, alternative water research is becoming 
especially important.

Alternative water sources like brackish water are popular 
alternatives to groundwater (LBG-Guyton Associates 2003). 
Furthermore, research, like (Blinco et al. 2017) which inves-
tigated how to optimize the operation and design of systems 
that use alternative water sources like wastewater treatment 
and desalination, is another area of interest. However, the 
work by Arroyo and Shirazi (2012), which detailed the 
brackish water treatment facilities in Texas and their costs, 
provides the technological foundation of our work.

Nonetheless, as the operations of food, energy, and water 
systems become more intertwined, so does the modeling 
literature. Therefore, for the remainder of this subsection 
we investigate the literature related to food–energy–water 
modeling that can help us with our own formulation.

There has been a recent trend in research that has inves-
tigated how energy and water systems could be designed 
together to reduce costs or deal with environmental impacts. 
Jones and Leibowicz (2021) investigated how the co-optimi-
zation of community scale distributed water and energy sys-
tems could reduce costs and Vitter et al. (2018) investigated 
how a community scale wastewater treatment plant could be 
more cost effective than centralized wastewater treatment. 
Yet, research related to how food, energy, and water could 
all be designed together has remained sparse.

Nonetheless, after (Heady 1954) developed one of the 
first uses of linear programming in farming by creating a 
simple model that maximizes farm profit, modeling farm 
operations has expanded to not only include the crops, but 
the technology to get water to the crops and to produce the 
electricity to power the water systems. Ghasemi (2018) 
modeled an agricultural microgrid that includes the irriga-
tion water requirements, a water reservoir, an agricultural 
products packing factory, the lighting load requirements, 
and other electrical items. Campana et al. (2013) created 
a dynamic modeling tool of a PV water pumping system 
that includes a water demand model, a solar PV model, 
and a pumping system model for quick design and valida-
tion. Then Campana et al. (2015) expanded their previous 
work by modeling how a PV powered pump watering sys-
tem could be paired with a crop growth model. Zhang et al. 
(2018) elevated this modeling paradigm further by creating 
an integrated modeling system that combined a dynamic 
land ecosystem model, an optimization based economic 
model, and a regional climate model.

Our model follows this tradition of integrated 
food–energy–water modeling and expands it by placing an 
emphasis on optimizing investment decisions under climate 
uncertainty. However, we take a slight detour from the trends 
to larger and more integrated systems by limiting our tech-
nology choices and keeping the scale to a single farm.

2.3  Crop production functions

Crop functions are empirically determined functions that 
relate water depth, soil salinity, water salinity and more with 
crop yield. In order to model crop growth, we need a crop 
function that can be integrated into our modeling framework. 
Therefore, in this subsection we examine different crop func-
tions and their uses throughout the literature.

There is a large body of work that seeks to mathemati-
cally define the relationship between crop yield and soil 
water depth for a variety of crops.
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Barrett and Skogerboe (1980) compiled a list of differ-
ent types of crop functions calculated over the years look-
ing at linear functions, non-linear functions, how the tim-
ing of water affects growth, and the relationship between 
yield and evapotranspiration. Zhang and Oweis (1999) 
investigated the water-yield relationship for wheat in the 
Mediterranean Region and developed easy to interpret 
linear and quadratic yield functions. Foster and Brozović 
(2018) researched how to simulate crop yields based on 
irrigation and rain by investigating the difference between 
additive crop yield functions and multiplicative crop 
yield functions while taking into account water timing. 
Specifically, they created a crop-water growth model that 
addresses the disadvantages of the crop-water coefficient 
model when addressing the timing of water deficits. Smi-
lovic et al. (2016) also modeled a crop coefficient model 
that takes into account how the timing of watering impacts 
a crop’s yield. They use two coefficients, a crop coefficient 
and a scarcity index, to correct for timing and location. 
The end result is what they call a crop kite which relates 
deficit irrigation to yield while taking into account timing.

However, for this work we sought a crop function that 
took into account over-watering and salt concentration 
but didn’t actively model water timing to save on com-
plexity. So, we use the model developed by Dinar et al. 
(1991) which estimated a set of yield production functions 
using water quantity and quality, soil salinity, and drain-
age volume.

3  Methodology

3.1  Model formulation

Our framework for farm investment decisions creates a sto-
chastic quadratically constrained linear program (QCLP) 
to capture the quadratic relationship between crop growth 
and water inputs. The QCLP maximizes farm profit over 
a 25-year period. The stochastic QCLP represents a case 
where a decision maker makes a set of investment decisions 
before a climate is realized and then makes operation deci-
sions based on that set of investment decisions once the cli-
mate is known. We investigate different solution cases, but 
they all use the same general QCLP formulation, including 
parameters and variables. The main differences between the 
solution cases are if the set of investment decisions are fixed 
or endogenous to the model, if the climate and/or weather is 
uncertain or not, which climate(s) is (are) being investigated, 
and what probability is given for each climate to occur in the 
future. In this section, we outline the model formulation, 
including parameters, variables, and equations.

Instance input parameters:

I Set of weather realizations
Y Set of years (1–25)
ha Size of farm (hectares [ha])
price Price of crop ($/ton)
caw Unit cost of alternative water ($/

ha-cm)
ciw Unit cost of irrigation water ($/

ha-cm)
cae Investment cost of alternative 

electricity ($/kW)
cue Unit cost of utility electricity ($/

kWh)
euaw Unit energy use of alternative 

water (kWh/ha-cm)
euiw Unit energy use of irrigation water 

(kWh/ha-cm)
scw Salt concentration in water (dS/m)
scs Salt concentration in soil (dS/m)
iwl Irrigation water limit (hectares-

cm)
gsm Growing season months
cfs Capacity factor solar
mhrs Hours in a month
raini,y Precipitation in weather realiza-

tion i and year y (ha-cm)

QCLP decision variables:

capacityAW ∈ ℝ
≥0

Invested capacity of alternative 
water (ha-cm)

capacityAE ∈ ℝ
≥0

Invested capacity of alternative 
electricity (kW)

waterTotal
i,y

∈ ℝ
≥0

Total amount of water used (ha-
cm) in weather realization i and 
year y

waterIW
i,y

∈ ℝ
≥0

Total amount of irrigation water 
used (ha-cm) in weather realiza-
tion i and year y

waterAW
i,y

∈ ℝ
≥0

Total amount of alternative water 
used (ha-cm) in weather realiza-
tion i and year y

elcTotal
i,y

∈ ℝ
≥0

Total amount of electricity used 
(kWh) in weather realization i 
and year y

elcAE
i,y

∈ ℝ
≥0

Total amount of alternative elec-
tricity used (kWh) in weather 
realization i and year y

elcUE
i,y

∈ ℝ
≥0

Total amount of utility electricity 
used (kWh) in weather realiza-
tion i and year y

cyi,y ∈ ℝ
≥0 Crop yield (tons/ha) in weather 

realization i and year y
profiti ∈ ℝ

≥0 Profit ($) in weather realization i
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3.1.1  Objective function

The framework is driven by profit which is equal to the rev-
enue from selling the crop minus the costs of the water and 
electricity inputs as shown in Eq. 1.

3.1.2  Crop yield function

Crop production functions use the relationship between 
water depth and salinity to predict crop growth. In these 
crop production functions, crop yield is a function of water 
depth, water salinity, soil salinity, and in some cases, other 
variables. In this model, we calculate crop growth every year 
for every weather realization. Equation 13 in Sect. 3.7 shows 
the fully parameterized equation.

3.1.3  Investment decision equations

Each optimization problem makes a single alternative 
water investment decision and a single alternative electric-
ity investment decision regardless of the number of weather 
realizations. This replicates how a decision maker would 
have to make a single set of investment decisions over a 
wide range of possibilities. How much capacity the decision 
maker decides to invest in governs how many alternative 
resources are available for a given year as shown in Eqs. 2 
and 3.

3.1.4  Operational decision equations

The farm decision maker decides how much groundwater 
and/or alternative water to provide for his crops to sup-
plement the exogenously specified precipitation and how 
to supply the power needed for those water sources either 
through a centralized utility or installed alternative electric-
ity capacity. These decisions are governed by balance equa-
tions which ensure that the endogenously specified demands 
for water and electricity are satisfied. These balance equa-
tions are encoded in Eqs. 4, 5, and 6. Note, precipitation can-
not be controlled by the farm and any rain must count toward 
the crop production function; this is enforced by Eq. 7. Also, 
to simulate future resource constraints, irrigation water is 
limited, as shown in Eq. 8.

(1)
profit =

Revenue

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

i∈I

∑

y∈Y

ha ∗ price ∗ cyi,y −

Water Cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

capacityAWcaw −

∑

i∈I

∑

y∈Y

waterIW
i,y
ciw −

Electricity Cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

capacityAEcae −
∑

i∈I

∑

y∈Y

elcUE
i,y
cue

(2)capacityAW ≥ waterAW
i,y

,∀i ∈ I,∀y ∈ Y

(3)capacityAE ∗ cfs ∗ mhrs ∗ gsm ≥ elcAE
i,y
,∀i ∈ I,∀y ∈ Y

3.2  Model solution types

We analyze the farm’s decisions using the three main 
stochastic programming solutions: Perfect Information, 
Expected Value, and Stochastic. We also develop a solu-
tion where the climate is known like the Perfect Information 
scenario but the weather is not and call this solution Known 
Climate Unknown Weather.

3.2.1  Stochastic solution formulation

Equation 9 shows the general two-stage stochastic program 
formulation (Leibowicz 2018) which represents the Stochas-
tic solution in this study.

In this formulation, the first stage objective function coeffi-
cients (the c vector) which in our problem represent the costs 
of investment and the first stage constraints (the A matrix 
and the b vector) which in our problem represent the capac-
ity limits of those investments are known with certainty. The 
second-stage objective function coefficients (the d� vector) 
and the second-stage constraints (the B� and C� matrices and 
the f� vector) are uncertain when the first-stage decisions 
(the x vector) are made, but are known when the recourse 
decisions (the y� vector) which in our problem represent 
the operational decisions are determined. The � subscripts, 
which in this study represent a weather vector, symbolize 
that the parameters and decision variables represent a subset 

(4)raini,y + waterAW
i,y

+ waterIW
i,y

≥ waterTotal
i,y

∀i ∈ I,∀y ∈ Y

(5)elcAE
i,y

+ elcUE
i,y

≤ elcTotal
i,y

∀i ∈ I,∀y ∈ Y

(6)waterAW
i,y

euaw + waterIW
i,y
euiw ≥ elcTotal

i,y
∀i ∈ I,∀y ∈ Y

(7)waterAW
i,y

euaw + waterIW
i,y
euiw ≥ elcTotal

i,y
∀i ∈ I,∀y ∈ Y

(8)waterIW
i,y

≤ iwl,∀y ∈ Y

(9)

max
x,(y�)�∈Ω

zSS = cTx + ��d
T
�
y�

s.t. Ax = b

B�x + C�y� = f� ∀� ∈ Ω

x, y� ≥ 0 ∀� ∈ Ω
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of our representation of the world which in this study is 
the set of all weather realizations for all climates ( � ∈ Ω ). 
The objective is then maximized over all states of our rep-
resentative world, where the probability of a given state is 
p(�) . The single objective function ( zSS ) produced from the 
Stochastic solution is the objective value.

The Stochastic Solution represents a feasible decision set 
that optimally hedges for a given set of weather realizations. 
Optimally hedging for all possible weather realizations will 
at worse perform the same as the Expected Value solution 
and should perform better. The difference between the objec-
tive value of the Stochastic solution ( zSS ) and the expected 
value of the Expected Value solutions ( zEV ) is called the 
Value of the Stochastic Solution (VSS). However, the Sto-
chastic solution will at best perform as well as the Perfect 
Information solution and likely significantly worse. The dif-
ference between the expected value of the Perfect Informa-
tion solutions ( zPI ) and the Stochastic Solution ( zSS ) is called 
the Expected Value of Perfect Information (EVPI).

3.2.2  Perfect information solution formulation

The Perfect Information solutions each solve an optimi-
zation problem for a single weather realization ( � ). Each 
solution produces a set of investment decisions ( x� ) and a 
set of operational decisions ( y� ) that are based on that solu-
tion’s weather realization. This contrasts with the Stochastic 
solution, where the solution produces one set of investment 
decisions for all the weather realizations and not a solution 
for a single weather realization like a Perfect Information 
solution. After a Perfect Information solution is created for 
each weather realization, a weighted average of the objec-
tive values for each solution ( z� ) are used to produce the 
expected value of the Perfect Information solutions ( zPI ). 
The mathematical formulation of a Perfect Information solu-
tion and the expected value of the Perfect Information solu-
tions are shown in Eq. 10.

The expected value of the Perfect Information solutions rep-
resents the maximum expected profit from a given set of 
climates and weather realizations. This maximum expected 
profit is then used as a baseline to compare how the other 
solutions perform and to determine the EVPI.

3.2.3  Expected value solution formulation

The Expected Value solution makes a single set of invest-
ment decisions ( x�̄� ) based on the average climate ( �̄� ) rather 
than by taking into account all the possible combinations of 

(10)
max
x�,y�

z� = cTx� + dT
�
y�, quad∀� ∈ Ω

zPI = �(z�) =
∑

�∈Ω

p(�)z�

weather and climate like the Stochastic solution. Then, that 
single set of investment decisions ( x�̄� ) is used to determine 
the operational decisions ( y� ) for each weather realization 
( � ). After an Expected Value solution is created for each 
weather realization, a weighted average of the objective val-
ues for each solution ( z� ) is used to produce the expected 
value of the Expected Value solutions ( zEV ). The mathe-
matical formulation of an Expected Value solution, and the 
expected value of the Expected Value solutions are shown 
in Eq. 11.

The Expected Value solution illustrates naïve investment 
decision making where a decision maker does not take into 
account all the possible climates and weather realizations 
and instead only makes a decision based on an average cli-
mate. This Expected Value solution can then be compared 
to a Stochastic solution that makes an investment decision 
by optimally hedging on the complete set of possible climate 
and weather outcomes.

3.2.4  Known climate unknown weather solution 
formulation

The Value of Perfect Information, while informative, rep-
resents a solution that is impossible to perform as well as, 
where not only would you know the climate for the next 
25 years but the exact weather and rainfall for the next 25 
years as well. While the future climate and weather are both 
uncertain, climate can be predicted over long time horizons 
including the 25 year time horizon that the investment deci-
sion will affect making it more “knowable” than the weather 
and by extension seasonal precipitation which can only be 
predicted for a few weeks (Palmer 2000; Bauer et al. 2015; 
Parker 2010; Slingo and Palmer 2011). We postulate that 
a metric where the climate for the next 25 years is known 
but every weather fluctuation is not would provide a better 
point of comparison for this particular model. Therefore, 
we created the Known Climate Unknown Weather solution 
where even if we perfectly understand climate change, there 
will still be weather and by extension seasonal precipitation 
variability across years that cannot be perfectly predicted.

A Known Climate Unknown Weather solution makes a 
single set of investment decisions ( x�′ ) and operational deci-
sions ( y� ) based on the set of weather realizations ( � ∈ �� ) 
in a given climate ( �′ ). After a Known Climate Unknown 

(11)

max
x�̄�,y𝜔

z𝜔 = cTx�̄� + dT
𝜔
y𝜔, ∀𝜔 ∈ Ω

zEV = �(z𝜔) =
∑

𝜔∈Ω

p(𝜔)z𝜔

s.t. x�̄� ∈ argmin cTx + d�̄�y�̄�

�̄� = �(𝜔) =
∑

𝜔∈Ω

p(𝜔)𝜔
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Weather solution is created for each climate, a weighted 
average of the objective values for each solution ( z�′ ) is 
used to produce the expected value of the Known Weather 
Unknown Climate solutions ( zKCUW ). The mathematical for-
mulation of a Known Climate Unknown Weather solution, 
and the expected value of the Known Climate Unknown 
Weather solutions are shown in Equation 12.

Like the Stochastic solution, the Known Climate Unknown 
Weather solution represents a feasible decision set that opti-
mally hedges for a given set of weather realizations; how-
ever, the Known Climate Unknown Weather hedges based 
on the weather realizations of a single known climate. 
Therefore, the Known Climate Unknown Weather solution 
will at worse perform the same as the Stochastic solution 
and at best perform as well as the Perfect Information solu-
tion. We call the difference between the objective value of 
the Stochastic solution ( zSS ) and the expected value of the 
Known Climate Unknown Weather solutions ( zKCUW ) the 
Expected Value of Known Climate (EVKC) and the differ-
ence between the expected value of the Perfect Information 
solutions ( zPI ) and the expected value of the Known Climate 
Unknown Weather solutions ( zKCUW ) the Expected Value of 
Known Weather (EVKW).

3.3  Climate probability distributions

The climate probability distributions are designed to help us 
address our primary research questions and hypotheses. Spe-
cifically, we are interested in understanding how the prob-
abilities of a range of climates affect investment decisions in 
alternative energy and water, how those investment decisions 
perform in different climate realizations, both predicted and 
not, and how the variation of weather realizations in a given 
climate affects profit.

The climate probability distribution is also used to cre-
ate the appropriate number of weather realizations. For 

(12)

max
x��,(y�)�∈��

z�� = cTx�� + ��d
T
�
y� ∀��

∈ Ω

s.t. Ax�� = b

B�x�� + C�y� = f� ∀� ∈ ��

x�� , y� ≥ 0 ∀� ∈ ��

zKCUW = �(z�� ) =

∑

�∈��

p(��
)z��

example, the Equally Probable climate probability has 1000 
weather realizations from each climate totaling 4000 sam-
ples. The Dry Most Likely has 2400 weather realizations 
from the Dry Climate, 1000 from the Dry-Moderate climate, 
400 from the Moderate climate, and only 200 weather reali-
zations from the Wet climate for a total of 4000 samples. 
The climate probability distributions and their abbreviations 
are listed below.

– Equally Probable (EP)—where all four climates are 
equally likely to occur.

– Dry Most Likely (DML)—where the Dry climate is 
most likely to occur (60% chance) and where the Dry-
Moderate, Moderate, and Wet climates have a 25%, 10%, 
and 5% chance of occurrence, respectively. These climate 
probabilities reflect researchers’ expectations that the 
future climate of Texas will be drier than it is at present 
(Nielsen-Gammon et al. 2020)

3.4  Climates and the weather generation Markov 
chain

We define four distinct climates that produce yearly weather 
realizations presented as annual precipitation values. The 
four climates are Dry, Dry-Moderate, Moderate, and Wet. 
The Wet climate has the highest probability for a high pre-
cipitation year followed by the Moderate, Dry-Moderate, 
and Dry climates in that order.

Each climate is defined by a Markov chain that generates 
a weather realization and by extension an annual precipita-
tion value for each year. Table 1 shows the probability of an 
annual precipitation value for a given climate, which cor-
responds to the Markov chain’s stationary distribution.

Furthermore, each Markov chain generator can be run 
multiple times to represent numerous possible weather 
samples. Because of the stochastic nature of these Markov 
chains, samples for a given climate can have significantly 
different weather realizations. To ensure that the objective 
values for the solutions and any subsets provide tight con-
fidence intervals, we run 4000 samples for each solution 
and each subset represents between 200 and 2400 samples. 
Table 2 illustrates the distribution statistics of the climates 
for the Equally Probable solutions where each climate 
Markov chain is sampled 1000 times.

Table 1  Probability of a given 
value of annual precipitation in 
inches by climate

Climate 5 inches (%) 15 inches (%) 30 inches (%) 45 inches (%) 60 inches (%)

Dry 20 50 25 5 0
Dry-moderate 5 25 55 10 5
Moderate 20 20 20 20 20
Wet 0 5 20 45 30
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3.5  Estimators and estimation methods

To solve the stochastic problems listed in Sect. 3.2 with 
the climate probability distributions listed in Sect. 3.3 we 
apply the sample average approximation (SAA) method, a 
Monte Carlo simulation-based approach to solve discrete 
stochastic optimization problems (Kleywegt et al. 2006). 
Using this method, we sample the given probability distri-
butions to produce a set of the only uncertain quantity in 
the formulation, the parameter vector raini —a vector of 
raini,y values for 25 years. Then we use the generated sam-
ple vectors of raini to solve their own corresponding opti-
mization problems (one sample vector per optimization 
problem) as described in previous sections. Since, each 
stochastic program is a function of a set of decision vari-
ables and a set of parameters including the uncertain 
parameters rainiy , our estimator is the average value of the 
all the objective functions produced from its own sample 
vector of raini . The estimator, denoted by z� , estimates the 
true optimal solution for each solution type. This estima-
tion method produces a good estimator of the true optimal 
solution and tight error bounds as shown in the results. 
Furthermore, since the raini,y values are the only uncertain 
parameters and are given by an outside probability distri-
bution which cannot be influenced by any other parameters 
the assumption of exogeneity holds.

3.6  Technologies

To keep the model limited in size, the decision maker can 
only choose between two technologies for electricity and 
two technologies for water. The alternative water technol-
ogy is a reverse osmosis system which takes brackish water 
with a total dissolved solid (TDS) concentration up to 3.5 
g/L—which would include the majority of Texas brackish 
water resources (LBG-Guyton Associates 2003). The deci-
sion maker can also choose to irrigate via a groundwater 
source which requires electricity for the pumps as outlined 
in Table 3; however, the amount of groundwater available 
for use is limited to simulate water scarcity.

The alternative electricity technology is photovoltaic 
solar (solar PV), where the decision maker decides what 
size solar farm to invest in. The costs, as shown in Table 3, 
include installation, inverters, and other ancillary equip-
ment needed for a solar farm installation. And if the deci-
sion maker does not wish to invest in alternative electricity, 
the decision maker can simply choose to purchase electricity 
from the utility for a conservatively low price of $ 0.08/kWh.

We assume that the pumping system to retrieve and dis-
tribute water, brackish or fresh, already exists and that the 
irrigation system has negligible water losses. Effective pre-
cipitation can be significantly lower than actual precipitation 
and is a function of the evapotranspiration rate of the crop, 
the amount of precipitation and many other factors includ-
ing the genetic makeup of the crop (Masoner et al. 2000; 
Dastane 1978; Sharma et al. 2019). To simplify the model, 
we define the exogenously defined precipitation as effective 
precipitation or the amount of precipitation that is utilized 
by the crop for growth.

3.7  Performance and cost data

Table 3 reports the performance and cost assumptions for 
each technology and parameter in the model, including oper-
ational energy use. Equation 13 shows the quadratic crop 

Table 2  Annual precipitation distribution statistics by climate

Climate 1st quartile 
(inches)

Median 
(inches)

Mean (inches) 3rd 
quartile 
(inches)

Dry 15 15 18.3 30
Dry-moderate 15 30 27.93 30
Moderate 15 30 30.96 45
Wet 45 45 45.09 60

Table 3  Main performance and cost assumptions for technologies and a documentation of data sources

Technology/parameter Capital costs O&M costs Energy use Other Source

Utility electricity – $ 0.08/kWh – City of Austin (2019)
Solar $ 1500/kW – 0.30 capacity factor Fu et al. (2018)
Groundwater – $7/acre-in 1 kWh/kGal Amosson et al. (2019), New (2019)
Desalination $ 0.40/kGal 6.5 kWh/m3 LBG-Guyton Associates (2003),  Arroyo and 

Shirazi (2012), Garg and Joshi (2015)
Farm size 200 hectares Texas Department of Agriculture (2021)
Price of wheat $ 200/ton USDA Market News (2021)
Salt concentration water 1.0 dS/m Dinar et al. (1991)
Salt concentration soil 2.0 dS/m Dinar et al. (1991)
Irrigation water limit 0.5 acre-ft/acre/yr United States Department of Agriculture (2017)
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production for wheat from Dinar et al. (1991) to model crop 
growth in this model.

3.8  Software packages

We generate the random samples using the R programming 
language’s (version 4.1.1) Stats package (version 4.2.0). We 
build the optimization models using a Python (version 3.8.8) 
implementation of the Gurobi Modeling and Development 
Environment (version 9.1.2) and solve them with the Gurobi 
solver (version 9.1.2).

4  Results

In this section, we present, compare, and discuss results 
from our scenarios. We begin by examining the differences 
between the Stochastic (Stoch) solution and the expected 
objective values for the Perfect Information (PI), Expected 
Value (EV), and Known Climate Unknown Weather 
(KCUW) solutions. These comparisons allow us to calcu-
late the Expected Value of Perfect Information (EVPI), the 
Value of the Stochastic Solution (VSS), the Expected Value 
of Known Weather (EVKW), and the Expected Value of 
Known Climate (EWKC). Then we dive deeper by compar-
ing all the Known Climate Unknown Weather solutions to 
the investment decisions (which remain the same) and the 
operational decisions of the Stochastic solution for each cli-
mate. In this deeper dive we compare how the profit, crop 
yields, investment decisions, and operations of both water 
and electricity differ by climate for the Known Climate 
Unknown Weather and Stochastic solutions.

4.1  Expected objective values and summary 
statistics

Figure 1 shows the expected objective values for all solu-
tions and Table 4 shows the EVPI, VSS, EVKW, and EVKC. 
As expected, both climate probability distributions follow 
the general pattern zPI ≥ zKCUW ≥ zStochastic ≥ zEV and there 
is significant value in having perfect information.

However, the value of knowing the climate drives most 
of the EVPI while knowing the weather adds only a small 
amount of value. Furthermore, the Expected Value solutions 
provide virtually the same amount of value as the Stochastic 
solution despite the sophistication of the Stochastic solu-
tion. Although, because of the limited value in knowing the 

(13)
cyi,y ≤ −3.350 + 0.2064 ∗ waterTotal

i,y
− 0.0014 ∗ waterTotal

i,y
∗ waterTotal

i,y
+

−0.071 ∗ waterTotal
i,y

∗ scw + 0.033 ∗ waterTotal
i,y

∗ scs + 3.555 ∗ scw+

2.326 ∗ scw2
− 2.031 ∗ scs + 0.823 ∗ scs2 − 2.754 ∗ scw ∗ scc, ∀i ∈ I,∀y ∈ Y

weather compared to the climate, optimally hedging for the 
weather is expected to provide limited value.

Table 5 shows summary statistics for all solutions. While 
the standard deviations are relatively large for both profit and 
crop yield, the 95% confidence intervals for all scenarios, 
even the ones with only 200 samples, are extremely tight, 
implying that the expected profits approach the true means.

4.2  Profit comparisons: stochastic vs. known 
climate unknown weather solutions

After showing the expected objective values in the subsec-
tion above, in this subsection we compare the profits of all 
the Known Climate Unknown Weather solutions and calcu-
late the profits for each climate in the Stochastic solution by 
first calculating the profit for each weather realization in a 
given climate by adding the cost of the operation decisions 
of a weather realization to the fixed investment decisions 
costs and then averaging the profit of every weather realiza-
tion in a given climate. We show not just the differences but 
investigate the reasons for these differences in profit which 
include average yearly precipitation differences and yearly 
weather variability.

4.2.1  Drivers of profit variability

Figure 1—which shows the average profit via the bars and 
bar labels on the left y-axis—illustrates that as expected the 
Wet Climate Known Climate Unknown Weather scenarios 
produce the highest profits for both climate probability dis-
tributions (note in this section we are only comparing the 
Known Climate Unknown Weather and Stochastic solutions, 
the Known Climate Unknown Weather solutions still under-
perform the Perfect Information solutions). And in general, 
the average yearly precipitation—tracked for each scenario 
by a black square with its values corresponding to the right 
y-axis—was a reliable predictor of profit for most climates. 
Also as expected, the Dry climates were the least profitable; 
however, the Moderate climates have a lower average total 
profit than the Dry-Moderate climates.

These results add to the findings from the preceding sub-
section, where it was shown that there is value in knowing 
the weather for both climate probability distributions, that 
not just precipitation but the variability in precipitation mat-
ters when making investment decisions. Even if a certain 
climate has a higher maximum precipitation value which in 
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turn raises the yearly average precipitation value, a tighter 
range and/or a higher median which reduces variability can 
reduce investment cost. More variability could lead to more 
investment that is underutilized in wetter years or insuffi-
cient capacity—that needs to be supplemented or in some 
cases that simply does not provide the optimal amount of 
water—in leaner years. This will be explored in the follow-
ing subsections.

Fig. 1  The expected profits by 
climate probability distribution 
and solution
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Table 4  The Expected Value of Perfect Information (EVPI), Value 
of the Stochastic Solution (VSS), Expected Value of Known Weather 
(EVKW), and Expected Value of Known Climate (EVKC) by climate 
probability distribution

Climate prob-
ability

EVPI VSS EVKW EVKC

Equally probable $108,725.10 $0.49 $10,396.32 $98,328.78
Dry most likely $76,606.01 $940.90 $11,740.03 $64,865.98

Table 5  Summary statistics for the profit and crop yield (CY) of all the solutions (Perfect Information [PI], Stochastic [Stoch], Expected Value 
[EV], Known Climate Unknown Weather [KCUW]) by Climate Probability (Equally Probable [EP] and Dry Most Likely [DML])

Solution Profit mean Profit std dev Profit 95% CI ± CY yearly means CY std. dev. CY 95% CI ±

EP-PI 2,355,663 635,133 19,691 2.866 0.909 0.00564
EP-KCUW 2,345,267 640,497 19,857 2.835 0.964 0.00598
EP-Stoch 2,246,938 616,454 19,112 2.674 1.114 0.00690
EP-EV 2,246,937 616,518 19,114 2.674 1.114 0.00690
DML-PI 1,975,827 490,655 15,212 2.771 0.840 0.00521
DML-KCUW 1,964,087 489,987 15,191 2.757 0.866 0.00537
DML-Stoch 1,899,221 424,374 13,157 2.666 0.929 0.00576
DML-EV 1,898,280 408,033 12,650 2.713 0.895 0.00555
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4.2.2  Profit comparisons

Figure 2 shows the profits in the Stochastic solution for 
each climate, which all make the same investment decisions 
for a given climate probability distribution, all have profits 
less than or equal to their corresponding Known Climate 
Unknown Weather solution, which make different invest-
ment decisions depending on the climates.

Figure 2 shows that there can be a significant difference 
between the Stochastic solution for a given climate and its 
corresponding Known Climate Unknown Weather solu-
tion. Nonetheless, if the Stochastic solution’s investment 
decisions are close to its corresponding Known Climate 
Unknown Weather solution’s decisions, the profit gap will 
be minimal. However, if the investment decisions are signifi-
cantly different, this can lead to significantly lower profits. 
In the Dry Most Likely scenarios, that are shown in Fig. 2, 
the investor heavily weighs the probability of a Dry Climate. 
So, the difference between the Known Climate Unknown 
Weather and Stochastic Dry Climate solutions are minimal, 
but the differences between the Known Climate Unknown 
Weather and Stochastic profits for all other climates are 

significant. In other words, if the climate does not end up 
being Dry, the investment decisions made would be poorly 
aligned with any other climate realizations and come with 
significant costs. This will be explored in the following 
subsections.

4.3  Wheat yield comparisons: stochastic vs. known 
climate unknown weather solutions

Figure 3 shows that average annual wheat yields—illustrated 
with the bars and bar labels that correspond with the left y 
axis—do correlate with average total profit more so than 
average yearly precipitation. In this figure, we tracked aver-
age annual water depth, using the black triangles, instead of 
precipitation on the right y axis. This shows that increased 
average annual water depth does not necessarily lead to a 
proportional increase in crop yield. In the Known Climate 
Unknown Weather solutions the average yearly water depth 
for the Dry, Dry-Moderate, and Moderate climates are 
roughly the same but their wheat yields differ significantly.

These results suggest that there are a variety of factors 
that affect wheat yield. The most obvious factor is that the 

Fig. 2  Average total profit and 
average yearly precipitation: 
Stochastic vs. Known Climate 
Unknown Weather solutions by 
climate probability distribution
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wheat yield function is a quadratic production function 
where overwatering actually decreases yield. Furthermore, 
like for profit, the variability in weather and precipitation 
values can cause some years to have a high yield, while 
others have a significantly lower yield. And finally, the Dry 
solutions are able to better tailor their optimal water use 
because most years the amount of water they receive via 
precipitation is below their optimal water level and they can 
use alternative water technologies to reach but not exceed 
those optimal water levels. These factors will be explored in 
the following subsections.

4.4  Reverse osmosis capacity and solar PV 
investment decisions: stochastic vs. known 
climate unknown weather solutions

In this subsection, we investigate how reverse osmosis 
capacity and solar PV capacity investment decisions differ 
across solutions. We look into why a given solution invests 
in a specific amount of reverse osmosis capacity and/or 
solar PV capacity and investigate potential causes for the 

variations including average yearly precipitation values and 
yearly weather variability.

Figures 4 and 5 show that the Dry climate Known Cli-
mate Unknown Weather solutions invest the most in reverse 
osmosis capacity and solar PV capacity to make up for their 
shortcomings in precipitation. On the other hand, the Wet 
climate Known Climate Unknown Weather solutions do not 
invest at all in either because of their surplus of precipita-
tion. Nonetheless, the moderate climates do not show a cor-
relation between more precipitation and more investment.

This further highlights how weather variability among 
climates—more so than the average precipitation—drives 
investment decisions and can create inefficiencies in 
investments that drive up costs. The Moderate climate 
solutions invest in more reverse osmosis capacity than the 
Dry-Moderate climate scenarios because the model wants 
to ensure access to water in the dryer years. However, it 
invests in less solar PV capacity than the Dry-Moderate 
climate solutions because most years it does not need as 
much reverse osmosis capacity and by extension solar 
PV capacity due to higher rainfall in certain years and in 
the dryer years it can use utility electricity to meet any 

Fig. 3  Average annual wheat 
yields and water depth: 
Stochastic vs. Known Climate 
Unknown Weather solutions by 
climate probability distribution
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additional electricity demand. These conflicting invest-
ment decisions drive year-to-year inefficiencies that affect 
profit.

While the Known Climate Unknown Weather solutions 
are able to make different investment decisions based on 
the climate, the Stochastic and Expected Value solutions 
are only able to make a single set of investment deci-
sions for all possible climate and weather realizations. 
Furthermore, the Stochastic solution makes an opti-
mal decision by optimally hedging against all possible 
weather outcomes (which is simulated by 4000 possible 
weather outcomes), but the Expected Value scenario only 
optimizes its decision based on a single expected value 
weather realization. For the Dry Most Likely Expected 
Value solution this leads to a slightly different decision 
than the corresponding Stochastic solution which results 
in a small Value of the Stochastic Solution as shown in 
Table 4, but for the Equally Probable climate probability 
distribution the Expected Value and Stochastic solution 
investment decisions and by extension expected profits are 
virtually identical.

4.5  Water operations: stochastic vs. known climate 
unknown weather solutions

In this subsection, we investigate how the reverse osmo-
sis capacity investment decisions affect water operations 
across scenarios. We look into why a given scenario 
invests in a specific amount of reverse osmosis capac-
ity, how that affects operations, and investigate potential 
causes for the variations, including relationships between 
alternative water and groundwater use.

Figure 6 shows that the relatively moderate invest-
ment in reverse osmosis capacity by the Equally Probable 
Stochastic solutions results in less water capacity than is 
optimal for the Dry climate solutions, even with increased 
groundwater use. This results in less water being available 
for the crops and a subsequent reduction in crop yield and 
profit compared to the Known Climate Unknown Weather 
solution as shown in Figs. 2 and 3. However, for the Dry-
Moderate and Moderate climates, the investment and as a 
result the operations are nearly identical.

Fig. 4  Reverse osmosis capacity 
investment decisions: Stochastic 
vs. Known Climate Unknown 
Weather solutions by climate 
probability distribution
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On the other hand, Fig. 6 shows the large investments 
in reverse osmosis capacity by the Dry Most Likely Sto-
chastic solution results in more reverse osmosis capacity 
than is optimal for all the climates, save the Dry climate. 
This results in an oversupply of relatively expensive reverse 
osmosis capacity. The increasing usage of reverse osmosis 
water even though it leads to an increase in crop yield as 
shown in Fig. 3 leads to a decrease in profit because of the 
extra expense as shown in Fig. 2.

4.6  Electricity operations

In this subsection, we investigate how the solar PV capac-
ity investment decisions affect electricity operations across 
scenarios. We look into why a given scenario invests in a 
specific amount of solar PV capacity, how that affects oper-
ations, and investigate potential causes for the variations 
including variations in water use.

In general, solar PV capacity investments match reverse 
osmosis capacity investments and solar PV electricity use 

matches reverse osmosis water use. However, there are 
solutions where the investments in solar PV do not align 
with the optimal amounts of solar PV electricity. Figure 7 
clearly illustrates that the solar PV electricity used in the 
Dry climate Equally Probable Stochastic solution is much 
less than in the corresponding Known Climate Unknown 
Weather solution. However, rather than increase its utility 
electricity use to fill in any gaps, it simply uses less water 
than what is optimal. The decrease in water used—because 
of the groundwater limits and the reduced investment in 
reverse osmosis capacity—is the most significant factor in 
the reduction of electricity use. This implies that reverse 
osmosis water use is the main driver for electricity use.

This is further emphasized in Fig. 7 where excess elec-
tricity does not lead to higher water usage in the Dry Most 
Likely solutions. While the investments in solar PV capac-
ity do crowd out utility electricity, they do not encourage 
greater use of reverse osmosis water. This further supports 
the implication that reverse osmosis water use drives solar 
PV capacity investment.

Fig. 5  Solar PV capacity 
investment decisions: Stochastic 
vs. Known Climate Unknown 
Weather solutions by climate 
probability distribution
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4.7  Summary statistics: stochastic vs. known 
climate unknown weather solutions

The profit and wheat crop yields reported in Figs. 2 and 
3 are average values and as such represent a range of val-
ues. In order for these mean values to have significance, we 
calculated the 95% confidence intervals to ensure that our 
calculated mean values were indeed close to the true mean. 
The confidence intervals for profit and crop yield for all sce-
narios are extremely tight (less than ± $0.03 MM for profit 
and less than ± 0.027 tons for crop yield) and show that the 
calculated means are very close to the true mean.

The standard deviations, on the other hand, encompass 
a much wider range of values and depend on the climate 
and climate probability distribution. A climate with a skew 

to certain weather realizations, like the Wet and Dry cli-
mates, has a smaller standard deviation than the Moderate 
climate where all weather realizations are equally likely. 
This reinforces the reasoning that variation in weather 
realizations heavily influences profit even more than aver-
age precipitation.

Note, while the Equally Probable solutions’ climates 
all had 1000 samples, the Dry Most Likely scenarios’ cli-
mates’ samples ranged from 200 samples to 2400 samples, 
which affects both the standard deviation and confidence 
intervals. However, this does not result in major differ-
ences and all the general trends mentioned above still hold. 
All the means, standard deviations, and 95% confidence 
interval statistics are shown in Tables 6 and 7.
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Fig. 6  Annual water operations: : Stochastic vs. Known Climate Unknown Weather solutions by climate probability distribution
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Fig. 7  Annual electricity operations: : Stochastic vs. Known Climate Unknown Weather solutions by climate probability distribution

Table 6  Equally Probable climate probability distribution: summary statistics for the profit and crop yield (CY) of the Stochastic (Stoch) and 
Known Climate Unknown Weather (KCUW) solutions by climate (Dry [DC], Dry-Moderate [DMC], Moderate [MC], Wet [WC])

EP scenario Profit mean Profit std dev Profit 95% CI ± CY yearly means CY std. dev. CY 95% CI ±

DC-KCUW 1,652,488 170,907 10,611 2.726 0.762 0.00944
DC-Stoch 1,486,498 253,577 15,744 2.024 1.146 0.01421
DMC-KCUW 2,416,584 206,384 12,813 2.824 0.865 0.01072
DMC-Stoch 2,416,521 206,139 12,798 2.830 0.867 0.01075
MC-KCUW 2,025,712 291,547 18,101 2.464 1.344 0.01667
MC-Stoch 2,024,500 297,946 18,498 2.462 1.343 0.01665
WC-KCUW 3,286,282 106,040 6,584 3.327 0.439 0.00544
WC-Stoch 3,060,232 79,790 4,954 3.381 0.318 0.00394
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5  Conclusions

In this model, there are two main uncertainties that the 
farm decision maker must consider: the future climate and 
the year-to-year precipitation amounts within that climate. 
These uncertainties affect a decision maker’s investment 
decisions which in turn affect the operations of the farm, 
followed by the crop yield and finally the profit.

The climate uncertainty is the biggest factor affecting 
profit as illustrated by the relatively large difference between 
the Stochastic and Known Climate Unknown Weather solu-
tions, but the much smaller difference between the expected 
value of the Known Climate Unknown Weather and Perfect 
Information solutions. More conservative investment deci-
sions can balance this downside risk and even increase the 
upside if more moderate climates are realized, as shown in 
the Equally Probable solutions. However, if the climate will 
actually be at one of the extremes, then more aggressively 
hedging toward that climate will provide a higher profit than 
a more conservative investment as shown by the Dry Most 
Likely solutions.

Nonetheless, optimally hedging seems to provide limited 
benefit compared to simply preparing for the average pos-
sible climate. The Stochastic solution’s investment decisions 
and the Expected Value solution’s investment decisions are 
nearly identical for the Equally Probable climate probability 
distribution. For the Dry Most Likely climate probability 
distribution, there is only a slight difference between the Sto-
chastic and Expected Value solutions’ investment decisions. 
Nonetheless, this reflects that the defined climate probability 
distributions are relatively moderate where the average cli-
mate and by extension precipitation values are close to the 
given Moderate and Dry-Moderate climates. Climate prob-
ability distributions where the average never occurs, like a 
50% chance of a Wet Climate and a 50% chance of a Dry 
Climate, would likely increase the Value of the Stochastic 
Solution.

While climate uncertainty is the biggest factor affect-
ing profit, the year-to-year weather variability for a given 

climate can also cause significant swings in crop yield and, 
therefore, profit. In fact, the differences in profit between 
the Perfect Information solutions, where the climate and 
the weather are known, and the Known Climate Unknown 
Weather solutions, where the climate is known but the 
weather is uncertain, are larger than the Values of the Sto-
chastic solutions.

The swings in precipitation from year to year can cor-
rode overall profits by having a reverse osmosis capacity 
and/or solar PV capacity investment be undersized one year 
and oversized another. The extra costs incurred because of 
the mismatch between invested capacity and the year-to-
year optimal capacities—even when the invested capacity 
matches the yearly average optimal capacity—add up. This 
explains why the Moderate climate scenarios are less profit-
able than the Dry-Moderate climate scenarios, even though 
the Moderate climate has a higher average yearly precipita-
tion value.

While both of these uncertainties are outside of the 
farmer’s control, especially with regard to the weather vari-
ations for a given climate, understanding how a decision 
maker’s investments and by extension their profits could be 
affected by these uncertainties is important. For instance, a 
more risk-taking operator might be more willing to heavily 
weigh a specific climate to maximize upside than a more 
risk-averse operator. This model allows an operator to exam-
ine how climate probability distributions affect profit for a 
variety of climate realizations not just based on what he 
believes the climate will be, but on a representative sample 
of climate possibilities in order to provide the operator with 
a fuller picture on how investment decisions in the present 
could affect profits in the future.

5.1  Limitations

This model provides a general framework for farm invest-
ment and operational decisions, but does not answer detailed 
questions about water schedules or even solar production. 
It abstracts many of the day-to-day operational decisions in 

Table 7  Dry Most Likely climate probability distribution: summary statistics for the profit and crop yield (CY) of the Stochastic (Stoch) and 
Known Climate Unknown Weather (KCUW) solutions by climate (Dry [DC], Dry-Moderate [DMC], Moderate [MC], Wet [WC])

DML Scenario Profit Mean Profit Std Dev Profit 95% CI ± CY Yearly Means CY Std. Dev. CY 95% CI ±

DC-KCUW 1,648,352 170,789 6,838 2.724 0.765 0.00612
DC-Stoch 1,616,243 206,780 8,279 2.425 0.941 0.00753
DMC-KCUW 2,430,358 196,029 12,171 2.836 0.847 0.01050
DMC-Stoch 2,361,189 153,639 9,539 3.066 0.664 0.00824
MC-KCUW 2,026,811 301,300 29,654 2.464 1.354 0.02654
MC-Stoch 1,994,689 244,732 24,086 2.725 1.074 0.02106
WC-KCUW 3,296,111 110,519 15,449 3.335 0.427 0.01184
WC-Stoch 2,794,189 59,309 8,291 3.434 0.209 0.00581
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exchange for a big picture year-by-year framework which 
could significantly affect profit and yield. Other works 
in this area of research have done the opposite and have 
added more detailed information and have added more sec-
tors like energy, climate, and water treatment to the basic 
crop yield model to provide even more accurate insights. 
We believe our simpler model allows for more insights on 
a larger variety of scenarios; however, we concede that it 
sacrifices accuracy. Future works could add more day-to-day 
or sector-specific detail to allow for more accurate insights 
while balancing the ability for our framework to investigate 
a large number of scenarios quickly.

5.2  Future directions

This model, in the most general sense, is a stochastic frame-
work to help a decision maker deal with climate risk and 
resource uncertainty. In this study, we investigated how 
climate uncertainty and water scarcity would affect a farm 
decision maker’s investment and operational decisions to 
deal with those problems. However, any sector that has to 
deal with climate uncertainty and resource constraints could 
benefit from this framework. In the future, this modeling 
framework could be used to investigate heating and cool-
ing demand and the generation resources needed to meet it, 
urban food and water demand, energy generation investment 
decisions, and optimal electricity distribution networks.
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