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Linear Pooling of Sample Covariance Matrices

Elias Raninen

Abstract—We consider the problem of estimating high-
dimensional covariance matrices of K -populations or classes in
the setting where the sample sizes are comparable to the data
dimension. We propose estimating each class covariance matrix as a
distinct linear combination of all class sample covariance matrices.
This approach is shown to reduce the estimation error when the
sample sizes are limited, and the true class covariance matrices
share a somewhat similar structure. We develop an effective method
for estimating the coefficients in the linear combination that min-
imize the mean squared error under the general assumption that
the samples are drawn from (unspecified) elliptically symmetric
distributions possessing finite fourth-order moments. To this end,
we utilize the spatial sign covariance matrix, which we show (under
rather general conditions) to be an asymptotically unbiased esti-
mator of the normalized covariance matrix as the dimension grows
to infinity. We also show how the proposed method can be used in
choosing the regularization parameters for multiple target matrices
in a single class covariance matrix estimation problem. We assess
the proposed method via numerical simulation studies including
an application in global minimum variance portfolio optimization
using real stock data.

Index Terms—Covariance matrix, elliptical distribution, high-
dimensional, multiclass, regularization, shrinkage, spatial sign
covariance matrix.

I. INTRODUCTION

IGH-DIMENSIONAL covariance matrix estimation is
H a challenging problem as the dimension p of the ob-
servations can be much larger than the sample size n. Such
problems are increasingly common, for example, in finance [1],
genomics [2], graphical models [3], chemometrics [4], wireless
sensor networks [5], and adaptive filtering in array signal pro-
cessing [6]. This paper considers a high-dimensional problem,
where there are K distinct classes (populations). Since the
population variables are in general the same, but are measured
under different population conditions, it is reasonable to pre-
sume the K distinct covariance matrices share some common
features or structure. In the small sample size setting, it is then
advantageous to leverage on this presumption in the estimation
of the population covariance matrices.
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Consider K mutually independent classes, where each
class k€ {l,...,K} consists of independent and identi-
cally distributed (i.i.d.) p-dimensional observations X} =
{X1,ks- -+ Xn, k} of size ny, with mean p;, = E[x; x| and pos-
itive definite symmetric covariance matrix

S =E[(xin — )Xok — p) '] ey

The ordinary estimators for the covariance matrix and the
mean are the sample covariance matrix (SCM)

Nk

Z(Xi,k — Xp) (%o — i) | ()
i=1

and the sample mean X5, = ﬁ > ik, X . When the sample size
ny and the data dimensionality p are comparable in size, the
SCM can be highly variable, resulting in an unstable estimate
of the population covariance matrix. Also, the SCM is positive
definite only if n;, > p and &}, spans R”. Due to these problems,
a commonly used approach in high-dimensional covariance
matrix estimation is to use regularization (shrinkage).

In the one population case (X = 1), linear regularization usu-
ally refers to estimating the covariance matrix by a linear or con-
vex combination of the SCM (or some other primary estimator)
and a (usually positive definite) target matrix. Multiple examples
can be found in finance [1], [7]-[9], genomics [2], and signal
processing [10]-[15]. The target matrix is chosen based on prior
knowledge or assumptions about the true population covariance
matrix. Sometimes using more than one target matrix can further
reduce the estimation error. In the double shrinkage approach
of [16] and [17] there are two convex regularization steps: the
SCM is first regularized toward a diagonal matrix consisting
of the sample variances after which the resulting estimator is
further regularized toward a scaled identity matrix. Recently,
also multi-target shrinkage methods have been proposed that
are able to incorporate a larger number of simultaneous target
matrices [18]-[23].

In the multiple population setting, regularization via pooling
the information in the different class samples is also possi-
ble. For example, [24] considered covariance matrix estimation
from two independent data sets, whose covariance matrices
are different but close to each other. This type of problems
are encountered in radar processing as well as in hyperspec-
tral imaging applications, where additional data sets may have
been acquired with slightly different measurement configura-
tions [24]. In the context of wireless sensor networks, [25] con-
sidered linear parameter estimation from independent and non-
identically distributed scalar sample statistics. In discriminant
analysis classification, the pooled SCM, Sp01 = % Zle nESk,

1
ng — 1

Sk =

n=>y 5:1 ng, is often used as a shrinkage target and the class
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covariance matrices are estimated via a convex combination
3. = aSk + (1 — a)Spoo1, Where a € [0, 1]. This was studied in
a Bayesian framework in [26] and [27], and in the Regularized
Discriminant Analysis (RDA) framework in [28]. Furthermore,
the optimal tuning parameter for this setting under elliptically
distributed data was derived in our earlier work [29], [30]. For
applications using RDA see, e.g., [31], [32]

As noted previously, at least some of the K population co-
variance matrices can be similar (close to each other in terms
of suitable distance metric) and so it would be beneficial to use
regularization to reduce the variance of the final estimates of the
covariance matrices. Following this idea, we propose to estimate
each class covariance matrix as a nonnegative linear combination
of the SCMs of all classes. For a > 0, define

K
S(a) = ZaZSz (3)
=1

Restricting the coefficients to be nonnegative ensures that
the estimator (3) is positive semidefinite. The aim is to
find a K x K nonnegative coefficient matrix A = (a;;) =

(a; -+ ax ) > 0, that minimizes the total mean squared error
(MSE),
K
A* =argmin Y E[||S(a) — Zk|7] 4
AZ0 oy

& ap = argir(l)in E[IS(a) — =lif], k=1,...,K, (5

with the estimate of 3, then taken to be 3, = S(aj). The
equivalence of (4) and (5) is evident from the fact that the
optimization problems for each class are separable. The solution
to this problem s given in Section II. Itis easy to see that the RDA
based estimators form a subset of the more general form (3),
which permits using individual weights for each SCM in the
sum.
Below we summarize the main contributions of the paper.
® We propose covariance matrix estimators for multiclass
problems, based on linearly pooling the class SCMs. Sev-
eral aspects and properties of the estimator are discussed
including possible modifications and an extension for
complex-valued data.
® We show how the optimal linear coefficients can be esti-
mated by assuming that the data is elliptically distributed.
To this end, we use the spatial sign covariance matrix
(SSCM), which we show under rather general assumptions
to be asymptotically unbiased with respect to growing
dimension.
® We show how the estimator can be used as a multi-target
shrinkage estimator in a single class problem.
¢ Numerical simulations are conducted including a portfolio
optimization problem using real stock data. The simula-
tions show promising performance of the proposed esti-
mator compared to competing estimators.
e Code is available at https://github.com/EliasRaninen,
which works both for real and complex-valued data sets.
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The rest of the paper is organized as follows. In Section II, we
derive the optimal coefficients for the linear pooling estimator
and study some of its properties. In Section III, we propose
methods for estimating the statistical parameters needed for
the estimation of the optimal coefficients. This section also
presents the results regarding the SSCM. In Section IV, we
discuss possible extensions and modifications to the estima-
tor. In Section V, we discuss the similarities and differences
between the proposed method and closely related multi-target
shrinkage covariance matrix estimation methods. Furthermore,
we show how our proposed method can be used as a multi-target
shrinkage covariance matrix estimator in a single class problem
with arbitrary positive semidefinite target matrices. Section VI
provides numerical simulation studies and Section VII provides
an application to investment portfolio selection using historical
stock data. Lastly, Section VIII concludes.

Notation: Matrices are denoted by upper case boldface letters
(A or A), vectors are denoted by lower case boldface letters (a
or ), and scalars are denoted by lower case letters (a or ). For
a matrix A = (a;;), the notation A > 0 means that the matrix
is nonnegative, that is, a;; > 0, for all 7 and j. Similarly, for a
vector a = (a;) the notation a > 0 means that a; > 0, for all .
The notation A > 0 (A > 0) means that A is positive definite
(positive semidefinite). The notation diag(a) denotes a diagonal
matrix with the entries of a on the main diagonal. The identity
matrix is denoted by I and the vector of all ones is denoted by
1. The notation e; denotes the ith Euclidean basis vector, i.e.,
a vector whose ¢th coordinate is 1 and all other coordinates are
0. For real sequences a,, and b, as p — oo, the notation a,, =
o(bp) means that the sequence a,, /b, — 0, and the notation a,, =
O(b,,) means that the sequence a,, /b, is bounded. For a matrix-
valued sequence A, we write A, = o(b,) and A, = O(b,,) if
and only if [|A,||r = o(bp) and ||A,|lr = O(b,), respectively.
The Frobenius normis defined as || A || = /tr(ATA) while || -
|| denotes the Euclidean norm for vectors. The largest eigenvalue
of A is Apax(A). The determinant of A is denoted by |A.

II. LINEAR POOLING OF SCMS

In this section, we address solving for the coefficients of the
linear combination of SCMs in (3). First, define the scaled MSE
of the SCM S, as

8 = p 'MSE(Sy) = p  E[[|Sk — Zi[3]
and the scaled inner products of the covariance matrices as
Cij = p71 tr(EiEj),
where p is the dimension of the data. Then define
A = diag(dy,...,0x) and C = <c1 . -CK) = (cij).

We can then state the following result.

Theorem 1: (The MSE of the linearly pooled estimator) For
class k, the MSE in (5) can be written as the strictly convex
quadratic function

p(a’ (A +C)a—2c)a+ cr),

where A + C is a positive definite symmetric matrix.
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Proof: See Appendix A. O

As a consequence of Theorem 1, the optimal coefficients can
be computed in the following way.

Proposition 1: (Optimal nonnegative coefficients) The solu-
tion to (3), aj;, is found by solving the strictly convex quadratic
programming (QP) problem

minimize 1a” (A + C)a—c]a

subject to a > 0. ©)

Proof: Follows from Theorem 1. O

Many efficient algorithms exist for solving constrained con-
vex QPs [33]." The optimization problem (6) requires knowl-
edge of the matrices C and A, which depend on the unknown
population parameters. We can nonetheless estimate the solution
by using estimates C and A, which can be computed from the
data as explained in Section III.

It is instructive to consider an unconstrained version of the
optimization problem (6), where the weights are allowed to take
negative values. For this case, we have the following closed form
solution.

Proposition 2: (Optimal unconstrained coefficients) The un-
constrained solution, which minimizes the MSE in (4) is

ai=(A+C) e, e A*=(A+0)'C. @)

Proof: Follows from Theorem 1. O

Note that if the closed form solution a; > 0 in (7), then it is
also the solution to (6).

Consider the single class case, for which the problem reduces
to finding an optimal scaling parameter a; such that E[||a;S; —
3, ||3] is minimized. Proposition 2 above then states that the
optimal parameter that minimizes the MSE is

C11 o 1
01+ c11 B NMSE(Sl) +1

where NMSE(S;) = MSE(S1)/[|21]|% is referred to as the
normalized MSE (NMSE). It can easily be shown that
MSE(a7S1) = afMSE(S;) < MSE(S;) since ay < 1. There-
fore, the (oracle) estimator s = a7S1 is always more effi-
cient than S;. For the univariate normal case, one obtains
ay = (n1 — 1)/(n1 + 1). This result was first obtained in [35].
A corresponding result for the general (non-normal) univari-
ate case was obtained in [36], and it can be written as aj =
((n1 +1)/(n1 — 1) + 3K1/n1)", where 1 is the symmetric
kurtosis of the population (see (11)).

Consider next the special case when all population covariance
matrices are equal, i.e., 31 =--- = X = 3. In this case,
C =c11" with ¢ = tr(X?)/p. Using the Sherman-Morrison
formula, (A +c117)' = A~ — uA'11T A, where 1 =
¢/(1+ 1" A1), we obtain the solution (7) as

A*=pAt11T,

* _
a] =

Hence, all columns of A* coincide, and the coefficients in each
column are a}; = 11/d;. These coefficients can be written in an

!In [34] it was shown that using the ellipsoidal method, the strictly convex QP
can be solved in polynomial time. In the simulations, we use the MATLAB func-
tion quadprog, which uses an interior-point method.
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equivalent form
NMSE(SJ ) -1
1+ 5K NMSE(S;)!

Thus, the weights are positive and proportional to the inverses
of the NMSE of the SCMs. If S; has a large NMSE relative
to others, which occurs for example when the sample size n;
is small relative to others, then the weight a7, assigned for S;
is small. This implies that the contribution of S; in the linear
combination S(aj ) is small.

If one further assumes that all populations have the same dis-
tribution and the sample sizes are equal, thend; = -+ - = dx =0
and

*
ajk =

1 1
* = o= < —
¢ =%k T NMSE(S,) + K K
That is, the pooled SCM is shrunk by the factor Ka* < 1.
Due to the positivity of the coefficients, the conclusions of
these special cases naturally also hold for the constrained case,
where the coefficients are constrained to be nonnegative.

i, k.

III. ESTIMATION

In this section, we address the estimation of A and C. We
review elliptically symmetric distributions, introduce the rele-
vant statistical parameters as well as show how to estimate them.
Regarding an estimate for the sphericity parameter, we use the
SSCM for which we then prove an asymptotic unbiasedness
result in Theorem 2.

A. Elliptically Symmetric Distributions

We will assume that the samples are generated from unspeci-
fied elliptically symmetric distributions with finite fourth-order
moments. That is, an absolutely continuous random vector
x € RP from the kth population is assumed to have a density
function up to a constant of the form

[l 2 g0 ((x = p) "2 (x = ),

where gi, : R>9 — R is called the density generator [37].
Here, we let g to be defined so that 3, represents the covari-
ance matrix of x, which means that C;.! [ /% g, (t)dt =
where Cj, = [° t7/% " 1g;,(t)dt. We write x ~ &, (py, T, i)
to denote this case. For example, the multivariate normal (MVN)
distribution is a particular instance of the elliptical distribu-
tion for which gy (t) = exp(—t/2). We write x ~ N, (p,, X
to denote this case. An elliptically distributed random vector
x ~ Ep(y, L, gi) can be expressed by the stochastic repre-
sentation as

x =y + 1.2 ", (8)

where 7, is arandom variable called the modular variate, verify-
ing E[r?] = p, and u is arandom vector distributed uniformly on
the unit sphere, i.e., u € {z € R? : ||z|| = 1}. Furthermore, u
and rj, are independent. More generally, we note that any random
vector x which satisfies (8) is said to have an elliptical distribu-
tion, even if it is not absolutely continuous, i.e., does not have a
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density. The relationship between the modular variate 7, and x
is readily seen from (8) to be 77 = (x — p;,) "=, 1 (x — py).

Sometimes we are only interested in the covariance matrix up
to a scaling constant. Hence, we define the shape matrix:

3
tI‘(E k) ’
which verifies tr(Ay) = p. Additionally, we define three statis-

tical parameters that describe the elliptical distribution. First, we
define the scale:

Ap,=0p

e = tr(2k)/p, €))

which is equal to the mean of the eigenvalues of 3. Note that,
¥ = Mk Aj. Second, we define the sphericity:

pir(Z}) _ tr(AD)

tr(Xy)? p
which equals the ratio of the mean of the squared eigenvalues
relative to the mean of the eigenvalues squared. The sphericity
parameter gets values in the range [1, p] and attains its minimum

for the scaled identity matrix and its maximum for a rank one
matrix. Third, we define the elliptical kurtosis:

JECEIEN]

1
= ghona) = 5 (o r

where x; denotes any marginal variable of x = (z;) ~
Ep(Mys X, gr) and p; = Efx;]. For example, if the sample is
from a MVN distribution, then x;, = 0. The kurtosis parameter
also satisfies xj = E[r}]/(p(p + 2)) — 1, and hence, not only
does ry, represent the kurtosis of each of the variables x;, but it
also represents the kurtosis of any univariate linear combination
b'x, where b € R? \ {0}. The lower bound for the kurtosis
parameter is k'8 = —2/(p + 2) [38].

For elliptical populations, the scaled MSE ¢;, of the SCM
obtains an explicit form [9, Lemma 1]:

1 K Kk
Sk = i (( — )(p%—%)%-nk%),

which depends on the known sample size nj as well as the
unknown scale 7 (9), the unknown sphericity v (10), and the
unknown elliptical kurtosis xy (11).

Ve = (10)

Y

(12)

B. Estimates of the Scale and the Elliptical Kurtosis
We estimate the scale using the SCM via
Mk = tr(Sk)/p.

The kurtosis &y, is estimated via the (bias-corrected) average
sample kurtosis of the marginal variables,

(13)

N
fr = - ((ng +1)g2 + 6),

3
zp: nlk ity (Tije —
J=1 (Fk Sty (@i — jj,k)Q)

- nk—l
(e —2)(nk = 3)°

(14)

Zjn)*

2_37
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— _ 1 n
where Z; ), = = > 1)
we set &, = 0.99x"B. Note that, although £, is invariant under
affine transformations of x, the estimator <, in (14) is not. An

alternative estimator of rj, that is affine equivariant is

zij x [39]. In case (14) is less than x'B

2

1 [Grie — %) TS (i —Xi)]”
ng Z p(p + 2)

This estimator requires n; > p, and hence we use k.

K =
i=1

C. Estimate of the Sphericity Using the SSCM

Regarding the sphericity, it would be natural to develop an
estimator using the SCM as well. However, a simple and par-
ticularly well performing estimator of the sphericity is based on
the robust spatial sign covariance matrix (SSCM) (16) and it
has been used, e.g., in [40]-[42], and [9]. Particularly, in [9],
both a SCM and a SSCM based estimator of the sphericity was
compared and, except for the case where the samples were MVN,
the simulations suggested the superiority of the SSCM based
sphericity estimator. Before introducing the estimator for the
sphericity, we will discuss the properties of the SSCM.

For x ~ &,(u, X, g), we define the population SSCM as

(x—p)(x—p)"
[[x — pl|?

Sy = E , (15)

and since tr(Xg,,) = 1, its corresponding shape matrix is given
by Asgn = pzsgm

It is known that A, and A have the same eigenvectors as
well as the multiplicities and the orders of the eigenvalues, but
the eigenvalues themselves are different [43]. The sample SSCM
of the kth population and its corresponding shape estimator are
defined as

1 i (Xi ke — pogp) (Xi &

Ssgn,k -
ng % — tp

*Hk)T

||2 and Ak = pSsgn,kv

i=1

(16)
where the mean fi, is replaced with the sample spatial me-
dian [44], f1;, = arg min , > %, ||x;  — m]||, when it is un-
known. When the mean is known E[Ak] Agen ., and Ay is
distribution-free over the class of elliptical distributions. The
latter statement can be proved by writing (16) in terms of the
stochastic representation (8) and observing that the modular
variate r; cancels out in each summand.

Since the eigenvalues of Ay, and A are different, Ak is
biased [45]. Surprisingly, as shown in Theorem 2 below, this
bias becomes more negligible in higher dimensions provided
the sequence of covariance matrix structures being considered
with increasing p satisfies

v = o(p) as p — oc. (17

Theorem 2: Letx ~ &E,(p, X, g). Then,
A = A+0(y).

Furthermore, if (17) holds, then Agy = A + o(||Al|r).
Proof: See Appendix B. |
The central condition (17) holds for many common sequences
of covariance models, as shown in Proposition 3 below. We
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first present, in the following lemma, a simple general condition
under which (17) holds. This lemma is seen to hold in particular
for the case when the eigenvalues of A are bounded as p — oco.

Lemma 1: If A is a shape matrix for which Apax(A) =
O(p™/?), where T < 1, as p — o0, then (17) holds.

Proof: See Appendix C. O

Proposition 3: The following sequences, in p, of covariance
models satisfy (17).

o First order autoregressive (AR(1)) covariance matrices:

(2);; = 020l"771, where |o| < 1and o > 0 are both fixed,
i.e., they do not depend on the dimension p.

e [-banded Toeplitz covariance matrices: (X);; = o2l
for | —j] <1 and (3);; =0 otherwise, where || <
—(2cos(pm/(p+1))~! and 0 > 0 are both fixed.

e Spiked covariance matrices: 3 = 3, + al, where
3. is positive semidefinite with rank r <p and
(r/p)[Amax (Br) /a]? = o(p). Here, a, r, and A\pax(Z,)
may vary with p.

However, for the compound symmetric (CS) covariance matrix
(£);; = %0, for i # j and (£);; = o2, where g € (—(p —
1)71,1) and 02 > 0 are both fixed, one obtains v = O(p).

Proof: See Appendix C. 0

The restrictions on p for the covariance models in Proposi-
tion 3 are needed to ensure that X is positive definite.

Let us illustrate this result in the case that 3 has an AR(1)
covariance structure. In this case v — (1 + 0%)/(1 — 0?) (see
Appendix C-A). For 9 = 0.5, v — 5/3 = O(1). From Theo-
rem 2, we then have that the relative error || A" Asgn — Allr
is of the order O(v/||Allr) = O(v/7/p) = O(p~*/?).

We also have the following proposition about the normalized
mean squared distance between A and a scaled SCM.

Proposition 4: Let X = (x;) ~N,(0,X) and assume
that (17) holds. Then,

E[IA - Ascul?]

P 2
[ All% n’
where Asem =712 37 x;x; and n = tr(X)/p, so that
E[ASCM] = A.
Proof: See Appendix D. O

We may now focus on the sphericity estimator in (20). It can
be shown by straightforward calculation (see Appendix D) that
~2 ~
Eftr(A — 1tr(E[A]?
p n n D

If (17) holds, then by Theorem 2, one has that

tr(E[A]?)/p — v as p — oo. (19)

By (18) and (19), a natural estimator for the sphericity of the kth
class is then

<2

L ng (tr(Ak) P )

=—-|——""-—1-
ng —1 P T

In a high-dimensional setting, using the spatial median f

in (16) results in nonnegligible error in the sphericity estimate.

This was shown in [40], which considered SSCM based hy-
pothesis testing of sphericity of the covariance matrix (i.e.,

(20)
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Hj : 3 x I), and where they used a similar sphericity statistic
as in (20). They also proposed a method for estimating and
correcting for this error. Hence, we use the corrected estimator
of the sphericity [40]:

Y& = Y — pdk, (21
where
) 2
dp=—-|2- 2Q§,k + C%,k
Ny, a4y a4y g
) 2
P (s g () st
g a1k a7 i ai i a1 i

and g, = (1/ng) D08 |1%ik — fei]| ™. When computa-
tional simplicity is desired, it is also possible to use dj ~
n,;Q + 2n23, which is often a good approximation (see [40]).

D. Final Estimates

The inner products ¢;; = p~* tr(X;%;), for i # j, of the
matrix C are also estimated using SSCMs. In this case, however,
no error correction due to using the spatial median is needed
(see [41]). The estimates for C and A are thus C = (¢;;) and

A = diag(dy, . ..,0x), where

; ?M%Amm&»m,EM¢x

Y fori = j,

(22)

and 51@ is obtained from (12) via 7, (13), A%, (14), and 75 (21).

IV. EXTENSIONS AND MODIFICATIONS

In this section, we first show how to incorporate regularization
towards the identity matrix in the estimator. Then, we show
how the optimal coefficients can alternatively be solved via
a semidefinite optimization problem, which enables relaxing
the nonnegativity constraint. Lastly, we extend the estimator to
complex elliptically symmetric distributions.

A. Additional Regularization Towards the Identity Matrix

It is often beneficial to incorporate regularization towards
the identity matrix. For example, if p >n =73 & Nk then all
of the SCMs are singular. Regularization towards the identity
can easily be added by using the estimator

K
S(a) = Zaij +arl, (23)
j=1

where a = (a1,...,ax,ar)’ € RE+1 By constraining a; >
0,1 <j < K,andajy > ¢, where ¢ > (0is achosen lower bound
for the identity regularization, the estimator (23) will be positive
definite. Then

af = argmin E |||S(a) — X%
a; >0, ar>eg
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Algorithm 1: Linear Pooling of SCMs With Identity.

input : Data Xy, ..., Xk of the classes and ¢ > 0,

k=1,....K.
1 Compute SCMs Sy, ..., Sk of the classes.
2 Compute C and A of (25) (estimate as in Section III).
3 Compute A = (a;---ag) = (A +C)~! (C n)T.
4 for k=1to K do
5 ifﬂie{l,...,K}:(ék)i<00rd1k<ekthen

6 L Set aj as the solution of (24).
7 else
8 L ajp < ay.
9 | 3« S(a}) of (23).
output : ﬁ)l, .. .,ﬁ?K.

can be solved via the strictly convex QP problem

minimize 1a’ (A + C)a— ¢ a

subjectto a; >0, 1 < j < K,ar > ¢, 9

where

- ~ C
A = diag(s,...,0x,0) and C = ( . ’Z) . (25

n
and n = () € RE is a vector consisting of scales (9). The
unconstrained optimal solution for this case is A* = (A +

. T .
C)! (C 77) . The positive definiteness of A + C is shown

in Appendix A. Algorithm 1 summarizes the procedure for
computing the linearly pooled estimates of the class covariance
matrices.

Remark 1: The QP formulation of the problem makes it easy
to incorporate additional constraints if needed. For example, in
order to find a convex combination of the SCMs the equality
constraint 1 a = 1 should be added to the QP (24).

B. Semidefinite Programming Formulation

Constraining the coefficients in (6) to be nonnegative is suf-
ficient to ensure positive semidefiniteness of the estimator (3).
In some cases this approach can be suboptimal since it may
be possible to obtain a positive semidefinite estimator with a
lower MSE by allowing some of the coefficients to be nega-
tive. Using semidefinite programming (SDP), the nonnegativity
constraint can be replaced with a positive semidefiniteness con-
straint as in [46] as follows. The objective function in (6) can
be rewritten as (a — B7!c;) 'B(a — B cy) + const., where
B = A + C. By introducing an auxiliary variable ¢ and con-
straint (a — B~ !c;,) 'B(a — B~ 'c;) < t, the problem is con-
verted into a minimization of ¢. Using the Schur complement,
the problem is reformulated as a semidefinite program (SDP) in
the variables a and ¢:

minimize ¢
t o B 1 T
subject to . (a . ) =0 (26)
a—B ¢ B
S(a) = 0.
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This is a convex optimization problem, which can be solved in
polynomial time with software such as CVX, which is a package
for specifying and solving convex programs [47], [48]. There are
cases where the SDP (26), nonnegativity constrained QP (6), and
unconstrained problem (7) all give different solutions. In these
cases only the SDP and QP solutions yield positive semidefinite
estimators. In theory (when using the true C and A), the SDP
solution will have a lower MSE. However, with estimation error
in C and A, this is necessarily not the case. The computational
complexity of the SDP problem is significantly greater than that
of the QP problem. The QP can be computed with 2-3 orders of
magnitude faster (depending on the problem dimension). Due
to the above reasons, we recommend the QP approach.

C. Extension to Complex-Valued Data

Extending the results to complex-valued data requires using
the complex-valued definitions of the elliptical kurtosis and the
scaled MSE of the SCM. For a review on complex elliptical
symmetric (CES) distributions, see e.g., [49]. A CES distributed
(absolutely continuous) random vector x € C? from the kth
population has a density function up to a constant of the form

|l (= ) M5 (= ),

where hy : R>g — R is the density generator, p = E[x] is
the mean vector and X = E[(x — u)(x — p)"] denotes the
Hermitian positive definite covariance matrix of x. Above (-)"
denotes the Hermitian (complex-conjugate) transpose. We de-
note this case by x ~ C&, (., Xk, hy). The definitions of the
SCM (2) and the SSCM (16) stay unchanged except that in
their definitions (-)" is replaced with (-)". Furthermore, the
inner products between Hermitian matrices (A = AM) remain
unchanged since tr(AAM) = tr(A?). Hence, the definitions
of the sphericity parameter 5 as well as the scale 7, remain
unchanged. The kurtosis of a complex marginal variable x; of
x = (x;) € CP is defined as

Bfla; — pal']

kurt(7:) = gjg; P12

-2,

where p; = E[z;]. The elliptical kurtosis is then
k= (1/2)kurt(z;).

The elliptical kurtosis «, of class k is estimated using the average
sample kurtosis of the marginal variables

TN,
2p 4 -
= (Lk 2oty i — xj,kP)

T = L
where Z; , = -

;-1 @)

" @i; - The theoretical lower bound of the
kurtosis in the complex-valued case is k'8 = —1/(p + 1) [49].
In case (27) is less than kB, we set &j, = 0.99xB.
The matrix A is estimated via (28) given in the next lemma,
which is an extension of [9, Lemma 1] to the complex case.
Lemma 2: [50, Theorem 3] Let X}, = {x1,...,x,} C CP
be an i.i.d. random sample from C&,(py,, X, hi) with finite
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fourth-order moments. Then, the scaled MSE of the SCM is

1 K K
(i)
nk—l n n

V. MULTI-TARGET SHRINKAGE ESTIMATORS

(28)

Multi-target shrinkage covariance matrix estimators are capa-
ble of simultaneously regularizing towards several target matri-
ces. They are mainly designed for the single population setting.
However, some of the multi-target shrinkage estimators can also
be used in a multiclass setting for pooling SCMs. Therefore, we
give a brief review of the existing methods. Lastly, we show how
our proposed method can be applied to a single class multi-target
shrinkage covariance matrix estimation problem.

A. Overview of Multi-Target Shrinkage Estimators

There exist multi-target shrinkage covariance matrix estima-
tors, which can be used with user-defined target matrices and
therefore also for pooling SCMs. In this section, we discuss these
estimators and in Section VI we compare their performance to
our proposed method by simulations.

Since the multi-target shrinkage estimators are developed
for the single class covariance matrix estimation setting, we
define the data set as X = {xq,...,x,}, where (x;); = x;;.
Let 3 denote the covariance matrix and let S denote the SCM
computed from A&’. Multi-target shrinkage covariance matrix
estimators are often defined by

K

ﬁ](a) = agS + Z ar Ty,
k=1

(29)

where Ty, £k =1,..., K, are linearly independent target ma-
trices and a;, j = 0,..., K, are the regularization coefficients.
In [18] and [19], convex multi-target shrinkage covariance ma-
trix estimators were proposed, where a; > 0 and Zszl ar <1
fork=1,...,Kandag =1 — Zszl ag. The coefficients a =
(ax)¥_, were chosen as the minimizers of the MSE loss function

L(a; Q,b)=E[|[£(a) -

resulting in the constrained QP problem

2[]=a'Qa—2a'b+ E[|S— 2]

*

a* = argmin L(a; Q,b), where

a>0,1"a<1

(Q)i = E[tr ((T; = S)(T; - S))]

and (b); =b; = [ (( S)(Z - 9)] =E[IS - =] -
Eltr((S — X)(T; — E[T ]))] As the elements in Q and b de-
pend on the unknown covariance matrix 3, they have to be

estimated. In [19], the proposed estimates were §;; = tr((T; —
S)(T; —S)) and

I ’
Tsilsj — E § LiLtj )
t=1

where the latter was obtained by approximating E[tr((S —
¥)(T; — E[T;]))] 0. We compare our method with this
method in the simulations of Section VI, where it is denoted by
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BARTZ. Regarding [ 18], a specific structural condition [18, (10)
and (21)] was imposed on the target matrices, which prevents
using it for pooling SCMs.

A leave-one-out-cross-validation (LOOCV) approach was
considered in [20] for different scenarios. Their proposition for
SCM based linear shrinkage estimation used the LOOCV loss
function

Lev(a; Qev, bev) =

ZHCL()S +ZakT;c XX, HF

—=a cha —92a'bey + const.,

where x; is assumed to have zeromean, S_; = % Zju'#i X; xJTis
the SCM computed without the <th sample, and a =
(ag,a1,...,ax)" > 0. They showed how the elements in Qcy
and bey can be computed analytically. They also proposed a
corresponding convex SCM based shrinkage estimator, which
requires that the targets have the same trace as the estimated
SCM. In the simulations of Section VI, we denote the linear
estimator by LOOCV.

Multi-target shrinkage estimators have also been proposed,
for example in [22] from a Bayesian perspective and in [23] by
regularizing the Gaussian likelihood function. However, in both
methods the target matrices are assumed to be positive definite,
and hence, SCMs cannot be used as targets when nj, < p.In[21]
amulti-target shrinkage estimator of the form (29) was proposed
for space-time adaptive processing (STAP) problems, where the
reliable estimation of the loss function required additional prior
information.

B. Multi-Target Shrinkage Estimation via Pooling SCMs

As discussed above, some of the multi-target shrinkage esti-
mators can be used in order to linearly pool SCMs in a multi-class
setting. Conversely, the proposed method of linearly pooling
SCMs can be used in single class covariance matrix estimation
as a multi-target shrinkage estimator as explained below.

Consider that there is only a single data set X, its corre-
sponding SCM S and multiple positive definite symmetric target
matrices {T,,}M_,. Our approach for multi-target shrinkage
estimation is detailed in Algorithm 2. The idea is to gen-
erate artificial data sets {J),,}}_, with covariance matrices
{T,,}M_, so that X and the generated data sets {V,, }M_,
are approximately mutually independent. Specifically, )V,, is

onditionally independent of X" given T',,,. Then, for the SCMs
{St,, }M_, computed from {V,,}*_,, we make the approx-
imations E[tr(St,S7,)] ~ tr(E[St,] E[St,]) = tr(T;T;), for
i # j, as well as E[tr(SSt,)] =~ tr(E[S] E[St,]) = tr(ETj).
We use the zero mean MVN distribution to generate the data
sets, i.e., Vi ~ N,(0,T,,), m = 1,..., M, each consisting of
L samples. We can then apply the proposed method for pooling
S and {St, }M_,. We illustrate the usefulness of this method
in a portfoho optimization problem in Section VII, where it
compares well with the other multi-target methods.
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Algorithm 2: Multi-Target Shrinkage Estimator.

Data X, targets {T,, }}2_,, sample size L,

and lowerbound e > 0 for identity target.
1:  Generate i.i.d. samples Y, ~ N, (0, T,,) for
m=1,..., M each of size L.
2:  Compute SCM S from X and SCMs S, , ..
from Yy, ..., V.

3:  Compute C and A of (25) (estimate as in Section III).
4: a* + argminia’(A+ C)a—¢ja.
a>0,a7>¢

5: 3« S(a*) of (23).

output: X.

input:

- S7,,

VI. SIMULATION STUDY

This section provides several simulation studies in order to
assess the MSE performance of the proposed estimator as well
as the accuracy of the plugin estimates of A and C and the
estimated coefficients A.. We denote the proposed linear pool-
ing estimator (23), which includes shrinkage towards identity,
by LINPOOL. The LINPOOL estimator with an additional
convexity constraint on the coefficients (1Ta = 1) is denoted
by LINPOOL-C. For LINPOOL and LINPOOL-C, we set the
lowerbound for the identity target in all of the simulations to
€, = 1078, In addition to the proposed methods, the results
are reported for the multi-target shrinkage method LOOCV
from [20], which uses a nonnegative linear combination of the
SCMs and the identity matrix, and BARTZ from [19], which
uses a convex combination of the SCMs and the identity matrix
(see Section V for details).

A. Three Different Setups

In the first simulation, we considered two different covariance
matrix structures: the AR(1), where (X,);; = o7 Q‘k’ﬂ‘; and the
CS structure, where (X);; = 070, fori # jand (X;);; = 03
for 1 = j. We generated four p = 100 dimensional random
samples of sizes (n; = 20, ng = 100, ng = 20, ny = 100) from
four independent multivariate ¢-distributions with v = 8 degrees
of freedom. The means of the classes were generated from the
standard MVN distribution and held constant over the repeti-
tions. We simulated three different setups. In the first setup, all
covariance matrices had an AR(1) structure. In the second setup,
all covariance matrices had an CS structure. In the last mixed
setup, classes 1 and 2 had an AR(1) structure and classes 3
and 4 had a CS structure. For all setups, we used ai =k and
(01 =0.3,00 = 0.4, 05 = 0.5, 04 = 0.6).

Table I tabulates the normalized mean squared error,

NMSE(3;) = Ave|| 2, — Zil|3/ 12wl

and total NMSE (sum of NMSE:s of the classes) of the covari-
ance matrix estimates for the three different setups over 1000
repetitions. Table I shows that the proposed method LINPOOL
performed best in the AR(1) setup and the mixed setup, whereas
LINPOOL-C performed best (slightly better than LINPOOL) in
the CS setup.
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TABLE I
THE NORMALIZED MEAN SQUARED ERROR OVER 1000 REPETITIONS AND
STANDARD DEVIATION IN THE PARENTHESIS

class 1 class 2 class 3 class 4 total
AR(1)
LOOCV 0.14 (0.06)  0.14 (0.01)  0.24 (0.06) 0.26 (0.02) 0.78 (0.09)
BARTZ 0.15 (0.05) 0.18 (0.01)  0.29 (0.05)  0.30 (0.02) 0.91 (0.08)
LINPOOL 0.11 (0.05) 0.14 (0.01) 0.22 (0.05)  0.26 (0.02)  0.73 (0.08)
LINPOOL-C  0.12 (0.03) 0.18 (0.01) 0.27 (0.04)  0.30 (0.02) 0.87 (0.07)
(o)
LOOCV 0.18 (0.33)  0.05 (0.05) 0.18 (0.39) 0.06 (0.07) 0.47 (0.52)
BARTZ 0.20 (0.33)  0.05 (0.05) 0.13 (0.14)  0.06 (0.04) 0.43 (0.37)
LINPOOL 0.15 (0.29)  0.04 (0.03) 0.15(0.24)  0.05 (0.04) 0.38 (0.38)
LINPOOL-C  0.16 (0.29) 0.04 (0.03) 0.12 (0.14)  0.06 (0.04) 0.38 (0.32)
Mixed: 31 and 3o are AR(1); X3 and 34 are CS
LOOCV 0.18 (0.06) 0.21 (0.01)  0.18 (0.38)  0.06 (0.06) 0.64 (0.39)
BARTZ 0.17 (0.04)  0.31 (0.01) 0.13 (0.14)  0.05 (0.04)  0.66 (0.15)
LINPOOL 0.16 (0.05) 0.21 (0.01) 0.15(0.24)  0.06 (0.05) 0.58 (0.25)
LINPOOL-C  0.14 (0.02) 0.31 (0.02) 0.13 (0.14)  0.05 (0.04) 0.64 (0.15)
AR(1) CS
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Fig. 1.  Estimates of dj,, c;;, and a;4 (coefficients for 24 of LINPOOL). Left:
AR(1) setup. Right: CS setup. The red triangles denote the theoretical values.

Figure 1 displays boxplots of the estimates &5, and ¢i;j both
for the AR(1) case as well as the CS case. The estimates of the
optimal coefficients for LINPOOL for the fourth class a;4 are
also shown. As can be seen from the boxplots, for the AR(1)
case, the medians of the estimates were mostly correctly placed
over the true values, which are denoted by the red triangles (A).
For the CS case, there was some significant bias in the estimation
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LINPOOL LOOCV
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Fig.2. NMSE as a function of sample size in the complex-valued AR(1) case
with 4 classes. Top: NMSE of individual classes. Bottom.: total combined NMSE.

of ¢;j, which is due to the fact that the assumption (17) does not
hold in this case as explained in Section III-C. Despite of this,
the final coefficients a;; were reasonable well estimated.

Here, it is good to note that, for the CS case, the coefficient
corresponding to identity shrinkage a4 is close to zero. When
this happens, there is a possibility that (despite having a low
MSE) the estimate is not well-conditioned resulting in high
error when inverting the estimate. Therefore, in these cases
(depending on the conditioning of the estimate) it can be useful
to increase the lower bound e4. Generally, for class &, one could
use €, = any, where a € [0, 1].

B. Increasing the Number of Classes

Next, we examine the NMSE of the LINPOOL estimator of
class 1 as the number of classes K increase from 2 to 16 classes.
The setup is as follows. The first class has an AR(1) covariance
matrix structure with a fixed parameter p; = 0.5. The other
class covariance matrices also have an AR(1) structure except
for the classes k = 4, 8,12, 16, which have a CS structure. The
parameter gy, for k > 2, is chosen uniformly at random from
the interval [0.1, 0.6] for each Monte Carlo trial. The means of
the classes were generated from the standard MVN distribution
for each Monte Carlo trial. The sample sizes are equal with
ny, = 40 for all classes k. The dimension is p = 100 and the data
is multivariate ¢-distributed with v = 8 degrees of freedom.

Figure 3 depicts the results averaged over 1000 Monte Carlo
trials for each value of K. The red vertical lines mark the spots
when the added class covariance matrix has an CS structure (i.e.,
doesn’t share the same structure as class 1). One can observe
that every time an AR(1) structured class is added, the NMSE
decreases. When the added class has a different covariance
structure (the CS structure), the NMSE does not decrease. An
exception to thisis when X' = 4. A reason for this may be that the
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Fig. 3. NMSE of 33, as the number of classes increase.

total number of observations is still relatively low and including
the fourth class helps in reducing the variance of the estimate.

C. Complex-Valued Case

In the next simulation, the classes have an AR(1) co-
variance matrix structure, (Xj);; = Uﬁgllz—j " for 1 < 7, and
(2k) ;i = (33,)i5, for i > 4, where (-)* denotes complex con-
jugation. The used parameters were o7 = k, o1 = 0.3¢7270-3,
09 = 0.4e72704 o5 = 0.5¢7270-% and p4 = 0.6e7270-6. We sim-
ulated the NMSE as a function of the sample size for ny €
{10,15,...40} for all k. The data was generated from the
complex multivariate ¢-distribution with v = 8 degrees of free-
dom and dimension p = 100. The results were averaged over
1000 Monte Carlo trials for each sample size and are shown in
Figure 2. It can be observed that especially for small sample
sizes (n; < 30) LINPOOL performed better than LOOCV.

VII. PORTFOLIO OPTIMIZATION

We studied the performance of the proposed method in a
portfolio optimization problem using divident adjusted daily
closing prices. Portfolio optimization is a central topic in invest-
ment theory, see, e.g., [S1]-[54], and [55]. A focus in portfolio
optimization has been on the estimation of the covariance matrix
of the stock returns, commonly using shrinkage regularization
techniques or random matrix theory, see, e.g., [1], [7], [56]-[58],
and [59]. In a portfolio optimization problem, a particular invest-
ment portfolio is determined by a weight or allocation vector
w € RP (verifying the constraint 1"w = 1) whose elements
describe the fraction of the total wealth invested in each of
the p stocks. We considered two different portfolios. First, we
considered the global minimum variance portfolio (GMVP) in
which one seeks a portfolio w that minimizes the risk (variance).
The optimization problem is thus

minimize w ' Xw subject to 1w = 1. (30)
weRP
The well-known solution is w* = ?771,}, where X is the

covariance matrix of the stock returns. We also considered a
constrained portfolio, where the coefficients are constrained
to be within the range 0 < w; < 0.1, for all ¢, i.e., shorting
(negative weights) is not allowed and the portfolio manager is
not allowed to put more than 10% of the wealth in one stock.
The optimization problem for this case is the same as in (30) but
having the additional constraint 0 < w < 0.1 - 1, which results
in a QP problem.
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In the simulation, the covariance matrix > was estimated via
a sliding window method so that at day ¢ it was estimated using
the daily net returns of the previous n days from¢ —ntot — 1.
The portfolio weights were then computed via (30) with and
without the additional weight constraints. These yielded the
portfolio returns for the next 20 (trading) days. Then, the sliding
window shifted 20 days forward and the procedure was repeated.
By denoting the total number of days in the data by 7', we
obtained 7" — n daily returns from which we computed the
realized risk as the empirical standard deviation of the daily
portfolio returns.

We applied the proposed method (explained in Section V-B
and Algorithm 2) for single class covariance matrix estimation
using the same target matrices for regularization asin [1] and [8].
The target matrices were the single factor market index model
T of [1] and the constant correlation model T~ of [8]. Their
computation is explained in [1] and [8], respectively. At day ¢,
we used the n previous days to compute the SCM. However,
due to the nature of our method, we were able to freely choose
the amount of data used for computing the regularization target
matrices. Hence, we chose to use the previous 40 days (¢ — 40 to
t — 1 corresponding to the previous two months) for computing
Tr and T, regardless of the window size n (n > 40) used
for estimating the SCM. This can be justified by the fact that
the trend of the market is better captured by the most recent net
returns. After computing Tz and T, we generated 1000 i.i.d.
samples both from Vo ~ N (0, T¢) and Vr ~ N (0, Tr) and
estimated the coefficients for the proposed LINPOOL estimator
é(a) = a1S + asSr + a3Sc + a1, where S and S denote
the SCMs computed from Vg and )¢, respectively. We also
report the performance of the LINPOOL estimator (23) using
a convex combination as explained in Remark 1. For both
methods, we used the lowerbound constraint a; > ¢ = 1075,
We also report the performance of the multi-target shrinkage
estimation methods LOOCYV of [20] and BARTZ of [19] using
the same target matrices (T r, T, and I) as for our proposed
method. Additionally, we report the performance of the fol-
lowing methods specifically tailored for portfolio optimization:
LW-well of [7], LW-improved of [1], LW-honey of [8], and the
random matrix theory based estimator LW-analytical of [56].

We used the same portfolio data sets as in [9] (obtained
from https://finance.yahoo.com). That s, Standard & Poor’s 500
stock market index (S&P 500) tracking 396 stocks from from
Jan. 4,2016 to Apr. 27, 2018 consisting of 7" = 583 days. Hang
Seng Index (HSI) from Jan. 4, 2010 to Dec. 24, 2011 (45 stocks
during T' = 491 days) and from Jan. 1, 2016 to Dec. 27, 2017
(50 stocks during T = 489 days after removing two zero return
days).

Figure 4 shows the annualized risk obtained by the differ-
ent estimators as a function of the training window length
n. Regarding the S&P 500 2016-2018 data, there were large
differences in the performances of the methods. LW-improved
performed best and LW-well the worst. The differences be-
tween the methods were smaller in the constrained case, where
BARTZ performed best. Regarding the HSI 2010-2011 data
set, the proposed method LINPOOL achieved the lowest risk
for the unconstrained portfolio with all window sizes n. For
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(a) S&P 500 2016-2018 (p = 396).
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(c) HSI 2016-2017 (p = 50).
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Fig. 4. Annualized realized GMVP risk achieved out-of-sample for different
covariance matrix estimators and different training window lengths n. Left:
unconstrained portfolio. Right: constrained portfolio (nonnegative weights and
maximum single asset weight 0.1).

the constrained portfolio, all of the methods performed nearly
equally well with LW-improved having the lowest risk with
the window length n = 100. Regarding the HSI2016-2017 data,
the proposed methods (LINPOOL and LINPOOL-C) achieved
the lowest risk for both the constrained and unconstrained port-
folios for all window sizes n > 120.

VIII. CONCLUSION

The paper proposed a regularized sample covariance matrix
estimation method for high-dimensional multiclass problems.
The proposed estimator was formed from a linear combination
of the class SCMs. We derived the theoretically optimal co-
efficients that minimize the mean squared error. The optimal
coefficients depend on unknown parameters, and their esti-
mation was addressed under the assumption that the samples
are generated from unknown elliptically symmetric populations
with finite fourth-order moments. In constructing estimators for
the unknown parameters, we utilized the sample spatial sign
covariance matrix, which we showed in Theorem 2 to be an
asymptotically unbiased estimator of the normalized covariance
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matrix in the case that the sphericity parameter of the distribution
grows slower than the dimension. The effectiveness and useful-
ness of the proposed method was demonstrated via simulations
and a portfolio optimization problem using real stock data.
Codes are available at https://github.com/EliasRaninen.

APPENDIX A
PROOF OF THEOREM 1

Write f(a) = E[||S(a) — X||2] for the objective function.
By expanding the expression for the squared error, we get

T

K K
1S(a) = Zk|f =tr (Zaisi2k> ZaijfEk
i1 j=1

K K K
:ZZ a;a; tr(S;S;) 2Zajtr(Sj2k)+tr(Ei).
i=1 j=1 j=1
Taking the expectation and scaling by 1/p gives
(1/p)f(a) = a'Ba — 2¢] a + cup,
where
B = (bj;) € RF*%, by; = E[tr(S,S;)]/p,
C = (cij) € RF*K, ¢y = tr(2:%5) /p,

and cy, corresponds to the kth column of C. For i # j,

bij = p~ ' E[tr(S:8;)] = p~" tr(E[S] E[S;))
= p71 tI’(EzE]) = Cij~
Using that E[tr(S?)] = MSE(S;) + tr(3?), we get for i = j,

bii = p71 E[tr(Sf)] = 57, + Cijy

and so B = A + C. By definition A is symmetric and pos-
itive definite. Also, C is symmetric and positive semidef-
inite. This follows since for any m € RX, m"Cm =
S Z Comimp i tr(3E5) = tr(X2) > 0, where X, =
p /2 ZJ 1 m;3;. Hence A + C > 0 is invertible.

Regarding the extension discussed in Section IV, we now
show the positive definiteness of A + C. Since we know that
A + C > 0, due to the properties of the Schur complement [60,
A.5.5], it holds that

T

~ ~ A+C
A+C< + 717>>-0@A+Cmf>-0.
n

We can then show the positive definiteness of A+C by showing
that A + C — nn" is positive definite. For m € R¥ \ {0},

(A +C - 7777 Z mk(sk + Z mgm; CU 77”7])
= midk + tr(27) > 0,
k

where X, = p 12378 m;(%; — n;1). S0, A+ C = 0.0
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APPENDIX B
PROOF OF THEOREM 2

Letx ~ &,(p, 3, g) and assume A is computed with a known
mean g = 0in (16). Then E[A] = pE[xx " /[|x[]>] = Aqg. Let
u = (u;) = 2% /|| =71/2x]|. So, u is uniformly distributed
on the unit sphere {u € R? : |ju|| = 1}. Denote A = (A;;). We
need the following lemma.

Lemma 3:

E [Al/zuuTAl/QuTAu} =p '(p+2)7" (tr(A)A +2A%).

Proof:
E [Al/QuuTAl/zuTAu} = ZAklAl/QE[UkUluuT]Al/Q
]
=AY? Z Ay E[ujuu’] + Z A Elupupau] | A2
7 kAl
(31
Here (see [61, 3.1.2]),
E 41 — -1 2 -1 l=j
(E[U?UUT])N = [UIQ] 2 o —(1p+ ) —71 ]'7
Elujui] =p~'(p+2)"", 1#],
and (E[ul uuT])w =0, fori # j.Hence,E[ulQuuT] =p '+
2)"1(I+ 2ese/ ). Thus,
Z Ay E[ufuu']
1
p+2)” ZAN I+2ZA”elel
= p (p+2) M(tr(A)T + 2 diag(A)). (32)

Regarding the other term in (31), where k # [,

(E[upuwau'])mn

Eufu] =p t(p+2)t, k=ml=n,
= qEuiu] =p~t(p+2)7", k=n,l=m,
0, otherwise.

Hence, we have

Z A Elupuuu'] = 2p~*
k#l
and the result follows by substituting (32) and (33) into (31).
Note that, (32), (33), and (31) are valid more generally for any
positive semidefinite symmetric matrix, not only for the shape
matrix.
We are ready to prove Theorem 2. Since forany x > 0,2~ >
2 — x, we have

)()(—r
Agen = pE |: :| =
y [

=pE [Al/2uuTA1/2 (2

(p+2)"Y(A — diag(A)) (33)

AY2quT AL/2
u'Au

u' Au)}

= 2pE[AY?uu AY?] — pE[AY?uu’ AY?u" Au]
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2(A% —A)
p+2

:A—

Con & 2
= 2A — s (H(A)A +247)

(34)

By scaling both sides of (34) by € = ||A||z! = 1/,/p7. the first
term will have unity norm (||eA[r = 1). Let us then consider
the second term on the right-hand side. Its trace is

(v=1)

€2tr(A2 -A) 2
(- (2o (D). o

p+2 n 6p+2
< (2¢/p)(IA%[|r + [[Allr)
F

and its norm is
2(A? — A)
p+2

< (2/p)(IAllr +1) = O(/~/p). (36)

Here, we used the triangle inequality and submultiplicativity
properties of the Frobenius norm. By moving all the terms of (34)
to the left-hand side and scaling them by €, we can use (35) and
(36) as well as the property that for any A > 0, tr(A) > ||Al|r
to get

O(/A/P) = || (Asen = 8) /1A e + O/ /p)| 2 0,

whichimplies that Ag,, = A + O(7). Furthermore, if v = o(p),
then O(\/v/p) = o(1) implying Agn = A + o(||A||r). O

APPENDIX C

PROOFS OF LEMMA 1 AND PROPOSITION 3

Let A\; = Amax(A). Assume that as p — oo, \; = O(p™/?),
where 7 < 1. Then
tr(A?) _ pA} 2

= <=—=A{=0(p") = o(p).

) ) 1=0(p") = o(p)
Particularly, v = o(p) if Ay = O(1).

In the following, we assume that p is a fixed parameter
that does not depend on the dimension p. We also use 7 =

tr(A%)/p = (1/p) 3=, ; AF;. where A = (Aj).

A. Sphericity of the AR(1) Covariance Matrix

The shape matrix of the AR(1) covariance matrix with pa-
rameter o (]| < 1) has p number of ones on the main diagonal,
2(p — 1) number of o on the first diagonals above and below
the main diagonal, and 2(p — 2) number of ¢* on the second
diagonals above and below the main diagonal, and so on. That
gives,

21)71 p—1 2 -1
7AR(1)=1+*Z(])—Z')921=22 *Z
P =0 P

The first sum is the geometric series and the second sum is also
well-known and its solution can be obtained by differentiating
the geometric series. Hence, we get

1—(®)"  2(p—1(@)""" —p(e®) + ¢*

YAR(1) = 2 - = -1
DT p (1-02)2
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_ p—po* —20° +2(e*)"!
p(e* = 1)?

As p — 00, Yara) — (14 0%)/(1 — 0?)

= 0(1) = olp).

B. Sphericity of the 1-Banded Toeplitz Covariance Matrix

The shape matrix corresponding to a 1-banded Toeplitz co-
variance matrix has p number of ones on the main diagonal and
2(p — 1) number of o on the off-diagonals while rest of the off-
diagonals are zero. This implies that v;g = 1+ 2(1 — 1/p)o?
Asp — 00, yig — 1 +20% = O(1) = o(p).

C. Sphericity of the Spiked Covariance Matrix

Let ¥ =3, 4+ al, where X, has rank r <p. Let a =
By, where 7, = tr(%,)/p. Let v, = ptr(37)/tr(2,)? =
tr(£2)/(pn?). Then, tx(2)? = p2p2(1 + 8)2 and

tr(E2) = tr (B + 1)) = 0e(Z2) + 822 + 260

=pn2(y + B2 +2B) = pnZ(v — 1+ (B+ 1)%).

Then by computing v = ptr(X?)/ tr(3)?, we get

e —1 e — Ul AT
— 1= 1< 1< — 1
TTBrE T T e S e T S T

where we used that the rank of X,. is r and 52y, = tr(2?)/p <

2
A2 /p, where \| = Apmax(3,). Therefore, v = o(p), i
o(p), which includes the cases

A= 0@p?),
2 = O(pm/2) and r = O(1),

where 7 < 1.

D. Sphericity of the CS Covariance Matrix

The shape matrix of the CS covariance matrix has p number
of ones on the main diagonal and p(p — 1) number of p on the
off-diagonals. Thus, ycs = 1+ (p — 1)0? = O(p). O

APPENDIX D
PROOF OF PROPOSITION 4

Expanding the mean squared distance gives

[tr(A”)]+Eftr(AZen)] ~2 E[tr(AAgc)].
(37)

E[|A—-Ascm||F]=E

The first term is

sty =z o (25 T;jg)

2 T
p xx XX sz XX,
=—E [tr
n? Z i H4 Z %2112
2
-1 .
:%+ D b (E[A]Y).

(38)
n

Now, let S = %Z?:l xix;r. Since S is unbiased, using
Wishart theory, we have MSE(S) = tr(var(vec(S))) =
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1/n)tr(I+K)(Z® X)) =

(1/n)(tr(2)2 + tr(3?)),

where K =377, >7" ele ®eje] is the commutation
matrix [62] and ® denotes the Kronecker product. Using that

E[tr(S?)] = MSE(S) + tr(X?),
2 2 +1
E[tr(AZqy)] = tr(pT)Q E[tr(S?)] = % + (n " ) tr(A?).
(39)
The last term of (37) is
E[tl‘(AASCM)] =E [tr p Z ||X ”2 ntr ZXJ
= tr ZE X;X ; [ ] E[xjx;}
p? -1
(E[A]A). (40)
Now, substltutlng (38), (39), and (40) into (37) gives
- L ((BIAP) — 26r(E[AJA)) + L tr(A2).

Dividing this by ||A||% and applying assumption v = o(p) and
Theorem 2, we get the result E[[| A — Ascm||2]/]| A2 ©=3 P 2 O
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