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The Green’s Function-Based
Thermal Analysis of a Spherical
Geothermal Tank in a
Semi-Infinite Domain

The Green’s function of a bimaterial infinite domain with a plane interface is applied to
thermal analysis of a spherical underground heat storage tank. The heat transfer from a
spherical source is derived from the integral of the Green’s function over the spherical
domain. Because the thermal conductivity of the tank is generally different from soil, the
Eshelby’s equivalent inclusion method (EIM) is used to simulate the thermal conductivity
mismatch of the tank from the soil. For simplicity, the ground with an approximately
uniform temperature on the surface is simulated by a bimaterial infinite domain, which is
petfectly conductive above the ground. The heat conduction in the ground is investigated
for two scenarios: First, a steady-state uniform heat flux from surface into the ground is
considered, and the heat flux is disturbed by the existence of the tank due to the conductivity
mismatch. A prescribed temperature gradient, or an eigen-temperature gradient, is intro-
duced to investigate the local temperature field in the neighborhood of the tank. Second,
when a temperature difference exists between the water in the tank and soil, the heat
transfer between the tank and soil depends on the tank size, conductivity, and temperature
difference, which provide a guideline for heat exchange design for the tank size. The mod-
eling framework can be extended to two-dimensional cases, periodic, or transient heat
transfer problems for geothermal well operations. The corresponding Green’s functions
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are provided for those applications. [DOI: 10.1115/1.4054568]

Keywords: Eshelby’s equivalent inclusion method, bimaterial Green’s function, eigen-
temperature gradient, heat conduction, geothermal energy, heat transfer, thermodynamics

1 Introduction

Thermal management of building environment through heat
exchange with the ground has attracted significant attention and
applications for energy efficiency improvement and environmental
benefits [1,2]. A water tank is generally employed to store energy
from building roof [3] and to exchange heat with the ground,
which keeps at a stable temperature in general. By using the
thermal mass of the earth, we can manage the indoor temperature
of buildings as if they were embedded in the earth, like a basement.
Figure 1 shows a schematic illustration of a bidirectional geother-
mal system [3]. The water tank serves as both a thermal energy
storage (TES) and a heat exchanger with the surrounding earth. A
heat pump can regulate the heating or cooling supplies to the build-
ing with a high coefficient of performance (COP) for the ground
source heat pump (GSHP) system.

The performance of the bidirectional geothermal system relies on
the heat transfer capacity through the surface of the water tank. Itis of
great significance to understand the heat conduction and temperature
distribution of an underground water tank under the thermal loading
for the system design and performance analysis. Particularly, given
the temperature of heat source, the heat transfer capacity from the
storage tank to the earth should be understood in the design phase,
so that the size and the location of the storage tank can be determined
to maximize the energy harvesting and energy efficiency.

A single storage tank underground has been modeled by an inho-
mogeneity embedded in an infinite domain [3,4], and the effect of
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the ground surface has not been taken into account. Particularly,
the ground temperature profile exhibits variation with the depth
and time due to the surface temperature change [5]. It is necessary
to consider the effect of the ground surface on the temperature dis-
tribution and heat conduction in the neighborhood of the tank, par-
ticularly when the diameter of the tank is not too small in
comparison with the depth.

Green’s function has been utilized as a powerful tool in solving
various partial/ordinary differential equations and is also the foun-
dation of the boundary integral equation method [6]. Serving as
the fundamental solution to these problems with a generalized
mathematical form, Green’s functions have been applied to many
engineering fields including civil, mechanical [7], electrical, mate-
rials engineering [8], and applied physics and science [9]. Particu-
larly, Green’s functions have been used extensively in the thermal
analysis considering different types of heat sources, material config-
urations, and boundary conditions [10].

Green’s function is typically applicable to a homogeneous mate-
rial with heat sources. For inhomogeneities embedded in a matrix,
the material mismatch may lead to disturbance of the local field.
Eshelby’s equivalent inclusion method (EIM) provides a unique
way to simulate the material mismatch by an eigen-field [11-13].
Although it was originally established for elastic problems, the
EIM has been applied to many other physical problems and the
cases of multiple inhomogeneities with particle interactions. Some
representative applications include the prediction of elastic
moduli [12], thermal expansion coefficients [14-16], and
steady-state thermal conductivity [17,18].

In the literature, inhomogeneity problems in steady-state heat
conduction have been successfully solved by standard analytical
methods [19], semi-analytical methods [20,21], and numerical
methods. Later Hatta and Taya [17] unified these methods to
solve the inhomogeneity problems of steady-state heat conduction
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Fig.1 Schematic illustration of a spherical thermal energy storage tank embedded in the earth for a bidirectional

geothermal system [3]

by analogy with the EIM in elasticity. He also extended the EIM to
the case of multiple ellipsoidal inhomogeneities in an infinite isotro-
pic matrix. Yin et al. [18] used the EIM to consider the interfacial
thermal resistance of spherical inhomogeneities. Because the inte-
gral of the Green’s function over a spherical or ellipsoidal inclusion
can be analytically derived, the explicit solution can be obtained. By
using numerical integrals, EIM can be extended to transient heat
conduction problems as well [22].

For inhomogeneities in a semi-infinite domain or a bimaterial
infinite domain, the thermal analysis has not been well studied
because the boundary effect will play a role when the inhomogene-
ities are close to the surface or the interface of the bimaterial. Actu-
ally, the semi-infinite case can be considered as a bimaterial infinite
domain with one material being perfectly conductive or insulative
for uniform temperature and zero heat flux boundary conditions,
respectively [23]. The material mismatch between inhomogeneity
and matrix as well as the bimaterial will induce the discontinuity
and singularity of thermal fields. The elastic problems for inhomo-
geneities in a semi-infinite domain have been solved for three-
dimensional (3D) [24] and two-dimensional (2D) cases [25],
respectively.

This article aims to solve the boundary value problem [26] for an
inhomogeneity in a semi-infinite domain and apply it to the geother-
mal system with a spherical heat storage tank. The Green’s function
derived in this article is applied to formulate one inhomogeneity
inside a semi-infinite matrix with nonuniform ‘“eigen-temperature
gradient” (ETG) [18]. For an ellipsoidal inhomogeneity in an infi-
nite domain, the ETG should be uniform [11,12], and classic
micromechanics-based models were built upon it [27-30]. When
the boundary effect or particle interactions are considered, the
eigen-strain for elastic problems or ETG for thermal problems
will not be uniform any more and can be represented by the

071008-2 / Vol. 89, JULY 2022

Taylor expansion on each inhomogeneity [28]. Initially, the
Green’s function for a bimaterial infinite domain will be con-
structed. The inhomogeneity problem is then solved with the EIM
and verified with the finite element method. Although the present
analysis focuses on the steady-state heat transfer of a spherical
underground tank in a semi-infinite domain, it can be extended to
cases with other shape of tanks [31,32], periodic temperature
change condition, and transient heat transfer problems [23]. The
Green’s functions of a bimaterial for 2D infinite domain, sinusoidal
temperature field, and transient heat transfer problems are derived
for future applications of transient heat conduction.

2 Formulation of Green’s Function

Figure 2 shows an infinite bimaterial D composed of upper D*
and lower D~ parts, divided by the interface S of x; =0, where
D™ exhibits homogeneous thermal conductivity K’ and the D™,
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Fig. 2 A point heat source Q inside the bimaterial matrix
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homogeneous thermal conductivity K”. At the steady state, the gov-
erning equation is written as follows:

—VEK@)VT) = qv(x) (€Y

where gy is the volumetric heat source and the thermal conductivity
K(x) can be either K" or K” depending on the location x. When gy =
0, the heat equation reduces to Laplace’s equation. When gy = 8(x”)
with 8(x’) being the Dirac Delta function for a unit point heat source
0, the solution is the Green’s function caused by the unit point
source Q at x'. Following the imaging displacement setting [33],
and modifying Walpole’s formulation [34], the temperature field
in the infinite domain can be written in terms of Green’s function
as follows [19]:

T(x)=G(x, x)d(x") )

where the Green’s function G(x, x’) needs to be derived with bima-
terials in virtue of the image method. In general, the form of G(x, x”)
depends on the location of point of interest P(x) and the location of
point heat source Q(x'). For the point heat source Q(x{, x3, x3), an
imaginary point referring to the interface S(x3=0) is constructed
as the image point of Q as Q(x;, x5, —x;) to help derive the
Green’s function for an infinite bimaterial. For an arbitrary field
point of interest P(x;, x5, x3), the position vectors of P referred to
Q and Q are defined as r and s, with their distance given

r=[01 — X)) + (o = x5)* + (x5 — x3)*]/?

5= —X) + (2 —X5)% + (x3 + x5)%]? (3)

Green’s function exhibits different forms when P is located on dif-
ferent sides of the interface due to the superposition of image and
infinite parts. Without the loss of generality, we assume the point
heat source is above the interface (x5 >0). Following Walpole’s for-
mulation [34] and using the interface continuity, we construct
Green’s function as follows:

1 K -K" 1

f >0
4nK'r K + K" 4nK's orx = 4
X @

S for x3 <0
20K + K")r or

Gx,x')=

Therefore, for a distributed source field gy (x’) with x" = (x}, x5, x5),
the temperature at a field point x = (x;, x», x3) can be written as
follows:

Tx)= j Gx, x)qy(x') dx’' 5)
D

When K’ =K', the bimaterial infinite domain recovers a single-
material infinite 3D domain, and the Green’s function is the Newto-
nian potential [23]. When K” =0, the lower half exhibits zero heat
flux. The bimaterial infinite domain is equivalent to the upper half,
or a semi-infinite domain, with zero heat flux on the boundary,
which is corresponding to the Mindlin’s solution for the elastic
problem [35]. When K” — oo, the lower half is perfectly conductive
and cannot exhibit any temperature gradient. Therefore, the bima-
terial infinite domain is equivalent to the upper half, or a semi-
infinite domain, with a constant temperature on the boundary,
which is corresponding to the Rongved’s solution [36] for the
elastic problem.

When the heat source is periodic, such as daily repetitive temper-
ature change, the Green’s function is a harmonic function with time.
When an impulse heat source is considered, the transient Green’s
function will be attenuated with time. Both harmonic Green’s func-
tion and transient Green’s function for a bimaterial infinite domain
can be constructed in the same fashion for both 3D and 2D problems
and are provided in Appendix A. For simplicity, this article focuses
on the static thermal analysis only, it can be extended to the har-
monic and transient heat transfer problems in the same fashion
with the Green’s functions in Appendix A.

Journal of Applied Mechanics

3 One Inhomogeneity Embedded in an Infinite
Bimaterial Matrix

Figure 3 shows an infinite matrix domain D with a subdomain Q
centered at x¢ with an interface S(x3 = 0) of zero thermal resistance
to separate the bimaterial matrix. The particle’s thermal conductiv-
ity is K. According to Mura [28], an inhomogeneity is defined as a
subdomain Q in a matrix with different material properties from the
rest (D —Q), which can be simulated by an eigenstrain. The heat
conduction problem can be treated similarly with an ETG on the
particle, which is continuous over Q and can be written in terms
of the Taylor expansion of x — x“ with the reference point at the par-
ticle’s center, such as

THx) =T + T — x5) + T — X)) — X)) + -+, forx € Q
(6)

The constitutive law over the upper semi-infinite matrix with
thermal conductivity K’ is rewritten as follows:

qi =—K'8;(T; - T;) @)

where T#;=0 for x € (D — Q). Substituting the aforementioned
heat flux density into the equilibrium equation ¢;;=0 in the
absence of a heat source provides:

K'T;=K'T;, @®)

By applying Green’s function that satisfies the boundary condi-
tions, the temperature can be written in terms of the eigen-
temperature gradient as follows:

T(x)= ,[ G(x, x/)(—K/)a—T’f dx’ 9)
D x;

Applying the Gauss theorem and considering zero -eigen-
temperature gradient at the boundary of the semi-infinite domain,

x¢=(0,0,c)

Fig. 3 One particle embedded in the bimaterial matrix

e

Material I

Zoom in

Fig. 4 Schematic plot of mesh in FEM analysis of heat flux on
one inhomogeneity embedded in infinite bimaterial domain
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Fig.5 Comparison of the heat flux distribution along x3 with distance [ — 3a, 3a] between
FEM and EIM for x§ = (a) 1a, (b) 1.5a, and (c) 2a

the aforementioned equation can be rewritten as follows: where the modified Green’s function

4 1 1 K — K" 1
T(x>=j L =j TK'T dd (10) ==k [(r) *mM"f(s)J (an
Q i Q Ji
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where

provides the mirror projection of a vector. Consider the ETG as a
continuous tensor function over the inhomogeneity and thus write
it in a polynomial form in Eq. (6). For simplicity, we take into

account of the constant, linear, and quadratic terms only as follows:

)+ Ty — X)) + Ty —x) —xf). ¥ €Q
0, X eD-9Q)
(12)

ey = {

Thus, by taking partial differentiation of Eq. (10) and inserting it
with Eq. (12), we can obtain

, 1
T:(x) =j r ,,,»K/[Tj? + Th(, = X)) + T30 — X)) — ] dx' = =~ (DT + DT} + Dy} (13)
Q

where D terms can be sorted in the general formula,

K/ _ K//

K+K"

o (G =]
” s Limpq---

‘ q)xw-~~,im17q-~~ (14)

(&, = ¥ =)
Dijklm,pqn- = j |:( +
Q d dipq-
K —K"
=@y jjpg... + mMijklew o
2 T T
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Fig.6 Variation of T — T3d subjected to an uniform heat flux g3 = —1 W/m? along
x3 with distance [-2, 2] m to the center of water tank x§ = —2,—4,—6, and —8 m
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Fig.7 Variationof T — ng subjected to an uniform heat flux g = —1 W/m? along
x3 with distance [-2, 2] m to the center of water tank x° = —4 m when K® =10, 20,

50, and 100 W/m - K
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Fig.8 Variation of temperature subjected to uniform heat source Q =500 W along
(@) x3 and (b) x, direction with distance [-2, 2] m to the center of water tank x§ = -2,

—4,—6,and —8 m

Here, Dj;, D, and Dy, are written in the terms of @, which repre-
sent the components of the image part, and thus, the integral is
always outside the particle. Following a straightforward but
lengthy procedure [23,28], one can obtain the explicit expressions
of @y ;;, Dy and @y jj, D, which are listed in Appendix B. The
temperature field is solved in Eq. (13) for the case of semi-infinite
domain D with thermal conductivity K’ containing an inclusion Q
with ETG T (x).

Extending from the inclusion problem to the inhomogeneity
problem [23,28] with different thermal conductivity K, the heat
field can be solved by replacing the inhomogeneity with the same
matrix material and applying an ETG field yet to be determined
[17]. For one inhomogeneity in an infinite homogeneous domain
with uniform far-field heat flux density, the eigen-temperature gra-
dient is uniform by analogy with the case in the elastic field [11,12].
However, in most cases, the uniformity of eigen-fields does not hold
due to several factors, such as size effect [31,32] and interactions
between inhomogeneities [23]. Even for the case of one inhomoge-
neity, the existence of boundary effects [24] may disturb
eigen-fields as well, which will be illustrated and discussed in
Sec. 5 specifically. In such cases, the assumption of uniform eigen-
field may result in the poor accuracy of solutions. Hence, in this
article, a polynomial-form ETG in Eq. (6) is applied in following
case studies of Secs. 4 and 5.

Considering a uniform far-field heat flux applied on D, the equiv-
alent heat flux condition is written as follows:

KIS+ T) =K'(T5+ T, = T)) (15)

071008-6 / Vol. 89, JULY 2022

Substituting Eq. (13) into Eq. (15), the equivalent heat flux condi-
tions with Taylor series expansion can be expressed as follows:

(K@ =K (—4an3 +[Dy(x)T) + Dye ()T} + D,_-,-kl(xc)TjZk,])
=47K'T?
(K® = KDy r(x)T} + Dy o (x)T j + Dt (x) T ] = 4K ' T,
(K2 = K")[Dyj pg(c)T? + Dy pg ()T & + Dijig pg (x)T%, 1 = 87K T2,
(16)

where the first set of equations include free index i=1, 2, 3 with
three equations, the second set of equations include free index i
and r with 3 x3 =9 equations, and the third set of equations with
free index i, p, and g include 3 x 6 =18 equations considering the
symmetry of p and g. Overall, the system of linear equations con-
tains 30 unknowns (Tjo, lek, szkl) to be solved. After the ETG field
is obtained, the temperature and its gradient can be calculated
with Egs. (10) and (13).

4 Numerical Verification of Equivalent Inclusion
Method Results With Finite Element Method Simulation

To verify the aforementioned algorithm in Sec. 3, consider an
infinite bimaterial domain D = D* U D~ composed of two dissimi-
lar isotropic material as shown in Fig. 2 that K'=1 W/m-K and
K’ =10 W/m - K. Without the loss of any generality, the interface
S is constructed as x3 =0 and the domain D is subjected to a far-field
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Fig.9 Variation of temperature subjected to uniform heat source Q =500 W along
(a) x3 and (b) x; direction with distance [-2, 2] m to the center of water tank
x¢ = —4m when K®=10, 20, 50, and 100 W/m-K

load ¢} =10W/m?. Consider a spherical inhomogeneity with
radius @ = 1 m and thermal conductivity K =2 W/m - K embedded
in the D* (x§ > 0). In Fig. 4, the symmetric properties are utilized
for the finite element method (FEM) simulation, and the domain
with the length of 20a is applied to reduce boundary effects. In
the following, heat flux along x3 direction is compared between
FEM and EIM with three cases using uniform, linear, and quadratic
ETG, respectively. Note that as an inhomogeneity approaches the
interface, boundary effects will disturb the heat fields more signifi-
cantly. As illustrated in Ref. [24], the boundary effects are generally
evaluated as the ratio of distance-to-boundary and radius of the
inhomogeneity; therefore, three cases of locations are considered,
x5 =2a, 1.5a, and a (inhomogeneity touching interface). Shown
in Fig. 5, heat flux of EIM results of three cases are compared
with FEM results. When the inhomogeneity is not close to the inter-
face, say 2 a, though “uniform” curve exhibits some discrepancies
comparing with “linear” and “quadratic” ones, all of them agree
well with FEM with difference less than 0.15%. As the inhomoge-
neity moves closer toward the interface, deviations are observed in
Fig. 5(b) that only “linear” and “quadratic” terms could provide
good analysis, especially in neighborhood of x3 —x§{=-—1 or
1 m. Considering the domain integral of Green’s function with
uniform eigen-field, composed of ® and ®, where ® is constant
within the inhomogeneity domain and ® is the combination of
linear and inverse proportional function, which is the reason why
using the uniform ETG is barely possible to produce a complicated
heat field. Eventually, when the inhomogeneity touches the inter-
face, in which singularity and discontinuity issues arise as the

Journal of Applied Mechanics

source approaches the boundary. The “quadratic” provides the
best predictions among EIM results; however, discrepancies are
still observed in the entrance region of the inhomogeneity. Beside
the comparison, it is noticed that, at the interface, although the
heat flux in the third direction is continuous, its slope changes
due to the mismatch of material properties.

5 Application to an Underground Heat Storage Tank

To simulate the heat transfer of a spherical underground heat
storage tank to the ground, for simplicity, the ground is assumed
with a uniform temperature on the surface and in the air and thus
the whole system approximated by a bimaterial infinite domain
with an infinitely large conductivity above the ground, so that we
can focus on the heat conduction within the ground or the other
semi-infinite domain.

First, a steady-state heat transfer from the surface into the ground is
considered, and the temperature field is disturbed by the existence of
the tank due to the conductivity mismatch. A prescribed temperature
gradient, or ETG, is introduced to calculate the local temperature
field in the neighborhood of the tank. Second, in the heat
exchange mode, given a heat exchange demand, the steady-state tem-
perature field is calculated. The temperature difference exists
between the water in the tank and soil’s far-field temperature can
be derived. The relation between the heat flux, temperature gap,
tank size, and depth can be set up as a guideline for GSHP tank
design. Parametric studies are conducted for the demonstration of
the design features.

JULY 2022, Vol. 89 / 071008-7
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Although the earth surface temperature is affected by heat con-
vection with air, heat conduction with ground, and radiation to
the sky and from the sun, as well as surface moisture evaporation
[5], it generally remains uniform in a planar area with a relatively
homogeneous soil. For simplicity, we use a perfectly conductive
material with K” — oo in the air to simulate the heat transfer in
the ground with a uniform surface temperature 7° and K =
0.519 W/m - K [3]. Although this assumption simplifies the heat
and mass transfer features on the earth surface, it does not change
the heat transfer in the neighborhood of the tank very much. In
this case, the bimaterial infinite domain is reduced to a semi-infinite
domain with a constant temperature on the surface, and the bimater-
ial Green’s function is reduced to the Green’s function for a semi-
infinite domain accordingly.

To promote the heat exchange in the tank, thermal conductive
pipe is filled in the tank, which exhibits an effective heat conductiv-
ity, significantly higher than the soil, say K= 10— 100 W/m- K.
This article only considers the steady-state heat transfer and
transient heat conduction problem will be investigated in the future.
Two scenarios are considered in the following: (1) disturbance to a
uniform heat flux /5 from the ground surface to the deep earth and
(2) heat exchange from the water tank to the surrounding soil.

5.1 Heat Flux Disturbance by the Water Tank. Consider a
water tank with radius @ = 1 m and thermal conductivity K embed-
ded underground. Without the loss of any generality, for the
steady-state heat conduction in a homogeneous material with a
uniform heat flux, a linearly distributed temperature, hence a constant

heat flux, say ¢3 = —1 w/m?. In Fig. 6, the water tank is placed at dif-
ferent depths as 2, 4, 6, and 8 m and its thermal conductivity K =
10 W/m - K. To compare the disturbance of different thermal conduc-
tivity, consider T — T9d, where T is defined in Eq. (17) as the refer-
ence temperature to the ground surface and d is the depth of the center
of the water tank. Comparing among the four temperature curves in
Fig. 6, water tank at the depth of 2 m exhibits larger difference when
distance to the center of water tank is approaching 2 m, while the
other three curves almost overlap. Such phenomenon can be inter-
preted as boundary effects of constant temperature and the rapid
vanish of second components of kernel function (1/s). Shown in
Fig. 7, the disturbed effects brought by thermal conductivity is inves-
tigated, i.e., K@= 10, 20, 50 and 100 W/m - K when the depth of the
water tank is 4 m. It is noticed that although different thermal con-
ductivity change the heat fields in x; and x,, the variation is compar-
atively small compared with that of loading direction (x3). The four
temperature curves in Fig. 7 mainly differ in [—1, 1] m within the
inhomogeneity itself that the smaller K, the larger the difference
of temperatures, which agrees well with the definition of thermal con-
ductivity. However, the disturbance by K is relatively smaller com-
pared with that by depth, where the boundary effects dominate.

5.2 Heat Exchange Between the Water Tank and
Surrounding Soil. Shown in Fig. 1, a spherical water tank with
radius =1 m and thermal conductivity K** is constructed under-
ground with distance L to the ground. In summer, besides the
power collected by the solar panels, the temperature of the roof
also increases due to the solar radiation. To avoid decrease of

(a) 10 ' ' I ' ~a=05m
i ~a=1m
140+ H \ ~a=2m
120+ i
100+ y E
O / !
80 b
60 .
40 L .
20 1 1 1 1 1
-3 -2 -1 0 1 2 3
Distance to center of water tank x g x‘; (m)
(b) 160 : : : :
R — ~a=0.5m
\ ~—a=1m
140 ‘.v“ ~a=2m
120 / \ .
100+ .
)

Distance to center of water tank X, - xg (m)

Fig. 10 Variation of temperature subjected to uniform heat source Q=500 W
along (a) x3 and (b) x4 directions with distance [—3, 3] m to the center of water
tank x¢ = —8 m with radius a=0.5,1,and 2 m
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Fig. 11 Variation of temperature subjected to uniform heat source Q=500 W

at the center of water tank x§ = —3, —5, —8 m and infinity with radius ranging in

[0.2, 2.5] m

working efficiency and extend the life span of the panels, the system
aims to control the temperature of the roof. In the sense of steady-
state heat conduction, say the water tank absorbs heat at the rate of
Q=500 W; hence, the volume heat source g, =1500/4x W/m>.
Notice that when the point heat source is located underground,
Eq. (4) changes as (1/4x K')(1/r—1/s) due to K” — co when x3 <
0. Let the earth exhibit a uniform far-field temperature °= 20°C,
the temperature field at x is expressed as follows:

Tx)=Tx)+T°= J [G(x, x)gv(x) + Tix, x)T7 ()] dx’ + T°
D

amn

where T7(x") is described in Eq. (12). As demonstrated in Sec. 4, the
quadratic term provides the most accurate results compared to
uniform and linear ones. Hence, in the following case studies,
only quadratic term is applied to illustrate heat fields. Considering
the water tank with K**=10 W/m-K located at different depths,
shown in Fig. 8, the temperature fields along x3 and x; direction
are plotted. In such case, the closer the water tank is to the
ground surface, the lower the temperature field, which can be inter-
preted as the confinement of the boundary conditions of constant
temperature. When the water tank moves deeper, the boundary
effects reduces significantly, so that the temperature differences
are much smaller comparing between depths at 2, 4, and 6, 8§ m.
In Fig. 8(b), except for the case “Depth 2 m,” the other three
curves exhibit a comparatively symmetric distribution, which dem-
onstrates that the boundary effect vanishes rapidly with the distance.

In Fig. 9, four cases of different thermal conductivity K are
investigated when the depth of water tank is 4 m. With higher
K, the temperature variation within the inhomogeneity domain is
smaller; however, the temperature fields in the neighborhood of
inhomogeneity are similar.

In Figs. 10(a) and 10(b), the effect brought by radius a is presented
while keeping the same heat source Q. As the water tank shrinks, the
volume heat source gy increases as proportional to r™°; in the
extreme case of 0 radius, strong singular effects of heat source
exist, which explains significant changes in smaller radius cases.

In Fig. 11, the water tank with radius ranging in [0.2, 2.5] m are
placed at a depth of 3, 5, and 8 m and infinity. Compared with
boundary effects, the singular effects dominate, which results in
similar temperature curves when radii are less than 0.5 m. As dis-
cussed earlier, the boundary effects reduces rapidly with distance;
hence, the cases with depth equaling 5 and 8 m exhibit small differ-
ences. When the depth increases to infinity, the boundary effects by
the image part 1/s vanish in the order of r* [23], which leads to the
same analysis in the infinite domain.

Journal of Applied Mechanics

In actual geothermal applications, the temperature profile of the
ground changes with time and season. The periodic and transient
temperature variations should be considered. The present formula-
tion can be extended to harmonic or transient heat conduction prob-
lems by the introduction of the Green’s functions for those
problems, which have been provided in Appendix A.

6 Conclusions

The Green’s function of the steady-state heat conduction problem
in a 3D infinite bimaterial is used to solve the inhomogeneity
problem that a bimaterial contains a particle with a different
thermal conductivity. Eshelby’s equivalent inclusion method is
used to obtain the analytical solution, which is verified with the
finite element method. Tailorable accuracy can be obtained with
the polynomial eigen-temperature gradient. When one semi-infinite
domain exhibits a zero or infinitely large thermal conductivity, the
solution can be used to study the steady-state heat conduction in the
other semi-infinite domain with an isothermal or adiabatic surface.
The solution is applied to study the heat transfer of a geothermal
tank with the earth with the following conclusions:

(1) When heat is transferred from the surface to the deep earth,
the water tank exhibits a higher average temperature than
the earth at the same depth, and vice versa.

(2) Boundary effects at the interface dominate the disturbance of
heat field when the water tank is close to the ground surface;
when the water tank moves gradually deeper, the image part
of the Green’s function vanishes rapidly, and the heat field
behaves similarly as an infinite homogeneous domain.

(3) Subject to a certain heat source Q, a larger water tank could
lower the disturbance to the heat field, while the heat field in
a smaller water tank exhibits comparatively significant tem-
perature rises.

(4) The thermal conductivity of the inhomogeneity mainly
changes the distribution of heat fields within itself; larger
thermal conductivity results in “flatter” temperature curves
and vice versa.

The method can be extended to two-dimensional cases, periodic and
transient heat transfer problems for geothermal well operations. The
corresponding Green’s function has been provided in Appendix A.
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Appendix A: Other Green’s Functions for a Bimaterial
Infinite Domain

Section 2 provides the Green’s function of bimaterials for the 3D
infinite domain in the steady state. The method is applicable to the
transient heat conduction problem as well, which is more relevant in
the actual applications. In the following, we derive the Green’s
functions for periodic heat source and transient heat transfer. More-
over, the 3D Green’s functions can be extended to the 2D bimateiral
infinite domain. We will provide all Green’s functions. The present
model with EIM can be extended to all cases for wide applications.

Two-Dimensional Bimaterial Under the Steady-State Heat
Conduction. To get the two-dimensional (2D) Green’s function
for a bimaterial infinite domain, we extend the point heat source
Q along x, axis for both directions from —oo to +oco. Therefore,
the 2D Green’s function can be derived by a direct integral along
X, axis from the 3D alternatives as follows:

o0
GPx,x)= j G(x, x') dx, (A1)
where G(x, x') is given in Eq. (4). By using the Hadamard regular-
ization with the finite integral part [37], we can obtain

1 K/ — K//
—ﬁlnr—mﬁlns fOI'X:;ZO
P xy={ T & (A2)
—mlnr for x3 <0
where r= \/(xl —x’l)2 + (x3 —xg)z and

s= \/ (xp —)c’l)2 + (x3 +x§)2. The Green’s function derived from

three-dimensional case can be verified with two-dimensional equi-
librium equation of heat conduction as we know Inr is a harmonic
function for a two-dimensional case.

Green’s Function for Transient Heat Transfer for Bimaterial
Domain. To obtain the fundamental solution of a transient heat
transfer problem, the Fourier and Laplace transforms are generally
applied to change the governing equation of a partial differential
equation into an algebraic equation in the transformed domain.
Using the corresponding inverse transforms, the fundamental solu-
tion in spatial and temporal domain can be determined. For bimater-
ials, Zhou and Han [38] applied the Fourier transform of horizontal
plane and Laplace transform in temporal domain to derive the
Green’s function for anisotropic bimaterial domain, and the
Green’s function in the spatial and time domain exists in forms of
numerical inverse transforms. The closed-form Green’s function
exhibits significant value for the robustness and simplicity. Here,
we follow their procedure and derive the explicit form of the
Green’s function for practical applications with the EIM. Consider

071008-10 / Vol. 89, JULY 2022

the heat equation in a full-space isotropic domain,
T(x, 1) = a@)Tilx, 1) = qy(x, 1) (A3)

where a(x) = K/pC, is the thermal diffusivity with p the density
and C, the specific heat capacity. For simplicity, the heat source
is normalized by pC, in comparison with Eq. (1) [39]. When the
heat source is a unit impulse source at (x/,¢), let
qv(x, 1) =8(r — ')8(x — x’), the solution of the temperature field
can be written in terms of the Green’s function as follows:

Tx—-x',t—1)=Gx,x',t,t) (A4)

which can be used for general distributed heat source by the spatial
and time integrals. Considering the initial temperature distribution
is 0, to derive the explicit form of the Green’s function, the
Fourier transform is applied to Eq. (A3) in the x;—x, plane for the
unit impulse source,

T—a( = Te,t, + Tx) =eond(r; —x))8(t)  (AS)

where T = T(él, &,, x3, 1), dummy index m=1, 2, and t=17-7¢.
The solution of 7' can be written as follows:

N e—x§ Jdat .y e—(.X3 X} ¥ /4ot
T¢, &, x3, 1) = Ce St Z_____ 4 ol Enlate
4mot V4mot

(A6)

When Tt — 0 the last term reduces to d(x3 —x3). Applying the
inverse Fourier transform in x; and x, directions, the Green’s func-

. . . L 3
tion of a full-space with an uniform material is e fAor /N4mat .
Now, considering the interface S is located x3 =0, one can write
the following continuity equations,

T, Dlgy=0r =T, Do~ and  g3(x, Dlyy—o+ = g3(X, Dlyy=0-

(AT)

From Zhou and Han [38] and Walpole [34], the solution is the
superposition of a full-space solution and an image part. In such
case, the solution can be written as follows:

T(gl, &y X3, 1) = { T N(él’ & x3, ) +mT(E, &y, x3,¢) forxz >0
my T (&, &, X3, 1) forx; <0

(A8)

where T represents the function with image source; when x3 <0, the
coefficients merge as the expressions are similar. Applying inverse
Fourier transform in Eq. (A8) and substituting it into Eq. (A7), in
spatial domain, the fundamental solution can be obtained in terms
of the Green’s function,

Gx,x',t,{)=
!~ 1~
_ e AT Me_sz/‘m/t forx3 >0
(4na't)*/? Ko+ K"
1 2K (o 5/2 o -3/2 D .
(4na't)>? Ii/ou)/+l((//()x/ el o o forx; <0
mo' T

(A9)

where ry= \/ (1 —x; Y+ (xs —x’z)2 + (x’3)2; superscripts * and ” of K
and « denote material properties in D* and D™, respectively.

When the heat load is harmonic, i.e., gy = 8(x — X')e’, the fun-
damental solution can be derived using same continuity conditions
in Eq. (A7) and the solution can be similarly expressed in terms of
the Green’s function as follows:

Gx, x', ®)
_ { %, 20, 23, @)+ my T, 3, 33, 0) forxs 20 710

myT(x1, X2, X3, ®), for x3 <0
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where

L+ DK =K+ 2K ="K )y
T+ DK + K+ 2K + K

m3 (Alla)

ZK/((I +i)+ 2C/(x//rs)e(i—l)r\.(L~LC”)
" ' (Al1b)
«(1+ (K +K") +2(CK + "K")ry)

where ¢ = /o/2a. T% and T are the Green’s function for heat equation with harmonic heat load with material properties D and D™,
respectively.

~ 1 C e 1y
T (x’ x/’ (D) — metmte(z—ly r (AIZ)
and ? is for image source,
= 1 . . ,
T, 23 0) = el (A13)

Notice that for harmonic heat load, we have assumed ¢!

be dropped.

as time-related function. Yet the heat field is real, hence the imaginary part should

Appendix B: The Integral of the Harmonic Potential and Its Derivatives

The second-order partial derivatives of domain integrals are as follows,

4 3
;7? (85— 3min;)  forx € (D — Q)
®i=) T (B1)
-3 & forx € Q
4na®
5,4 (=8ymic — Bunj — 8 jgn; + Sninjny), forx e (D - Q)
Phi =1 4 (B2)
3 [—=8(xk — xp) — By — x7) — 8 ju(xi — X)), forxe Q
16ma’ 16ma’
—5r5 ninngn; — W (Sijnknl + Skjn,»n, + sljnink)
20ma’ 4ma’
355 (Suinjmy + Sunjne) + 35,5 (8y70xi + 81i;)
5
+ 105 (124" = 287)8;8 + (8417 — 60a>)ominy] for x € (D — Q)
R P (B3)
T

- T (Siknjnl + Glinjnk + Sijnlnk + Skjn,-nl + 61jn1nk)

2na*  2mr?
+( s T) (8ixd + 8ud )
4nr?  4na? 8mr?
+(¥‘?>6ff6“ * 35 forrea

Notice that for the image potentials, i.e., @ can be obtained by using the three aforementioned equations but switching the source point as ¥.
The third-order partial derivatives of domain integrals are as follows:

4na’
(D,[jr — T(Sn,-njn, - S[jl’l, - Si,.nj - Sj,n,-) for r>a (B4)

0 forr<a

@ = 47:—?3 |:—35ninjnpnq + S(Sijnpnq + dipnjng + Signin, + dipning + 8 jgniny, + SPqn,»nj) —8;i0pg — 0ipdjq — 8]p6iq] forr>a
0 forr<a (BS)
4nad
55 |: =35mnnn + 5(6,-jnkn, + dunjn, + 8 iny + O pmin, + 8y + Skrninj) — 8O — 00, — 6‘,4/(6,~,:| forr>a
Dy yjr = (B6)
45_% (—8;i0kr — OB jr — 8x6;1) forr<a
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Dy =

Dy jjpg =
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Ana’

|:63n nRpNg g — 7(6,-jn,,nan + dunjnyng + Sppningny + dignin,nk

+ 8 minpng + 8 jpningny + 8 jyninpny + dypnining + digningny, + 6,,qn,-njnk)

—4n 8w —4n 8w —4n 8n
[T (6jk6[p + 6](])6]'[) + 561(18,-,,]8,-51 + |:T (5ik61p + 6kp6il) 35 61([6,,,]61,1 + |: 7 (Szksl/ + 6]k611) 3% 6k16ij:|6pq

4
T (8ubjp + 85y + 85) 04 for r < a

4n
JR— (6,-1(6]',, +8;8, + 6/<J'6i1’)61f1 7

7

Pliipg =) (868 g + 81pBkg + S jg )i + (BikD pg + 8ipBig + Spdig )y + (878 pg + 81y g + 8 1pBig I (B7)
+ (6,-j6kq + SikSJ-q + 6jk6iq)np + (Sijskp + 5,‘/{61';, + Sjkéip)nq] for r>a
0 forr<a
—144nd’ 16ma’
T;mn,n_,-nkn,n, + % (Sijnknm, + Symimn, + dyymimn, + 8y + 8 iy + Sk,n,-njn[)
Ana’ And! — Anadr?
L: (Sk,-njnln, + Slinjnkn,) + (w) 6k1ninjn,
[—16ma’ 20ma’ —16ma’ 20ma’
+ W (6,'j6[r + 61j6ir) - 35,6 61,61,]111( + |: 35,6 (6,‘]'61” + 6kj6ir) - 35761(,'6]',]711
[—167a’ na®(28r% — 204%) —20nd’ na®(28r% — 2043)
35—6 (6jk61r + 5kr6jl) + Taklsjr] n; + |: 35,6 (801 + 6i0kr) + TSHSH]’U B5)
[—4Ama’ na®(28r% — 20a%)
+ 35, Ae6 (6116;(, + 6116](/) Tﬁk,&-j] n, forr>a
471: 4rr
- ? (6,k6]r + 6U6k, + 8@6,,) - 7 (Slisjr + SijSIr + 50‘5,‘,)”](
[—4nr 8nr
+ 7 (881 + 81D 1) + gskISjr]ni + [ (61k61r + 84-0;1) + 35 5k15n]n]
—4nr 8nr
+|—— (848 + 8 48u) + = 0ud; |n, forr<a
L 7 ’ 35
1584na’
T ninjnmnnpng
—144nd’
+ 57 (Siqnjnknln,, + 8 jgnimenny, + Sggnininny, + Sy, + O paniningy + Snghyinm,
+dyngnining, + dyngnimmn, + dipngngnn; + 8 jpnggnn; + Skpnqninjnl)
—36na 7a®(28r% — 3642)
+ Bixngnjmny, + dyngningny,) + — dpngninny,
16ma’
57 [6,;/ (Skqn[n,, + 8gmin, + 6,,qnlnk) + 61_,-(6kqn,~n,, + 8igmin, + 6,,qn,-nk) + &y (Siqnln,, + &yyniny, + Spqnlni)
+90;, (Skqnlnj + &yymyn; + S_iqnlnk) +9, (Skqnlni + Sgnmn; + Siqnlnk) + Skp(S,-qnln_,- + 8yynin; + S_iqnlni)]
47ra
[Sk, (qunln,, + &y, + SPqnan-) + 9y (qunknp + &pgniny + 6pannj)]
4na5 @ —-r?
B — 6k1(6 iilp + Signiny, + 6 pyn; nj)
16na’ dna® (a* — r? 16na’ 4na’(a® - 1?)
+ | —=— (8dy, +88k) + ¥5/‘p5k1 nghi + |~ (8dpp + 8idip) +———5——8;8u [ngn;
S5r r 5r7 r
167a’ 4ndd 16ma 4nad
5, <7 (6,161[, + 6116,p) ] 6jp6,'[i| ngNi + |: 5,7 (6,]6kp + 6,k6,p) 7 61'[,6,'1(:|nqn1
41ta 4na®(a® — r?)
+ }“77 (6,'/(61]' + 6jk6,'1) + 7776”6“] nghy,
:—167ta7 na®(28r% — 20a?) —16ma’ na’ (28r* — 20a3)
+ 35,7 (sijI[) + 6j16k17) + 35,7 6j;76kl:|6iq + |: 35,7 (61'/(61[1 + 61’161(17) + 735}’7 6ip6kl] qu
[—16ma’ —20ma’ —16ma’ —20ma’
35,7 (881 + 818p) + 35,7 5/:»511] Big + [ 35,7 (881 + 88jp) + 35,7 6,p6,k]614
[—20md’ a3 (2872 — 20a?)
+ W (6,'](611' + 6,'[6kj) + TSUSH]SPQ’ for r>a

(B9)
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For 2D cases, the integrals of the harmonic potential and its derivatives can be written as follows:

&= 2na®Inr forxe (D -Q)
| 7 + na?[2In(a) - 1] forxeQ
—2na?
b = —2nax;/1? = na n; forxe(D-Q)
—21x; = —271rn; for x € Q
b1 b1
—6,-2a2—r2 ——rznni forxe (D-Q
o |t =g D-9 B10
PiT ) mat na*
ﬁfipi—ﬁnpn,- for x € Q
2 2 2 mXnXi 2 2
E(Smixn'i'am'-xm) aZ_L _M_Smn-x[ K_E fOI'.xE(D—Q)
o = 2 3 3 2 6
" (OymiXy + Opix )n—aﬁ—x»xxzn—aﬁ—fi X; n_cz“_n:_aﬁ forx € Q
mi-vn nr’vm 6r4 vmin 3r6 mn-+i 2r2 6}’“4
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