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On the Variability of the Sample Covariance Matrix
Under Complex Elliptical Distributions

Elias Raninen , Student Member, IEEE, Esa Ollila , Senior Member, IEEE, and David E. Tyler

Abstract—We derive the form of the variance-covariance matrix
for any affine equivariant matrix-valued statistics when sampling
from complex elliptical distributions. We then use this result to
derive the variance-covariance matrix of the sample covariance
matrix (SCM) as well as its theoretical mean squared error (MSE)
when finite fourth-order moments exist. Finally, illustrative exam-
ples of the formulas are presented.

Index Terms—Sample covariance matrix, sample variation,
mean squared error, complex Gaussian distribution, complex
elliptically symmetric distribution.

I. INTRODUCTION

SUPPOSE we observe independent and identically dis-
tributed (i.i.d.) complex-valued p-variate random vectors

x1, . . . ,xn ⊂ Cp with mean µ = E[xi] and positive definite
covariance matrix Σ = E[(xi − µ)(xi − µ)H]. The (unbiased)
estimators of Σ and µ are the sample covariance matrix (SCM)
and the sample mean defined by

S =
1

n− 1

n!

i=1

(xi − x̄)(xi − x̄)H and x̄ =
1

n

n!

i=1

xi. (1)

The SCM is an integral part of many statistical signal processing
methods such as adaptive filtering (Wiener and Kalman filters),
spectral estimation and array processing (MUSIC algorithm,
Capon beamformer) [1], [2], and adaptive radar detectors [3]–
[5].

In signal processing applications, a typical assumption would
be to assume that the data x1, . . . ,xn follow a (circular) com-
plex multivariate normal (MVN) distribution [6], denoted by
CN (µ,Σ). However, a more general assumption would be
to assume a Complex Elliptically Symmetric (CES) [7], [8]
distribution, which is a family of distributions including the
MVN distribution as well as heavier-tailed distributions such
as the t-, K-, and the inverse Gaussian distribution that are
commonly used in radar and array signal processing applications
as special cases [8]–[11].

In the paper, we study the complex-valued (unbiased) SCM
for which we derive the variance-covariance matrix as well
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as the theoretical mean squared error (MSE) when sampling
from CES distributions. We also provide a general expression
for the variance-covariance matrix of any affine equivariant
matrix-valued statistic (of which the SCM is a particular case).
The results regarding the SCM extend the results in [12] to
the complex-valued case, where the variance-covariance matrix
and MSE of the SCM were derived for real-valued elliptical
distributions.

The structure of the paper is as follows. Section II intro-
duces CES distributions. In Section III, we derive the variance-
covariance matrix of any affine equivariant matrix-valued statis-
tic when sampling from a CES distribution. In Section IV, we
derive the variance-covariance matrix of the SCM and provide
an application in shrinkage estimation. Section V concludes. All
proofs are kept in the appendix.

Notation: We let I, 1, and ei denote the identity matrix,
a vector of ones, and a vector whose ith coordinate is one
and other coordinates are zero, respectively. The notations (·)∗,
(·)⊤ , and (·)H, denote the complex conjugate, the transpose,
and the conjugate transpose, respectively. The notations Hp,
Hp

+, and Hp
++ denote the sets of Hermitian, Hermitian positive

semidefinite, and Hermitian positive definite p × p dimensional
matrices, respectively. We use the shorthand notation var(A) =
var(vec(A)) and pvar(A) = pvar(vec(A)) (see Section III
for the definition of pvar), where vec(A) = (a⊤1 · · · a⊤p )⊤ is a
vectorization of A = (a1 · · · ap). When there is a possibility for
confusion, we denote by covµ,Σ(·, ·) or Eµ,Σ[·] the covariance
and expectation of a sample from an elliptical distribution with
mean vector µ and covariance matrix Σ. The p2 × p2 com-
mutation matrix [13] is defined by Kp,p =

"
i,j eie

⊤
j ⊗ eje⊤i ,

where ⊗ is the Kronecker product. The notation d
= reads “has the

same distribution as”, U(CSp) denotes the uniform distribution
on the complex unit sphere CSp = {u ∈ Cp : ∥u∥ = 1} and
R≥0 = {a ∈ R : a ≥ 0}.

II. COMPLEX ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

A random vector x ∈ Cp is said to have a circular CES
distribution if and only if it admits the stochastic representation

x
d
= µ+ rΣ1/2u, (2)

where µ = E[x] is the mean vector, Σ1/2 ∈ Hp
++ is the unique

Hermitian positive definite square-root of Σ, u ∼ U(CSp), and
r > 0 is a positive random variable called the modular variate.
Furthermore r and u are independent. If the cumulative distri-
bution function of x is absolutely continuous, the probability
density function exists and is up to a constant of the form

|Σ|−1g((x− µ)HΣ−1(x− µ)), (3)
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where g : R≥0 → R>0 is the density generator. We denote
this case by x ∼ CEp(µ,Σ, g). We assume that x has finite
fourth-order moments, and thus we can assume without any
loss of generality that Σ is equal to the covariance matrix
var(x) [8] (implying E[r2] = p). We refer the reader to [8] for
a comprehensive account on CES distributions.

The elliptical kurtosis of a CES distribution is defined as

κ =
E[r4]

p(p+ 1)
− 1. (4)

Elliptical kurtosis shares properties similar to the kurtosis
of a circular complex random variable. Specifically, if x ∼
CNp(µ,Σ), then κ = 0. This follows by noticing that 2 · r2 ∼
χ2
2p, and hence E[r4] = p(p+ 1) and consequently κ = 0 in the

Gaussian case. The kurtosis of a complex circularly symmetric
random variable x ∈ C is defined as

kurt(x) =
E[|x− µ|4]
(E[|x− µ|2])2 − 2, (5)

where µ = E[x]. Similar to the real-valued case, κ has a simple
relationship with the (excess) kurtosis [14, Lemma 3]: κ = 1

2 ·
kurt(xi), for any i ∈ {1, . . . , p}. We note that the lower bound
for the elliptical kurtosis is κ ≥ −1/(p+ 1) [8].

Lastly, we define the scale and sphericity parameters

η =
tr (Σ)

p
and γ = p

tr
#
Σ2
$

tr (Σ)2
. (6)

The scale is equal to the mean of the eigenvalues. The sphericity
measures how close the covariance matrix is to a scaled identity
matrix. The sphericity parameter gets the value 1 for the scaled
identity matrix and p for a rank one matrix.

III. RADIAL DISTRIBUTIONS AND COVARIANCE MATRIX

ESTIMATES

In this section, we derive the variance-covariance matrix of
any affine equivariant matrix-valued statistic. We begin with
some definitions.

The covariance and pseudo-covariance [15] of complex ran-
dom vectors x1 and x2 are defined as

cov(x1,x2) = E
%
(x1 − E[x1])(x2 − E[x2])

H& and

pcov(x1,x2) = E
%
(x1 − E[x1])(x2 − E[x2])

⊤ & ,
and together they provide a complete second-order description
of associations between x1 and x2. Then var(x) = cov(x,x)
and pvar(x) = pcov(x,x) are called the covariance matrix and
the pseudo-covariance matrix [15] of x.

A random Hermitian (AH = A) matrix A ∈ Hp is said to
have a radial distribution ifA d

= QAQH for all unitary matrices
Q (soQHQ = I). The following result extends the result of [16]
to the complex-valued case.

Theorem 1: Let a random matrix A = (aij) ∈ Hp have a
radial distribution with finite second-order moments. Then,
there exist real-valued constants σ, τ1 and τ2 with τ1 ≥ 0 and
τ2 ≥ −τ1/p such that E[A] = σI with σ = E[aii] and

var(A) = τ1I+ τ2 vec(I)vec(I)
⊤ , (7)

pvar(A) = τ1Kp,p + τ2 vec(I)vec(I)
⊤ , (8)

where τ1 = var(aij) = pcov(aij , aji) and τ2 = cov(aii, ajj)
= pcov(aii, ajj) for all 1≤i ̸= j ≤p.

A statistic Σ̂ = Σ̂(X) ∈ Hp based on an n × p data matrix

X =
#
x1 · · · xn

$⊤
of n ≥ 1 observations on p complex-

valued variables is said to be affine equivariant if

Σ̂(XA⊤ + 1a⊤ ) = AΣ̂(X)AH (9)
holds for allA ∈ Cp× p and a ∈ Cp. Suppose thatx1, . . . ,xn ⊂
Cp is a random sample from a CES distribution CEp(µ,Σ, g)

and that Σ̂ = (σ̂ij) ∈ Hp is an affine equivariant statistic. Then
Σ̂ has a stochastic decomposition

Σ̂(X)
d
= Σ1/2 · Σ̂(Z) ·Σ1/2, (10)

where Σ̂(Z) denotes the value of Σ̂ based on a random sam-
ple z1, . . . , zn ⊂ Cp from a spherical distribution CEp(0, I, g).
This follows by writingX d

= Z(Σ1/2)
⊤
+ 1µ⊤ using (2) (where

zi = riui) and then applying (9). Affine equivariance together
with the fact that zi

d
= Qzi for all unitary matrices Q indicate

that Σ̂(Z) has a radial distribution. This leads to Theorem 2
stated below.

Theorem 2: Let Σ̂ = (σ̂ij) ∈ Hp be an affine equivariant
statistic with finite second-order moments, and based on a
random sample x1, . . . ,xn ⊂ Cp from a CES distribution
CEp(µ,Σ, g). Then E[Σ̂] = σΣ with σ = E0,I[σ̂11], and

var(Σ̂) = τ1(Σ
∗ ⊗ Σ) + τ2vec(Σ)vec(Σ)

H, (11)

pvar(Σ̂) = τ1(Σ
∗ ⊗ Σ)Kp,p + τ2vec(Σ)vec(Σ)

⊤ , (12)
where τ1 = var0,I(σ̂12) and τ2 = cov0,I(σ̂11, σ̂22) ≥ −τ1/p.

There are many statistics for which this theorem applies.
Naturally, a prominent example is the SCM, which we examine
in detail in the next section. Other examples are the complex
M -estimates of scatter discussed in [8] or the weighted sam-
ple covariance matricesR = 1

n

"n
i=1 u(di)(xi − x̄)(xi − x̄)H,

where di = (xi − x̄)HS−1(xi − x̄) and u : R≥0 → R≥0. In the
special case, when u(s) = s, we obtain the fourth moment
matrix used in FOBI [17] for blind source separation and in
Invariant Coordinate Selection (ICS) [18].

IV. VARIANCE-COVARIANCE OF THE SCM AND AN EXAMPLE IN

SHRINKAGE ESTIMATION

We now use Theorem 2 to derive the covariance matrix and
the pseudo-covariance matrix as well as the MSE of the SCM
when sampling from a CES distribution. This result extends [12,
Theorem 2 and Lemma 1] to the complex case.

Theorem 3: Let the SCM S = (sij) be computed on an
i.i.d. random sample x1, . . . ,xn ⊂ Cp from a CES distribution
CEp(µ,Σ, g) with finite fourth-order moments and covariance
matrix Σ = var(xi). Then, the covariance matrix and pseudo-
covariance matrix of S are as stated in (11) and (12) with

τ1 = var0,I(s12) =
1

n− 1 +
κ

n
,

τ2 = cov0,I(s11, s22) =
κ

n
,

where κ is the elliptical kurtosis in (4). The MSE is given by

MSE(S) = E[∥S−Σ∥2F] =
'

1

n− 1 +
κ

n

(
tr(Σ)2 +

κ

n
tr(Σ2),

and the normalized MSE is

NMSE(S) =
MSE(S)

∥Σ∥2F
=

p

γ

'
1

n− 1 +
κ

n

(
+

κ

n
, (13)
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Fig. 1. The value of βo as a function of κ, when n = p = 10 and γ = 2.

where γ is the sphericity parameter defined in (6).
The finite sample performance of the SCM can often be im-

proved by using shrinkage covariance matrix estimators, which
is an active area of research, see e.g., [12], [19]–[24]. Consider
the simple shrinkage covariance matrix estimation problem,

βo = argmin
β∈R

E[∥βS−Σ∥2F].

Since the problem is convex, we can find βo as solution of
∂
∂β E[∥βS−Σ∥2F] = 2β E[tr(S2)]− 2∥Σ∥2F = 0which yields

βo =
∥Σ∥2F

MSE(S) + ∥Σ∥2F
=

1

NMSE(S) + 1
, (14)

where we used MSE(S) = E[∥S−Σ∥2F] = E[tr(S2)]−
∥Σ∥2F. From (14), it follows that the optimal scaling term βo is
always smaller than 1 sinceMSE(S) > 0. Furthermore, βo is a
function of γ and κ via (13). In the Gaussian case (κ = 0), we
obtain βo = (n− 1)/(n− 1 + p/γ). Fig. 1 illustrates the effect
of κ on βo when γ = 2, and n = p = 10. Next we show that
the oracle estimator So = βoS is uniformly more efficient than
S, i.e.,MSE(S0) < MSE(S) for any Σ ∈ Hp

++. First write

E
%
∥βoS−Σ∥2F

&
= β2

oMSE(S) + (1− βo)
2∥Σ∥2F. (15)

Then from (14) we notice that 1− βo = βoNMSE(S). Subsi-
tuting this into (15) we get
MSE(So) = β2

oMSE(S) + β2
oNMSE(S)

2∥Σ∥2F
= β2

oMSE(S) (1 + NMSE(S)) = βoMSE(S),

where the last identity follows from fact that 1/βo = 1 +
NMSE(S) due to (14). Sinceβo < 1 for allΣ ∈ Hp

++, it follows
that So is more efficient than S. Efficiency in the case when γ
and κ, and hence βo need to be estimated, remains (to the best of
our knowledge) an open problem. However, for certain related
shrinkage estimators the shrinkage intensity can be consistently
estimated, e.g., [19], [20].

In the univariate case (p = 1), Σ is equal to the variance σ2 =
var(x) > 0 of the random variable x ∈ C and the SCM reduces
to the sample variance defined by s2 = 1

n−1
"n

i=1 |xi − x̄|2. In
this case, γ = 1, and βo in (14) is

β0 =
n(n− 1)

kurt(x)(n− 1) + n2
.

A similar result was noticed in [25] for the real-valued case.
If the data is from a complex normal distribution CN (µ, σ2),
thenkurt(x) = 0, andβo = (n− 1)/n, and hence s2o = βos2 =
1
n

"n
i=1 |xi − x̄|2, which equals the Maximum Likelihood Esti-

mate (MLE) of σ2. In the real case, the optimal scaling constant
is βo = (n− 1)/(n+ 1) for Gaussian samples [26]. Note that
when the kurtosis is large and positive and n is small, then βo

can be substantially less than one and the gain of using so can
be significant.

V. CONCLUSION

We derived the form of the variance-covariance matrix for any
affine equivariant matrix-valued statistics under sampling from
CES distributions. We used this result to derive the variance-
covariance matrix and the MSE of the SCM when finite fourth-
order moments exist. An illustrative example in the context of
shrinkage covariance matrix estimation was presented.

APPENDIX

A. Proof of Theorem 1

The proof follows the same lines as the proof in [16]
for the real-valued case. Since A has a radial distribution
E[A] = E[aii]I = σI is obvious. For any unitary matrix Q =
(q1 · · ·qp), we have

var(A) = var(vec(A)) = var(vec(QAQH))

= var((Q∗ ⊗ Q)vec(A))

= (Q∗ ⊗ Q) var(vec(A))(Q⊤ ⊗ QH).

Let {eie⊤j ⊗ eke⊤l } be a basis for the set of p2 × p2 matrices.
Then
var(A) =

!

i,j,k,l

τijkleie
⊤
j ⊗ eke

⊤
l =

!

i,j,k,l

τijklq
∗
iq
⊤
j ⊗ qkq

H
l ,

where τijkl = var(aki, alj). By choosing qm = ȷem (where ȷ
is the imaginary unit) and qr = er for some m ̸= r, we must
have τijkl = 0 unless i = j = k = l, i = j ̸= k = l, or i = k ̸=
j = l. Denote τ0 = τiiii = var(aii), τ1 = τiijj = var(aji) and
τ2 = τijij = cov(aii, ajj). Then

var(A) =
"

i,j τ1eie
⊤
i ⊗ eje⊤j +

"
i,j τ2eie

⊤
j ⊗ eie⊤j

+ (τ0 − τ1 − τ2)
"

i eie
⊤
i ⊗ eie⊤i .

Note that
"

i,j eie
⊤
i ⊗ eje⊤j = I and

"
i,j eie

⊤
j ⊗ eie⊤j =

vec(I)vec(I)⊤ . Furthermore,

(Q∗ ⊗ Q)
!

i,j
eie

⊤
i ⊗ eje

⊤
j

#
Q⊤ ⊗ QH$ = I

(Q∗ ⊗ Q)
!

i,j
eie

⊤
j ⊗ eie

⊤
j

#
Q⊤ ⊗ QH$ = vec(I)vec(I)⊤

(Q∗ ⊗ Q)
!

i
eie

⊤
i ⊗ eie

⊤
i

#
Q⊤ ⊗ QH$ ̸= eie

⊤
j ⊗ eie

⊤
j .

From the last inequality, we must have τ0 − τ1 − τ2 = 0 and
var(A) = τ1I+ τ2vec(I)vec(I)⊤ follows.

Regarding the pseudo-covariance, for any unitary Q,

pvar(A) = (Q∗ ⊗ Q) pvar(vec(A))(QH ⊗ Q⊤ ),

which implies

pvar(A) =
!

i,j,k,l

τ ′ijkleie
⊤
j ⊗ eke

⊤
l =

!

i,j,k,l

τ ′ijklq
∗
iq

H
j ⊗ qkq

⊤
l ,

where τ ′ijkl = pcov(aki, alj). By choosing qm = ȷem and
qr = er for some m ̸= r, we must have τ ′ijkl = 0 except
when i = j = k = l, i = k ̸= j = l, or i = l ̸= j = k. Let τ ′0 =
τ ′iiii = pvar(aii), τ

′
1 = τ ′ijji = pcov(aij , aji) and τ ′2 = τ ′ijij =

pcov(aii, ajj). Then,

pvar(A) =
"

i,j τ
′
1eie

⊤
j ⊗ eje⊤i +

"
i,j τ

′
2eie

⊤
j ⊗ eie⊤j

+ (τ ′0 − τ ′1 − τ ′2)
"

i eie
⊤
i ⊗ eie⊤i

= τ ′1Kp,p + τ ′2vec(I)vec(I)
⊤
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by similar arguments as with var(A). Then note that, τ1 =
var(aji) = pcov(aij , aji) = τ ′1 ≥ 0 and τ2 = cov(aii, ajj) =
pcov(aii, ajj) = τ ′2. Lastly, since var(A) is positive semidefi-
nite and τ1 ≥ 0, | var(A)| = |τ1I+ τ2vec(I)vec(I)⊤ | = (τ1 +
τ2p)τ

p2−1
1 ≥ 0 implies τ2 ≥ −τ1/p. !

B. Proof of Theorem 2

Since Σ̂(X) is affine equivariant, from (10) we have

var(Σ̂(X)) = var(Σ1/2Σ̂(Z)Σ1/2)

= ((Σ1/2)∗ ⊗ Σ1/2) var(Σ̂(Z))((Σ1/2)∗ ⊗ Σ1/2).

From Theorem 1, var(Σ̂(Z)) is of the form (7). Since

((Σ1/2)∗ ⊗ Σ1/2)I((Σ1/2)∗ ⊗ Σ1/2) = (Σ∗ ⊗ Σ) and

((Σ1/2)∗ ⊗ Σ1/2)vec(I)vec(I)⊤ ((Σ1/2)∗ ⊗ Σ1/2)

= vec(Σ)vec(Σ)H,

we obtain (11). Similarly,

pvar(Σ̂(X)) = pvar(Σ1/2Σ̂(Z)Σ1/2)

= ((Σ1/2)∗ ⊗ Σ1/2) pvar(Σ̂(Z))(Σ1/2 ⊗ (Σ1/2)∗),

where pvar(Σ̂(Z)) is of the form (8). Since

((Σ1/2)∗ ⊗ Σ1/2)Kp,p(Σ
1/2 ⊗ (Σ1/2)∗) = (Σ∗ ⊗ Σ)Kp,p,

((Σ1/2)∗ ⊗ Σ1/2)vec(I)vec(I)⊤ (Σ1/2 ⊗ (Σ1/2)∗)

= vec(Σ)vec(Σ)⊤ ,

we obtain (12). !

C. Proof of Theorem 3

The proof is similar to the proof of [12, Theorem 2] that was
derived for the real-valued case. Write the SCM as S = (sij) =
(n− 1)−1X⊤HX∗, where H = I− 1

n11
⊤ is the centering ma-

trix. Write a = Xeq and b = Xer for q ̸= r. Then note that
sqr = (n− 1)−1a⊤Hb∗. Hence,

τ1 = var(sqr) = var((n− 1)−1a⊤Hb∗)

= (n− 1)−2 var(a⊤Hb∗). (16)
Then note that
var(a⊤Hb∗) = var(tr(Hb∗a⊤ )) (17)

= var(vec (H)⊤ vec
#
b∗a⊤

$
)

= vec (H)⊤ var
#
vec
#
b∗a⊤

$$
vec (H) . (18)

Since for xi ∼ CEp(0, I, g) we have xi
d
= riui, where ri

d
=

∥xi∥ is independent of ui = (ui1, . . . , uip)
⊤ ∼ U(CSp), we

can write a = Xeq = (r1u1q, r2u2q, . . . , rnunq)
⊤ , and simi-

larly for b. The klth element of the ijth block (i.e., the ijklth
element) of the n2 × n2 matrix var(vec(b∗a⊤ )) is

cov (b∗kai, b
∗
laj) = E

%
rkrirlrju

∗
kruiqulru

∗
jq

&
,

where we used that E[b∗a⊤ ] = 0. Then note that

E
%
|uiq|2|uir|2

&
=

1

p(p+ 1)
,

E
%
|uiq|2

&
=
1

p
, and E

%
|uiq|4

&
=

2

p(p+ 1)
,

while all other moments up to fourth-order vanish. This and the
fact that E[r4i ] = (1 + κ)p(p+ 1) due to (4), implies that the
only non-zero elements of var(vec(b∗a⊤ )) are

E[r4i ]E[|uir|2|uiq|2] = 1 + κ for i = j = k = l, and

E[r2i ]E[r
2
k]E[u

2
ir]E[u

2
kq] = 1 for i = j ̸= k = l,

and hence

var
#
vec
#
b∗a⊤

$$
= I+ κ

n!

i=1

eie
⊤
i ⊗ eie

⊤
i . (19)

This together with (16) and (18) yields

τ1 =
1

(n− 1)2 vec (H)
⊤

)
I+ κ

n!

i=1

eie
⊤
i ⊗ eie

⊤
i

*
vec (H)

=
1

n− 1 +
κ

n
,

where we used vec(H)⊤ vec(H) = n− 1 and
n!

i=1

vec (H)⊤ (eie
⊤
i ⊗ eie

⊤
i )vec (H) =

n!

i=1

h2
ii =

(n− 1)2

n
.

Next, we find the expression for τ2 = cov(sqq, srr) =
(n− 1)−2 cov(a⊤Ha∗,b⊤Hb∗). Since E[sqq] = E[(n−
1)−1a⊤Ha∗] = 1 for any q,

τ2 = (n− 1)−2 E[a⊤Ha∗b⊤Hb∗]− 1

= (n− 1)−2tr
#
E
%
H(b∗a⊤ )HH(b∗a⊤ )

&$
− 1

=(n−1)−2tr
+
(H ⊗ H)E

,
vec
#
b∗a⊤

$
vec
#
b∗a⊤

$H
-.
−1.

The expression in the expectation is equal to (19), and so

τ2 =
1

(n− 1)2 tr
)
(H ⊗ H)

)
I+ κ

n!

i=1

eie
⊤
i ⊗ eie

⊤
i

**
− 1

=
κ

n
,

where we used that tr(H ⊗ H) = tr(H)2 = (n− 1)2 and
n!

i=1

tr
#
(H ⊗ H)

#
eie

⊤
i ⊗ eie

⊤
i

$$
=

n!

i=1

h2
ii.

This completes the proof for τ1 and τ2. By Theorem 2, we have
var(S) = τ1(Σ

∗ ⊗ Σ) + τ2vec(Σ)vec(Σ)H, and hence
MSE(S) = tr(var(S))

= tr
#
τ1(Σ

∗ ⊗ Σ) + τ2vec(Σ)vec(Σ)
H$

= τ1tr(Σ)
2 + τ2tr(Σ

2),

where the last identity follows from using tr(Σ∗ ⊗ Σ) =
tr(Σ)2. This gives the stated expression for the MSE. !
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