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1. Introduction

Dimension reduction (DR) plays an increasingly important role in high dimensional data analysis. In linear dimension
reduction for a random vector ¥ € RP, the idea is to try to find a transformation matrix W € R7P, g < p, such that the
interesting features of the distribution of x are captured by Wx only, that is,

(i) x|Wx is viewed as noise (unsupervised DR), or
(ii) y L x | Wx for the response of interest y (supervised DR).

In this paper we consider three classical but diverse linear dimension reduction methods: principal component analysis,
independent component analysis and sliced inverse regression. As an introduction to our approach, we first highlight the
similarities between these three approaches and show that the different methods can be presented in a joint framework.
Write Fy and § = S(F,) for the cumulative distribution function and covariance matrix of x. To simplify the notation,
we assume in the following that E(x) = 0.
(i) In the principal component analysis (PCA), one finds the p x p transformation matrix W such that

Ww' =1, and WSW' =D

where D is a diagonal matrix with diagonal elements dy > --- >d, > 0.1fdy > --- > dy > dg41 = --- = d, > 0 and
W is partitioned accordingly as W = (W, WZT)T, then Wx is often seen as the g-variate signal part and W5x as the
(p — q)-variate noise part. Hence, Wx is considered noise if and only if the eigenvalues of WZSWZT are all equal.
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(ii) In the independent component analysis (ICA) with g non-Gaussian and p —q Gaussian components, the fourth order
blind identification (FOBI) method finds a transformation matrix W € RP*P such that

WSW' =1, and WE[xx'S 'xx"|W' =D

where D is a diagonal matrix with the diagonal elements ordered so that (d; — (p + 2))*> > --- > (dg — (p + 2))?
> (dgp1 — (p+2))? = --- = (dy — (p + 2))*> = 0. Then W can again be partitioned as W = (W, W, )" so that, under
weak assumptions, Wx is the g-variate non-Gaussian signal and W,x the (p — q)-variate Gaussian noise. If we further
write S ;=S and S; = E [xxTS]’]xxT] then, Wx is considered noise if the eigenvalues of W252W2T are all equal to
p+2.

(iii) In the sliced inverse regression (SIR) with a p-variate random vector x and the response (dependent) variable y,
one finds a matrix W € RP*P which satisfies

WsSW' =1, and WS,W' =D

where S ;=S and S, = E [E(x|y)IE(x|y)T] and D is a diagonal matrix with the diagonal elements d; > --- > d, > 0.
Under appropriate assumptions on the distribution of (x,y), we have dy > --- > dy > dg41 = -+ = d, = 0 with
the corresponding partitioning W = (WlT, WZT)T. It is then thought that (Wx, y) carries all the information about the
dependence between x and y, and W ,x just presents noise. Thus, Wx is thought to be noise if the eigenvalues of WS, W2T
are all equal to zero.

To test and estimate the dimension of the signal space (also called order determination) and to separate signal and
noise, we thus utilize, for empirical versions of appropriate choices of §; and S-, the eiggn—decomposition ofsl’]Sz, or that

of the symmetric matrix R := 5;1/2525;]/2. For the PCA case, we take S = I, and S, = §, the sample covariance matrix, or
some other scatter matrix, as defined later in Section 2. The tests are based on the first two moments of selected subsets
of the eigenvalues of R and the corresponding estimates are obtained applying different sequential testing strategies.
The sequential testing procedures for the order determination problem in SIR have been suggested earlier by Li [23]
and Bura and Cook [4]. Zhu et al. [46,47] used the eigenvalues with BIC-type penalties to find consistent estimates for
the dimension of the signal subspace of a regression model. In other general approaches, Ye and Weiss [45] considered
eigenvectors rather than eigenvalues and proposed an estimation procedure that was based on the bootstrap variation
of the subspace estimates for different dimensions. In a general approach, Luo and Li [26] combined the eigenvalues and
bootstrap variation of eigenvectors for consistent estimation of the dimension. The last two approaches are based on the
notion that the variation of eigenvectors is large for the eigenvalues that are close together and their variability tends to
be small for far apart eigenvalues.

In PCA the eigenvalues of § are generally used to make inference on the dimension of the signal space, see e.g. Jolliffe
[19] and Schott [36] and references therein. Early papers on the use of bootstrap estimation and testing (via confidence
intervals) in principal component analysis are Beran and Srivastava [1], Daudin et al. [ 11], Eaton and Tyler [13] and Jackson
[18]. For the use of permutation tests in restricting the number of principal components, see Dray [12] and Vieira [42].

In the independent component analysis (ICA) the fourth-order blind identification (FOBI) by Cardoso [6] uses the regular
covariance matrix and the scatter matrix based on fourth moments and the eigenvalues provide measures of marginal
kurtosis. These two matrices can be replaced by any two matrices possessing the so called independence property, see Oja
et al. [34], Tyler et al. [41] and Nordhausen and Tyler [33]. Very recently, Nordhausen et al. [30] used the empirical
eigenvalues of §7'S; to test and estimate the dimensions of Gaussian and non-Gaussian subspaces.

PCA and FOBI are examples of unsupervised dimension reduction procedures as they do not use information on any
response variable y. Other examples of unsupervised dimension reduction methods are invariant coordinate selection
(ICS), see Tyler et al. [41], and generalized principal components analysis (GPCA), see Caussinus and Ruiz-Gazen [7]. Sliced
inverse regression (SIR) uses the regular covariance matrix of ¥ and the covariance matrix of the conditional expectation
E(x|y). Other examples on supervised dimension reduction methods are the canonical correlation analysis (CCA), sliced
average variance estimate (SAVE) and principal Hessian directions (PHD), for example, and they all can be formulated
using two scatter matrices. For these methods and estimation of the dimension of the signal subspace, also with regular
bootstrap sampling, see Li [23], Cook and Weisberg [9], Li [24], Bura and Cook [4], Cook [8], Zhu et al. [46,47], Bura and
Yang [5] and Luo and Li [26] and the references therein. For nice reviews on supervised dimension reduction, see Ma and
Zhu [27], Li [25].

The plan of this paper is as follows. In Section 2 we introduce the tools for our analysis, that is, the notion of a scatter
matrix with some preliminary theory. In all three cases in Section 3 (PCA), 4 (FOBI) and 5 (SIR), respectively, we first
specify a natural semiparametric model: x = Az + b where A and b are the parameters and the distribution of the
standardized z is only partially specified. The null hypothesis says that z can be partitioned as z = (le, zzT)T and the
first part z; carries the interesting variation. In the paper, the empirical version of the eigenvalues of Sl’]Sz, that is, the

eigenvalues of R = 5;1/2525;]/2, are utilized in this partitioning and used to build tests and estimates for the dimension
of z;. We discuss the asymptotic tests with corresponding estimates and provide different strategies for bootstrap testing.
Different approaches are illustrated with real data examples. All the proofs are postponed to the final section.

We adapt the following notation. RE;} and Rfyxmp’ . are the sets of symmetric and positive definite symmetric p x p
matrices, respectively. The first and second moments and the variance of the eigenvalues of R € Rfyxnf are denoted by

mi(R) = tr(R)/p, my(R) := mi(R*), s*(R):=my(R)— mi(R),
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respectively. If R = UDU ™ e R);? | is a eigen-decomposition of R then R'/? := UD'?UT € RP*? (symmetric version of

the square root matrix). Given k matrices A1, Ay, ..., A;, we write
A, 0 --- 0
0 A - 0

diag(Aq, ..., Ay) =
0 0 ... A
The vectorization of a matrix A = (a,]) € RP*4, denoted by vec(A), is a gp-vector obtamed by stacking the columns of A
on top of each other, that is, vec(A) = (a1, ..., Gp1, A12, ..., Gp, .. alqr apq . We further write ©P*¥, k < p, for
the set of column orthonormal p x k matrices, i.e., U € O’JX" 1mp11es U = I,. Hence, given U € 0P*k Py = UU"
is the orthogonal projection onto the range of U, and Qy; = I, — Py is the orthogonal projection onto its orthogonal
complement, i.e., onto the null space of U. Let e; € R denote the ith Euclidean basis element, i.e., a vector with a one
in the ith position and zeros elsewhere. For two random vectors ¥ and y, we write ¥ ~ y if ¥ and y have the same
distribution. The random vector z € R? has a spherical distribution if Uz ~ z for all U € OP*P, The distribution of z is

subspherical with dimension k, k < p, if U z is spherical for some U € ©P*, The distribution of x is elliptical if x ~ Az+b,
where A € RP*P and b € RP and z € R has a spherical distribution.

2. Scatter matrices

In this chapter, we state what we mean by a scatter matrix and a supervised scatter matrix and provide some
preliminary results. Let F, be the cumulative distribution function (cdf) of a p-variate random vector x and Fy, the cdf
of the joint distribution of p-variate ¥ and univariate y.

Definition 1. (i) The functional S(Fy) € Rfyxnf . is a scatter matrix (functional) if it is affine equivariant in the sense that
S(Fax+n) = AS(Fy)AT for all non-singular A € RP*? and all b € RP.

(ii) The functional S(ny) € Rfyx,,f is a supervised scatter matrix (functional) if it is affine equivariant in the sense that
S(Faxt+by) = AS(F”)A for all non-singular A € RP*? and all b € RP.

Let X = (x1,...,%,)" € R™P be a random sample from a distribution Fy. The estimate S of the population value S(Fy)
is obtained as the value of the functional at the empirical distribution F, of X. We also write S(X) for this estimate. Let
X =ZA" +1,b" where Z = (zy,...,2,)" is a random sample from a spherical distribution F, with S(F,) = I,,. (Note
that, for any scatter matrix S, S(F;) o I, and can the rescaled to satisfy the last condition.) Then X is a random sample
from an elliptical distribution with S(F,) = AAT.

Under general assumptions, the limiting distribution of /n vec(S(Z) — I,,) is

Ny (0,012 + Ky p) + azvec(lp wec(I,)")

where K, , = > 7 P (eje] )®(eje]) is the commutation matrix, see Theorem 1 in Tyler [38]. The limiting distribution
b.p j=1 j )

is known if the following two constants, same for any i # j,
o1 = AsVar(S(Z);), o, = AsCov(S(Z);i;, S(Z)j)

are known and then AsVar(S(Z);) = 207 + o03. Also, under general conditions, the influence function of the scatter
functional S(F) at a spherical F; is given by

IF(x; S, F;) = a(rjuu’ — B(r),,

where r = ||x|| and u = ||x||"'x, see Hampel et al. [16]. If S(F) is the covariance matrix and S(F;) = I,, then o(r) = r?
and B(r) = 1 and if z ~ Ny(0, I,,) then oy = 1 and o, = 0. For Tyler’s shape estimate (proposed in Tyler [40] and scaled
so that its trace equals p) which we use as a robust alternative for the covariance matrix in our example in Section 3, one
gets a(r) = (p+2) and B(r) = (p + 2)/p.

In the following we often need to estimate o;. It then follows, as noted in Croux and Haesbroeck [10], that o7 =
E(a(r))/(p(p + 2)). Due to affine equivariance of the scatter matrix, the limiting distribution of /n vec(S(X) — AAT) =
(A® A) /n vec(S(Z) —I,) and, using S with a companion location estimate fi, oy can often be consistently estimated by

1T 1, Tt 172
G1=——==-) a¥(fy), i=(x—p)'S x—A) .
= L (- a)'s ' — i)
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3. Testing for subspace dimension in PCA

3.1. The model, null hypothesis and test statistic

Let X = (x1,...,%;)" be a random sample from a p-variate elliptical distribution Fy, that is, from the distribution of a
random p-vector x generated by
X=Az+Db,

where A € RP*P is non-singular, b € RP and z has a spherical distribution around the origin, that is, Uz ~ z for
all U € oOP*P, The distribution of z is then fully determined by the distribution of its radius r := ||z|. We assume
that S(F;) = I, for the scatter matrix functional used in the analysis. For a general overview of spherical and elliptical
distributions, see Kelker [21] or Bilodeau and Brenner [2].

As the matrix of eigenvectors and the corresponding eigenvalues of S(F,) are equivariant and invariant, respectively,
under orthogonal transformations of x, it is not a restriction to assume in our derivations that A is diagonal with positive
and descending entries and b = 0 so that S(Fy) is a diagonal matrix D = A? with diagonal entries d; > - > d, > 0.
Let S be the value of the scatter functional at the empirical distribution of X. For the asymptotic results, we assume
that \/nvec( S D) has a limiting multivariate normal distribution with zero mean vector and the covariance structure as
described in Section 2. We wish to test the null hypothesis

Hoe: dy > --->dg > dyy1 =--- =dp, =d for some unknown d,

stating that the dimension of the signal space is k. Under Hyy, the distribution of x is subspherical, that is, the distribution
of the subvector of the last p—k principal components is spherical. In principal component analysis, the scree plot is often
used to figure out how many components to include in the final model. The null hypothesis Hy, then implies that there
is the elbow on the scree plot at the kth eigenvalue. Also, sphericity and subsphericity (in a weaker sense) are important
in the analysis of the repeated measures data, for example.

To test the null hypothesis, we use the variance of the p — k smallest eigenvalues, that is,

Ty == sz(ﬁzgﬁk), Uk =arg min m](UT§U),
Ucopx(p=k)

as a test statistic. It follows from the Poincaré separation theorem that a solution ﬁk e oP*=K is the matrix of the
eigenvectors associated with the p — k smallest eigenvalues of s and other solutlons are obtamed by post-multiplying it
by an orthogonal (p — k) x (p — k) matrix. The projection matrices Pk = UkUk and Qk =1, — Pk are unique and satisfy
P SQ, = 0 and provide the noise-signal decomposition x = Px+ Qkx with uncorrelated ka and Qkx

Other possible measures for the variation of the smallest eigenvalues are s(ﬁzgﬁk)/ml(ﬁzgﬁk), i.e., the coefficient
of variation, or the log ratio of the arithmetic mean ml(ﬁzgﬁ,<) to the geometrical mean det(i]\Z’S\il\k)]/ (=K If S is the
covariance matrix, then the latter measure corresponds to the likelihood ratio criterion for Hy in the multivariate normal
case.

If one wishes to test a related null hypothesis that S(Fy) has k+ 1 distinct eigenvalues with multiplicities 1, ..., 1, p—k,
then a natural test statistic is

Vi = min _ s (UT§U) .
UcoP*(r=k):p,$Qy=0

A solution U « for which the minimum value is attained consists of the elgenvectors of § associated with the eigenvalues
closest together (in the variance sense). This is seen as follows. Let U € ©P*?~K and PUSQU = 0. Then PyS = SPy.
As the symmetric matrices commute if and only if they have the same eigenvectors, U is a matrix of p — k elgenvectors
of S say Uy € oP*(P=M) post- -multiplied by an orthogonal (p — k) x (p — k) matrix. Consequently, UTSU and U0 SU,
have the same elgenvalues and s (UTSU )= (UJISUO) Thus the problem of minimizing s (UTSU ) under the constraint
PUSQU = 0 reduces to that of minimizing s (U;SUO) over the p — k subsets of eigenvectors of S.

3.2. Asymptotic tests for dimension

Assume now that x is elliptical with diagonal scatter matrix D = A?. Let q denote tr%e true value of the dimension of
the signal space, that is, Hy, is true, and consider the limiting distribution of T, = s?(U ¢ SUq). With a correct value g we
have the partitions

D 0 ~ Sy S
D= ( 1 ) . S = 11 12
0 d,, Su Sn
respectively, and the diagonal elements in D; are strictly larger than d. Under our assumptions, \/ﬁ(g — D) = 0p(1) and
we have the following.
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Lemma 1. Under the stated assumptions and Hoq, nT, = ns2(S5,) + 0p(n~1/2).

Under our assumptions stated in Section 2, /n vec(S(Z) — I,) where Z = XD~'? converges in distribution to a
p?-variate normal distribution with zero mean vector and the covariance matrix o;(I 2 +Kpp)+ oavecl, )vec(lp)T. Then
we have the following.

Theorem 1. Under the previously stated assumptions and under Hog,
np—q)ly a ,
—— — X1 .
2d%04 5(p—q—1)(p—q+2)

If the multiplicities of the eigenvalues of D, are smaller than p — q then P(Vq = Tq) — 1 and the limiting distributions of nV;
and nT, are the same.

For the test construction in practice we thus need to estimate two population constants o and d, both of which are
invariant under orthogonal transformations to x. The limiting distribution in Theorem 1 stays the same even if oy and
d are replaced by their consistent estimates, say ; and d. Construction of a consistent estimate for o; has already been
discussed in Section 2. The unknown d can be consistently estimated by the average of the p — g smallest eigenvalues, that
is, by d= ml(ﬁzgﬁq). Note also that the test statistic in Theorem 1 with these replacements depends on the smallest
eigenvalues through their coefficient of variation, a test statistic suggested by Schott [36]. As noted previously, a possible
test statistic for Hyq is also the log of the ratio of the arithmetic and geometric means of the smallest p — q eigenvalues of

/S\, say Lq. Then under the null hypotheses as well as under certain contiguous alternatives, n(T, — 2d2Lq) 2 0and then,

under Hog, n(p — q)Lq/61 4 X(ilqul)(p—q+2)/2' See Theorem 5.1 and 5.2 and their proofs in Tyler [39].
We now utilize the test statistics Ty, k € {0, 1, ..., p — 1}, for the estimation problem and collect some useful limiting
properties in the following theorem.

Theorem 2. Under the previously stated assumptions and under Hog,

(i) for k < q, Ty, 5 ck for some cq,...,cq—1 >0,
(i) for k= q. n(p — q)Ty/QPo) S 3
2
(iii) for k > g, nT < (‘;%q)zan = 0p(1).

(p—q+2)’
k

A consistent estimate ¢ of the unknown dimension ¢ < p — 1 can then be based on the test statistics Ty, k €
{0,1,...,p— 1}, as follows.

Corollary 1. Forallk € {0, 1,...,p— 1}, let (ck.n) be a sequence of positive real numbers such that ¢y, — 0 and ncy, — 00
as n — oo. Then, under the assumptions of Theorem 2,
1, ifk<g
P(T, > ¢ —
(Tk > Ckn) {0’ ifk>q

and g = min{k : Ty < cx.n} LN q.

Note that, by definition, T,—; = 0 and the maximum value of q is p — 1, which corresponds to the smallest eigenvalue
being distinct. The estimate q is easily found by using the so called bottom-up testing strategy: Start with tests for Hyg,
Hp1 and so on, and stop when you get the first acceptance. An alternative consistent estimate with a top-down testing
strategy is § = max{k : Ti_1 > cx_1,n} using successive tests for Hy ,_5, Ho -3, . . ., and stopping after the first rejection.
For large p, faster strategies such as the divide and conquer algorithm are naturally available in the estimation.

Let F, be the limiting distribution of nT; under Hyk. The sequences of critical values (cy,) for testing Hox can be
determined by the corresponding sequences of asymptotical test sizes (o ) satisfying ay, = 1 — Fy(nck ) A simple and
practical choice of the sequences of the test sizes is for example ay , = (ng/n)o, k < p — 2 and n > nyq. Then nc¢y, — 00
as axn = 1— F(ncgn) = 0, and cxn — 0 as ncg potkn = ncg (1 — Fr(ncgn)) — O.

To end the discussion on asymptotics, suppose we relax now the ellipticity assumption and consider a model for which
diag(l4, U)z ~ z for all U € 0P~9*(P=4) Since D = A* = diag(Dy, dI,_), % is subspherical but not necessarily elliptical. It
is then easy to show that, for the covariance matrix and finite fourth moments, Lemma 1 and Theorem 1 still hold true
with o7 = 1. For other scatter matrices, however, the asymptotic behavior in this wider model is not known.

Lemma 1 shows the remarkable fact that under the null hypothesis Hy, the limiting distributions of nT; = nsz(ﬁqT?ﬁq)
and that of nsz(UqT§Uq) with known noise subspace are the same. If, in the small sample case, the p-values are obtained
from the limiting distribution of the test statistic, the variation coming from the estimation of the subspace is thus ignored
in the null asymptotic approximation. In the following we therefore propose that the small sample null distribution of a
test statistic be estimated by resampling the data from a distribution obeying the null hypothesis and being as close as
possible to the empirical distribution.
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3.3. Bootstrap tests for dimension

Again, let g denote the true dimension of the signal space and we wish to test the null hypothesis
Ho: dy>--->dy > diy1 =--- =dp =d for some d.

It is important to stress that, in the practical testing situation, we do not know whether Hyy is true (k = q) or whether
it is false (k # q) but we still wish to compute the p-values for true Ho. See Hall and Wilson [15] for some guidelines in
bootstrap hypothe51s testing. For testmg we start with a scatter matrix estimate S and a companion locatlon estlmate n
and compute Uk and T, = s (U,( SUk) the variance of p — k smallest eigenvalues of S. We further write Pk = UkU,( and
Qk =1, - Pk for the estimated projection matrices to the noise and signal subspace under true Hyy, respectively.

The basic idea in the bootstrap testing strategy is that the bootstrap samples X* for Hy, should be generated from a
distribution F, i

(i) for which the null hypothesis Hyy is true (even if k # q) and
(ii) which is as close as possible to the empirical distribution F, of X.

We suggest the following two procedures. In the first procedure, the bootstrap samples come from a subspherical and
elliptical distribution (with the distribution of the radius estimated from the data) and, in the second procedure, they
come a subspherical distribution (not assuming full ellipticity). It is important that the dimension of the subspherical part
is p—k even when k # q. If one wishes to assume multivariate normality then the first procedure can be further modified
accordingly.

Bootstrap strategy PCA-I (elliptical subspherical distribution):

1. Starting with X_€ R™P?, compute , S with the estimated matrix of eigenvectors in U and corresponding estimated
eigenvalues in D.

2. Take a bootstrap sample Z = (Z1, ..., Z,)" of size n from (X — 1, )ﬁﬁ_l/z.

3. For ellipticity to be true, transform

Z?:O,'Ei, ie {1,...,1’1},
and 04, ..., 0, € OP*P are i.i.d. from the Haar distribution.
4, For subsphericity to be true as well, the bootstrap sample is

x* =200 + 1,a",

where Dy = diag(dy, ..., di, 30y di/(p — k), .., S0 di/(p — K)).
Bootstrap strategy PCA-II (subspherical distribution):
1. Starting with X € R"™P, compute s, I, Uk, Pk and Q,{

2. Take a bootstrap sample X = (%1,...,%,)" of size n from X.
3. For subsphericity to be true, transform

=@+ 000 |G-+ & iell ),

and 04, ..., 0, € ©P~Kx(P=k) 3re jjd. from the Haar distribution.
4. The bootstrap sample is X* = (7, ..., x}).

>

For both strategies and for k € {0,...,p — 1}, the hypothesis Hy is true for the corresponding bootstrap null
distribution, say Fy . For the PCA-I strategy,

1< 1/2 71/2 T ~ o~
X) = E 215013,, [ (Uka 0;,D P Uk (% ”*) +pn = X)]
i=

with random matrices O p, ..., 0, € OP*P from the Haar distribution. Similarly, for the PCA-II strategy,
Fnk ZEO,pk[ (Qk+UI<01p kUk)( ﬁ)+ﬁ§x)]7
where 01k, ..., Oy p_i € OP~K*(P=K) gre from the Haar distribution.

Consider next the distribution of nTy(X*) for the PCA-I strategy. Let then X}, € RN*P be a random sample of size N
from F, ;. Note that F,  is an elliptical distribution with true Ho, and with data dependent parameters, namely, symmetry

~ . . o ~T
center u := W, covariance matrix § := UD,U and
1 - 1 .

~ 1
di=d=— d;, a:=6=772 o?(F),
K i 1 1 p(p+2)n (l)
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Fig. 1. Left figure: The original data set consisting of the SVRI values measured on 223 subjects at 4 time points. Right figure: The estimated signal
part (upper curves) and noise part (lower part) of the same data set.

where 7; = ((x; — fL)T1(xi — )2, i € {1,...,n}. Theorem 1 then implies that, given X, N(p — k)Ti(X})/(2d%67) 4

X%(p e 1pkt2) (a.s.) which provides, for large n, the same asymptotic chi-squared approximation for the distribution of
Lp—k—1)p—

the unconditional n(p — k)T,<(X*)/(2a261) as well. Theorem 1 gave the same approximation for n(p — k)Tk(X)/(Zaz&l ). For
the PCA-I strategy applied to the covariance matrix, similar arguments can be used to get the same approximations for
the distributions of n(p — k)Tk(X*)/(Zaz) and n(p — k)Tk(X)/(zaz).

In practice, the exact p-values are not computed but estimated as follows. Let T = T(X) be a test statistic for Hg such

as Ty, that is, the variance of the p — k smallest eigenvalues of S. If X7, ..., X}, are independent bootstrap samples of size
n as described above and T;* = T(X}), i € {1, ..., M}, then the bootstrap p-value is given by

L H#HIT>=T)+1

L VI

Note that, conditioned on X, p is a random variable whose variance around the true p-value can be estimated by ﬁ p(1—=p).
The asymptotic and bootstrap tests discussed here have been extended to a noisy latent model framework, for example,
in Virta and Nordhausen [43].

3.4. An example

The standard repeated measures ANOVA needs the assumption of spherical multivariate normality. Sphericity has then
been defined both in terms of the variances of difference scores and in terms of the variances and covariances of orthogonal
contrasts to be used in the analysis, see e.g., Lane [22]. Preliminary testing for sphericity or subsphericity is then of interest
in this context. Subsphericity indicates that there are no latent subgroups or clusters in that part of the data, and the
subspherical part may then be seen simply as noise. To illustrate the methodology we use some data from the LASERI
study (Cardiovascular risk in young Finns study) which is available in the R package ICSNP [32]. To collect these data, 223
subjects took part in a tilt-table test. For the first ten minutes the subjects were lying on a motorized table in a supine
position, then the table was tilted to a head-up position for five minutes, and thereafter returned to the supine position
for the last five minutes. Various hemodynamic variables were measured during the experiment. The variable considered
here consists of the four measurements of the systemic vascular resistance index (SVRI) on all subjects. The four time
points were (i) the tenth supine minute before the tilt, the (ii) second and (iii) fifth minute during the tilt and (iv) the
fifth minute in supine position after the tilting. The 223 SVRI values at the 4 time points are shown in Fig. 1 (left figure).

To illustrate the three testing strategies from above we use as scatter matrix the sample covariance matrix and Tyler's
shape matrix where the location is estimates as specified in Hettmansperger and Randles [17]. The obtained eigenvalues
of the sample covariance matrix and Tyler’s shape matrix are then 982935.95, 176465.68, 36213.91, 25865.65 and 8.94,

7
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Table 1

The p-values for testing ¢ = 0 (Hgpo), ¢ = 1 (Ho1) and q = 2 (Hp,) based
on the covariance matrix and Tyler's shape matrix for the SVRI data. The
p-values are calculated using three different testing strategies.

Cov Tyler’s shape matrix

Asymp PCA-1 PCA-II Asymp PCA-1 PCA-II
Hoo 0.000 0.002 0.002 0.000 0.002 0.002
Ho1 0.000 0.002 0.002 0.000 0.002 0.002
Ho, 0.104 0.130 0.142 0.064 0.072 0.064

1.78, 0.30, 0.21, respectively, and the corresponding eigenvectors are the columns of

—0.48 0.46 —0.42 0.62 —0.47 052 -0.13 0.70
-0.51 -0.53 -0.56 —0.38 -0.51 -0.48 -0.70 -0.11
—-052 —-0.44 0.64 036 |’ —-0.53 -0.47 0.69 0.12
—0.50 0.56 0.31 -0.59 —0.48 0.52 0.10 -0.70

Both scatter matrices seem to suggest that ¢ = 2 and that the principal components are (close) to the average and
the contrast comparing the supine and tilted positions and the two contrasts within positions. The suggestion ¢ = 2 is
supported by the p-values for Hyg, Ho; and Hp, using the two scatter matrices and three testing strategies, see Table 1.
The estimated signal and noise parts of the data using Tyler’s scatter matrix are given in Fig. 1 (right figure).

4. Testing for subspace dimension in FOBI

4.1. The model, null hypothesis and test statistic

T

In the independent component (IC) model it is assumed that X = (xq,...,X;)' is a random sample from a distribution

of the form
x=Az+Db

where A € RP*P is non-singular, b € RP, and z is a random p-vector with independent components standardized so
that E(z) = 0 and Cov(z) = I,. We further assume that z = (z1T, zzT)T where the components of z; € R? (signal) are
non-Gaussian and the components of z, € RP~9 (noise) are Gaussian. The general idea then is to make inference on the
unknown q, 0 < q < p, and to estimate the non-Gaussian signal and Gaussian noise subspaces. In this chapter we discuss
some recent tests and estimates for q introduced in Nordhausen et al. [30] that are based on the joint use of the covariance
matrix and the matrix of fourth moments. Throughout this chapter we therefore need to assume that the fourth moments
of z exist.

In the independent component analysis (ICA) it is usually assumed that gisp — 1 or p. If 1 < q < p is allowed as in
our case, the approach is sometimes called non-Gaussian independent component analysis (NGICA). In the non-Gaussian
component/subspace analysis (NGCA), z; and z, are independent, z; is non-Gaussian and z, is Gaussian, that is, there is no
a; € R? such that aszl has a normal distribution while aszz has a normal distribution for all a, € RP~%. The components
of z, are thus allowed to be dependent in the NGCA model. See Blanchard et al. 3], Theis et al. [37] and Nordhausen et al.
[30].

In fourth order blind identification (FOBI) an unmixing matrix W € RP*P and a diagonal matrix D € RP*P are found
such that

WS\W' =1,

where §; = E[(x — E(x))(x — E(x))" | and S, = E [r}(x — E(x))(x — E(x))"] with r> = (x — E(x))"S;"(x — E(x)) is the
scatter matrix based on fourth moments. The matrix W is called an unmixing matrix as Wx has independent components

ws,w' =D,

under the assumption that E(zf‘), cees E(zg) are distinct from one another and from 3 (normal case). Write UT = ws}/z.
AsU'U =1I,, U is orthogonal and W = UTS;”Z. If
R :=S5,"°s,87"?,

then WS?2RSV2W" = UTRU = D and U is therefore obtained from the eigen-decomposition R = UDU'. The
eigenvalue d; in D is then p + 2 if and only if E(zi“) =3,i€ {1,...,p}, and, under mild assumptions, the eigenvalues
can be used to separate the Gaussian and non-Gaussian components. As W(Fay)Ax and W(Fy)x are the same up to
sign changes, location shifts and perturbations of the coordinates and the ordered eigenvalues of D(Fay) and of D(Fy)
are the same, we can in our derivations assume without any loss of generality that A = I,, b = 0 and §; = I,
S, = R = D = diag(Dy, (p + 2)I,—q). For our approach, we also need the assumption that the diagonal elements in
D, are distinct from p + 2.



K. Nordhausen, H. Oja and D.E. Tyler Journal of Multivariate Analysis 188 (2022) 104830

Let X = (X1,...,%,) be a random sample from the stated independent component model with g non-Gaussian and
p — q Gaussian independent components with an unknown dimension g. Write §1, S, and R for the values of functionals
$1, S2 and R, respectively, at the empirical distribution of X. If \/n(S1 — I,) = Op(1) and /n( Sz — D) = Op(1) then, by
Slutsky’s theorem,

~ ~ 1 —~ ~
ViR = D) = v/n(S; = D) — = [Va(S1 — 1,)D + DV/n(S1 —1,)] + 0p(1)
and the limiting multivariate normality of J/nvec( R — D) follows from the joint limiting multivariate normality of
J/nvec( 51 —I,, S, — D) which holds if the eight moments of z exist. We wish to test the null hypothesis
Hoy :  exactly p — k eigenvalues in D are p + 2
stating that the dimension of the signal space is k. To test the null hypothesis Hp,, we use the test statistic

Te:= min my (UT( —(P+2))U)= min m (UT( —(p+2),)°U).
Ueopx(p—k) Ueopx(p=k)

Recall that Kankainen et al. [20] used Ty = m, (ﬁ — (p+ 2)I,) to test for full multivariate normality of x. If

U.=arg min m (UTR - (p +2)I,)’U),
Ueopx(p—k)

then, again according to the Poincaré separation theorem, a solution of ﬁk is the matrix of the eigenvectors associated
with the p — k eigenvalues of R that are closest to p + 2. We can then also write

AT~ AT~ 2
T = my (Uk R—(p+ 2)Ip)uk) (Uk RUk) + [m1 (Uk RUk) —(p+ 2)]
and U K S x is, under Hgy, an estimate for the Gaussian noise vector.
4.2, Asymptotic tests for dimension

Consider the independent component model and, without loss of generality, presume A = I, and b = 0. Let g denote
the dimension of the non-Gaussian signal space, and denote the corresponding partition by

R En Elz '
Ry1 Ry
We then have the following result.

Lemma 2. Under the previously stated assumptions and under Hog,

nfg=n-m @22 —(P+2)pg) +0p(n" ) =n -5 @22) +n [ml(ﬁzz) —(p+ 2)]2 +0p(n~'7?).

Note that the first term in the sum on the second row provides a test statistic for the equality of p — q eigenvalues
closest to p + 2 and the second term measures the deviation of their average from p + 2 (Gaussian case). Under our
assumptions and under Hyq, these two random variables are asymptotically independent and we have the following.

Theorem 3. Under the previously stated assumptions and under Hog,

n(p — q)T, > 201)(1 + Qo1+ oa2(p — Q) xF

(p—q—1)(p—q+2)

with independent chi squared variables x? 1

(P—q—1)p—q42) and xf, and oy = Var (||z||2) +8and oy, = 4.
2

Recall that Ty = Ty 1 + Ty, where Ty = sz(il\qTﬁﬁq) and Ty, = [y ﬁ;ﬁﬁq — (p + 2)]? provide two asymptotically
independent test statistics for Hy; as seen from the proof of the theorem. Under the assumptions in Theorem 3,

p — o = zalxi(p—q—l)(p—qﬂ)
the appendix in Nordhausen et al. [30]. They show that the result is true even in the wider NGCA model. As seen in
the proof, o1 = AsVar((R2)12) and o3 = AsCov((R22)11, (Rzz )22). In the mdependent component model, we simply have
= Y %1 E(z}) — p+ 8 with a consistent estimate 61, = 1 > | 3% —-p+38 where zi=W(x—X),ic{1,...,n}L
[n the w1der NCGA model, the parameter o can be consistently estlmated by Ow = Z,:1 IZ;||* — p* + 8. Both estimates,
014 and o4, are consistent in the case of the independent component model even for unknown q.
To estimate g, we consider the joint limiting behavior of test statistics n(p — k)T for Ho, k € {0, ..., p — 1}, but under
true Hoq. For k € {0, ..., p — 1}, write

Ty =my (0. I, )R — (p+ 2),)(0.1,1)") .

and n(p — q)Ty2 LY 201 4+ o2(p — q)) X12_ For deriving the values of o7 and o3, see
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Then Ty < T, k € {0, ..., p — 1}, and we have the following [30].

Theorem 4. Under the previously stated assumptions and under Hog,

(i) fork < q, Ty, 5 ck for some cq,...,cq—1 >0,
(ii) for k = q, n(p — K)Ty — G,
(iii) for k > q, n(p — k)T < n(p — k)T LY Ck,
where
G ~ 201)((1, k—1)p—k+2)2 + (201 + o2(p — k) X12
with independent chi squared variables X(p—k—1)(p—k+2)/2 and X12 and o4, and oy as in Theorem 4.

As in PCA, a consistent estimate § of the unknown dimension g can be based on sequential testing using the test
statistics Ty and corresponding critical values ¢y, k € {0, ..., p — 1}, as suggested in the following. Other (top-down or
divide and conquer) strategies again provide alternative consistent estimates.

Corollary 2. Forall k € {0, ...,p — 1}, let (cx,n) be a sequence of positive real numbers such that ¢, — 0 and ncy, — 00
as n — oo. Then
1, ifk<gq,
P(Ty > ¢
(Ty = ckn) — { 0. ifk>q

and

g =min{k : Ty < cn} L q.
4.3. Bootstrap tests for dimension

Let q denote the true dimension and consider the test statistic Ty = m, (ﬁ,f(ii —(p+ Z)Ip)ﬁ,<> for Hog, k € {0, ..., p—
1}. In the following we also need
~1/28 ATa-1/2 A -~
P.=5"00,5,"%. Q. =1,-P
which are the estimated projection matrices (with respect to Mahalanobis inner product) to the noise and signal subspaces,
respectively.

To obtain the p-value for T, the bootstrap samples are generated, as in PCA, from a distribution for which the null
hypothesis Hyy is true under the stated model (even if k # ¢q) and which is as similar as possible to the empirical
distribution of X. We suggest again two procedures. The first one is for testing the hypothesis Hg, in the IC model and
the second one in the wider NGCA model, see Nordhausen et al. [30]. The bootstrap p-values are obtained as in PCA with
M bootstrap samples.

Bootstrap strategy FOBI-I (IC model):

. Start with centered X € R™? and compute X and W = (l/’l\/1T Wz )T where W, = U,TSTI/Z

. Write Z = (X — 1,8 )W and further Z = (Z,, Z,) where Z, € R™(®~1),

. Let Z% € R™* for a matrix of independent componentwise bootstrap samples of size n from Z,.
. Let ZZ € R™(P=K pe a random sample of size n from Np—i(0,I,_).

. Write Z* = (Z7, Z3).

. Write X* = Z*(W )~ + 1,%.

AU WN =

Bootstrap strategy FOBI-II (NGCA model):

1. Start with X € R™P, compute X, §1, §2, ﬁ, ﬁk, ﬁk and ak.
2. Take a bootstrap sample X = (X1, ..., X,)" of size n from X.
3. For the noise space to be Gaussian, transform

N ~ . _ =12 .
X = [Qu&% — %) +5, U0y +& ie(l,....n,

where 04, ..., 0, are i.i.d. from Np_(0, In_).
4. X =(x5,...,x)".

In the case of the FOBI-I strategy, the bootstrap null distribution Fy ,(x) is the average

TS T
e e an
~ ik 0i..iy

10
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Table 2

The asymptotic and bootstrapping based p-values for Hy;-Ho4 for the image
data when using FOBI. Either an IC model or a NGCA model was assumed.
The null hypothesis ¢ = 1 (Ho1) is rejected by all four tests and the true
value ¢ = 2 (Hpy) is the smallest one to be accepted.

ICA NGCA

Asymp Boot Asymp Boot
Ho1 0.000 0.002 0.000 0.002
Hopz 0.211 0.082 0.206 0.116
Hos 0.878 0.940 0.873 0.880
Hoa 0.810 0.778 0.806 0.729

where the o S are from Np_(0, Ip_y) and the e s (with the ith element one and other elements zero) are in R", and
in the FOBI- II strategy, the bootstrap samples for HOk are generated from the distribution F ,(x) that is the average

’ZEOI[ ([Qk —&)+§}/2ﬁkoi]+?}fx>:|»

where 01, ..., 0, ~ Np_(0,I,_).

As in the PCA bootstrap asymptotics, let Xy be a random sample of size N from F; x. As these observations come from
the ICA and NGCA models, respectively, with true Hy, and known (data based) parameters o1 = 614 or oy = 67, and
o3 = 4, the limiting (conditional and unconditional) distribution of NT,(X},) is as given in Theorem 3. For large n, the
limiting distribution then provides the approximation for nT,(X*) as well.

The bootstrapping testing strategy was explored for any pair of two scatter matrices in [35] in is quite similar than
the approach described above.

4.4, An example

ICA is often illustrated using mixed images. Following this tradition, we mix 6 gray scale images: Two of the images
are the pictures of a cat and a forest road, available in the R package ICS [29], and the remaining four images are just
Gaussian noise. The images have 130 x 130 pixels and the six original images can be presented as a matrix Z € R™P with
n = 16900 pixels and p = 6 columns identifying the 6 images. The observed mixed images are then X = ZA" + 1,b"
and the idea is to recover the two (signal) images. Note that the rows of X are not independent in this example but FOBI
uses the marginal distribution of the column elements rather than their joint distribution.

The first three columns of the Z and Z = X l/’l\/T are given on the first and second row of Fig. 2, respectively. Note that
the result on the second row would be the same for any choices of A and b. The ordered eigenvalues (with respect to
the squared deviation from p + 2 = 8) of R are 9.00, 8.27,7.92, 8.04, 7.97 and 8.00. The p-values for Hy;-Hp4 both all
the tests are given Table 2. Note that the bootstrap tests here use m = 500 bootstrap samples. In this examples all four
tests nicely agree and the false hypothesis Hy; is rejected and the true hypothesis Hy, is the first to be accepted at level
o = 0.05.

5. Testing for subspace dimension in SIR
5.1. The model, null hypothesis and test statistic

In this section we assume that

T
_ Y1 Yn nx(p+1)
po= (2 ) () exe

is a random sample from a distribution of (y, x" )" where
X=Az+Db,

A € RP*? js non-singular, b € RP and z = (z/, z, )" is a random p-vector with E(z) = 0, Cov(z) = I, and (y,z{ )" L z,.If
z, € R? and z, € RP79, with q being the smallest value for which this condition holds, then they correspond respectively
to the signal and noise parts of z. The partition z = (ziT, zzT)T is then unique up to transformations z; — 0;z; and
z; — 0,2, with 0; € ©7%P and 0, € OP~P*(P=9) The aim is again to test and estimate the unknown dimension q and
then find the projections to the well defined signal and noise subspaces of x.

Remark 1. Note that our assumption (y, z] )T L z, is stronger than the regular assumptions in sliced inverse regression
and related methods: In classical SIR and SAVE approaches the dependence conditions are for example (i) y 1L z;|z;

11
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Fig. 2. The first row shows the original signal images plus one exemplary noise component from Z. The second row shows the first three estimated
components Z when using FOBI. All components not shown look like the noise components (third column).

and E(z;|z1) = 0 a.s. (linearity condition) for SIR and (ii) y 1L z»|z1, E(22121) = 0 and Cov(2;|z1) = I_4 a.s. for SAVE.
Alternative or additional assumptions needed for easy and tractable asymptotics have been given in the literature such as
the assumption that z is multivariate normal [23] or that the conditional covariance Cov(z|y) is constant [4]. See Section 5.2
for more discussion. Under our strong assumption, bootstrap samples from a true null distributions are easily generated
as shown in Section 5.3.

In the sliced inverse regression (SIR) one finds a transformation matrix W € RP*P and a diagonal matrix D € RP*P
such that

WSW' =1, and WS,W' =D

with §; = E[(x — E®))(x — E(x))"] and S, = E [E(x — E(x)|y)E(x — E(x)|y)" |. Under our assumptions, the diagonal
elements in D are

dlz...ququ+1=...= p=0,

172 then U is the matrix of

Again, as in ICA, W = UTS1_1/2 with some orthogonal U € RP*? and, if R = 51_1/25251_
eigenvectors of R.

In practice, the random variable y is replaced by its discrete approximation as follows. Let Sy, ..., Sy be H disjoint
intervals (slices) such that R = S; + --- + Sy and let y¢ = Z,L yul(y € Sp) for some choices y, € Sp, h € {1,...,H},
independent of z. (I(y € S;) = 1ify € S, and zero otherwise.) The random variable y¢ can then be seen as a discrete
approximation of a continuous random variable y. Naturally also (¥, le)T 1L z,. The sliced inverse regression (SIR) then

just refers to the use of the inverse regression E(x — E(x)|y¢) and the corresponding supervised scatter matrix
S» = E[E(x — E@)y)ERX — E@®)ly")']

in the analysis of the data. With this choice of §,, we still have dy > --- > dg > dg41 = - - - = d, = 0. Next write p := E(x)
and X := Cov(x), and p}, := E(x|y € Sy), X' := Cov(x|y € Sp) and p, = P(y € Sp), h € {1, ..., H}. Then

H
$1=%, S, = th(”’h — )y —p)'
h=1

Consider next the corresponding sample statistics. For the estimates of §; and S,, write
1¢ 1w
S, = - X% —x)T S, — — X — X% —x)"
Si=2 D WX —RT S= 1) mdE - RE - BT
i=1 h=1
12
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where x, = - Z?:] x;I(y; € Sp) and ny = Z?:l I(y; € Sp), h € {1,...,H}. Note that np - m1(§T1§2) is the well-known

o My £~ . . : o
Pillai’s trace statistic for testing Hy : g = --- = py under the assumption that X'y = --- = Xy with the limiting null
distribution x; ;).

Furthermore, let R = fSTl/ 2./5\23‘71/ 2 We wish to test the null hypothesis
Hy: di>--->dy>dyp1=---=d, =0

stating that the dimension of the signal space is exactly k. To test the null hypothesis, we use a natural test statistic, that
is, the average of the p — k smallest eigenvalues of R, that is,

/\TAA
Ty :=m (U, RUy),

where the columns of ﬁk e oP*(=k) are the eigenvectors corresponding the smallest p — k eigenvalues of R.
5.2. Asymptotic tests for dimension

As the eigenvalues of R are invariant under affine transformations, we can assume without loss of generality that (y, X)
is a random sample from a SIR model with A = I, and b = 0. This implies §; = I, and g = 0. We assume that the number
of slices H > g+ 1, the slices Sy, ..., Sy do not change with n, and the related S, = R = D = diag(D, 0) with a full-rank
D; € R9*9, The assumption thus states that, with selected H slices and by using SIR, one can find the full g-dimensional
signal space.

Let f, = ny/n, h € {1, ..., H}, and write

B=5,"" (VAGi -%, ..., Vulis — ).

Then R = BB' and, with = = ((/B,. ..., /B,)"»

5 . p? o
B—>B::(u1,...,;LH)d1ag(7t):((1) 0 Q

for some Q € O"*H, where Q = (Q,Q,)" and Q; € 09*H satisfies Q ,m = 0. With the correct Q and correct dimension
g, we have the partitions

E_ B, EQT _ BlQ;r BlQ;r
B, ) B,Q] BQ;
An asymptotic approximation to the distribution of T, = mﬂﬁ?ﬁi]}) can now be stated as follows:

Lemma 3. Under the previously stated assumptions and under Hyg,
n-T,=n-m(B,Q] Q;B,) + Op(n”).
Note that, in this setting, with UqT =(0,1,—),
URU, = BB, = B,Q]Q,B, +B,Q]Q,B, .
Consequently, unlike in Lemmas 1 and 2 for PCA and ICA asymptotics, the asymptotic approximation given in Lemma 3

is not obtained by simply replacing U, by U, within the definition of T,. The limiting distribution of n(p — q)T; is then
given in the following theorem.

. d
Theorem 5. Under our assumptions and under Hog, n(p — q)Tq — X(zp—q)(H—q—l)'

The same limiting distribution is given in Theorem 5.1 in Li [23] and in Corollary 1 in Bura and Cook [4] under the
conditional independence relation y I z,|z; and under the linearity condition E(z;|z{) = 0, a.s.. In the former, the
theorem is stated under an additional assumption that the distribution of z is multivariate normal, but within the proof
it is noted that it in fact holds if Cov(z;|y) does not depend on y. In the latter, the above theorem is stated under the
additional assumption that Cov(z|y) does not depend on y, but from their proof it can be noted that they only need this
to hold for Cov(z,|y). In our setting, this condition obviously holds since z, L y. For completeness, a proof to Theorem 5
is given in the Appendix. Note that forq > H — 1, T; = 0.

To estimate g, we consider the limiting behavior of the test statistics n(p — k)Ty for Ho, k € {0, ..., H — 1}, when in
fact Hyq is true. We write

Ty = my((Iy—. OU, RU(I, . 0)), ke {g+1,....,H—1)
and then have the following theorem.

13
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Table 3

The p-values for Hgo-Hps with two testing strategies for the Australian
athletes data. The null hypotheses ¢ = 0 (Hyo) and q¢ = 1 (Hp;) are both
rejected and both tests suggest an estimate § = 2.

Hoo Hoy Hoa Hos
SIR-I 0.002 0.002 0.090 0.349
Asymp 0.000 0.001 0.121 0.458

Theorem 6. Under the previously stated assumptions and under Hog,

(i) for k < q, Ty, 5 ¢y for somec; >0,...,¢c0-1 >0,
. d 5
(ii) for k = q, n(p — k)Tj — X(p—q)(H—q—1y .
(iii) for k > g, P(Ty < Tj') = 1and n(p — )T = %G om—q-1)

As in PCA and ICA, a consistent estimate ¢ of the unknown dimension ¢ can found with the bottom-up sequential
testing strategy as follows. Again alternative testing strategies may be used to find computationally faster and consistent
estimates.

Corollary 3. Forall k € {0,...,H — 1}, let (cx,n) be a sequence of positive real numbers such that ¢y, — 0 and ncy, — 00
as n — oo. Then § = min{k : Ty < Cx.n} 5 q.

5.3. A bootstrap test for dimension

We consider the hypotheses Hy, saying that the rank of D is k, k € {1,...,H — 1}. Bootstrap samples are then
to be generated from a null distribution for which (y, le)T 1L z, and z; € R even if the true dimension p # k.
Bootstrap sampling from a null distribution obeying the weaker assumptions such as y I z,|z; and E(z;|z;) = 0 and
Cov(z,|y) = I,—x seems much more difficult to carry out and not developed here. Sampling under our strong assumption
is described in the following.

Bootstrap strategy SIR: Generate from the SIR model.

1. Starting from X, find x and W= (l//l\/1T l/’l\/;)T where W1 € R¥P and write Z =X - lniT)VT/iT, ie{l,2}.

2. Let (y*, Z7) be a bootstrap sample of size n from (y, 21 ).

3. Let Z be a bootstrap sample of size n from 22. (Bootstrap samples in 2 and 3 are independent)

4. Write Z* = (27, Z3).

5. Write (y*, X*) = (y*,f*(vT/Tr1 + 1,,:?).

In other terms, the bootstrap null distribution Fy , at (y, x")" is now obtained as the average

.
y e

1 n on R B 0 y
EXSil| g (e |4 (2)<(0)]
i=1 j=1 Wy(X — 1,8 )Te;

where the e's are in R". As for PCA and ICA bootstrap strategies, let X5 be a sample of size N from F, for which the

. . d
null hypothesis Hox and our model assumptions naturally hold true. Then NT(Xy) — X(zp—k)(H—k—l) and therefore, for
large n, also the distribution of nT,(X};) can be approximated by the same distribution. The estimated bootstrap p-value
is obtained as in the previous cases.

5.4. An example

For the illustration we revisit the Australian Athletes data available in the R package dr [44]. The response variable y
is the lean body mass the predictors in x are given by the logarithms of height (Ht), weight (Wt), red cell count (RCC),
white cell count (WCC), Hematocrit (Hc), Hemoglobin (Hg), plasma ferritin concentration (Ferr) and sum of skin folds
(SSF). The same data was analyzed e.g., by Cook [8], who developed tests of the hypothesis of no effect for a selected
subset of predictors. The data for all 202 athletes is shown in Fig. 3 and the SIR eigenvalues are, rounding to two decimal
places, 0.95,0.21,0.11, 0.07, 0.04, 0.02, 0.01 and 0.00.

The observed p values for successive testing of hypotheses Hyg to Ho4 are reported in Table 3. The number of bootstrap
samples was M = 500 and the bootstrap test as well as the asymptotic test suggest that the signal space has dimension
two. Note that the p-values of the asymptotic tests differ slightly from those in Cook [8], perhaps due to different number
of slices and different numbers of observations in slices.
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Fig. 3. Pairwise scatter plots for 9 variables in the Australian athletes data. The first variable LBM is the response variable to be explained by the
8 remaining variables.
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Fig. 4. The pairwise scatter plots for the response LBM and the two first SIR components SIC.1 and SIC.2. In the plots different symbols are used
for men and women. The gender was not used in the analysis.

The two signal components are plotted against the response in Fig. 4 where the plotting symbols differ for female and
male athletes. The figure nicely shows that both components contain information about the response. The gender of the
athletes was not used in the analysis. However, the first two SIR components seem also to separate the female and male
athletes.
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-'ll:}alle)l‘seir‘:lilarities and differences between PCA, ICA and SIR and their use of scatter matrices in the data analysis.
PCA FOBI SIR
Supervised No No Yes
Model Elliptical model Independent component Regression model
model
Data Numeric vector x Numeric vector x Response y and numeric

Scatter matrix S

Scatter matrix S,
Signal

Noise

Hypothesis

Test statistics

Limiting distributions

Bootstrapping

Identity matrix I,

Any scatter matrix S

Non-spherical principal
components

Spherical principal
components

Multiplicity of smallest
eigenvalue is p — k
Variance of the p — k

smallest eigenvalues

chi-square

Two different strategies

Covariance matrix
Scatter matrix based on
fourth moments
Non-Gaussian
independent components

Gaussian independent
components

Multiplicity of
eigenvalue p+2isp—k
Smallest sum of squared
distances between p — k
eigenvalues and p + 2

Weighted sum of
independent chi-square
variables

Two different strategies

vector X
Covariance matrix

Supervised SIR scatter
matrix

Components sufficient to
explain y

Components
conditionally
independent of y

Multiplicity of zero
eigenvalue is p — k
Mean of the p — k
smallest eigenvalues

chi-square

One strategy

6. Final remarks

In this paper, we considered three dimension reduction methods based on the use of a pair of sample matrices, principal
component analysis, fourth order blind identification and sliced inverse regression, and showed how first two moments of
the eigenvalues of one matrix with respect to another can be used to test for signal (and noise) dimension. The concluding
joint framework for the three methods is summarized in Table 4. In all three cases, the asymptotic null distributions of the
test statistics were given and bootstrap strategies were provided for the testing problems. The asymptotic and bootstrap
tests were compared in real data examples. These three methods serve here as examples and it is obvious that our
approach can be extended to other pairs of scatter matrices tailored for the multivariate semiparametric goodness-of-fit
problems at hand, see e.g., Nordhausen et al. [28].

The R code for all computations in the paper is available upon request from Klaus Nordhausen and almost all methods
are implemented in the R package ICtest [31]. Simulation results are given in an extend version of this paper on Arxiv.
However larger simulation studies as well as theoretical studies in various contexts are still necessary in the future to
compare the estimates here to other consistent estimates suggested in the literature [26,45,47] and to compare different
sequential testing strategies (bottom-up, top-down, divide and conquer).

Technical details

Proofs for Section 3

Proof of Lemma 1. Letd = (dq+1, e d ) denote the r = p —q smallest ordered eigenvalues ofS and let $= (61, ceey Sr)
denote the ordered eigenvalues of S,;. Lemma 3. 1 in Eaton and Tyler (1991) then states | thatd — 8 = Op (n ( “) and,
applying Theorem 3.2 in Eaton and Tyler (1991), 8 — d1, = Op (n (n~'/2) then implies that d—dl, = 0p(n (n=1/2). Setting
P,=1,—r 1,17 wethenhaver-T, =d P,d = (d—d1,)"P,(d—d1,)and r-s*(Sy) =38 P8 =(8—d1,) P,(8—d1,).
Hence,

r (T — $*(522)) = 2(8 — d1,)"P,(d — 8) + (d — 8)"P,(d - 3),
which is Op (n7%/2) 4+ 0p (n%) = 0p (n73/%).
Proof of Theorem 1. By Lemma 1 it is sufficient to consider the limiting distribution of n - s (522) Let againr =p —q
and Zzz = \/7(522 — dIr)/d Then

nr - s%(S2)/d> = n - vec(Sy) T I'vec(S5,)/d* = vec(Zy,) I'vec(Z),
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where I' = I,> — r~'vec(I)vec(I;)" is idempotent. The second 1dent1ty follows since I'vec(I;) = 0. Under Hyq, Z, 4 Z
with vec(Z) ~ N,2(0, X), where ¥ = (1,2 + K, ;) + oavec(I, )vec(I,)". This implies

nr - $2(Sy)/d* 5 2012z, with z = I'vec(Z)/+/201 ~ N.2(0, X,),
where

1 1 2
o= Fi(lrz + K, )T = 3 (1,2 +K,, — ;vec(lr)vec(lr)T> )

Now X, is symmetric and idempotent with rank(X) = (r> +r —2)/2 = (r +2)r —1)/2,and so z' z ~ x? 1 2)(r—1)/2 and
the first part of the theorem follows. The second part follows as V; is the minimum of the variance over all ép q)-subsets
of the ordered eigenvalues of S. The variance of the p — q smallest eigenvalues, that is, T, converges in probability to 0,
and the variance for any other ( q) — 1 choices of subsets converges in probability to a positive constant.

Proof of Theorem 2. (i) T, converges in probability to the variance of p — k smallest eigenvalues which is positive for

k < q. (ii) is given in the previous theorem. (iii) follows as, for k € {q,...,p — 1},
2
~ ~ —q N N _
T, (d; — d (d; — d T,.
= X S a-ar= (P8 > a2
i=k+1 j=k+1 i=q+1j=q+1

Proofs for Section 4

Proof of Lemma 2. This proof is similar to the proof of Lemma 1. Again set r = p — q. Rather than using the ordering of

the roots given in Section 4, let A1, ..., A, denote the ordered elgenvalues of R, and so for some 0 <m < q, Ap, > p+ 2,
Amt1 = -+ = Appr = p+ 2 and Am+r+1 <p+2 Also, let 2= ()»m+1, .. Am+,) denote the (m + 1)th to (m + r)th
ordered elgenvalues of R and let = (81, ey )T denote the ordered elgenvalues of R22 Again usmg [13], applying
its Lemma 3.1 twice gives A — S = Op (n™") and applying its Theorem 3.2 gives A—(+2)1, = 0p (n='/2). Now,

r-Ty= (5:— (p+ 2)1r)T()» (p+2)1,)andr - 52(522) (5 (p+ Z)Ir) (3 (p + 2)1,). Hence,
r(Ty— m(Ry)) =20 — (p+2)1,) A —8)+ (A —8) (A —9).
which is 0p (173/2) + 0p (172) = 0p (n~3/2).

Proof of Theorem 3. By Lemma 2 it is sufficient to consider the joint llmltmg distribution of n(s (ﬁzz) (ﬁzz)) Set again
r = p — q. The arguments for obtaining the limiting distribution of n - s 2(Ry,) are analogous to those used in the proof
of Theorem 1, and we use the same notation but now with Z,;, = f(Rzz —(p+ 2)I,)/(p + 2) — Z with the property
that UTZU ~ Z for all U € ©™". Then again vec(Z) ~ N.2(0, X), where ¥ = o1(I,2 + K, ;) + oyvec(I, )vec(I,)T with two
population constants o and o,. Using arguments analogous to those in the proof of Theorem 1, we again obtain under

the null hypothesis that nr - s2(R2)/(p + 2)? — 2r+2) (r—1y2- NeXt, /- my( (Ryy) = vec(I,) vec(Z) L vec(I,; ) vec(Z) ~
N(0, 0%), with 0® = vec(I)" Zvec(l;) = 2roy 4 r?oy. Thus r’n - m (Rzz) 4 52 x?. Finally, recall that, as in the proof
of Theorem 1, n-s (Rzz) = vec(Zy)" I'vec(Z1,) where Fvec(lr) = 0 This establishes the independence of the limiting

distributions of the component variables in (n - s (Rzz) n-m (Rzz)) and consequently Theorem 3 follows with some
constants o and o3. The values of o7 and o, are derived in the Appendix in [30].

Proof of Theorem 4. (i) T, converges in probability to the sum of p — k smallest eigenvalues of (D — (p + 2)I;)* which is
positive for k < q. (ii) is given in the previous theorem. (iii) follows as

Te= min  m (UTR —(p+20,)°0) < m (0.1 — (0 + 21,70, 1))
eOPX\p—

and the result follows as, for k € {q, ..., p—1}, (0, Ip,k)ﬁ(o, Ip,k)T isa (p—k) x (p — k)-submatrix ofﬁzz with the known
limiting distribution.

Proofs for Section 5

Proof of Lemma 3. For H > p, let ¥y = (Vg41. . ... f/p) denote the p — q smallest ordered singular values of ﬁQT. When
q+1 < H < p, we use the same notation while notmg Puy1 = --- = P, = 0. Likewise, let j = (A1, . . ., flp—q)" denote the
ordered singular values of BZQ2 Since /n( B-— B)Q" = 0p(1 ), it follows respectively from Theorems 4.1 and 4.2 in [14]

that 7 —7 = Op (n=/%) and ¥ = Op (n~"/?). Next, observe that (p—q)T; = 7'y and (p —q)ml(ﬁzQ;QzﬁzT) =7'7. Hence,
(p— )Ty —m(BQJ QB )} = 20" (P — M)+ 7 — M) (7 — .
which is Op (n7>/4) 4 0p (n=%/2) = 0p (n=5/%).
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Proof of Theorem 5. By Lemma 3, the limiting distributions of n-T; and n-m1(§2Q2T QZEZT ) are the same. Let x; € RP~? refer
to the last p —q components of I(y; € Sp)x € RP, h € {1, ..., H}. Hence, under Hyq, ¥* = z; is independent of the response
y. Since fy - X, = 1 ZL] X, » where &) = X/I(y; € Sp), with E(x(})) = prE(x*) = 0, Cov(xy,)) = pnCov(x*) = pulp_q,

n
Cov(X)). X;y) = 0 for h # m, and fj L Dn, it follows from the central limit theorem and from Slutsky’s theorem that

(VAR VR X 7, where the elements of the (p — q) x H random matrix Z are i.i.d. N(0, 1).

Since §; > I, and ¥ = Z,thiz, we obtain /n ~§2Q2T 4 LIy — wn")Q, with #" = (1, ..., /Pr). Hence
n- EZEZT X 7P77, where P = (Iy — nxt" )Q, Q,(Iy — wx"). It is shown below that P is idempotent with rank H —q — 1,
which implies ZPZ" ~ Wishart,_4(H — q — 1,1,_4), and consequently, n - tr(EZQZTQZEZT) X ti(zPZT) ~ Xo—aH—q-1)"

To complete the proof, note that since u = 0, it follows that Br = 0 and hence Q,x = 0. Also, since Iy — &' is
idempotent with rank H — 1, we have

Iy — 71'71.'T = (IH — JUTT)QTQ(IH - ”n—r) = QlTQl +P,

which implies P is idempotent with rank H — q — 1.
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