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a b s t r a c t

Many linear dimension reduction methods proposed in the literature can be formulated
using an appropriate pair of scatter matrices. The eigen-decomposition of one scatter
matrix with respect to another is then often used to determine the dimension of
the signal subspace and to separate signal and noise parts of the data. Three popular
dimension reduction methods, namely principal component analysis (PCA), fourth order
blind identification (FOBI) and sliced inverse regression (SIR) are considered in detail and
the first two moments of subsets of the eigenvalues are used to test for the dimension
of the signal space. The limiting null distributions of the test statistics are discussed and
novel bootstrap strategies are suggested for the small sample cases. In all three cases,
consistent test-based estimates of the signal subspace dimension are introduced as well.
The asymptotic and bootstrap tests are illustrated in real data examples.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dimension reduction (DR) plays an increasingly important role in high dimensional data analysis. In linear dimension
eduction for a random vector x ∈ Rp, the idea is to try to find a transformation matrix W ∈ Rq×p, q ≪ p, such that the
interesting features of the distribution of x are captured by Wx only, that is,

(i) x|Wx is viewed as noise (unsupervised DR), or
(ii) y ⊥⊥ x | Wx for the response of interest y (supervised DR).

In this paper we consider three classical but diverse linear dimension reduction methods: principal component analysis,
independent component analysis and sliced inverse regression. As an introduction to our approach, we first highlight the
similarities between these three approaches and show that the different methods can be presented in a joint framework.

Write Fx and S = S(Fx) for the cumulative distribution function and covariance matrix of x. To simplify the notation,
we assume in the following that E(x) = 0.

(i) In the principal component analysis (PCA), one finds the p × p transformation matrix W such that

WW⊤
= Ip and WSW⊤

= D

where D is a diagonal matrix with diagonal elements d1 ≥ · · · ≥ dp ≥ 0. If d1 ≥ · · · ≥ dq > dq+1 = · · · = dp ≥ 0 and
W is partitioned accordingly as W = (W⊤

1 ,W⊤

2 )
⊤, then W 1x is often seen as the q-variate signal part and W 2x as the

(p − q)-variate noise part. Hence, W 2x is considered noise if and only if the eigenvalues of W 2SW⊤

2 are all equal.
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(ii) In the independent component analysis (ICA) with q non-Gaussian and p−q Gaussian components, the fourth order
lind identification (FOBI) method finds a transformation matrix W ∈ Rp×p such that

WSW⊤
= Ip and WE

[
xx⊤S−1xx⊤

]
W⊤

= D

here D is a diagonal matrix with the diagonal elements ordered so that (d1 − (p + 2))2 ≥ · · · ≥ (dq − (p + 2))2

(dq+1 − (p + 2))2 = · · · = (dp − (p + 2))2 = 0. Then W can again be partitioned as W = (W⊤

1 ,W⊤

2 )
⊤ so that, under

eak assumptions, W 1x is the q-variate non-Gaussian signal and W 2x the (p − q)-variate Gaussian noise. If we further
rite S1 := S and S2 := E

[
xx⊤S−1

1 xx⊤
]
then, W 2x is considered noise if the eigenvalues of W 2S2W⊤

2 are all equal to
+ 2.
(iii) In the sliced inverse regression (SIR) with a p-variate random vector x and the response (dependent) variable y,

ne finds a matrix W ∈ Rp×p which satisfies

WS1W⊤
= Ip and WS2W⊤

= D

here S1 := S and S2 := E
[
E(x|y)E(x|y)⊤

]
and D is a diagonal matrix with the diagonal elements d1 ≥ · · · ≥ dp ≥ 0.

nder appropriate assumptions on the distribution of (x, y), we have d1 ≥ · · · ≥ dq > dq+1 = · · · = dp = 0 with
he corresponding partitioning W = (W⊤

1 ,W⊤

2 )
⊤. It is then thought that (W 1x, y) carries all the information about the

ependence between x and y, andW 2x just presents noise. Thus,W 2x is thought to be noise if the eigenvalues ofW 2S2W⊤

2
re all equal to zero.
To test and estimate the dimension of the signal space (also called order determination) and to separate signal and

oise, we thus utilize, for empirical versions of appropriate choices of S1 and S2, the eigen-decomposition of S−1
1 S2, or that

f the symmetric matrix R := S−1/2
1 S2S

−1/2
1 . For the PCA case, we take S1 = Ip and S2 = Ŝ , the sample covariance matrix, or

some other scatter matrix, as defined later in Section 2. The tests are based on the first two moments of selected subsets
of the eigenvalues of R and the corresponding estimates are obtained applying different sequential testing strategies.
The sequential testing procedures for the order determination problem in SIR have been suggested earlier by Li [23]
and Bura and Cook [4]. Zhu et al. [46,47] used the eigenvalues with BIC-type penalties to find consistent estimates for
the dimension of the signal subspace of a regression model. In other general approaches, Ye and Weiss [45] considered
eigenvectors rather than eigenvalues and proposed an estimation procedure that was based on the bootstrap variation
of the subspace estimates for different dimensions. In a general approach, Luo and Li [26] combined the eigenvalues and
bootstrap variation of eigenvectors for consistent estimation of the dimension. The last two approaches are based on the
notion that the variation of eigenvectors is large for the eigenvalues that are close together and their variability tends to
be small for far apart eigenvalues.

In PCA the eigenvalues of Ŝ are generally used to make inference on the dimension of the signal space, see e.g. Jolliffe
[19] and Schott [36] and references therein. Early papers on the use of bootstrap estimation and testing (via confidence
intervals) in principal component analysis are Beran and Srivastava [1], Daudin et al. [11], Eaton and Tyler [13] and Jackson
[18]. For the use of permutation tests in restricting the number of principal components, see Dray [12] and Vieira [42].

In the independent component analysis (ICA) the fourth-order blind identification (FOBI) by Cardoso [6] uses the regular
covariance matrix and the scatter matrix based on fourth moments and the eigenvalues provide measures of marginal
kurtosis. These two matrices can be replaced by any two matrices possessing the so called independence property, see Oja
et al. [34], Tyler et al. [41] and Nordhausen and Tyler [33]. Very recently, Nordhausen et al. [30] used the empirical
eigenvalues of S−1

1 S2 to test and estimate the dimensions of Gaussian and non-Gaussian subspaces.
PCA and FOBI are examples of unsupervised dimension reduction procedures as they do not use information on any

response variable y. Other examples of unsupervised dimension reduction methods are invariant coordinate selection
(ICS), see Tyler et al. [41], and generalized principal components analysis (GPCA), see Caussinus and Ruiz-Gazen [7]. Sliced
inverse regression (SIR) uses the regular covariance matrix of x and the covariance matrix of the conditional expectation
E(x|y). Other examples on supervised dimension reduction methods are the canonical correlation analysis (CCA), sliced
average variance estimate (SAVE) and principal Hessian directions (PHD), for example, and they all can be formulated
using two scatter matrices. For these methods and estimation of the dimension of the signal subspace, also with regular
bootstrap sampling, see Li [23], Cook and Weisberg [9], Li [24], Bura and Cook [4], Cook [8], Zhu et al. [46,47], Bura and
Yang [5] and Luo and Li [26] and the references therein. For nice reviews on supervised dimension reduction, see Ma and
Zhu [27], Li [25].

The plan of this paper is as follows. In Section 2 we introduce the tools for our analysis, that is, the notion of a scatter
matrix with some preliminary theory. In all three cases in Section 3 (PCA), 4 (FOBI) and 5 (SIR), respectively, we first
specify a natural semiparametric model: x = Az + b where A and b are the parameters and the distribution of the
standardized z is only partially specified. The null hypothesis says that z can be partitioned as z = (z⊤

1 , z⊤

2 )
⊤ and the

first part z1 carries the interesting variation. In the paper, the empirical version of the eigenvalues of S−1
1 S2, that is, the

eigenvalues of R = S−1/2
1 S2S

−1/2
1 , are utilized in this partitioning and used to build tests and estimates for the dimension

of z1. We discuss the asymptotic tests with corresponding estimates and provide different strategies for bootstrap testing.
Different approaches are illustrated with real data examples. All the proofs are postponed to the final section.

We adapt the following notation. Rp×p
sym and Rp×p

sym,+ are the sets of symmetric and positive definite symmetric p × p
atrices, respectively. The first and second moments and the variance of the eigenvalues of R ∈ Rp×p

sym are denoted by

m (R) := tr(R)/p, m (R) := m (R2), s2(R) := m (R) − m2(R),
1 2 1 2 1

2
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respectively. If R = UDU⊤
∈ Rp×p

sym,+ is a eigen-decomposition of R then R1/2
:= UD1/2U⊤

∈ Rp×q (symmetric version of
the square root matrix). Given k matrices A1,A2, . . . ,Ak, we write

diag(A1, . . . ,Ak) =

⎛⎜⎜⎜⎜⎝
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

⎞⎟⎟⎟⎟⎠ .

he vectorization of a matrix A = (aij) ∈ Rp×q, denoted by vec(A), is a qp-vector obtained by stacking the columns of A
n top of each other, that is, vec(A) = (a11, . . . , ap1, a12, . . . , ap2, . . . , a1q, . . . , apq)⊤. We further write Op×k, k ≤ p, for
he set of column orthonormal p × k matrices, i.e., U ∈ Op×k implies U⊤U = Ik. Hence, given U ∈ Op×k, PU := UU⊤

s the orthogonal projection onto the range of U , and Q U = Ip − PU is the orthogonal projection onto its orthogonal
omplement, i.e., onto the null space of U⊤. Let ei ∈ Rp denote the ith Euclidean basis element, i.e., a vector with a one
n the ith position and zeros elsewhere. For two random vectors x and y, we write x ∼ y if x and y have the same
istribution. The random vector z ∈ Rp has a spherical distribution if Uz ∼ z for all U ∈ Op×p. The distribution of z is
ubspherical with dimension k, k < p, if U⊤z is spherical for some U ∈ Op×k. The distribution of x is elliptical if x ∼ Az+b,
here A ∈ Rp×p and b ∈ Rp and z ∈ R has a spherical distribution.

. Scatter matrices

In this chapter, we state what we mean by a scatter matrix and a supervised scatter matrix and provide some
reliminary results. Let F x be the cumulative distribution function (cdf) of a p-variate random vector x and F x,y the cdf
f the joint distribution of p-variate x and univariate y.

efinition 1. (i) The functional S(Fx) ∈ Rp×p
sym,+ is a scatter matrix (functional) if it is affine equivariant in the sense that

(FAx+b) = AS(Fx)A⊤ for all non-singular A ∈ Rp×p and all b ∈ Rp.
(ii) The functional S(Fx,y) ∈ Rp×p

sym is a supervised scatter matrix (functional) if it is affine equivariant in the sense that
(FAx+b,y) = AS(Fx,y)A⊤ for all non-singular A ∈ Rp×p and all b ∈ Rp.

Let X = (x1, . . . , xn)⊤ ∈ Rn×p be a random sample from a distribution Fx. The estimate Ŝ of the population value S(Fx)
s obtained as the value of the functional at the empirical distribution Fn of X . We also write S(X) for this estimate. Let

= ZA⊤
+ 1nb⊤ where Z = (z1, . . . , zn)⊤ is a random sample from a spherical distribution Fz with S(Fz ) = Ip. (Note

hat, for any scatter matrix S , S(Fz ) ∝ Ip and can the rescaled to satisfy the last condition.) Then X is a random sample
rom an elliptical distribution with S(Fx) = AA⊤.

Under general assumptions, the limiting distribution of
√
n vec(S(Z) − Ip) is

Np2
(
0, σ1(Ip2 + K p,p) + σ2vec(Ip)vec(Ip)⊤

)
where K p,p =

∑p
i=1
∑p

j=1(eie
⊤

j )⊗ (eje⊤

i ) is the commutation matrix, see Theorem 1 in Tyler [38]. The limiting distribution
is known if the following two constants, same for any i ̸= j,

σ1 = AsVar(S(Z)ij), σ2 = AsCov(S(Z)ii, S(Z)jj)

are known and then AsVar(S(Z)ii) = 2σ1 + σ2. Also, under general conditions, the influence function of the scatter
functional S(F ) at a spherical Fz is given by

IF(x; S, Fz ) = α(r)uuT
− β(r)Ip,

where r = ∥x∥ and u = ∥x∥−1x, see Hampel et al. [16]. If S(F ) is the covariance matrix and S(Fz ) = Ip, then α(r) = r2

and β(r) = 1 and if z ∼ Np(0, Ip) then σ1 = 1 and σ2 = 0. For Tyler’s shape estimate (proposed in Tyler [40] and scaled
so that its trace equals p) which we use as a robust alternative for the covariance matrix in our example in Section 3, one
gets α(r) = (p + 2) and β(r) = (p + 2)/p.

In the following we often need to estimate σ1. It then follows, as noted in Croux and Haesbroeck [10], that σ1 =

E(α2(r))/(p(p + 2)). Due to affine equivariance of the scatter matrix, the limiting distribution of
√
n vec(S(X) − AA⊤) =

(A ⊗ A)
√
n vec(S(Z) − Ip) and, using Ŝ with a companion location estimate µ̂, σ1 can often be consistently estimated by

σ̂1 =
1

p(p + 2)
1
n

n∑
i=1

α2(r̂i), r̂i =

(
(xi − µ̂)⊤Ŝ−1

(xi − µ̂)
)1/2

.

3
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3. Testing for subspace dimension in PCA

3.1. The model, null hypothesis and test statistic

Let X = (x1, . . . , xn)⊤ be a random sample from a p-variate elliptical distribution Fx, that is, from the distribution of a
andom p-vector x generated by

x = Az + b,

here A ∈ Rp×p is non-singular, b ∈ Rp and z has a spherical distribution around the origin, that is, Uz ∼ z for
ll U ∈ Op×p. The distribution of z is then fully determined by the distribution of its radius r := ∥z∥. We assume
hat S(Fz ) = Ip for the scatter matrix functional used in the analysis. For a general overview of spherical and elliptical
istributions, see Kelker [21] or Bilodeau and Brenner [2].
As the matrix of eigenvectors and the corresponding eigenvalues of S(Fx) are equivariant and invariant, respectively,

nder orthogonal transformations of x, it is not a restriction to assume in our derivations that A is diagonal with positive
nd descending entries and b = 0 so that S(Fx) is a diagonal matrix D = A2 with diagonal entries d1 ≥ · · · ≥ dp > 0.
et Ŝ be the value of the scatter functional at the empirical distribution of X . For the asymptotic results, we assume
hat

√
nvec(̂S −D) has a limiting multivariate normal distribution with zero mean vector and the covariance structure as

escribed in Section 2. We wish to test the null hypothesis

H0k : d1 ≥ · · · ≥ dk > dk+1 = · · · = dp = d for some unknown d,

tating that the dimension of the signal space is k. Under H0k, the distribution of x is subspherical, that is, the distribution
f the subvector of the last p−k principal components is spherical. In principal component analysis, the scree plot is often
sed to figure out how many components to include in the final model. The null hypothesis H0k then implies that there
s the elbow on the scree plot at the kth eigenvalue. Also, sphericity and subsphericity (in a weaker sense) are important
n the analysis of the repeated measures data, for example.

To test the null hypothesis, we use the variance of the p − k smallest eigenvalues, that is,

Tk := s2(Û⊤

k Ŝ Û k), Û k = arg min
U∈Op×(p−k)

m1(U⊤ŜU ),

s a test statistic. It follows from the Poincaré separation theorem that a solution Û k ∈ Op×(p−k) is the matrix of the
igenvectors associated with the p − k smallest eigenvalues of Ŝ and other solutions are obtained by post-multiplying it
y an orthogonal (p − k) × (p − k) matrix. The projection matrices P̂k := Û kÛ

⊤

k and Q̂ k := Ip − P̂k are unique and satisfy
k̂SQ̂ k = 0 and provide the noise-signal decomposition x = P̂kx + Q̂ kx with uncorrelated P̂kx and Q̂ kx.
Other possible measures for the variation of the smallest eigenvalues are s(Û⊤

k Ŝ Û k)/m1(Û
⊤

k Ŝ Û k), i.e., the coefficient
f variation, or the log ratio of the arithmetic mean m1(Û

⊤

k Ŝ Û k) to the geometrical mean det(Û⊤

k Ŝ Û k)1/(p−k). If Ŝ is the
ovariance matrix, then the latter measure corresponds to the likelihood ratio criterion for H0k in the multivariate normal
ase.
If one wishes to test a related null hypothesis that S(Fx) has k+1 distinct eigenvalues with multiplicities 1, . . . , 1, p−k,

hen a natural test statistic is

Vk := min
U∈Op×(p−k):PU ŜQU=0

s2
(
U⊤ŜU

)
.

solution Û k for which the minimum value is attained consists of the eigenvectors of Ŝ associated with the eigenvalues
losest together (in the variance sense). This is seen as follows. Let U ∈ Op×(p−k) and PU ŜQ U = 0. Then PU Ŝ = ŜPU .
As the symmetric matrices commute if and only if they have the same eigenvectors, U is a matrix of p − k eigenvectors
of Ŝ , say U0 ∈ Op×(p−k), post-multiplied by an orthogonal (p − k) × (p − k) matrix. Consequently, U⊤ŜU and U⊤

0 ŜU0
have the same eigenvalues and s2(U⊤ŜU ) = s2(U⊤

0 ŜU0). Thus the problem of minimizing s2(U⊤ŜU ) under the constraint
PU ŜQ U = 0 reduces to that of minimizing s2(U⊤

0 ŜU0) over the p − k subsets of eigenvectors of Ŝ .

3.2. Asymptotic tests for dimension

Assume now that x is elliptical with diagonal scatter matrix D = A2. Let q denote the true value of the dimension of
the signal space, that is, H0q is true, and consider the limiting distribution of Tq = s2(Û⊤

q ŜÛ q). With a correct value q we
have the partitions

D =

(
D1 0
0 dIp−q

)
, Ŝ =

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)
,

respectively, and the diagonal elements in D1 are strictly larger than d. Under our assumptions,
√
n(̂S − D) = OP (1) and

we have the following.
4
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Lemma 1. Under the stated assumptions and H0q, nTq = ns2 (̂S22) + OP (n−1/2).

Under our assumptions stated in Section 2,
√
n vec(S(Z) − Ip) where Z = XD−1/2 converges in distribution to a

2-variate normal distribution with zero mean vector and the covariance matrix σ1(Ip2 + K p,p)+ σ2vec(Ip)vec(Ip)⊤. Then
we have the following.

Theorem 1. Under the previously stated assumptions and under H0q,

n(p − q)Tq
2d2σ1

d
−→ χ2

1
2 (p−q−1)(p−q+2)

.

If the multiplicities of the eigenvalues of D1 are smaller than p − q then P(Vq = Tq) → 1 and the limiting distributions of nVq
and nTq are the same.

For the test construction in practice we thus need to estimate two population constants σ1 and d, both of which are
invariant under orthogonal transformations to x. The limiting distribution in Theorem 1 stays the same even if σ1 and
d are replaced by their consistent estimates, say σ̂1 and d̂. Construction of a consistent estimate for σ1 has already been
discussed in Section 2. The unknown d can be consistently estimated by the average of the p−q smallest eigenvalues, that
is, by d̂ = m1(Û

⊤

q ŜÛ q). Note also that the test statistic in Theorem 1 with these replacements depends on the smallest
eigenvalues through their coefficient of variation, a test statistic suggested by Schott [36]. As noted previously, a possible
test statistic for H0q is also the log of the ratio of the arithmetic and geometric means of the smallest p− q eigenvalues of
S , say Lq. Then under the null hypotheses as well as under certain contiguous alternatives, n(Tq − 2d2Lq)

p
−→ 0 and then,

under H0q, n(p − q)Lq/σ̂1
d
−→ χ2

(p−q−1)(p−q+2)/2. See Theorem 5.1 and 5.2 and their proofs in Tyler [39].
We now utilize the test statistics Tk, k ∈ {0, 1, . . . , p− 1}, for the estimation problem and collect some useful limiting

properties in the following theorem.

Theorem 2. Under the previously stated assumptions and under H0q,

(i) for k < q, Tk
P
−→ ck for some c1, . . . , cq−1 > 0,

(ii) for k = q, n(p − q)Tq/(2d2σ1)
d
−→ χ2

1
2 (p−q−1)(p−q+2)

,

(iii) for k > q, nTk ≤ ( p−q
p−k )

2nTq = OP (1).

A consistent estimate q̂ of the unknown dimension q ≤ p − 1 can then be based on the test statistics Tk, k ∈

0, 1, . . . , p − 1}, as follows.

orollary 1. For all k ∈ {0, 1, . . . , p−1}, let (ck,n) be a sequence of positive real numbers such that ck,n → 0 and nck,n → ∞

s n → ∞. Then, under the assumptions of Theorem 2,

P(Tk ≥ ck,n) →

{
1, if k < q,
0, if k ≥ q,

nd q̂ = min{k : Tk < ck,n}
P
−→ q.

Note that, by definition, Tp−1 = 0 and the maximum value of q is p− 1, which corresponds to the smallest eigenvalue
being distinct. The estimate q̂ is easily found by using the so called bottom-up testing strategy: Start with tests for H00,
H01 and so on, and stop when you get the first acceptance. An alternative consistent estimate with a top-down testing
strategy is q̂ = max{k : Tk−1 ≥ ck−1,n} using successive tests for H0,p−2,H0,p−3, . . ., and stopping after the first rejection.
For large p, faster strategies such as the divide and conquer algorithm are naturally available in the estimation.

Let Fk be the limiting distribution of nTk under H0k. The sequences of critical values (ck,n) for testing H0k can be
determined by the corresponding sequences of asymptotical test sizes (αk,n) satisfying αk,n = 1 − Fk(nck,n) A simple and
practical choice of the sequences of the test sizes is for example αk,n = (n0/n)αk, k ≤ p − 2 and n ≥ n0. Then nck,n → ∞

as αk,n = 1 − Fk(nck,n) → 0, and ck,n → 0 as nck,nαk,n = nck,n(1 − Fk(nck,n)) → 0.
To end the discussion on asymptotics, suppose we relax now the ellipticity assumption and consider a model for which

diag(Iq,U )z ∼ z for all U ∈ O(p−q)×(p−q). Since D = A2
= diag(D1, dIp−q), x is subspherical but not necessarily elliptical. It

is then easy to show that, for the covariance matrix and finite fourth moments, Lemma 1 and Theorem 1 still hold true
with σ1 = 1. For other scatter matrices, however, the asymptotic behavior in this wider model is not known.

Lemma 1 shows the remarkable fact that under the null hypothesis H0q the limiting distributions of nTq = ns2(Û⊤

q Ŝ Û q)
and that of ns2(U⊤

q ŜU q) with known noise subspace are the same. If, in the small sample case, the p-values are obtained
from the limiting distribution of the test statistic, the variation coming from the estimation of the subspace is thus ignored
in the null asymptotic approximation. In the following we therefore propose that the small sample null distribution of a
test statistic be estimated by resampling the data from a distribution obeying the null hypothesis and being as close as
possible to the empirical distribution.
5
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3.3. Bootstrap tests for dimension

Again, let q denote the true dimension of the signal space and we wish to test the null hypothesis

H0k : d1 ≥ · · · ≥ dk > dk+1 = · · · = dp = d for some d.

It is important to stress that, in the practical testing situation, we do not know whether H0k is true (k = q) or whether
t is false (k ̸= q) but we still wish to compute the p-values for true H0k. See Hall and Wilson [15] for some guidelines in
bootstrap hypothesis testing. For testing, we start with a scatter matrix estimate Ŝ and a companion location estimate µ̂

nd compute Û k and Tk = s2(Û⊤

k ŜÛ k), the variance of p − k smallest eigenvalues of Ŝ . We further write P̂k = Û kÛ
⊤

k andˆ
k = Ip − P̂k for the estimated projection matrices to the noise and signal subspace under true H0k, respectively.
The basic idea in the bootstrap testing strategy is that the bootstrap samples X∗ for H0k should be generated from a

istribution Fn,k

(i) for which the null hypothesis H0k is true (even if k ̸= q) and
(ii) which is as close as possible to the empirical distribution Fn of X .

e suggest the following two procedures. In the first procedure, the bootstrap samples come from a subspherical and
lliptical distribution (with the distribution of the radius estimated from the data) and, in the second procedure, they
ome a subspherical distribution (not assuming full ellipticity). It is important that the dimension of the subspherical part
s p−k even when k ̸= q. If one wishes to assume multivariate normality then the first procedure can be further modified
ccordingly.
Bootstrap strategy PCA-I (elliptical subspherical distribution):

1. Starting with X ∈ Rn×p, compute µ̂, Ŝ with the estimated matrix of eigenvectors in Û and corresponding estimated
eigenvalues in D̂.

2. Take a bootstrap sample Z̃ = (z̃1, . . . , z̃n)⊤ of size n from (X − 1nµ̂
⊤)Û D̂−1/2

.
3. For ellipticity to be true, transform

z∗

i = Oiz̃ i, i ∈ {1, . . . , n},

and O1, . . . ,On ∈ Op×p are i.i.d. from the Haar distribution.
4. For subsphericity to be true as well, the bootstrap sample is

X∗
= Z∗D̂1/2

k Û⊤
+ 1nµ̂

⊤,

where D̂k = diag(d̂1, . . . , d̂k,
∑p

i=k+1 d̂i/(p − k), . . . ,
∑p

i=k+1 d̂i/(p − k)).

Bootstrap strategy PCA-II (subspherical distribution):

1. Starting with X ∈ Rn×p, compute Ŝ , µ̂, Û k, P̂k and Q̂ k.
2. Take a bootstrap sample X̃ = (x̃1, . . . , x̃n)⊤ of size n from X .
3. For subsphericity to be true, transform

x∗

i =

[
Q̂ k + Û kOiÛ

⊤

k

]
(x̃i − µ̂) + µ̂, i ∈ {1, . . . , n},

and O1, . . . ,On ∈ O(p−k)×(p−k) are i.i.d. from the Haar distribution.
4. The bootstrap sample is X∗

= (x∗

1, . . . , x
∗
n).

For both strategies and for k ∈ {0, . . . , p − 1}, the hypothesis H0k is true for the corresponding bootstrap null
istribution, say Fn,k. For the PCA-I strategy,

Fn,k(x) =
1
n

n∑
i=1

EOi,p

[
I
(
Û kD̂

1/2
k Oi,pD̂

−1/2Û⊤

k (xi − µ̂) + µ̂ ≤ x
)]

ith random matrices O1,p, . . . ,On,p ∈ Op×p from the Haar distribution. Similarly, for the PCA-II strategy,

Fn,k(x) =
1
n

n∑
i=1

EOi,p−k

[
I
(
(Q̂ k + Û kOi,p−kÛ

⊤

k )(xi − µ̂) + µ̂ ≤ x
)]

,

here O1,p−k, . . . ,On,p−k ∈ O(p−k)×(p−k) are from the Haar distribution.
Consider next the distribution of nTk(X∗) for the PCA-I strategy. Let then X∗

N ∈ RN×p be a random sample of size N
from Fn,k. Note that Fn,k is an elliptical distribution with true H0k and with data dependent parameters, namely, symmetry
center µ := µ̂, covariance matrix S := Û D̂kÛ

⊤
and

d := d̂ =
1

p − k

p∑
d̂i, σ1 := σ̂1 =

1
p(p + 2)

1
n

n∑
α2(r̂i),
i=k+1 i=1

6
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Fig. 1. Left figure: The original data set consisting of the SVRI values measured on 223 subjects at 4 time points. Right figure: The estimated signal
part (upper curves) and noise part (lower part) of the same data set.

where r̂i = ((xi − µ̂)⊤Ŝ−1
(xi − µ̂))1/2, i ∈ {1, . . . , n}. Theorem 1 then implies that, given X , N(p − k)Tk(X∗

N )/(2d̂
2σ̂1)

d
−→

χ2
1
2 (p−k−1)(p−k+2)

(a.s.) which provides, for large n, the same asymptotic chi-squared approximation for the distribution of

he unconditional n(p− k)Tk(X∗)/(2d̂2σ̂1) as well. Theorem 1 gave the same approximation for n(p− k)Tk(X)/(2d̂2σ̂1). For
he PCA-I strategy applied to the covariance matrix, similar arguments can be used to get the same approximations for
he distributions of n(p − k)Tk(X∗)/(2d̂2) and n(p − k)Tk(X)/(2d̂2).

In practice, the exact p-values are not computed but estimated as follows. Let T = T (X) be a test statistic for H0k such
s Tk, that is, the variance of the p− k smallest eigenvalues of Ŝ . If X∗

1, . . . ,X
∗

M are independent bootstrap samples of size
n as described above and T ∗

i = T (X∗

i ), i ∈ {1, . . . ,M}, then the bootstrap p-value is given by

p̂ =
#(T ∗

i ≥ T ) + 1
M + 1

.

Note that, conditioned on X , p̂ is a random variable whose variance around the true p-value can be estimated by 1
M p̂(1−p̂).

The asymptotic and bootstrap tests discussed here have been extended to a noisy latent model framework, for example,
in Virta and Nordhausen [43].

3.4. An example

The standard repeated measures ANOVA needs the assumption of spherical multivariate normality. Sphericity has then
been defined both in terms of the variances of difference scores and in terms of the variances and covariances of orthogonal
contrasts to be used in the analysis, see e.g., Lane [22]. Preliminary testing for sphericity or subsphericity is then of interest
in this context. Subsphericity indicates that there are no latent subgroups or clusters in that part of the data, and the
subspherical part may then be seen simply as noise. To illustrate the methodology we use some data from the LASERI
study (Cardiovascular risk in young Finns study) which is available in the R package ICSNP [32]. To collect these data, 223
subjects took part in a tilt-table test. For the first ten minutes the subjects were lying on a motorized table in a supine
position, then the table was tilted to a head-up position for five minutes, and thereafter returned to the supine position
for the last five minutes. Various hemodynamic variables were measured during the experiment. The variable considered
here consists of the four measurements of the systemic vascular resistance index (SVRI) on all subjects. The four time
points were (i) the tenth supine minute before the tilt, the (ii) second and (iii) fifth minute during the tilt and (iv) the
fifth minute in supine position after the tilting. The 223 SVRI values at the 4 time points are shown in Fig. 1 (left figure).

To illustrate the three testing strategies from above we use as scatter matrix the sample covariance matrix and Tyler’s
shape matrix where the location is estimates as specified in Hettmansperger and Randles [17]. The obtained eigenvalues
of the sample covariance matrix and Tyler’s shape matrix are then 982935.95, 176465.68, 36213.91, 25865.65 and 8.94,
7
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Table 1
The p-values for testing q = 0 (H00), q = 1 (H01) and q = 2 (H02) based
on the covariance matrix and Tyler’s shape matrix for the SVRI data. The
p-values are calculated using three different testing strategies.

Cov Tyler’s shape matrix

Asymp PCA-I PCA-II Asymp PCA-I PCA-II

H00 0.000 0.002 0.002 0.000 0.002 0.002
H01 0.000 0.002 0.002 0.000 0.002 0.002
H02 0.104 0.130 0.142 0.064 0.072 0.064

1.78, 0.30, 0.21, respectively, and the corresponding eigenvectors are the columns of⎛⎜⎜⎝
−0.48 0.46 −0.42 0.62
−0.51 −0.53 −0.56 −0.38
−0.52 −0.44 0.64 0.36
−0.50 0.56 0.31 −0.59

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−0.47 0.52 −0.13 0.70
−0.51 −0.48 −0.70 −0.11
−0.53 −0.47 0.69 0.12
−0.48 0.52 0.10 −0.70

⎞⎟⎟⎠ .

Both scatter matrices seem to suggest that q = 2 and that the principal components are (close) to the average and
the contrast comparing the supine and tilted positions and the two contrasts within positions. The suggestion q = 2 is
supported by the p-values for H00, H01 and H02 using the two scatter matrices and three testing strategies, see Table 1.
The estimated signal and noise parts of the data using Tyler’s scatter matrix are given in Fig. 1 (right figure).

4. Testing for subspace dimension in FOBI

4.1. The model, null hypothesis and test statistic

In the independent component (IC) model it is assumed that X = (x1, . . . , xn)⊤ is a random sample from a distribution
of the form

x = Az + b

where A ∈ Rp×p is non-singular, b ∈ Rp, and z is a random p-vector with independent components standardized so
that E(z) = 0 and Cov(z) = Ip. We further assume that z = (z⊤

1 , z⊤

2 )
⊤ where the components of z1 ∈ Rq (signal) are

non-Gaussian and the components of z2 ∈ Rp−q (noise) are Gaussian. The general idea then is to make inference on the
unknown q, 0 ≤ q ≤ p, and to estimate the non-Gaussian signal and Gaussian noise subspaces. In this chapter we discuss
some recent tests and estimates for q introduced in Nordhausen et al. [30] that are based on the joint use of the covariance
matrix and the matrix of fourth moments. Throughout this chapter we therefore need to assume that the fourth moments
of z exist.

In the independent component analysis (ICA) it is usually assumed that q is p − 1 or p. If 1 ≤ q ≤ p is allowed as in
our case, the approach is sometimes called non-Gaussian independent component analysis (NGICA). In the non-Gaussian
component/subspace analysis (NGCA), z1 and z2 are independent, z1 is non-Gaussian and z2 is Gaussian, that is, there is no
a1 ∈ Rq such that a⊤

1 z1 has a normal distribution while a⊤

2 z2 has a normal distribution for all a2 ∈ Rp−q. The components
of z1 are thus allowed to be dependent in the NGCA model. See Blanchard et al. [3], Theis et al. [37] and Nordhausen et al.
[30].

In fourth order blind identification (FOBI) an unmixing matrix W ∈ Rp×p and a diagonal matrix D ∈ Rp×p are found
such that

WS1W⊤
= Ip, WS2W⊤

= D,

where S1 = E
[
(x − E(x))(x − E(x))⊤

]
and S2 = E

[
r2(x − E(x))(x − E(x))⊤

]
with r2 = (x − E(x))⊤S−1

1 (x − E(x)) is the
scatter matrix based on fourth moments. The matrix W is called an unmixing matrix as Wx has independent components
under the assumption that E(z41 ), . . . , E(z

4
q ) are distinct from one another and from 3 (normal case). Write U⊤

= WS1/2
1 .

As U⊤U = Ip, U is orthogonal and W = U⊤S−1/2
1 . If

R := S−1/2
1 S2S

−1/2
1 ,

then WS1/2RS1/2W⊤
= U⊤RU = D and U is therefore obtained from the eigen-decomposition R = UDU⊤. The

eigenvalue di in D is then p + 2 if and only if E(z4i ) = 3, i ∈ {1, . . . , p}, and, under mild assumptions, the eigenvalues
can be used to separate the Gaussian and non-Gaussian components. As W (FAx)Ax and W (Fx)x are the same up to
sign changes, location shifts and perturbations of the coordinates and the ordered eigenvalues of D(FAx) and of D(Fx)
are the same, we can in our derivations assume without any loss of generality that A = Ip, b = 0 and S1 = Ip,
S2 = R = D = diag(D1, (p + 2)Ip−q). For our approach, we also need the assumption that the diagonal elements in
D are distinct from p + 2.
1

8
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Let X = (x1, . . . , xn)⊤ be a random sample from the stated independent component model with q non-Gaussian and
p− q Gaussian independent components with an unknown dimension q. Write Ŝ1, Ŝ2 and R̂ for the values of functionals
S1, S2 and R, respectively, at the empirical distribution of X . If

√
n(̂S1 − Ip) = OP (1) and

√
n(̂S2 − D) = OP (1) then, by

Slutsky’s theorem,
√
n(̂R − D) =

√
n(̂S2 − D) −

1
2

[√
n(̂S1 − Ip)D + D

√
n(̂S1 − Ip)

]
+ oP (1)

nd the limiting multivariate normality of
√
nvec(̂R − D) follows from the joint limiting multivariate normality of

nvec(̂S1 − Ip, Ŝ2 − D) which holds if the eight moments of z exist. We wish to test the null hypothesis

H0k : exactly p − k eigenvalues in D are p + 2

stating that the dimension of the signal space is k. To test the null hypothesis H0k, we use the test statistic

Tk := min
U∈Op×(p−k)

m2
(
U⊤ (̂R − (p + 2)Ip)U

)
= min

U∈Op×(p−k)
m1
(
U⊤ (̂R − (p + 2)Ip)2U

)
.

Recall that Kankainen et al. [20] used T0 = m2
(
R̂ − (p + 2)Ip

)
to test for full multivariate normality of x. If

Û k = arg min
U∈Op×(p−k)

m1
(
U⊤ (̂R − (p + 2)Ip)2U

)
,

then, again according to the Poincaré separation theorem, a solution of Û k is the matrix of the eigenvectors associated
with the p − k eigenvalues of R that are closest to p + 2. We can then also write

Tk = m2

(
Û⊤

k (̂R − (p + 2)Ip)Û k

)
= s2

(
Û⊤

k R̂Û k

)
+

[
m1

(
Û⊤

k R̂Û k

)
− (p + 2)

]2
and Û⊤

k Ŝ
−1/2
1 x is, under H0k, an estimate for the Gaussian noise vector.

4.2. Asymptotic tests for dimension

Consider the independent component model and, without loss of generality, presume A = Ip and b = 0. Let q denote
the dimension of the non-Gaussian signal space, and denote the corresponding partition by

R̂ =

(
R̂11 R̂12

R̂21 R̂22

)
.

We then have the following result.

Lemma 2. Under the previously stated assumptions and under H0q,

nTq = n · m2
(
R̂22 − (p + 2)Ip−q

)
+ OP (n−1/2) = n · s2

(
R̂22
)
+ n

[
m1 (̂R22) − (p + 2)

]2
+ OP (n−1/2).

Note that the first term in the sum on the second row provides a test statistic for the equality of p − q eigenvalues
closest to p + 2 and the second term measures the deviation of their average from p + 2 (Gaussian case). Under our
assumptions and under H0q, these two random variables are asymptotically independent and we have the following.

Theorem 3. Under the previously stated assumptions and under H0q,

n(p − q)Tq
d
−→ 2σ1χ

2
1
2 (p−q−1)(p−q+2)

+ (2σ1 + σ2(p − q)) χ2
1

ith independent chi squared variables χ2
1
2 (p−q−1)(p−q+2)

and χ2
1 , and σ1 = Var

(
∥z∥2

)
+ 8 and σ2 = 4.

Recall that Tq = Tq,1 + Tq,2 where Tq,1 = s2(Û⊤

q R̂Û q) and Tq,2 = [m1

(
Û⊤

q R̂Û q

)
− (p + 2)]2 provide two asymptotically

independent test statistics for H0q as seen from the proof of the theorem. Under the assumptions in Theorem 3,
n(p − q)Tq,1

d
−→ 2σ1χ

2
1
2 (p−q−1)(p−q+2)

and n(p − q)Tq,2
d
−→ (2σ1 + σ2(p − q)) χ2

1 . For deriving the values of σ1 and σ2, see
the appendix in Nordhausen et al. [30]. They show that the result is true even in the wider NGCA model. As seen in
the proof, σ1 = AsVar((̂R22)12) and σ2 = AsCov((̂R22)11, (̂R22)22). In the independent component model, we simply have
1 =

∑p
k=1 E(z

4
k )− p+ 8 with a consistent estimate σ̂1a =

1
n

∑n
i=1
∑p

k=1(ẑi)
4
k − p+ 8 where ẑ i = Ŵ (xi − x̄), i ∈ {1, . . . , n}.

n the wider NCGA model, the parameter σ1 can be consistently estimated by σ̂1b =
1
n

∑n
i=1 ∥ẑ i∥4

−p2+8. Both estimates,
ˆ1a and σ̂1b, are consistent in the case of the independent component model even for unknown q.

To estimate q, we consider the joint limiting behavior of test statistics n(p− k)Tk for H0k, k ∈ {0, . . . , p− 1}, but under
rue H0q. For k ∈ {0, . . . , p − 1}, write

T ∗
= m

(
(0, I )(̂R − (p + 2)I )(0, I )⊤

)
.
k 2 p−k p p−k

9
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Then Tk ≤ T ∗

k , k ∈ {0, . . . , p − 1}, and we have the following [30].

Theorem 4. Under the previously stated assumptions and under H0q,

(i) for k < q, Tk
P
−→ ck for some c1, . . . , cq−1 > 0,

(ii) for k = q, n(p − k)Tk
d
−→ Ck,

(iii) for k > q, n(p − k)Tk ≤ n(p − k)T ∗

k
d
−→ Ck,

where

Ck ∼ 2σ1χ
2
(p−k−1)(p−k+2)/2 + (2σ1 + σ2(p − k)) χ2

1

with independent chi squared variables χ2
(p−k−1)(p−k+2)/2 and χ2

1 and σ1, and σ2 as in Theorem 4.

As in PCA, a consistent estimate q̂ of the unknown dimension q can be based on sequential testing using the test
statistics Tk and corresponding critical values ck,n, k ∈ {0, . . . , p − 1}, as suggested in the following. Other (top-down or
divide and conquer) strategies again provide alternative consistent estimates.

Corollary 2. For all k ∈ {0, . . . , p − 1}, let (ck,n) be a sequence of positive real numbers such that ck,n → 0 and nck,n → ∞

as n → ∞. Then

P(Tk ≥ ck,n) →

{
1, if k < q,
0, if k ≥ q,

and

q̂ = min{k : Tk < ck,n}
P
−→ q.

4.3. Bootstrap tests for dimension

Let q denote the true dimension and consider the test statistic Tk = m2

(
Û⊤

k (̂R − (p + 2)Ip)Û k

)
for H0k, k ∈ {0, . . . , p−

1}. In the following we also need

P̂k = Ŝ1/2
1 Û kÛ

⊤

k Ŝ
−1/2
1 , Q̂ k = Ip − P̂k,

which are the estimated projection matrices (with respect to Mahalanobis inner product) to the noise and signal subspaces,
respectively.

To obtain the p-value for Tk, the bootstrap samples are generated, as in PCA, from a distribution for which the null
hypothesis H0k is true under the stated model (even if k ̸= q) and which is as similar as possible to the empirical
distribution of X . We suggest again two procedures. The first one is for testing the hypothesis H0k in the IC model and
the second one in the wider NGCA model, see Nordhausen et al. [30]. The bootstrap p-values are obtained as in PCA with
M bootstrap samples.

Bootstrap strategy FOBI-I (IC model):

1. Start with centered X ∈ Rn×p and compute x̄ and Ŵ = (Ŵ⊤

1 , Ŵ⊤

2 )
⊤ where Ŵ 2 = Û⊤

k Ŝ
−1/2
1 .

2. Write Ẑ = (X − 1nx̄⊤)Ŵ⊤
and further Ẑ = (̂Z1, Ẑ2) where Ẑ2 ∈ Rn×(p−k).

3. Let Z∗

1 ∈ Rn×k for a matrix of independent componentwise bootstrap samples of size n from Ẑ1.
4. Let Z∗

2 ∈ Rn×(p−k) be a random sample of size n from Np−k(0, Ip−k).
5. Write Z∗

= (Z∗

1, Z
∗

2).
6. Write X∗

= Z∗(Ŵ⊤
)−1

+ 1nx̄⊤.

Bootstrap strategy FOBI-II (NGCA model):

1. Start with X ∈ Rn×p, compute x̄, Ŝ1, Ŝ2, R̂, Û k, P̂k and Q̂ k.
2. Take a bootstrap sample X̃ = (x̃1, . . . , x̃n)⊤ of size n from X .
3. For the noise space to be Gaussian, transform

x∗

i = [Q̂ k(x̃i − x̄) + Ŝ1/2
1 Û koi] + x̄, i ∈ {1, . . . , n},

where o1, . . . , on are i.i.d. from Np−k(0, Ip−k).
4. X∗

= (x∗

1, . . . , x
∗
n)

⊤.

In the case of the FOBI-I strategy, the bootstrap null distribution Fk,n(x) is the average

1
nk

n∑
Eoi1 ···ik

[
I

(
Ŵ−1

(
(ei1 , . . . , eik )

⊤(X − 1nx̄⊤)Ŵ⊤

1

o

)
+ x̄ ≤ x

)]
,

i1,...,ik=1 i1···ik

10
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Table 2
The asymptotic and bootstrapping based p-values for H01-H04 for the image
data when using FOBI. Either an IC model or a NGCA model was assumed.
The null hypothesis q = 1 (H01) is rejected by all four tests and the true
value q = 2 (H02) is the smallest one to be accepted.

ICA NGCA

Asymp Boot Asymp Boot

H01 0.000 0.002 0.000 0.002
H02 0.211 0.082 0.206 0.116
H03 0.878 0.940 0.873 0.880
H04 0.810 0.778 0.806 0.729

where the o⊤

i1···ik
s are from Np−k(0, Ip−k) and the e⊤

i s (with the ith element one and other elements zero) are in Rn, and
in the FOBI-II strategy, the bootstrap samples for H0k are generated from the distribution Fk,n(x) that is the average

1
n

n∑
i=1

Eoi

[
I
(
[Q̂ k(xi − x̄) + Ŝ1/2

1 Û koi] + x̄ ≤ x
)]

,

here o1, . . . , on ∼ Np−k(0, Ip−k).
As in the PCA bootstrap asymptotics, let X∗

N be a random sample of size N from Fn,k. As these observations come from
the ICA and NGCA models, respectively, with true H0k and known (data based) parameters σ1 = σ̂1a or σ1 = σ̂1b and
σ2 = 4, the limiting (conditional and unconditional) distribution of NTk(X∗

N ) is as given in Theorem 3. For large n, the
limiting distribution then provides the approximation for nTk(X∗) as well.

The bootstrapping testing strategy was explored for any pair of two scatter matrices in [35] in is quite similar than
the approach described above.

4.4. An example

ICA is often illustrated using mixed images. Following this tradition, we mix 6 gray scale images: Two of the images
are the pictures of a cat and a forest road, available in the R package ICS [29], and the remaining four images are just
Gaussian noise. The images have 130 × 130 pixels and the six original images can be presented as a matrix Z ∈ Rn×p with
n = 16900 pixels and p = 6 columns identifying the 6 images. The observed mixed images are then X = ZA⊤

+ 1nb⊤

and the idea is to recover the two (signal) images. Note that the rows of X are not independent in this example but FOBI
uses the marginal distribution of the column elements rather than their joint distribution.

The first three columns of the Z and Ẑ = XŴ⊤
are given on the first and second row of Fig. 2, respectively. Note that

the result on the second row would be the same for any choices of A and b. The ordered eigenvalues (with respect to
the squared deviation from p + 2 = 8) of R̂ are 9.00, 8.27, 7.92, 8.04, 7.97 and 8.00. The p-values for H01-H04 both all
the tests are given Table 2. Note that the bootstrap tests here use m = 500 bootstrap samples. In this examples all four
tests nicely agree and the false hypothesis H01 is rejected and the true hypothesis H02 is the first to be accepted at level
α = 0.05.

5. Testing for subspace dimension in SIR

5.1. The model, null hypothesis and test statistic

In this section we assume that

(y,X) =

((
y1
x1

)
, . . . ,

(
yn
xn

))⊤

∈ Rn×(p+1)

is a random sample from a distribution of (y, x⊤)⊤ where

x = Az + b,

A ∈ Rp×p is non-singular, b ∈ Rp and z = (z⊤

i , z⊤

2 )
⊤ is a random p-vector with E(z) = 0, Cov(z) = Ip and (y, z⊤

1 )
⊤

⊥⊥ z2. If
z1 ∈ Rq and z2 ∈ Rp−q, with q being the smallest value for which this condition holds, then they correspond respectively
to the signal and noise parts of z . The partition z = (z⊤

i , z⊤

2 )
⊤ is then unique up to transformations z1 → O1z1 and

z2 → O2z2 with O1 ∈ Oq×p and O2 ∈ O(p−q)×(p−q). The aim is again to test and estimate the unknown dimension q and
then find the projections to the well defined signal and noise subspaces of x.

Remark 1. Note that our assumption (y, z⊤

1 )
⊤

⊥⊥ z2 is stronger than the regular assumptions in sliced inverse regression
and related methods: In classical SIR and SAVE approaches the dependence conditions are for example (i) y ⊥⊥ z |z
2 1

11
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Fig. 2. The first row shows the original signal images plus one exemplary noise component from Z . The second row shows the first three estimated
omponents Ẑ when using FOBI. All components not shown look like the noise components (third column).

nd E(z2|z1) = 0 a.s. (linearity condition) for SIR and (ii) y ⊥⊥ z2|z1, E(z2|z1) = 0 and Cov(z2|z1) = Ip−q a.s. for SAVE.
lternative or additional assumptions needed for easy and tractable asymptotics have been given in the literature such as
he assumption that z is multivariate normal [23] or that the conditional covariance Cov(z|y) is constant [4]. See Section 5.2
or more discussion. Under our strong assumption, bootstrap samples from a true null distributions are easily generated
s shown in Section 5.3.

In the sliced inverse regression (SIR) one finds a transformation matrix W ∈ Rp×p and a diagonal matrix D ∈ Rp×p

uch that

WS1W⊤
= Ip and WS2W⊤

= D

ith S1 := E
[
(x − E(x))(x − E(x))⊤

]
and S2 := E

[
E(x − E(x)|y)E(x − E(x)|y)⊤

]
. Under our assumptions, the diagonal

lements in D are

d1 ≥ · · · ≥ dq ≥ dq+1 = · · · = dp = 0.

gain, as in ICA, W = U⊤S−1/2
1 with some orthogonal U ∈ Rp×p and, if R := S−1/2

1 S2S
−1/2
1 then U is the matrix of

igenvectors of R.
In practice, the random variable y is replaced by its discrete approximation as follows. Let S1, . . . , SH be H disjoint

ntervals (slices) such that R = S1 + · · · + SH and let yd :=
∑H

h=1 yhI(y ∈ Sh) for some choices yh ∈ Sh, h ∈ {1, . . . ,H},
ndependent of z . (I(y ∈ Sh) = 1 if y ∈ Sh and zero otherwise.) The random variable yd can then be seen as a discrete
pproximation of a continuous random variable y. Naturally also (yd, z⊤

1 )
⊤

⊥⊥ z2. The sliced inverse regression (SIR) then
ust refers to the use of the inverse regression E(x − E(x)|yd) and the corresponding supervised scatter matrix

S2 = E
[
E(x − E(x)|yd)E(x − E(x)|yd)⊤

]
n the analysis of the data. With this choice of S2, we still have d1 ≥ · · · ≥ dq ≥ dq+1 = · · · = dp = 0. Next write µ := E(x)
nd Σ := Cov(x), and µh := E(x|y ∈ Sh), Σ h := Cov(x|y ∈ Sh) and ph = P(y ∈ Sh), h ∈ {1, . . . ,H}. Then

S1 = Σ , S2 =

H∑
h=1

ph(µh − µ)(µh − µ)⊤.

Consider next the corresponding sample statistics. For the estimates of S1 and S2, write

Ŝ1 =
1
n

n∑
(xi − x̄)(xi − x̄)⊤, Ŝ2 =

1
n

H∑
nh(x̄h − x̄)(x̄h − x̄)⊤,
i=1 h=1

12
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where x̄h =
1
nh

∑n
i=1 xiI(yi ∈ Sh) and nh =

∑n
i=1 I(yi ∈ Sh), h ∈ {1, . . . ,H}. Note that np · m1 (̂S

−1
1 Ŝ2) is the well-known

illai’s trace statistic for testing H0 : µ1 = · · · = µH under the assumption that Σ 1 = · · · = ΣH with the limiting null
istribution χ2

(H−1)p.

Furthermore, let R̂ = Ŝ−1/2
1 Ŝ 2̂S

−1/2
1 . We wish to test the null hypothesis

H0k : d1 ≥ · · · ≥ dk > dk+1 = · · · = dp = 0

tating that the dimension of the signal space is exactly k. To test the null hypothesis, we use a natural test statistic, that
s, the average of the p − k smallest eigenvalues of R̂, that is,

Tk := m1(Û
⊤

k R̂Û k),

here the columns of Û k ∈ Op×(p−k) are the eigenvectors corresponding the smallest p − k eigenvalues of R̂.

.2. Asymptotic tests for dimension

As the eigenvalues of R̂ are invariant under affine transformations, we can assume without loss of generality that (y,X)
s a random sample from a SIR model with A = Ip and b = 0. This implies S1 = Ip and µ = 0. We assume that the number
f slices H > q+1, the slices S1, . . . , SH do not change with n, and the related S2 = R = D = diag(D1, 0) with a full-rank
1 ∈ Rq×q. The assumption thus states that, with selected H slices and by using SIR, one can find the full q-dimensional
ignal space.
Let fh = nh/n, h ∈ {1, . . . ,H}, and write

B̂ = Ŝ−1/2
1

(√
f1(x̄1 − x̄), . . . ,

√
fH (x̄H − x̄)

)
.

hen R̂ = B̂̂B⊤
and, with π = (

√
p1, . . . ,

√
pH )

⊤,

B̂ → B := (µ1, . . . ,µH) diag(π) =

(
D1/2

1 0
0 0

)
Q

or some Q ∈ OH×H , where Q = (Q⊤

1 ,Q⊤

2 )
⊤ and Q 1 ∈ Oq×H satisfies Q 1π = 0. With the correct Q and correct dimension

q, we have the partitions

B̂ =

(
B̂1

B̂2

)
, B̂Q⊤

=

(
B̂1Q⊤

1 B̂1Q⊤

2

B̂2Q⊤

1 B̂2Q⊤

2

)
.

An asymptotic approximation to the distribution of Tq = m1(Û
⊤

q R̂Û q) can now be stated as follows:

Lemma 3. Under the previously stated assumptions and under H0q,

n · Tq = n · m1 (̂B2Q⊤

2 Q 2B̂
⊤

2 ) + OP (n−1/4).

Note that, in this setting, with U⊤

q =
(
0, Ip−q

)
,

U⊤

q R̂U q = B̂2B̂
⊤

2 = B̂2Q⊤

1 Q 1B̂
⊤

2 + B̂2Q⊤

2 Q 2B̂
⊤

2 .

Consequently, unlike in Lemmas 1 and 2 for PCA and ICA asymptotics, the asymptotic approximation given in Lemma 3
is not obtained by simply replacing Û q by U q within the definition of Tq. The limiting distribution of n(p − q)Tq is then
given in the following theorem.

Theorem 5. Under our assumptions and under H0q, n(p − q)Tq
d
−→ χ2

(p−q)(H−q−1).

The same limiting distribution is given in Theorem 5.1 in Li [23] and in Corollary 1 in Bura and Cook [4] under the
conditional independence relation y ⊥⊥ z2|z1 and under the linearity condition E(z2|z1) = 0, a.s.. In the former, the
theorem is stated under an additional assumption that the distribution of z is multivariate normal, but within the proof
it is noted that it in fact holds if Cov(z2|y) does not depend on y. In the latter, the above theorem is stated under the
additional assumption that Cov(z|y) does not depend on y, but from their proof it can be noted that they only need this
to hold for Cov(z2|y). In our setting, this condition obviously holds since z2 ⊥⊥ y. For completeness, a proof to Theorem 5
is given in the Appendix. Note that for q ≥ H − 1, Tq = 0.

To estimate q, we consider the limiting behavior of the test statistics n(p − k)Tk for H0k, k ∈ {0, . . . ,H − 1}, when in
fact H0q is true. We write

T ∗

k = m1((Ip−k, 0)Û
⊤

q R̂Û q(Ip−k, 0)⊤), k ∈ {q + 1, . . . ,H − 1}

and then have the following theorem.
13
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Table 3
The p-values for H00-H03 with two testing strategies for the Australian
athletes data. The null hypotheses q = 0 (H00) and q = 1 (H01) are both
rejected and both tests suggest an estimate q̂ = 2.

H00 H01 H02 H03

SIR-I 0.002 0.002 0.090 0.349
Asymp 0.000 0.001 0.121 0.458

Theorem 6. Under the previously stated assumptions and under H0q,

(i) for k < q, Tk
P
−→ ck for some c1 > 0, . . . , cq−1 > 0,

(ii) for k = q, n(p − k)Tk
d
−→ χ2

(p−q)(H−q−1),

(iii) for k > q, P(Tk ≤ T ∗

k ) → 1 and n(p − k)T ∗

k
d
−→ χ2

(p−k)(H−q−1)

As in PCA and ICA, a consistent estimate q̂ of the unknown dimension q can found with the bottom-up sequential
testing strategy as follows. Again alternative testing strategies may be used to find computationally faster and consistent
estimates.

Corollary 3. For all k ∈ {0, . . . ,H − 1}, let (ck,n) be a sequence of positive real numbers such that ck,n → 0 and nck,n → ∞

as n → ∞. Then q̂ = min{k : Tk < ck,n}
P
−→ q.

5.3. A bootstrap test for dimension

We consider the hypotheses H0k saying that the rank of D is k, k ∈ {1, . . . ,H − 1}. Bootstrap samples are then
to be generated from a null distribution for which (y, z⊤

1 )
⊤

⊥⊥ z2 and z1 ∈ Rk even if the true dimension p ̸= k.
Bootstrap sampling from a null distribution obeying the weaker assumptions such as y ⊥⊥ z2|z1 and E(z2|z1) = 0 and
Cov(z2|y) = Ip−k seems much more difficult to carry out and not developed here. Sampling under our strong assumption
is described in the following.

Bootstrap strategy SIR: Generate from the SIR model.

1. Starting from X , find x̄ and Ŵ = (Ŵ⊤

1 , Ŵ⊤

2 )
⊤ where Ŵ 1 ∈ Rk×p and write Ẑ i = (X − 1nx̄⊤)Ŵ⊤

i , i ∈ {1, 2}.
2. Let (y∗, Z∗

1) be a bootstrap sample of size n from (y, Ẑ1).
3. Let Z∗

2 be a bootstrap sample of size n from Ẑ2. (Bootstrap samples in 2 and 3 are independent)
4. Write Z∗

= (Z∗

1, Z
∗

2).
5. Write (y∗,X∗) =

(
y∗, Ẑ∗

(Ŵ⊤
)−1

+ 1nx̄⊤

)
.

In other terms, the bootstrap null distribution Fk,n at (y, x⊤)⊤ is now obtained as the average

1
n2

n∑
i=1

n∑
j=1

I

⎛⎜⎝
⎛⎜⎝ y⊤ei

Ŵ−1

(
Ŵ 1(X − 1nx̄⊤)⊤ei
Ŵ 2(X − 1nx̄⊤)⊤ej

) ⎞⎟⎠+

(
0
x̄

)
≤

(
y
x

)⎞⎟⎠ ,

here the e⊤s are in Rn. As for PCA and ICA bootstrap strategies, let X∗

N be a sample of size N from Fk,n for which the
ull hypothesis H0k and our model assumptions naturally hold true. Then NTk(X∗

N )
d
−→ χ2

(p−k)(H−k−1) and therefore, for
large n, also the distribution of nTk(X∗

n) can be approximated by the same distribution. The estimated bootstrap p-value
is obtained as in the previous cases.

5.4. An example

For the illustration we revisit the Australian Athletes data available in the R package dr [44]. The response variable y
is the lean body mass the predictors in x are given by the logarithms of height (Ht), weight (Wt), red cell count (RCC),
white cell count (WCC), Hematocrit (Hc), Hemoglobin (Hg), plasma ferritin concentration (Ferr) and sum of skin folds
(SSF). The same data was analyzed e.g., by Cook [8], who developed tests of the hypothesis of no effect for a selected
subset of predictors. The data for all 202 athletes is shown in Fig. 3 and the SIR eigenvalues are, rounding to two decimal
places, 0.95, 0.21, 0.11, 0.07, 0.04, 0.02, 0.01 and 0.00.

The observed p values for successive testing of hypotheses H00 to H04 are reported in Table 3. The number of bootstrap
samples was M = 500 and the bootstrap test as well as the asymptotic test suggest that the signal space has dimension
two. Note that the p-values of the asymptotic tests differ slightly from those in Cook [8], perhaps due to different number
of slices and different numbers of observations in slices.
14
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Fig. 3. Pairwise scatter plots for 9 variables in the Australian athletes data. The first variable LBM is the response variable to be explained by the
8 remaining variables.

Fig. 4. The pairwise scatter plots for the response LBM and the two first SIR components SIC.1 and SIC.2. In the plots different symbols are used
for men and women. The gender was not used in the analysis.

The two signal components are plotted against the response in Fig. 4 where the plotting symbols differ for female and
male athletes. The figure nicely shows that both components contain information about the response. The gender of the
athletes was not used in the analysis. However, the first two SIR components seem also to separate the female and male
athletes.
15
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Table 4
The similarities and differences between PCA, ICA and SIR and their use of scatter matrices in the data analysis.

PCA FOBI SIR

Supervised No No Yes

Model Elliptical model Independent component
model

Regression model

Data Numeric vector x Numeric vector x Response y and numeric
vector x

Scatter matrix S1 Identity matrix Ip Covariance matrix Covariance matrix

Scatter matrix S2 Any scatter matrix S Scatter matrix based on
fourth moments

Supervised SIR scatter
matrix

Signal Non-spherical principal
components

Non-Gaussian
independent components

Components sufficient to
explain y

Noise Spherical principal
components

Gaussian independent
components

Components
conditionally
independent of y

Hypothesis Multiplicity of smallest
eigenvalue is p − k

Multiplicity of
eigenvalue p + 2 is p − k

Multiplicity of zero
eigenvalue is p − k

Test statistics Variance of the p − k
smallest eigenvalues

Smallest sum of squared
distances between p − k
eigenvalues and p + 2

Mean of the p − k
smallest eigenvalues

Limiting distributions chi-square Weighted sum of
independent chi-square
variables

chi-square

Bootstrapping Two different strategies Two different strategies One strategy

6. Final remarks

In this paper, we considered three dimension reduction methods based on the use of a pair of sample matrices, principal
omponent analysis, fourth order blind identification and sliced inverse regression, and showed how first two moments of
he eigenvalues of one matrix with respect to another can be used to test for signal (and noise) dimension. The concluding
oint framework for the three methods is summarized in Table 4. In all three cases, the asymptotic null distributions of the
est statistics were given and bootstrap strategies were provided for the testing problems. The asymptotic and bootstrap
ests were compared in real data examples. These three methods serve here as examples and it is obvious that our
pproach can be extended to other pairs of scatter matrices tailored for the multivariate semiparametric goodness-of-fit
roblems at hand, see e.g., Nordhausen et al. [28].
The R code for all computations in the paper is available upon request from Klaus Nordhausen and almost all methods

are implemented in the R package ICtest [31]. Simulation results are given in an extend version of this paper on Arxiv.
owever larger simulation studies as well as theoretical studies in various contexts are still necessary in the future to
ompare the estimates here to other consistent estimates suggested in the literature [26,45,47] and to compare different
equential testing strategies (bottom-up, top-down, divide and conquer).

echnical details

roofs for Section 3

roof of Lemma 1. Let d̂ = (d̂q+1, . . . , d̂p) denote the r = p−q smallest ordered eigenvalues of Ŝ and let δ̂ = (δ̂1, . . . , δ̂r )
denote the ordered eigenvalues of Ŝ22. Lemma 3.1 in Eaton and Tyler (1991) then states that d̂ − δ̂ = OP

(
n−1

)
and,

applying Theorem 3.2 in Eaton and Tyler (1991), δ̂ − d1r = OP
(
n−1/2

)
then implies that d̂ − d1r = OP

(
n−1/2

)
. Setting

P r = I r − r−11r1⊤

r , we then have r · Tq = d̂⊤P r d̂ = (̂d − d1r )⊤P r (̂d − d1r ) and r · s2 (̂S22) = δ̂
⊤P r̂δ = (̂δ− d1r )⊤P r (̂δ− d1r ).

Hence,

r
(
Tq − s2 (̂S22)

)
= 2(̂δ − d1r )⊤P r (̂d − δ̂) + (̂d − δ̂)⊤P r (̂d − δ̂),

which is OP
(
n−3/2

)
+ OP

(
n−2

)
= OP

(
n−3/2

)
.

Proof of Theorem 1. By Lemma 1 it is sufficient to consider the limiting distribution of n · s2 (̂S22). Let again r = p − q
and Z22 =

√
n(̂S22 − dI r )/d. Then

nr · s2 (̂S )/d2 = n · vec(̂S )⊤Γvec(̂S )/d2 = vec(Z )⊤Γvec(Z ),
22 22 22 22 22

16
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where Γ = I r2 − r−1vec(I r )vec(I r )⊤ is idempotent. The second identity follows since Γvec(I r ) = 0. Under H0q, Z22
d
−→ Z

with vec(Z) ∼ Nr2 (0,Σ ), where Σ = σ1(I r2 + K r,r ) + σ2vec(I r )vec(I r )⊤. This implies

nr · s2 (̂S22)/d2
d
−→ 2σ1z⊤z, with z = Γvec(Z)/

√
2σ1 ∼ Nr2 (0,Σ o),

where

Σ 0 = Γ
1
2
(I r2 + K r,r )Γ =

1
2

(
I r2 + K r,r −

2
r
vec(I r )vec(I r )⊤

)
.

Now Σ 0 is symmetric and idempotent with rank(Σ 0) = (r2 + r − 2)/2 = (r + 2)(r − 1)/2, and so z⊤z ∼ χ2
(r+2)(r−1)/2 and

he first part of the theorem follows. The second part follows as Vq is the minimum of the variance over all (p−q)-subsets
f the ordered eigenvalues of Ŝ . The variance of the p − q smallest eigenvalues, that is, Tq converges in probability to 0,
nd the variance for any other

(p
q

)
− 1 choices of subsets converges in probability to a positive constant.

roof of Theorem 2. (i) Tk converges in probability to the variance of p − k smallest eigenvalues which is positive for
< q. (ii) is given in the previous theorem. (iii) follows as, for k ∈ {q, . . . , p − 1},

Tk =
1

2(p − k)2

p∑
i=k+1

p∑
j=k+1

(d̂i − d̂j)2 ≤

(
p − q
p − k

)2 1
2(p − q)2

p∑
i=q+1

p∑
j=q+1

(d̂i − d̂j)2 =

(
p − q
p − k

)2

Tq.

roofs for Section 4

roof of Lemma 2. This proof is similar to the proof of Lemma 1. Again set r = p− q. Rather than using the ordering of
he roots given in Section 4, let λ1, . . . , λp denote the ordered eigenvalues of R, and so for some 0 ≤ m ≤ q, λm > p + 2,
m+1 = · · · = λm+r = p + 2 and λm+r+1 < p + 2. Also, let λ̂ = (λ̂m+1, . . . , λ̂m+r )⊤ denote the (m + 1)th to (m + r)th
rdered eigenvalues of R̂ and let δ̂ = (δ̂1, . . . , δ̂r )⊤ denote the ordered eigenvalues of R̂22. Again using [13], applying
ts Lemma 3.1 twice gives λ̂ − δ̂ = OP

(
n−1

)
and applying its Theorem 3.2 gives λ̂ − (p + 2)1p = OP

(
n−1/2

)
. Now,

· Tq = (̂λ − (p + 2)1r )⊤ (̂λ − (p + 2)1r ) and r · s2 (̂S22) = (̂δ − (p + 2)1r )⊤ (̂δ − (p + 2)1r ). Hence,

r
(
Tq − m2 (̂R22)

)
= 2(̂δ − (p + 2)1r )⊤ (̂λ − δ̂) + (̂λ − δ̂)⊤ (̂λ − δ̂),

hich is OP
(
n−3/2

)
+ OP

(
n−2

)
= OP

(
n−3/2

)
.

roof of Theorem 3. By Lemma 2 it is sufficient to consider the joint limiting distribution of n(s2 (̂R22),m2
1 (̂R22)). Set again

= p − q. The arguments for obtaining the limiting distribution of n · s2 (̂R22) are analogous to those used in the proof
f Theorem 1, and we use the same notation but now with Z22 =

√
n(̂R22 − (p + 2)I r )/(p + 2) → Z with the property

hat U⊤ZU ∼ Z for all U ∈ Or×r . Then again vec(Z) ∼ Nr2 (0,Σ ), where Σ = σ1(I r2 + K r,r ) + σ2vec(I r )vec(I r )⊤ with two
opulation constants σ1 and σ2. Using arguments analogous to those in the proof of Theorem 1, we again obtain under
he null hypothesis that nr · s2 (̂R22)/(p+ 2)2 → χ2

(r+2)(r−1)/2. Next, r
√
n ·m1 (̂R22) = vec(I r )⊤vec(Z22)

d
−→ vec(I r )⊤vec(Z) ∼

(0, σ 2), with σ 2
= vec(I r )⊤Σvec(I r ) = 2rσ1 + r2σ2. Thus r2n · m2

1 (̂R22)
d
−→ σ 2χ2

1 . Finally, recall that, as in the proof
of Theorem 1, n · s2 (̂R22) = vec(Z22)⊤Γvec(Z22) where Γvec(I r ) = 0. This establishes the independence of the limiting
distributions of the component variables in (n · s2 (̂R22), n · m2

1 (̂R22)), and consequently Theorem 3 follows with some
constants σ1 and σ2. The values of σ1 and σ2 are derived in the Appendix in [30].

Proof of Theorem 4. (i) Tk converges in probability to the sum of p − k smallest eigenvalues of (D − (p + 2)Ip)2 which is
positive for k < q. (ii) is given in the previous theorem. (iii) follows as

Tk = min
U∈Op×(p−k)

m1
(
U⊤ (̂R − (p + 2)Ip)2U

)
≤ m1

(
(0, Ip−k)(̂R − (p + 2)Ip)2(0, Ip−k)⊤

)
and the result follows as, for k ∈ {q, . . . , p−1}, (0, Ip−k )̂R(0, Ip−k)⊤ is a (p−k)× (p−k)-submatrix of R̂22 with the known
limiting distribution.

Proofs for Section 5

Proof of Lemma 3. For H ≥ p, let γ̂ = (γ̂q+1, . . . , γ̂p)⊤ denote the p − q smallest ordered singular values of B̂Q⊤. When
q+1 < H < p, we use the same notation while noting γ̂H+1 = · · · = γ̂p = 0. Likewise, let η̂ = (η̂1, . . . , η̂p−q)⊤ denote the
ordered singular values of B̂2Q⊤

2 . Since
√
n(̂B − B)Q⊤

= OP (1), it follows respectively from Theorems 4.1 and 4.2 in [14]
that γ̂ − η̂ = OP

(
n−3/4

)
and γ̂ = OP

(
n−1/2

)
. Next, observe that (p−q)Tq = γ̂⊤γ̂ and (p−q)m1 (̂B2Q⊤

2 Q 2B̂
⊤

2 ) = η̂⊤η̂. Hence,

(p − q){Tq − m1 (̂B2Q⊤

2 Q 2B̂
⊤

2 )} = 2̂η⊤ (̂γ − η̂) + (̂γ − η̂)⊤ (̂γ − η̂),

which is O
(
n−5/4

)
+ O

(
n−3/2

)
= O

(
n−5/4

)
.
P P P

17



K. Nordhausen, H. Oja and D.E. Tyler Journal of Multivariate Analysis 188 (2022) 104830

n
w

Proof of Theorem 5. By Lemma 3, the limiting distributions of n·Tq and n·m1 (̂B2Q⊤

2 Q 2B̂
⊤

2 ) are the same. Let x∗

h ∈ Rp−q refer
to the last p−q components of I(yi ∈ Sh)x ∈ Rp, h ∈ {1, . . . ,H}. Hence, under H0q, x∗

= z2 is independent of the response
y. Since fh · x∗

h =
1
n

∑n
i=1 x

∗

(h),i, where x∗

(h),i = x∗

i I(yi ∈ Sh), with E(x∗

(h)) = phE(x∗) = 0, Cov(x∗

(h)) = phCov(x∗) = phIp−q,

Cov(x∗

(h), x
∗

(m)) = 0 for h ̸= m, and fh
P
−→ ph, it follows from the central limit theorem and from Slutsky’s theorem that

√
n
(√

f1 x∗

1, . . . ,
√
fH x∗

H

) d
−→ Z, where the elements of the (p − q) × H random matrix Z are i.i.d. N(0, 1).

Since Ŝ1
p
−→ Ip and x∗

=
∑H

h=1 fhx
∗

h , we obtain
√
n · B̂2Q⊤

2
d
−→ Z(IH − ππ⊤)Q⊤

2 with π⊤
= (

√
p1, . . . ,

√
pH ). Hence

· B̃2B̃
⊤

2
d
−→ ZPZ⊤, where P = (IH − ππ⊤)Q⊤

2 Q 2(IH − ππ⊤). It is shown below that P is idempotent with rank H − q − 1,
hich implies ZPZ⊤

∼ Wishartp−q(H − q − 1, Ip−q), and consequently, n · tr (̂B2Q⊤

2 Q 2B̂
⊤

2 )
d
−→ tr(ZPZ⊤) ∼ χ2

(p−q)(H−q−1).
To complete the proof, note that since µ = 0, it follows that Bπ = 0 and hence Q 1π = 0. Also, since IH − ππ⊤ is

idempotent with rank H − 1, we have

IH − ππ⊤
= (IH − ππ⊤)Q⊤Q (IH − ππ⊤) = Q⊤

1 Q 1 + P,

which implies P is idempotent with rank H − q − 1.
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