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Hospitals are plagued with a multitude of logistical challenges amplified by a time-sensitive and
high intensity environment. These conditions have resulted in burnout among both doctors and
nurses as they work tirelessly to provide critical care to patients in need. We propose a new machine-
learning-powered matching mechanism that manages the surgeon-nurse-patient assignment process
in an efficient way that saves time and energy for hospitals, enabling them to focus almost entirely
on delivering effective care. Through this design, we show how incorporating artificial intelligence
into management systems enables teams of all sizes to meaningfully coordinate in highly chaotic

and complex environments.
INTRODUCTION

The impetus of this paper is to craft a solution to a highly
pressing problem in hospital operations by applying
computational thinking to complex teams of teams’ problems.
Specifically, hospitals often struggle with matching nurses and
surgeons to patients in an efficient way that minimizes delays
(Wong et al, 2010). We designed a staff management system
that accomplishes the matching process through an algorithm,
so that the cognitively intensive team assignment process can
be outsourced to a computational mechanism.

The findings of this research have largely significant
implications for both practitioners and patients. In particular,
matching clinicians with patients efficiently through an
algorithm will reduce surgery times and lower the risk of
complications arising from surgery, and gains in efficiency
enable patients to be treated much sooner due to decreased
delays given to mis-managed time frames. Practitioners gain
efficiency from shortened surgery time, as less effort and
energy are required to achieve the same outcomes now that the
matching process is efficient. Because of this efficiency,
burnout among both nurses and surgeons can be expected to be
less as both the workflow itself and the length of the surgery
become less physically and mentally strenuous.

Most research suggests strong links between work-related
stress and burnout, which in turn is connected to turnover
(Leiter & Maslach, 2009). In France alone, over 30% of nurses
met the standard for Burn Out Syndrome (BOS) (Poncet et al
2007). The issue of burnout and by extension turnover is not by
any means limited to nurses: it affects residents as well. Internal
work demand and a perceived lack of control over work that
leads to work-home interference are among some of the factors
that are associated with resident burnout (Thomas
2004).Burnout and turnover impose are also one of the largest
financial burdens on a healthcare provider.

The work outlined in this paper aims to demonstrate the
many ways in which incorporating user-centric technology can
lower costs without compromising quality of care or workplace
satisfaction. To articulate this vision, we are going to ground
our model for team behavior through the multi-team system
construct, and by analyzing the challenges of multi-team

systems in the healthcare domain we are going to design a
management system that leverages cutting edge technology
(machine learning) and industrial engineering (stable marriage
algorithm).

PRACTICE INNOVATION

To address issues of congestions, surgery delays, and clinician
burnout within the healthcare system, we set out to identify an
effective model to visualize the complexity of behind surgery.
To manage this complexity, we resolved to unload burden of
clinician assignment away from a human team by making the
assignment process directed by a matching algorithm running
on top of a neural network.

Multi-Team Systems in Healthcare

The accomplishment of a successful surgery is the result of
highly complex processes with multiple components. A
patient’s surgery needs to be classified based on urgency and
difficulty, a surgeon out of the pool of surgeons on call, needs
to be selected, and a team of nurses needs to be matched with
the surgeon in order to effectively assist the operation. Such a
multi-dimensional — problem requires multi-dimensional
solutions, which necessitates the construct of multi-team-
systems (MTS), defined as “two or more teams that interface
directly and interdependently in response to environmental
contingencies toward the accomplishment of collective goals”
(Mathieu et al. 2001).

Leaders within the healthcare sector have highlighted
MTSs key role in addressing the series of challenges involved
through all the steps of patient care (DiazGranados et al., 2014;
Misasi et al., 2014; Weaver et al., 2014). Since separate teams
of people deal with each aspect of the sequence of operations
and services to be delivered to the patient, each group needs to
manage to communicate effectively both internally and
externally in order to make the care-delivery process as smooth
as possible.

The MTS community has called for the study of the
information sharing procedures involved between teams as the
patient passes through different phases of the care-delivery
process (DiazGranados et al., 2014). This call is due to the
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complexities engrained within the healthcare setting, which
provides the perfect setting to study how teams interact with
other teams at a large scale, thereby creating a multi-team
system in the process.

The Challenges faced by MTS

Although traditional teams work effectively for small and
confined problems or tasks, as the complexity and scale of the
task increases, a formal coordination structure becomes
necessary (Davison et al 2012). Specifically, in the case of
healthcare delivery, MTSs need an effective coordination
structure to manage fluctuating amounts and degrees of gravity
of the patients while still operating under the constraints of
personnel availability and talent density.

Although both the private sector and the research
community have expressed interest in making improvements to
the operation of teams in the healthcare system, progress has
been slow but steady (Shuffler et al, 2015). Fortunately, a
substantial amount of research has been directed towards
refining the problems faced by teams transitioning to MTSs as
the organization grows.

First, as the organization grows, it becomes more
complex, and inter-team communication breaks down. The
issues arise from the disconnect between the larger scope of the
organization’s objective and teams’ difficulty in scaling their
communication with each other (Zaccaro et al., 2012).

Second, at a large scale teams become more dispersed, a
process that creates obstacles to meaningful coordination
between teams, such as suboptimal scheduling. These
limitations  have  potentially  substantially  negative
consequences on synchronicity and coordination (DeCostanza
etal., 2014).

Third, a lack of synchronicity often results in the
misallocation of tasks between teams, which is a problem that
easily undermines coordination on a macro-level. Prior research
also shows that a disproportionate workload allocation within a
team or between teams in an MTS leads to cognitive overload,
which results in higher error rates (Misasi et al., 2014).

Fourth, the procedure of classifying patients and matching
them with the appropriate surgeon-nurse team increases in
complexity as the organization gets larger and resources
become constrained. Resource constraints for MTSs with an
increasing number of component teams has shown to lead to
competition for resources, which may affect outcomes in a
negative way (Kanfer et al1994). The only way to avoid the
negative consequences of scarcity is through effective
coordination, which becomes increasingly difficult as the
organization gets larger and specialization leads different
departments and teams to isolate themselves.

Ironically, prior research has suggested that actions
stemming from attempts at coordination are actually
counterproductive, as they generate challenges that detract from
the team’s focus of achieving its objective (Davison et al.
2012). This research implies that there is a tradeoff between
maximizing coordination and task completion efficiency.
However, such a tradeoff may be transcended through an
entirely different approach: human-centered and motivated
technology.

Technology’s role in MTSs

Although prior research in human factors exists on how to
improve shared mental models (SMM), much research remains
to be conducted about the impact technology can have on
improving SMM in healthcare scenarios. At best, research has
demonstrated how virtual tools impact team-formation and
MTS SMM-development, but even then it is confined to text-
based technology such as chats and messaging services
(Jiménez-Rodriguez, 2012).

Approaching MTSs as a network, where individual nodes
connected to each other represent team-members, and
interconnected hubs represent sub-teams, has proven to be very
effective in explaining emergent phenomena within the
organization (Klein & Kozlowski, 2000b). Therefore,
approaching MTSs as networks becomes an effective way to
model all the properties of MTS through computational
methods. Assuming a computational view of MTS networks,
better technologies can be built to improve upon various aspects
of the MTS, ranging from accelerating information flow to
directing team-formation. The most promising approach
involves machine learning.

Machine Learning and Neural Networks

Machine Learning (ML) refers to the area of computer science
that seeks to model and replicate learning mechanisms through
computation. It’s a field that has led to the most promising
advances in artificial intelligence, as researchers have
effectively managed to replicate human vision techniques into
computer vision, to create the best Go player in the world, and
cancer-detection systems that outperform doctors (Rosten &
Drummond, 2006; Chen, 2016; Bejnordi et al, 2017).

One of the most promising techniques in ML relies on the
concepts of artificial neural networks. A neural network (NN)
is a network of processing units with weighed connections to
each other analogous to the neurons in brains. Just like the
human brain, the NN processes large amounts of data, learns
patterns, makes predictions and recalibrates its own model to
minimize its errors (Kaur & Wasan 2006, Lu & Liu 1996).

There are many algorithms upon which a NN can be built,
and this work seeks to test out how a NN designed with the
Gale-Shapley Algorithm can improve surgeon-nurse team
formation by matching MTSs to patients.

Hidden Layer

Output Layer
o

Input Layer

Figure 1. The input data goes through the Input Layer nodes, it’s proceed by the
Hidden Layer nodes, and is the node in the Output layer gives the recommendation

The Stable Marriage Algorithm
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The Gale-Shapley algorithm, colloquially known as the Stable
Marriage Algorithm (SMA), matches 2 equally sized sets of
elements with ranked preferences. The algorithm’s applied
scenario is usually posited in the context marriage: each man in
a set of men is asked to rank by preference every woman in an
equally sized set of women. The Gale-Shapley algorithm
demonstrates that a stable allocation, defined as the state in
which no couple is better off exchanging partners, exists
irrespective of the preference and that such an allocation can be
achieved through “deferred acceptance”, whereby for every
iteration, each unmatched man proposes to the woman at the top
of his preference list who has yet to reject him (Gale & Shapley
1962). At the end of the process, the men and women find
themselves paired in such a way that even though their partner
is not their top choice, any person they’d rather be with would
rather be with someone else thereby making divorce
impossible.

Figure 2. Even though Alice would rather be matched with Bob or Charles, David is
the only stable match.

The SMA has since been applied to match residents with
hospitals, and became so successful that it gave birth to the
National Resident Matching Program (NRMP), which has been
used ever since 1984, albeit with some variations (Roth 1984,
Roth & Peranson 1999). In real-world applications, the SMA
enables mechanism designers to tailor the system towards a
particular outcome. For example, experiments have been
conducted in Ohio and New England to set up a kidney
transplant system predicated upon SMA. The results have been
overwhelmingly positive, as the matching engine seeks to
optimize for patient outcomes, and researchers have theorized
that a wide application of SMA would not only lead to between
1000 and 2000 additional transplants a year, but also to over
$750 million dollars in savings for dialysis costs (Goldfarb
2005).

PRACTICE APPLICATION

In order to address the coordination issues arising from MTS in
healthcare delivery, we propose a design of a NN that computes
a match for nurses, surgeons, and patients to optimize for
surgery outcomes and reduce congestion. In order to make this
design accessible to every hospital, our research team is
constructing an abstract model so that the system can be
implemented on each hospital’s idiosyncratic technical
infrastructure.

Human-Machine Interface

Every human-machine system needs an interface that
effectively enables two-way communication between the
human and the machine. In this particular case, the hospital
employees need to communicate data effectively to the NN, and
in turn the NN needs to communicate to nurses and doctors

where to go. This interface has three sub-components: patient
classification, team member geolocation, post-surgery
assessment.

First, the patient needs to be classified. Hospitals already
classify cases based on urgency of the procedure, magnitude of
the condition, and confidence of initial diagnosis, therefore the
NN uses these variables to compute the priority level of each
patient.

Second, each practitioner needs to be geolocated. Many
technologies already exist to track location, but purely for the
sake of the example, we are using sociometric badges. The
badge tracks the location of the practitioner when they are in
the hospital, so that the NN can optimize the matching process
so that neither the nurses nor the doctors have to walk back and
forth to figure out which room they have been assigned, and can
instead be pointed directly to the patient they have been
matched with.

Lastly, entries need to be made after each surgery. Each
practitioner is asked to rank every teammate in terms of team-
compatibility, and this data will be entered into a web form
alongside the length of procedure as well as its degree of
success. Teammate satisfaction, procedure length, and surgery
success are the three variables the NN uses to calibrate its model
and improve its matching over time.

Procedural Overview of the Network
The NN runs a diverse set of computations to arrive at its
matching recommendation. The objective is to reduce
congestion (measured by how often surgeries are rescheduled),
minimize lag (accomplished by removing the need for nurses
and doctors to walk back and forth to pick up assignments), and
maximize coordination (avoiding double booking people and
forming “‘stable” teams where members have positive
relationships with one another). The algorithm can be broken
down into several steps:
1) The NN models the resources available. Initially, the
NN will be gathering data about which nurses and
doctors in its directory are available as well as their
location.
2) The NN drafts a schema for MTS. At this step, the NN
matches nurses together through SMA, and then runs
SMA once again to match the team of nurses to
surgeon, creating the first MTS. Iterating through this
process, the NN will build out a schema of all possible
MTSs arising from combinations of the available staff
on call.
3) The NN matches a MTS to a patient. At this step, the
NN once again uses SMA to match the patient to one
of the potential MTSs within its schema to optimize
for surgery success.
4) The NN notifies each member of the MTS as to which
room to go to.
5) The NN updates its database by removing the matched
patient and MTS.
6) The NN updates it database with any new data from a
surgery accomplished since its last iteration.
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This sequence of steps (Figure 3) is repeated endlessly as the
NN matches incoming patients with MTSs composed of the
available staff.
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Figure 3. The neural network goes through the sequence of steps, improving its
matching every time through its learning process

Metrics and Parameters
In order to keep track of the NN’s performance and
improvements, a few metrics should be tracked.

Surgery Duration: The time taken from when the
patient was assigned to the surgeon-nurse team until the
operation was officially completed. This is measured
automatically by the system as it starts tracking from the when
the notification of patient assignment is sent out until the MTS
members walk out of the operating room.

Computational Complexity: The NN will track how
many calculation it needs to perform in order to make its
recommendation.

Team-member satisfaction rate: Measured through
hospital’s internal performance review system in order to
control for the potentially confounding factor of using a
different questionnaire than the surgeons and nurses are
accustomed to.

Congestion: The hospital will record how often
surgeries are rescheduled, both prior to the system’s
implementation and afterwards.

DISCUSSION

Healthcare delivery is a dynamic multi-variable problem,
therefore a static patient-MTS matching mechanism would not
be useful in most scenarios. A NN, on the other hand, is
dynamic and crafts unique solutions depending on the
circumstances. It operates at computational speed, which is
vastly superior to the human speed of the human-managed
matching system used by default, and the speed differential is a
major factor when dealing with emergency care. Lastly, NNs
have been shown to conceive entirely brand new solutions to
highly complex problems, thereby offering the opportunity in
this case to achieve new heights in healthcare effectiveness by
discovering MTSs configurations that would have most likely
gone unexplored otherwise.

Additionally, automating the matching process and team-
formation process removes tasks from both the surgeons and
nurses’ workflow, thereby decreasing the cognitive overhead
associated with such tasks, and thus enabling the MTS to
redirect that energy towards communication and coordination.
Since the NN is grounded in SMA, the MTS will be structured

not only to maximize coordination but more importantly to
maximize the chances of patient care success.

MTS in large organizations has also proven to be a
difficult visualization problem. The MTS life cycle influences
the sequence of actions and outcomes between component
teams. The entire development of an MTS is vastly more
difficult than that of teams because of disjointed timeline
between the component teams as they operate on different
schedules and are responding to different parts of the problem
faced by the organization (Shuffler et al 2015). Despite this
complexity, a NN is perfectly positioned to visualize these
high-level dynamics, for its model reconstruct the MTS as a
network, which is a mathematical object NNs are naturally
poised to process very well.

MTSs also experience life-cycles related to their
formation as a response to a particular situation, structured to
evolve over time to address a particular goal or outcome
(Mathieu et al., 2001). Because of the dynamic nature of MTSs
then, a dynamic solution provided by a NN makes the MTS-
formation process self-directed as opposed to emergent, thereby
enabling the MTSs that forms in response to a task to be not just
sufficiently effective at the task but rather optimally effective
because it was designed with purpose by the NN as opposed to
by circumstance and availability.

PRACTITIONER TAKEAWAYS

1. Healthcare-related problems are becoming so complex
that human cognition alone is not sufficient:
technology needs to be designed to augment human
capability

2. Task overload and logistical breakdowns result in
clinician burnout, and algorithmic management is
perfectly positioned to solve these problems.

3. Deep problems within the healthcare system require
new approaches that don’t just marginally improve
workflows, and consulting areas like computing
expands the options available to solve these problems.

4. Technology and data science have evolved so much
that healthcare problems that used to be deemed
intractable are now within reach.
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